
 Contour Area Filtering of 2-Dimensional 
Electrophoresis Images  

1Ramakrishnan Kazhiyur-Mannar, 3Dominic J Smiraglia, 
2Christoph Plass, 1,4Rephael Wenger 

1Computer Information Sciences Department, The Ohio State University, Columbus, 
Ohio, 43210 
2Division of Human Cancer Genetics, Department of Molecular Virology, Immunology 
and Medical Genetics, and Comprehensive Cancer Center, The Ohio State University, 
Columbus, Ohio, 43210;  
3Department of Cancer Genetics, and Comprehensive Cancer Center, Roswell Park 
Cancer Institute, Buffalo, NY 14263 
 
Keywords: RLGS, image processing, contour area, isocontour, watershed filter 

Abstract 

Two dimensional gel electrophoresis is a well known technique for protein analysis. It 
has also been applied to DNA analysis using a technique called Restriction Landmark 
Genomic Scanning (RLGS.)  A typical gel profile is an electrophoretogram or a phosphor 
image of 1000 to 2500 spots representing protein or DNA fragments. The profiles are 
quantitative with spot intensities reflective of the number of proteins or the DNA 
fragment copy number resulting in a variety of spot intensities. The background intensity 
can vary widely across the image caused both by variation in spot density and by the 
physical laboratory process of creating a gel. Analyzing and comparing gel profiles 
entails extracting and segmenting spots, registering profiles and matching spots, and 
measuring differences between spots. We describe an algorithm for the first step in this 
process, the extraction of foreground pixels which form spots.  Our algorithm is based on 
the area contained within gray scale contour lines.  It was specifically designed for RLGS 
profiles consisting of DNA fragments although it can be applied to protein gel profiles. 
We present experimental results which show that contour area filtering is a quick, 
efficient method for separating background from foreground with extremely high 
accuracy.  
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Introduction 

Two-dimensional gel electrophoresis is a standard technique in protein analysis. 
Extensive research and software has been developed for automatic analysis of protein 
profiles [1-7]. Commercial software includes ImageMaster, Melanie, PDQuest, and 
Phoretix among others [3, 4, 6, 7]. These packages provide excellent user interface, 
statistical and database tools for assisting in gel analysis.  They have more difficulty in 
fully automating the detection and identification of spots on the gel profiles. 

Restricted Landmark Genome Scanning (RLGS) is a 2D gel electrophoresis technique 
developed by Hatada et. al. [8] for detecting DNA molecular changes that occur near 
restriction enzyme sites.  Genomic DNA is digested by a “landmark” restriction enzyme 
(i.e., NotI or AscI) and radioactive nucleotides are incorporated into the cleavage sites.  
The fragments are further digested by a second enzyme (i.e., EcoRV) and separated along 
one dimension using agarose gel electrophoresis.  A third enzyme (i.e., HinfI) is used to 
digest these fragments in gel followed by second dimension separation via 
polyacrylamide gel electrophoresis.  Autoradiography or phosphor imaging is applied to 
the dried gel producing an “RLGS profile” of approximately 2500 spots (Figure 2.)  DNA 
fragments correspond to spots on this profile. 

RLGS is used to detect methylation changes caused by cancer (for review see [9].) 
Methylation sensitive landmark enzymes (i.e., NotI or AscI) cut the DNA only at 
unmethylated sites.  RLGS profiles are created using DNA from tumorous and compared 
to RLGS profiles from normal tissue. Missing, added, or amplified spots indicate DNA 
methylation changes or DNA copynumber changes which may occur in the  cancer and 
are potential biomarkers of the tumor. 

Two software packages have been developed specifically for the analysis of RGLS gels, 
RAT (RLGS Analysis Tool) by Sughara et. al. [10] nd DNAInsight by Takahashi et. al. 
[11-14]. Neither package is in widespread use by laboratories doing RLGS analysis, 
although a commercial version of DNAInsight has been announced. 

Analysis of RLGS gels from genomic DNA poses certain challenges compared with 
analysis of protein gels.  Spots are often lighter and smaller than protein spots making 
identification of individual spots more difficult.  It is often the lightest spots, their 
existence or lack thereof, which is of most interest in detecting DNA methylation. 
Moreover, samples of tumor tissue almost always contain some normal tissue, creating 
faint images of spots from the normal DNA which are affected, or methylated, in the 
tumor DNA.  In addition, RLGS gels typically contain over 2500 spots (although this is 
enzyme dependent) which is the high range for gel analysis.  

Numerous algorithms and techniques are used for filtering background pixels and 
identifying spots in protein and RLGS gels. Sternberg [15] gives a background 
subtraction algorithm for protein gels using 3D gray scale morphological operators.  
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Takahashi et. al. [11, 13, 14] use these gray scale morphological operators for 
background subtraction and then apply a “ring operator” to identify individual spots and 
their centers. They subtract these spots from the image and reapply their “ring operator” 
to further identify hidden spots. Sugahara et. al. [10] use local thresholds to remove 
background pixels from the image. Melanie [2] uses thresholding of the second derivative 
of the gray scale intensities to identify foreground pixels. ImageMaster compares pixel 
intensities to intensities on the boundary of a surrounding window to identify foreground 
pixels. 

The filtering methods described above have two major drawbacks. First they all require 
the setting of some sensitivity threshold related to the gray scale intensity of the spots.  
Users must often adjust these parameters for individual gels.  Second, because of this 
sensitivity thresholding, the algorithms may fail to detect the lightest spots.  Many of the 
algorithms implicitly smooth gray scale intensities, causing these lightest spots to “wash 
out” with the background. In addition, full intensity saturated spots have to be handled 
specially by some of the algorithms.    

In this paper we present an algorithm for separating foreground from background in 2D 
gel electrophoresis profiles using isocontours of the gray scale image.  We identify 
isocontours which enclose regions of a specified area and select those regions as 
foreground. We do not actually construct the isocontours, only the set of pixels contained 
by the isocontour. Standard pixel image processing techniques are also used to remove 
noise from the images. 

Our isocontour based algorithm does not rely upon any gray scale sensitivity threshold. In 
fact, there is no sensitivity parameter as input to our algorithm.  Instead, the primary input 
to our algorithm is the maximum area of a cluster of overlapping spots.  This metric 
depends upon spot density and is much more robust across gels than spot intensity. Our 
algorithm can detect even the faintest spots as long as they are not in regions of high spot 
density.  Faint spots which are adjacent to large clusters of darker spots can be missed by 
our algorithm but such hidden spots pose a problem for almost all algorithms. 

The next step after background subtraction is segmentation of the foreground into 
individual spots.  Image segmentation is much more difficult than background 
subtraction.  Contour area filtering can be used to perform some of this segmentation 
although with less impressive results, and other techniques are needed to complete this 
segmentation. 

We applied our algorithm to three different types of RLGS gels and demonstrate that it 
performs exceptionally well, correctly identifying most of the background pixels and only 
rarely misidentifying spot pixels as background pixels. We would have liked to compare 
our results with results from DNAInsight by Takahashi et. al. [11, 13, 14]but were unable 
to get a copy of their software.  Instead we compared results from our algorithm with 
results from ImageMaster. We also report the results of applying our algorithm to two 
benchmark protein gels used in. [16]  We did not compare our results on these protein 
gels with results from other software, although reports on the application of PDQuest, 
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Progenesis, Z3 and Melanie to these benchmark protein gels are included in. [16, 17]  
Our isocontour filtering algorithm is one component in an automated RLGS gel analysis 
system under development. 

 

Materials and Methods 
RLGS gels 

RLGS gels for both mouse and human genomic DNAs were run as previously described 
in [18] and modified as described in [19]. 

The autoradiograms are scanned at 300 dots per inch and stored as a tiff image of 5100 x 
4200 pixels with 8 bits per pixel representing a gray scale in the range 0 to 255. 

 

Contour Area Filtering Algorithm 

The contour area filtering algorithm is shown in Figure 1.  If a pixel p with intensity Ip is 
foreground then all the adjacent pixels with intensity greater than or equal to Ip should 
also be foreground.  All their adjacent pixels with intensity greater than or equal to γ 
should also be foreground.  Consider the maximal connected component containing p and 
pixels with intensity greater than or equal to γ.  (Use 4-connectivity, connecting a pixel to 
the pixels to the left, right, above and below.) If p is foreground, then all the pixels in this 
component are also very likely foreground. If this component is very large, then it is a 
good indication that pixel p is not foreground.  

If we replace the pixels by a continuous scalar field, then we can replace the maximal 
connected component by the area enclosed by an isocontour through p.  An isocontour is 
a curve consisting of points with the same scalar value. If the area contained by the 
isocontour through p is large, then we mark p as background.  This area can be thought of 
as the “watershed” of p (where intensity represents depth) and is used in many similar 
“watershed” based algorithms.  

For each pixel p with intensity γ, let Ap be the number of pixels in the maximal connected 
component containing p and pixels with intensity greater than or equal to Ip. We mark all 
pixels with Ap greater than some user specified threshold as background. 
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Contour_Area_Filter(I, M) 
/* I is an array of pixel intensities */ 
/* M is the contour area threshold */ 

1. A ← Compute_Contour_area(I); 
2. For each pixel p do: 
3.  If (A[p] > T) then mark p as a background pixel; 

 
Compute_Contour_Area(I) 
/* I is an array of pixel intensities */ 
/* Return array A of contour areas */ 

1. For each pixel p, do 
2.  U[p]  ← p;    /* MakeSet(p) */ 
3.  A[p] ← 1; 
4. Sort pixels by intensities in decreasing order; 
5. For each pixel intensity γ in decreasing order do: 
6.   For each pixel p with intensity γ do: 
7.   For each pixel q adjacent to p do: 
8.     s ← FindSet(q); 
9.    If  (I[p] ≤ I[q] and p ≠ s), then  
10.     U[s] ← p; /* Union(p,s) */ 
11.     A[p] ← A[p] + A[s]; 
12.  For each pixel p with intensity γ do: 
13.   r ← FindSet(p); 
14.   A[p] ← A[r]; 
15. Return(A); 

 
FindSet(q) 

1. if (q ≠ U[q]) then 
2.  U[q]  ← FindSet(U[q]); 
3. return(U[q]); 

Figure 1.  Contour Area Filter algorithm. 

 

Of course, if we compute Ap for each pixel separately, the algorithm would be far too 
slow. Instead we compute Ap in a single pass by slowly growing components starting at 
their most intense pixels.  For each pixel, create a set containing only that pixel.  Sort the 
pixels by intensity in decreasing order. Sorting the pixels by intensity also sorts the set of 
pixel intensities in decreasing order. For each intensity γ in decreasing order, make two 
passes over the set of pixels with intensity γ.  First, for each pixel p with intensity γ, 
union the set containing p and sets containing pixels adjacent to p (left, right, top, bottom) 
with intensities greater than or equal to γ.  This forms maximal connected components of 
pixels with intensity at least γ. Next, for each pixel p with intensity γ,  store the size of the 
set containing p. This size is Ap.   
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We use a slight modification of the standard union-find data structure to represent the sets 
of pixels[20].  The data structure is represented in an array, U, of pointers, one for each 
pixel. A set is represented by a tree of pointers, pointing back to the root.  FindSet(q) 
returns the element at the root of the tree containing q by following pointers U[q] back to 
the root.  It also performs “path compression” by resetting the pointers along the way to 
point to the root.  To form the union of two trees rooted at p and s, we simply set U[s] 
equal to p.  Because of the order in which pixels are processed, pixel p in statements 10 
and 11 (Figure 1) is the root of the tree containing p and so A[p] is the size of the set 
containing p.  

The algorithm requires the input array, I, of pixel intensities and two other arrays U and 
A, containing the pointers and the contour area sizes.  It runs in worst case O(n log(n)) 
time where n is the number of pixels.  A modification which requires one more field per 
pixel can guarantee O(n α(n)) running time where α(n) is the inverse of Ackermann’s 
function[20].  In practice, the algorithm seems to take linear time and the modification is 
unnecessary. 

The running time and space for sorting pixels depends upon the type of sort used. Our 
images are 8-bit gray scale consisting of only 256 pixel intensities and so bucket sorting 
will sort the pixels in O(n) time using one array of size n. For larger sets of intensities, a 
more general O(n log n) sorting algorithm can be used. 

Contour_Area_Filter is a very conservative procedure which cannot distinguish between 
noise and foreground.  After applying Contour_Area_Filter, we use some standard 
morphological operators to remove some of the noise from the foreground.  First, we 
apply the opening operator (erosion followed by dilation) to remove tenuous connections 
between pixels.  Second, we remove any remaining “salt and pepper” noise by 
identifying very small foreground connected components and marking them as noise. 

Segmentation 

Contour areas can also be used to segment foreground into individual spots.  The general 
idea is that each RLGS spot has a “center”, usually consisting of a relatively small 
number of high intensity pixels.  If the area of a contour is approximately this size, then 
this contour surrounds a center.   

Some spots, particularly saturated ones consisting of maximum intensity pixels, contain a 
large set of pixels with maximum or near maximum intensity.  Thus if all the pixels in a 
contour have approximately the same intensity, then we also identify that contour as 
containing a center, even though the contour area may be very large. 

Our algorithm for identifying center pixels is quite similar to Contour_Area_Filter.  For 
each pixel p, we calculate and store the area A[p] of the contour C passing through p.  We 
also calculate and store in an array D the maximum intensity of any pixel in the contour 
passing through p.  We initialize D[p] to the intensity of pixel p. As we union p and a 
neighbor D[q], we set D[p] to be the maximum of its current value and D[q].  We again 
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make a second pass over pixels with the same intensity, setting D[p] equal to D[r] where 
r is the root of the tree containing p. 

We use a minimum center area and minimum center depth as two thresholds for 
identifying center pixels. Any pixel p with A[p] less than the minimum center depth is 
marked as a center pixel.  Any pixel p whose intensity differs from D[p]  by less than the 
minimum center depth is also marked as a center pixel.  Each maximal connected 
component of center pixels forms a spot with that center. 
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Not1-EcoRV-Hinf1 human master gel with spot centers marked. Red region contains annotated spots. 

 
Contour area filtered AscI-EcoRV-HinfI human master gel. 

Figure 2. Human master NotI-EcoRV-HinfI gel, hand annotated and contour area filtered. 
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Figure 3. Hand annotation of regions 4E and 4F of human master NotI-EcoRV-HinfI  

 

Results 
Contour area filter algorithm accuracy assessment 

We ran our filter on master RLGS profiles created using enzyme combinations NotI-
EcoRV-HinfI and AscI-EcoRV-HinfI on human DNA and NotI-EcoRV-HinfI on mouse 
DNA. (See Figure 2 and Figure 4.)  The human DNA is from the peripheral blood 
lymphocytes (PBLs) of a single healthy female donor. The mouse master gel was created 
from a combination of DNA from mouse strains FVB, C57/BL6J, and 129/SV.  The 
mouse FVB gel was created from DNA from mouse strain FVB.  The master gels are 
used as a reference for all other gels with matching enzyme and genome in Dr. Plass’s lab 
and have been extensively analyzed.  We digitized autoradiograms of the gels at 300 dots 
per inch, creating tiff images of 5100 x 4200 pixels with 8 bits per pixel representing a 
gray scale in the range 0 to 255.  We implemented and tested Contour_Area_Filter on a 
2.8 GHz personal computer with 2 Gigabytes of RAM running under the Linux operating 
system.  Our algorithm runs in approximately 10 seconds on gels with dimension 5100 x 
4200 pixels.  
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Gel Enzymes Annot  
# spots 

CAF 
# added

CAF 
# missed

IM 
# added 

IM 
# missed

Human DNA NotI-EcoRV-HinfI 2425 46 34 104 51 
Human DNA AscI-EcoRV-HinfI 2277 63 64 84 164 
Mouse master  NotI-EcoRV-HinfI 3228 47 139 15 719 
Mouse fvb NotI-EcoRV-HinfI 2590 38 5 *** *** 
Protein Gel A  922 91 100 *** *** 
Protein Gel B  1350 117 91 *** *** 

Table 1.  Results from filtering DNA and protein profiles using Contour_Area_Filter (CAF) and 
ImageMaster (IM):  Number of labeled spots on hand annotated master profiles, number of spots 
added or missed by Contour_Area_Filter (including post-processing,) and number of spots added 
or missed by ImageMaster. 

 
genome enzymes faint spots faint noise dark noise 
human NotI-EcoRV-HinfI 33 3 13 
human AscI-EcoRV-HinfI 13 43 8 
mouse NotI-EcoRV-HinfI 9 47 0 

Table 2.  Breakdown of spots added by Contour_Area_Filter which are not identified in annotated gels. 
Number of faint added spots, number of added spots caused by faint noise on the gel, and number 
of added spots caused by dark noise on the gel. 

 

genome enzymes faint distinct 
human NotI-EcoRV-HinfI 2 32 
human AscI-EcoRV-HinfI 43 21 
mouse NotI-EcoRV-HinfI 76 71 

Table 3.  Breakdown of spots missed by Contour_Area_Filter which are identified in annotated gels. 
Number of missed faint spots and number of missed distinct spots. 

 

We applied Contour_Area_Filter using a threshold of 60,000 for the maximum contour 
area.  Spots above this size were marked as background.  In post-processing, we used a 
pixel size of two for opening (eroding and then dilating the foreground by 2 pixels) and 
remove any small components with size less than 300 pixels.  We used a minimum center 
size of 300 pixels and a minimum center depth of 3 for segmentation. 

Dr. Plass’s lab uses an annotated image of each master gel, with an identifier marking 
each spot as described in [21]for the human NotI-EcoRV-HinfI master profile (Figure 3.)  
Spots on the boundaries, particularly the right boundary, are not labeled. Labeled spots 
are in the red region marked on each gel. (See Figure 2 and Figure 4.)   We compared the 
spots identified on the annotated master profile with the spots generated by our algorithm 
within the red regions.  Note that generating spots requires not only identifying 
foreground spot pixels, but also segmenting the foreground into individual spots.  We 
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were interested in measuring the success of the filtering algorithm, not the segmentation 
one, and so did not count differences in segmentation as added or missing spots. 

Analysis of the four profiles described above resulted in excellent correlations between 
the spots annotated by hand and those identified by the algorithm.  Of  the 2500 to 3300 
spots identified on the annotated human NotI, human AscI the master mouse NotI  and 
the FVB mouse NotI profiles, approximately 96-99% were correctly identified.  In 
addition, the algorithm added small numbers of spots not seen in the annotated images.  
A spot was only considered added by our algorithm if its pixels did not lie in any of the 
spots on the master profile.  Similarly, a spot was considered missed by our algorithm if 
the pixels of that spot were not identified as foreground by our algorithm.  Table 1 shows 
the breakdown of added and missed spots for each profile.  Since spots on the master 
profiles were marked only at their centers as judged by human analysis of the gels, some 
degree of subjectivity is necessarily a part of the determination of the extent of a spot.   

In order to better understand the nature of the errors made by the algorithm we found that 
the added spot errors could be broken down into three distinct classifications: “Faint 
spots”, “Faint noise”, or “Dark noise”. Faint spots were pixels which had the appearance 
of a spot but were faint and more difficult to detect by hand (Figure 5.)  Some of these 
were faint only compared to surrounding spots.  Others were so faint that they were only 
visible after applying contrast enhancement to the image.  The “Faint spot” classification 
of added spots therefore do not necessarily represent errors on the part of the algorithm, 
but may also represent the advantage in detection capability of the algorithm over the 
inherently subjective analysis by hand.  Added spots marked “Faint noise” were clusters 
of light pixels which were identified as spots which did not have the shape or appearance 
of a spot, even after contrast enhancement.  Added spots marked “Dark noise” were 
clusters of dark pixels probably caused by imperfections or physical marks on the gel 
(Figure 6.)  Very few of these appear on our RLGS gels (Table 2.) Both “Faint noise” and 
“Dark noise” represent errors in the algorithm where marks that are clearly not true spots 
were added as spots. 

The missed spots are broken down into two categories in Table 3: “Faint” and “Distinct”.  
The “Faint” classification is defined the same as for above.  The “Distinct” classification 
represents spots that are clearly present in the image but not identified by the algorithm.  
These two classes represent true errors of lack of identification by the algorithm.  Not 
surprisingly, nearly all of the missed spot errors occurred in the areas of the highest spot 
density, which can be problematic for the algorithm since it uses the maximum contour 
area as a parameter.  One can view this as the maximum size of a cluster of overlapping 
spots.  If such a cluster has more pixels than this maximum, the algorithm will remove 
fainter spots until it breaks the cluster apart (Figure 7.)  Such high density regions occur 
near the right edge and the upper left corner of each image.  They can also occur in the 
neighborhood of largely enhanced spots.  Each gel contains about a dozen such large 
spots generated by the repetitive ribosomal DNAs (rDNAs). 
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Human AscI-EcoRV-HinfI master gel. Contour area filtered human AscI-EcoRV-HinfI gel. 

  

Mouse NotI-EcoRV-HinfI master gel. Contour area filtered mouse NotI-EcoRV-HinfI 
master gel. 

  

Mouse NotI-EcoRV-HinfI fvb gel. Contour area filtered mouse NotI-EcoRV-HinfI fvb 
gel. 

Figure 4.  Human AscI-EcoRV-HinfI master, mouse NotI-EcoRV-HinfI master, and mouse NotI-EcoRV-
HinfI fvb, hand annotated and contour area filtered gels. Red regions contain annotated spots. 
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Figure 5. Faint spot added by Contour_Area_Filter. 

 

Figure 6. Noise identified as spot by 
Contour_Area_Filter. 

 

The reason for the higher level of missed spots on the master mouse profile most likely 
stems from two factors.  First, the mouse master gel is slightly anomalous since it uses a 
combination of DNA from three mouse strains, FVB, C57/BL6J, and 129/SV (Plass et al. 
unpublished).  Spots corresponding to DNA fragments which appeared in only one or two 
strains (strain specific polymorphisms) had significantly lower intensity than spots which 
appeared in all three strains making them more difficult to detect.  Second, the density of 
spots on this combination mouse gel is higher than the other gels as the master mouse gel 
contains over 3200 identified spots, compared with under 2400 human.  

We also ran Contour_Area_Filter on two benchmark protein gel profiles used by 
Rosengren et. al. in [17]and downloaded from http://www.umbc.edu/proteome.  Both are 
8 bit gray scale images.  Dimensions of Gel A are 666 x 727 pixels  and of Gel B are 993 
x 1087 pixels.  Because the protein profile resolutions differed from the RLGS profile 
resolutions and from each other and because protein spots are different from RLGS spots, 
we adjusted the Contour_Area_Filter parameters.  For both protein profiles we used a 
threshold of 15,000 for the maximum contour area, a pixel size of two for opening and a 
minimum center depth of 3 for segmentation.  For Gel A we used a minimum center size 
of 20 pixels and for Gel B we used a minimum center size of 40 pixels. 

 13

http://www.umbc.edu/proteome


Figure 7.  Spot missing from contour area filtered image. 

 

Rosengren et. al. provide annotated versions of both images with boundaries drawn 
around each spot.  Unfortunately, it is not always possible to differentiate between spots 
in these annotated images.  We used Rosengren et. al.’s annotation to generate our own 
annotated versions with a dot at each spot center (Figure 8.) We compared the results of 
Contour_Area_Filter with these annotated images.     

Contour_Area_Filter found 89% of the 922 spots in Gel A and 93% of the 1350 spots in 
Gel B.  It erroneously reported 10% additional spots in Gel A and 9% additional spots in 
Gel B.  Problems were in high density spot areas and with noise near the boundaries of 
the gels. 

All gels and annotated gels used in these experiments can be found at 
http://www.cse.ohio-state.edu/graphics/conime. 

Comparison to 2-dimensional protein gel analysis software 

We compared our filtering results with the results from applying the ImageMaster 
program from Nonlinear Systems.  We note that the ImageMaster system is designed and 
used for protein, not RLGS, gels.  Also, the ImageMaster program does not separate 
background subtraction from spot segmentation in reporting its filtering results. Our 
configuration of the ImageMaster system could not handle 5100 x 4200 images so we 
reduced their dimensions to 2550 x 2100. 
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Annotated Gel a. Contour area filtered Gel a. 

  

Annotated Gel b. Contour area filtered Gel b. 

Figure 8. Benchmark protein gels used by Rosengren et. al. [16]. 

 

ImageMaster identifies foreground pixels by comparing the average intensity of k pixels 
in a neighborhood of a pixel p with the average intensity of a 4k pixels on the boundary 
of a window  around p. It uses three significant parameters: sensitivity, window size and 
noise.  Pixel p is classified as foreground if (Ip – Is)/Ip > s/10000, where Ip is the average 
intensity in the neighborhood of p, value Is is the average intensity of the 4k pixels on the 
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boundary of the window around p, and s is the sensitivity parameter.  Higher values of s 
detect more spots but give more false positives. The noise parameter is the number k of 
pixels used for the neighborhood of p.  It reduces the effect of high frequency noise on 
the filtering.  The window size determines the size of the spots detected.  Smaller window 
sizes detect smaller spots, but fail to detect large saturated spots. We used sensitivity 
9500, window size 15x15, and noise 7 on our 2550 x 2100 images. 

The results of our comparison are presented in Table 1.  As in the comparison of 
Contour_Area_Filter and the annotated profiles, we are not interested in the segmentation 
of the spots, only whether they are included in the image foreground. A spot was counted 
as appearing in a filtered image if its center lay in the foreground area of that image. 
ImageMaster did quite well compared to Contour_Area_Filter on the human, NotI-
EcoRV-HinfI profile.  However, ImageMaster failed to correctly report some of the large 
saturated spots in this profile which is a glaring error since those spots are so prominent.  
With larger window sizes, ImageMaster reported those spots, but then missed many of 
the smaller ones. 

For the human, AscI-EcoRV-HinfI and the mouse, NotI-EcoRV-HinfI profiles, 
ImageMaster missed considerably more spots compared to Contour_Area_Filter.  The 
missed spots were concentrated in the lower left region of the gels where spots were 
extremely faint.  A higher sensitivity number should have been used for the mouse 
profiles, detecting more spots at the expense of false positives.  On the other hand, 
ImageMaster was already reporting more false positives than Contour_Area_Filter for the 
other profiles and a higher sensitivity would simply have increased that number. This 
illustrates the need to modify the ImageMaster parameters based on the gel or even 
specific regions within the gel.  We did try setting sensitivity to 9999, the maximum, for 
each gel, but this always produced tremendous numbers of spurious spots. 

Table 4 in Rosengren et. al. in [16]contains spot detection results for Melanie, PDQuest, 
Progenesis and Z3 on protein Gels A and B but those results include the effects of spot 
segmentation.  Nevertheless, our algorithm and error rates seem competitive with the best 
of the others.   In addition, our algorithm can quickly detect spots on profiles with a much 
higher resolution than the images provided for Gels A and B.  It is this higher resolution 
which allows us to report much better results on the RLGS gels. 

Rosengren et. al. report 3-15 minutes running times for PDQuest on a 750 MHz processor 
and 15-180 minutes for Progenesis on a 2.0 GHz processor.  Contour_Area_Filter’s 
running time of 10 seconds on profiles which are 10 to 30 times the size of Gels A and B 
is clearly superior. 

Discussion 

We presented an algorithm for filtering foreground of 2D gel electrophoresis images 
based on contour areas in those images.  Background intensity varies greatly over these 
images and some of the spots are extremely faint. Our algorithm reports correctly the 
foreground for 96-99% of the spots on 300 DPI RLGS profiles and 89-93% of the spots 
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on lower resolution protein profiles, with errors concentrated in regions of high spot 
density.  Good algorithm parameters depend upon spot size and density, not spot 
intensity, and thus do not need to be modified for each gel. 

We compared our algorithm to ImageMaster software. In all cases Contour_Area_Filter 
agreed with the hand annotated gel more than ImageMaster.  As importantly, good 
filtering parameters in Contour_Area_Filter depend upon the spot size and density, not 
upon the spot intensities.  Since spot size and density are consistent between RLGS 
profiles, we don’t modify the parameters for each gel.  Good sensitivity values in 
ImageMaster depend greatly on spot intensity which make them much more gel 
dependent.  Again we emphasize that ImageMaster was designed for protein gels with 
much darker protein spots and is used here for comparison purposes only. 

The major weakness of our algorithm is in areas of high spot density where fainter spots 
may be obscured by stronger ones.  Areas of high spot density are either on the upper-left 
or the right side of the gels.  In other areas, our algorithm gives 99% accuracy. 
Postprocessing or hybrid algorithms could perhaps be used to find faint spots in areas of 
high density.   

Segmentation is inherently a much more difficult problem than filtering background from 
foreground.  Ideally, each individual spot should correspond to a different DNA 
sequence.  However, different DNA sequences may migrate to the same or approximately 
the same location, making differentiation based on the gel image impossible.  If DNA 
sequences migrate to very close locations, it is extremely difficult and subjective to 
determine whether the resulting image contains one spot or two.  We described an 
extension to Contour_Area_Filter for spot segmentation.  However, we are still working 
on improving this segmentation algorithm and did not present experimental results. 
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