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ABSTRACT

Feature tracking plays an important role in the understanding of
time-varying data sets since it allows scientists to focus on regions
of interest and track their evolution and interaction over time. In
this paper, we focus on the tracking of time-varying isosurfaces and
advocate that the commonly used local tracking techniques based
on either volume overlapping or the most similar attributes are of-
ten not sufficient. To address this problem, we propose a global
optimization algorithm that can identify the best possible matching
isosurface component for each tracked component. Our algorithm
will first find a list of correspondence candidates for each source
isosurface component and then use a global optimization to min-
imize the overall cost to match the source isosurface to the target
isosurface. An efficient method to precompute this correspondence
relationship within an isovalue interval is also introduced. With
our global optimization algorithm and the precomputed correspon-
dence relationship, isosurfaces can be tracked in a more accurate
and efficient manner.

CR Categories: I.3.6 [Methodology and Techniques]: Interaction
Techniques—;

Keywords: isosurface tracking, global optimization

1 INTRODUCTION

Scientists are now able to perform large scale time-varying simula-
tions to model phenomena that are complex and highly unsteady.
For example, meteorologists often perform simulations to study
how storms form and evolve. In [14], scientists studied the au-
toignition phenomena by tracking time-dependent features defined
as high intermediate concentrations. To analyze data generated
from those simulations, visualization has become an essential tool.
Besides the basic goal of presenting an intuitive view of the data, an
important aim of visualization is to highlight salient data features
and offer unique insight into the underlying problem. For time-
varying data, an effective visualization tool should also compute
and track features over time in an accurate and efficient manner.

Displaying isosurfaces [17] is a common way to characterize fea-
tures in a scalar field. By displaying points of a constant thresh-
old value specified by the user, isosurfaces reveal the geometric
structure of the objects represented by the data. Visualization of
time-varying isosurfaces offers insights into how a time-varying
data evolves over time. However, commonly used animation tech-
niques may not be always effective, especially for tracking the evo-
lution of complex features in a long time sequence. In addition, the
enormous size of the data set makes the computation of the anima-
tion very expensive. To tackle this problem, previously researchers
have developed various feature tracking techniques to study time-
varying scalar fields. For instance, Silver and Wang developed vol-
ume tracking techniques based on spatial overlap [26, 27, 28, 29].
c
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Samtaney et al.[24] and Reinders et al.[22] track time-varying fea-
tures based on the feature attributes such as position, volume, mass,
etc. Ji and Shen [12, 11] track time-varying isosurfaces and inter-
val volumes using higher-dimensional geometry. These techniques
can be generally characterized as local tracking techniques, where
the tracking of each local feature is performed independently with
various greedy search schemes in the local surrounding to find the
best match.

In this paper, we advocate that the local tracking techniques do
not always produce globally best matching results, in particular
when there exist small or fast-moving objects for which the time-
varying field is not sufficiently sampled. To address the issues, we
propose a global optimization algorithm for tracking time-varying
isosurfaces. Our algorithm takes into account the global configu-
ration of the features and ensures that every isosurface component
is matched to the best possible corresponding components in the
next time step. To achieve this, our algorithm will first find a list of
correspondence candidates for each source isosurface component
and then use a global optimization scheme to minimize the overall
cost to match the source isosurface to the target isosurface. By uti-
lizing the coherence between isosurfaces within adjacent isovalues,
we present a method to precompute only a finite number of isosur-
face correspondences to depict the evolution history of isosurfaces
generated by arbitrary isovalues. With our global optimization al-
gorithm and the precomputed correspondence relationship, isosur-
faces can be tracked in an accurate and efficient manner.

The organization of the paper is as follows. We first review pre-
vious works in section 2, and then present our global optimization
algorithm in section 3. In section 4, a way to precompute the cor-
respondence relationship within an isovalue interval is introduced.
Test results are presented in section 5 and the paper is concluded
with the future work of this research.

2 RELATED WORK

Researchers have proposed various techniques to track time-
varying features. Banks and Singer [5] used a predictor-corrector
method to reconstruct and track vortex tubes from turbulent time-
dependent flows. Arnaud et al.[2] tracked 2D cloud patterns and
used area overlap to determine correspondence. The tracking meth-
ods basically fall into two categories: volume overlapping based
methods [26, 27, 28, 29, 12, 11] and attributes based methods
[24, 22]. Silver and Wang [26, 27, 28, 29] observed that corre-
sponding features in adjacent frames usually overlap when the tem-
poral sampling rate of the underlying data is high enough. Based
on the observation, correspondences between features in consecu-
tive frames are identified using a two-stage process including an
overlap and a best matching test. In the overlap test, spatially over-
lapped features from consecutive frames are identified and the num-
ber of intersecting nodes is also computed. The best matching test
involves inspecting the ratio of the number of intersecting nodes
versus the average volume among all combinations of overlapped
features, with the combination of the maximum ratio as the cor-
responding feature(s). Samtaney et al.[24] tracked features using
their center point positions, masses, volumes and circulations (in
2D). Each feature is matched to the feature(s) in the next frame
whose center point position is the closest to its center point and the
volume and mass are also within a prescribed tolerance. Reinders



et al.[22] also calculated a set of attributes, such as center point po-
sition, volume, mass, and best fitting ellipsoid for every feature in
every frame and used these data to track features through a predi-
cation/verification scheme.

In our previous work [12], we tracked isosurfaces and interval
volumes efficiently by using higher dimensional isosurfacing. The
key observation we had is that the isosurface and interval volume
component and the component it overlaps with in the next frame
belong to the same isosurface or interval volume component in R4.
Therefore, in order to track where an isosurface or interval vol-
ume component in R3 evolves, our algorithm [12] first extracts the
isosurface or interval volume component in R4 that contains the
tracked component in R3. We then slice the generated component
in R4 in the next frame to get the component in R3 that corresponds
to the tracked component. In [11], we reported that the overlap-
ping relationship between isosurfaces of two consecutive frames
can change only at critical isovalues in R3 or R4 and remains un-
changed between any two adjacent critical isovalues. Therefore, the
overlapping relationship between isosurfaces from any two consec-
utive frames will only change finite amount of times and thus the
overlapping lookup table will contain finite entries and can be pre-
computed. With this overlapping table, isosurface tracking can be
achieved by simple table lookup and verification operations.

Feature tracking identifies how a feature evolves and interacts
over time. Based on how the topological structure of a feature
evolves, one of the following events can occur:

d Continuation: an object continues with possible shape defor-
mation and change of position, orientation, etc.d Creation: a new object appears.d Dissipation: an object disappears.d Bifurcation: an object splits into several objects.d Amalgamation: several objects merge into a single one.

Chen et al.[9] extended the work by Silver and Wang [26, 27, 28,
29] to track features in distributed AMR (Adaptive Mesh Refine-
ment) datasets within a distributed computing environment. The
resulting feature tree allows a viewer to watch how a multi-level iso-
surface changes over time, space and across different resolutions.

It is also worth mentioning that there is a rich literature in com-
puter vision on motion tracking [4, 1, 25, 7]. The main difference
between tracking 2D objects from videos and tracking features from
simulation data is that features or regions of interest in scientific vi-
sualization applications are often manifested as 3D objects which
tend to evolve and interact, while those 2D objects in computer vi-
sion interact less frequently.

3 ISOSURFACE TRACKING BY GLOBAL OPTIMIZATION

Given two isosurfaces in two time steps (hereafter referred to as
two frames) each of which contains multiple components, one way
to establish the correspondence between them is to associate every
component in one frame with the component(s) of its locally best
match in the other frame. The best local match criterion can be de-
fined either by the component which gives the maximum overlap
[26, 27, 28, 29, 12, 11], or the component which has the most sim-
ilar attributes (center point position, volume, etc) [24, 22]. While
those local matching algorithms are effective for various applica-
tions, there are many cases where the local matching schemes do
not offer the best result globally. For example, in the example
shown in figure 1, both isosurfaces contain multiple fast-moving
components. The locally best matching component for C1

0 (C j
i

refers to component j at t=i) is C0
1 because it has maximum over-

lap with C1
0 and their center point positions and volumes are also
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because the entire isosurface in fact moves downwards. Similarly,
in the example shown in figure 2, both components shrink as time
evolves. If C0

0 is the first to be matched, it will be matched to C0
1 and

C1
1 . This is because that they have the maximum overlap with C0

0 if
volume overlapping criterion is used, or they have the most similar
center point position and volume if the most similar attribute crite-
rion is used. However, globally only C0

1 should be matched to the
C0

0 . From these two examples, we can see that the scheme of local
matching does not always produce the best results globally.

To address the problem, a global matching technique is needed
to ensure that every component is matched to the best possible cor-
responding components in the next frame. In the following, we
present a global optimization algorithm to track time-varying iso-
surfaces. For every single component and compound component
where multiple single components are involved in a single topolog-
ical event (merge, split, disappear, or create), we will first identify a
list of correspondence candidates in the next frame. A cost is eval-
uated for matching the component (single or compound) to each of
its possible correspondence candidates. Based on the costs, a global
optimization is performed to minimize the overall cost to match the
source isosurface to the target isosurface. The output of the global
optimization then defines the correspondence between two isosur-
faces.



3.1 Correspondence Candidates
As mentioned above, in many cases the local matching scheme
will not produce the best matching result. A global optimization is
needed to guarantee that every component matches to its best pos-
sible candidate. In our time-varying isosurface tracking algorithm,
the first step is to identify from the next frame all the possible corre-
spondence candidates for each of the isosurface components (single
or compound). This will reduce the search space so that the global
optimization can be done in a more efficient manner.

3.1.1 Correspondence Candidates for Single Component

Although in theory every isosurface component in the next frame
can be considered as a correspondence candidate, this is often too
conservative since when a component evolves, it usually moves to a
nearby position with its shape deforming gradually and its volume
changing slightly. To reduce the search space during optimization,
the choice of the correspondence candidates for a component can
be limited to its overlapping components in the next frame and all
of the neighbors of the overlapping components. Note that this can
be relaxed if the time varying data set is very sparsely sampled.
For example, the neighbors of the neighbors can be also included.
Based on this principle, all the possible corresponding candidates
of a component can be found out by first locating its overlapping
components and finding all the neighbors of the overlapping com-
ponents. The overlapping components can be quickly identified
based on a precomputed overlap lookup table [11]. For a compo-
nent which has no overlapping components in the next frame, its
closest component in the next frame can be used. To get the neigh-
borhood of the component, the voronoi diagram composed of all
the center points of each component is first calculated. The neigh-
borhood relationship can then be quickly located by looking up the
voronoi diagram.

3.1.2 Correspondence Candidates for Compound Component

When a component evolves, it may disappear, split into several,
or merge with other components. A new component may also be
created. Therefore, in order to detect those evolutionary events,
we will need to consider the possibility of matching a group com-
ponents to a single component, matching a single component to a
group of components, matching a component to an empty compo-
nent, and matching an empty component to a single component.
Such groups of components are called as compound components.
Therefore, in addition to finding correspondence candidates for sin-
gle components, correspondence candidates for compound compo-
nents should also be identified. Furthermore, both single and com-
pound component can be the correspondence candidate for a single
component. Compound components are identified to detect evolu-
tionary events, therefore, they are named as merging candidates,
splitting candidates, disappearing candidates and creating candi-
dates, respectively.

To identify compound components, we do not necessarily want
to consider all the possible combinations of single components from
an isosurface since the number of compound components will grow
exponentially in this way. In fact, a specific evolutionary event can
happen to only a subset of the components that have specific charac-
teristics. For example, two components that are very far away from
each other will be less likely to merge. Also a component will not
split into two components which are very far away from each other.
Therefore, we will first need to identify reasonable compound com-
ponents before finding correspondence candidates for them.d Merging Candidates

Not all combinations of components will merge. One obvi-
ous criterion for merging candidates is that these components
should be close enough to each other spatially. One way to
measure the spatial closeness between any two components
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is the center point distance between them. However, it is not
always a good choice, as illustrated in figure 3. Although the
distance between the two large components and that between
the two small ones are the same, these two small components
are less likely to be a merging candidate, since the distance be-
tween these two components is quite large compared to their
own sizes. Therefore, both the center point distance and the
size of the component should be considered to identify merg-
ing candidates. A simple and effective way to measure the
size of a component is its bounding box size. Another good
criterion for merging candidates is the shape continuity. The
merging candidates can merge into a single component in the
next frame, and each single component of the merging can-
didate should be similar to some part of the single merged
component. Therefore, the shape of the merging candidate
should exhibit some continuity. A good way to measure this
characteristic is the continuity of the skeleton. Together with
the spatial closeness, it gives good criteria to identify merging
candidates. We will describe how to extract the skeleton in a
later section. Notice that merging candidates can only be in
the first frame of a pair of frames.d Splitting Candidates
Split is the opposite event of merge. It can be treated as a
merge if the time sequence is reversed. Therefore, the criteria
to identify splitting candidates are the same as the criteria to
identify merging candidates. Splitting candidates can only be
in the second frame of a pair of frames.d Disappearing Candidates
The first criterion that should apply to a disappearing can-
didate is that its volume should be small. Another criterion
is that there should be no component similar to this compo-
nent in its neighborhood in the next frame, since otherwise
this component could correspond to that component. Disap-
pearing candidates can only be in the first frame of a pair of
frames.d Creating Candidates
Creation is the opposite event of disappearance. Creation
can be treated as disappearance if time sequence is reversed.
Therefore, the criteria to identify creating candidates are the
same as the criteria to identify disappearing candidates. Cre-
ating candidates can only be in the second frame of a pair of
frames.

After all the compound components are identified, their corre-
spondence candidates need to be found. The correspondence can-
didates for a merging candidate is the union of the corresponding
candidates of every single component it contains. The correspon-
dence candidates for a disappearing candidate should be the corre-
spondence candidates of the component it contains plus an empty
component. Furthermore, if the correspondence candidate of a sin-
gle component contains part of a splitting candidate, the whole
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splitting candidate should be also included into the correspondence
candidates of that single component.

Compound components are only candidates for an evolutionary
event. Whether an evolutionary event will take place or not still
depends on the result of the global optimization. Therefore, even
though the correspondence candidates for a compound component
are put into the choice list for the global optimization, the corre-
spondence candidates for each single component it contains will
also be in the choice list. As an example, in figure 4, C0

0 and C1
0 are

identified as merging candidates. C1
1 and C2

1 are identified as split-
ting candidates. Therefore, in addition to find the correspondence
candidates for single component C0

0 , C1
0 , C2

0 and C3
0 , correspondence

candidates for compound component C0
0C1

0 also needs to be found.
If the correspondence candidates of some component include C1

1 or
C2

1 , compound component C1
1C2

1 should also be included in the cor-
respondence candidates of that component. Based on these rules,
the following lists of correspondence candidates will be the input
to the global optimization algorithm:

C0
0 : ¤ C0

1 , C1
1 , C2

1 , C1
1C2

1 ¥
C1

0 : ¤ C0
1 , C1

1 , C2
1 , C1

1C2
1 ¥

C2
0 : ¤ C0

1 , C1
1 , C2

1 , C3
1 , C1

1C2
1 ¥

C3
0 : ¤ C1

1 , C2
1 , C3

1 , C1
1C2

1 ¥
C0

0C1
0 : ¤ C0

1 , C1
1 , C2

1 , C1
1C2

1 ¥
3.2 Global Optimization

A global optimization is needed to find the best possible match-
ing result from the multiple lists of correspondence candidates. In
this section, we will first define the cost function used to match a
single or compound component in the current frame to each of its
correspondence candidates in the next frame. Then an optimization
algorithm will be introduced to minimize the overall cost to match
the isosurface components in two frames. The correspondence cri-
teria, as a way to measure how much two components correspond,
will be defined in the following.

3.2.1 Correspondence Criteria

Correspondence criteria determines what components should be
considered as correspondence, and measures how much two com-
ponents correspond. Because an isosurface can contain fast-moving
or small components which may have no overlap with their corre-
sponding components, overlap can not be used as the sole corre-
spondence criterion. When a component evolves, it often moves to
a nearby position with its shape deforming gradually and its volume
changing slightly. Therefore, its corresponding component should
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be some component in the next frame close to it spatially with sim-
ilar shape and volume. So spatial closeness and volume and shape
similarity should be used as the correspondence criteria.

Spatial closeness is one of the criteria that measure whether two
components match. The center position, which can be calculated by
averaging all vertex positions of the isosurface component, gives a
good measurement of the average position of the component. Thus
it could be used to measure the spatial closeness of two components.
However, as pointed out in figure 3, the component size should also
be considered when measuring the spatial closeness. The volume of
a component, which can be calculated by a precomputed B-Spline
function [3] or by a voxel propagation method [12], is another cri-
terion to measure if two components correspond.

Many methods can be used to determine if two components have
a similar shape [10, 16, 19, 21], although most of the methods are
very expensive. For the purpose of interactive isosurface tracking,
having an efficient method is important. Among all the shape de-
scriptions, the skeleton [13, 21], which is composed of all the points
lying in the center of the object with respect to its boundary, gives
a good and compact description of the object shape. We use a topo-
logical thinning method [13] to extract the skeleton from an isosur-
face. This topological thinning method [13] is based on a hit-or-
miss evaluation using a set of 3 « 3 « 3 neighborhood masks. Each
mask represents a case where the center voxel should remain. The
set of masks are applied sequentially to all the voxels. If a mask
matches the neighbors of a voxel, it is a skeleton voxel; otherwise
it is removed. The scanning process is applied iteratively until the
result is stable and no more voxels can be removed. After the skele-
ton is extracted, all the skeleton voxels are connected together. This
process is simple since the topological thinning method guarantees
the connectivity of the skeleton voxels. However, care should be
taken to ensure that a loop does not occur at a junction node. Fig-
ure 5 shows an example of a component and its skeleton. A skeleton
is composed of three types of nodes: end nodes with degree 1, nor-
mal nodes with degree 2 and junction nodes with degree more than
2. The total number of end and junction nodes gives a description
of the topology of the skeleton. If the difference between the total
number of end and junction nodes of the skeletons of two compo-
nents is larger than a threshold, their shape similarity degree is 0.
Otherwise, the ratio between the lengths of their skeletons is used
to evaluate their shape similarity degree. This simple method is
efficient and effective for isosurface tracking.

3.2.2 Cost Function

A given single or compound component may have many corre-
sponding candidates. Some candidates are more likely to be the
best matching component than others, if they are spatially closer to
the source component and have more similar volume and shape. To
evaluate the likelihood, we define a function to measure the cost of
matching a component to its correspondence candidate. The closer
between the component and its correspondence candidate and the
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more similar between their volumes and shapes, the smaller the cost
is. Therefore, the cost should be inversely proportional to spatial
closeness, volume similarity and shape similarity.

Another principle in choosing the cost function is that it should
grow quicker than a linear function to penalize spatial distance, vol-
ume dissimilarity and shape dissimilarity. Figure 6 illustrates why
the cost function should penalize spatial distance more quickly than
a linear function. Isosurfaces at both frames contains four compo-
nents with the same volume and shape. Thus only the spatial dis-
tance between the components influences the matching cost. As-
sume the center point distance between successive components is
10. If the cost function is linear, the total matching cost illustrated
at the left figure will be 40, which is the same as that at the right
figure. Thus, a linear function can not distinguish the wrong result
(left figure) from our desired result (right figure). However, if the
function grows faster than a linear function, for example a quadric
function, the total matching cost illustrated at the left figure will be
1600, while that at the right figure is only 400. This is exactly what
is desired. Similarly this also applies to volume and shape. A fast
growing cost function will also benefit the pruning of the optimiza-
tion search space, which is introduced next.

3.2.3 Optimization with Fast Prune of Search Space

Now that every single and compound component has a list of cor-
respondence candidates and the respective matching costs, the best
global match can be found by an optimization stage which attempts
to minimize the overall cost. For each component (single or com-
pound), its corresponding candidates are first sorted in an increasing
order according to the cost value. The optimization algorithm will
then find the best possible correspondence for each component.

The optimization stage is essentially a search algorithm. It uses
a similar method as alpha pruning [18, 23] in the field of Artificial
Intelligence. The goal of the optimization is to find a match result
where all the isosurface components at both frames are matched
and the overall cost is minimal. Each single and compound com-
ponent has a list of correspondence candidates. The search space is
composed of all combinations of single and compound components
with their correspondence candidates. Therefore, the search space
can be huge. If there are 20 single and compound components and
each of them has 5 correspondence candidates, the search space
will contain 520 combinations. If each of them is evaluated, the al-
gorithm will take forever to finish. Notice that some combinations
are illegitimate. A combination is legitimate if every component
at the current frame is included exactly once except disappearing
candidates, and every component in the next frame is also included
exactly once except creating candidates. For disappearing and cre-
ating candidates, they can be included 0 or 1 times.

The search process will start with the best correspondence can-
didate for each single and compound component. If an illegitimate
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combination is encountered, it will be skipped. When a legitimate
combination is found, if its cost is smaller than that of any previ-
ously encountered legitimate combination, the cost will be recorded
as the current minimal cost. We can prune the search space based
on the current minimal cost as explained in the following.

Remember that the goal of the global optimization is to find a
legitimate combination with minimal cost, therefore, any combina-
tion whose cost is larger than the current minimal cost, can not be
the result of the optimization. Due to the fact that the correspon-
dence candidates of every component are sorted in an increasing
order according to the costs, it is very likely that a subcombination
that will be tried later, which we call SC, will have a cost greater
than the current minimal cost. When such a subcombination is iden-
tified, any combination that contains SC as a subset will surely has
a cost larger than the current minimal cost. These combinations
can not be the global optimization result and hence can be quickly
pruned out of the search space.

In fact, we can prune the search space even more when such an
SC is found. Assume SC contains correspondence candidates of
multiple components in the first frame. Since the correspondence
candidates of every component are sorted in an increasing order ac-
cording to their costs, any subcombinations that are composed of
correspondence candidates which lie behind those candidates in SC
in the respective candidate list will for sure have larger costs. There-
fore, any combination containing any of these subcombinations can
be pruned away from the search space.

As an example, in figure 7, an isosurface composed of three com-
ponents is tracked. The global optimization is performed among
correspondence candidates for single component C0, C1, C2 and
compound component (merging candidate) C1C2. The red blocks,
the 2nd correspondence candidate for C0 and C2 and the 1st cor-
respondence candidate for C1, represent a legitimate combination
with cost 9. A later tried subcombination SC, which contains
the third correspondence candidate for C0 and C1 (the two yellow
blocks in the figure), have a cost 10, which is greater than the cur-
rent minimal cost (9). Then any combination containing SC will
have larger cost and can be pruned out of the search space. Further-
more, any combination of the candidates from the single component
C0 and C1 which lies in the green area (behind the correspondence
candidate in SC in the corresponding component) will have cost
larger than the current minimal cost (9). Thus, any combination
containing those subcombinations can also be pruned away. There-
fore, once such a subcombination SC is encountered, a large number
of candidate combinations, which in the example are any combina-
tion containing correspondence candidate in the dotted region in C0
and C1, can be pruned out of the search space.

Once a legitimate combination is encountered, its cost can be
used to prune the search space. Actually when an illegitimate sub-



combination is encountered, it may also be used to prune the search
space. If the reason that causes a subcombination to be illegiti-
mate is that it includes some component more than once, then any
combination containing this subcombination will also include that
component more than once. Therefore any of these combinations
is illegitimate and can also be pruned away. Overall, these pruning
operations make the search process very efficient.

4 PRECOMPUTATION OF THE CORRESPONDENCE RELA-
TIONSHIP

Given two isosurfaces each of which consists of multiple compo-
nents, the optimization algorithm presented above can find the best
global match. When the isovalue is changed, the optimization al-
gorithm needs to be executed again to identify the new correspon-
dence relationship. In fact, it is possible to compute a finite num-
ber of isosurface correspondences to depict the evolution history of
isosurfaces generated by arbitrary isovalues. In the following, we
describe our approach.

We observed that the center point position, volume and shape of-
ten exhibit great coherence for the isosurfaces of nearby isovalues.
In addition, an isosurface changes its number of components only
at the critical isovalues. If we combine the critical isovalues from
two frames into a single sorted list, the number of isosurface com-
ponents remains the same for both frames within adjacent critical
isovalues in that list. The value interval between adjacent critical
isovalues is usually very small. Therefore, the isosurface exhibits
great coherence within adjacent critical isovalues. In case that a
large interval is encountered, a subdivision can always be applied if
desired. With such a sorted list of critical isovalues, the correspon-
dence relationship within each interval will most likely remain the
same. To take advantage of this property, we can choose a represen-
tative isovalue, such as the midvalue in the interval, and then extract
the correspondence relationship of the isosurface for the interval in
a preprocessing stage.

We can use this approach to precompute the correspondence re-
lationship for any isovalue interval in which the user might be inter-
ested. It is noteworthy, however, that sometimes there can be a large
number of critical isovalues across the whole isovalue range and the
interval between critical isovalues becomes really tiny. For exam-
ple, for the vorticity data set we used for testing, frame 1 contains
more than 12K critical isovalues from the minimum value 0.007009
to the maximum value 12.139389. When this happens, precomput-
ing the correspondence for an isovalue interval is time consuming.
One way to remedy this is to remove unnecessary critical isovalues.

The method by [6] can be used to simplify the topology of 2D
scalar fields by progressively canceling critical points in pairs. In
our algorithm, we use a simple but effective method to remove un-
necessary critical isovalues. We observe that some isosurface com-
ponents remain too small to be noticeable after it appears, till it
disappears or merges with other components. These components
can be caused by noise and often is not of interest to the user. Our
method starts with the contour tree [20, 15, 8, 30] of a 3D scalar
field. If the number of triangles of an isosurface component at any
isovalue within a superarc is always smaller than a user-specified
threshold, the superarc can be removed from the contour tree. Af-
ter all the thresholded superarcs are removed, many superarcs can
be combined together, since some critical points are not critical any
more. Even after the simplification, the critical points are still dense
enough that the isosurface component will not change much within
any adjacent critical isovalues. After removing these unnecessary
critical isovalues, the number of critical isovalues within a user-
specified value range is reduced. Thus, the correspondence pre-
computation time will be reduced accordingly.

To stay conservative, a verification stage will be performed to
see if the matching cost for each component is approximately the
same as that at the midvalue. In the verification stage, because the
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skeleton extraction is quite expensive, we only use the volume and
center point position to get the cost to see if it is approximately the
same as that in the midvalue, which is also calculated only using
volume and center point position. If the values are close, the cor-
respondence at the midvalue can be used as the correspondence for
this isovalue. In case that they are quite different, we can still use
the global optimization process to extract the correspondence at this
isovalue. In this way, the correspondence determination time will
be reduced significantly for most cases.

5 RESULTS

We have tested our algorithm using a 128 « 128 « 128 vorticity
magnitude data set with 99 time steps and our synthesized data sets.
The machine we used was a dual processor Pentium IV 2.4GHz
with 2GB main memory.

Figure 8 shows the tracking result from a synthetic data which
contains multiple fast moving components, similar to the case in
figure 1. Components which were determined as correspondence
in two frames are rendered with the same color. Since the global
configuration of all the components is considered, our algorithm
can track every component correctly while the local tracking tech-
niques will give some nonglobally optimized results. Another ex-
ample similar to the case in figure 2 is shown in figure 9. Based
on the global optimization result, our algorithm concluded that the
larger component in the first frame continues while the smaller one
splits, even though the larger component has the maximum overlap
with the first and second components from the top in the next frame
and also has the most similar attributes (center point position and
volume).

Figure 10 shows an example of using our global optimization al-
gorithm to track an isosurface with multiple components. Six snap-
shots are shown. The time-varying isosurface was extracted with
an isovalue of 6.8 from the vorticity data set. To show that our al-
gorithm can successfully track the isosurfaces even when the data
is not densely sampled in time, we use only the data from every
three time steps of the original data set to perform the tests. There
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Frames 0-3 3-6 6-9 9-12 12-15

Total time 1.916 2.065 2.079 2.202 2.219
Isosurface

extraction time 0.169 0.179 0.184 0.169 0.157
Attribute

calculation time 1.725 1.864 1.874 2.011 2.033
(Skeleton

extraction time) (1.62) (1.75) (1.76) (1.90) (1.89)
Optimization time 0.022 0.022 0.021 0.022 0.029
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are quite a number of cases where corresponding components have
quite different attributes or they have no overlap. In figure 10, each
component is colored in such a way that it has the same color as
the component it is evolved from. When merge happens where a
component is evolved from multiple components, the current com-
ponent will get the color of the previous dominant component. The
dominance is defined by volume in our example, i.e., the current
component would follow the color of the previous largest compo-
nent. In the case that a component is created, a new color will be
assigned to it. Our global optimization gives good result and it is
the same as the result when the full data set is used.

The tracking speed of our algorithm and the breakdown of the ex-
ecution time in different algorithm stages for the case in figure 10
are shown in table 1. In this test, all computations were done on
the fly and there was no precomputation of the correspondence re-
lationship involved. Our tracking algorithm includes three stages:
isosurface extraction, attribute calculation and global optimization.
In the first stage, isosurfaces from both time steps are extracted. At-
tributes such as volume, center point position and skeleton are then
calculated in the second stage, and additionally compound compo-
nents are identified. In the third stage, correspondence candidates
for each single and compound component are identified and then
the global optimization with a fast pruning of the search space is

Frames 0-3 3-6 6-9 9-12 12-15
Number of critical

isovalues 31 28 29 36 46
Precomputation time 139.1 111.2 129.8 158.5 197.8
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Frames 0-3 3-6 6-9 9-12 12-15

Total time 0.241 0.251 0.259 0.240 0.239
Isosurface

extraction time 0.170 0.178 0.185 0.169 0.158
Verification time 0.071 0.073 0.074 0.071 0.081
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performed. From the results, we can see that the global optimiza-
tion stage only took a small fraction of the total tracking time. A
majority of the computation is spent on the extraction of skeletons.
The overhead of tracking includes attribute calculation time and
global optimization time. These overhead can be mitigated when
the correspondence relationships are precomputed, as described in
section 4. The performance of this precomputation will be studied
next.

The overhead to calculate attributes and perform global opti-
mization takes the major part of the overall tracking time. For a user



who only needs to track isosurfaces from a small number of pre-
defined isovalues, this may be tolerable. However, for a user who
wants to study the time-varying scalar field by frequently changing
the isovalue and visualizing the tracking results, a precomputation
of the correspondence relationship for the time-varying isosurface
across a range of values will be beneficial. When the correspon-
dence relationship is precomputed, tracking can be achieved by
simple table lookup and verification operations. We precomputed
the correspondence relationship for the case in figure 10 within the
isovalue interval 6.5 and 7.5. Before the precomputation, all unnec-
essary critical isovalues of each frame were first removed, which
correspond to the superarcs in the contour tree which will generate
less than 50 triangles. When this was done, nearly 85% of the origi-
nal critical isovalues were classified as redundant and removed. The
precomputation time is shown in table 2. The run-time tracking
speed when the precomputed correspondence was utilized for the
case in figure 10 is shown in table 3. Note in this case, the track-
ing time is significantly reduced compared with the performance in
table 1. In our test, all the verifications return positive results. A
number of other runs for testing different isovalues were also per-
formed and consistent results were observed. In case that the verifi-
cation returns negative result, the globally optimization can still be
performed.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a global optimization algorithm to track
time-varying isosurfaces. The algorithm will first identify a list of
correspondence candidates for each single and compound compo-
nent. A cost to match a component to each of its correspondence
candidates is also calculated. A global optimization algorithm is
then performed to minimize the overall cost to match the source
isosurface to the target. This global optimization technique ensures
that every component will match to its best possible component in
the next frame. We also propose a method to precompute the corre-
spondence relationship within any isovalue range. With the global
optimization algorithm and the precomputed correspondence rela-
tionship, the time-varying isosurface is tracked in a more accurate
and efficient manner.

In our future work, we will incorporate ideas from other research
to perform the prediction of correspondence candidates. For exam-
ple, in [22], the path continuity characteristic is used extensively. If
a path of a component is found, it can be used to predict the center
point position and volume of the component in the next frame. We
believe that incorporating this idea into our framework will be very
beneficial. For example, the correspondence candidates for a com-
ponent can be found based on where it is predicted to evolve. In the
evaluation of the matching cost, the predicted volume and center
point position can be used instead of the current volume and center
point position. More methods on shape description and matching
will also be investigated.
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