
Data-flow Driven Convergent Wakeup Structures in Event Triggered
Sensor Networks

Kai-Wei Fan, Sha Liu and Prasun Sinha
{fank,liusha,prasun}@cse.ohio-state.edu

Dept of Computer Science and Engineering
Ohio State University

Abstract

Energy conservation is critical for extending the lifetime
of wireless sensor networks. A simple way to conserve
energy is to turn off the radio transceiver for brief du-
rations. Without any synchronization of wakeup sched-
ules, such a mechanism is prone to an increased event
detection latency. Current techniques either require pe-
riodic synchronization messages to achieve low detec-
tion latency using synchronized wakeup, or incur high
latency due to the lack of any synchronization. We pro-
pose a convergent wakeup structure that dynamically
converges from performing anycast-based to unicast-
based data forwarding. Convergence is triggered by the
flow of data packets. It requires zero communication
during quiet periods with no event detections. While
converging to the optimized path, nodes distributedly
determine their wakeup schedules based only on local
information. Quick convergence leads to low event re-
porting latency. Simulations comparing with a 802.11
based MAC for typical sensor densities show that even
when operating at a 10% duty cycle, the throughput
and latency of our protocol outperforms 802.11 based
protocols while saving 88.5% energy in static event sce-
narios. With an event moving at a speed of 10 m/s in
a network operating at a 10% duty cycle, the through-
put and latency of our protocol remains close to 802.11
based protocols. Due to its heavy energy saving ca-
pability, our protocol is particularly suited for mostly
sleeping networks that often require an extended net-
work lifetime.

1 Introduction

Extending the lifetime in battery powered wireless sen-
sor networks is critical due to multiple reasons. Fre-
quent human intervention to replace batteries in sen-
sors is an expensive operation especially when sensors
are deployed in large numbers or when they are de-
ployed in hard-to-reach areas. Hazardous environments
often pose challenges to the deployer if sensors run out
of battery too quickly. Sensor networks deployed for
detecting chemical leaks, bio-chemical attacks, and poi-
sonous gases in waste management facilities are some
such examples. Often sensors show indeterministic be-

havior during periods with low battery power, which
can result in false positive or false negative detections.
For certain applications, deployed sensors are impos-
sible to recover physically. One such example is the
Glacsweb project [?] where sensors are embedded 60
feet below the surface of the glaciers for studying their
movement patterns. For military and defense applica-
tions where sensors are deployed in foreign territories
and hostile environments, replacing batteries is often
not an option. Thus, it is critical to design protocols
for energy conservation in wireless sensor networks.

Sensors networks can be primarily classified into
the following two types: Periodic Sampling Networks
(PSNs) or Event Triggered Networks (ETNs). PSNs
are used for collecting data periodically over a certain
time. The frequency of data collection is often pre-
decided. As the network traffic is deterministic, sig-
nificant pre-deployment planning can optimize use of
network resources. Some such examples are sensors de-
ployed for gathering environmental conditions in forest
[?, ?] and sensors for habitat monitoring [?, ?]. ETNs
are typically used for detection of non-periodic and in-
frequent events based on certain triggers. Examples in-
clude networks for intrusion detection [?], chemical and
biological hazard detection [?], and detection of faults in
bridges [?]. ETNs are often more challenging to design
as pre-deployment optimizations are difficult to perform
due to the non-periodic nature of events. Our study and
evaluation focuses on ETNs, although some of the ideas
are applicable for PSNs as well.

Research on ultra low power hardware design [?] ad-
dresses power conservation at the physical layer of the
network protocol stack. Such research is complemen-
tary to our work. Renewable and alternate sources of
energy such as solar energy and fuel cells, can be used
to solve the energy needs of sensor networks. However,
the required size of solar panels and the dependency on
availability of sunlight limit the applicability of solar en-
ergy solutions to most environments. Technologies such
as fuel-cells are in their infancy, and are prohibitively
expensive for large sensor networks.

We seek to design a wakeup schedule and packet for-
warding strategy with the following three goals. First,
energy consumption should be minimized during oc-
currence of events as well as during periods with no
events. Second, events must be detected with low la-

1

tency. Third, the throughput should be comparable
to the scenario with 100% duty cycle. Designing so-
lutions to meet the above goals is challenging due to
the seemingly contradictory nature of some of the goals.
Minimizing energy consumption during inactive periods
needs minimal or no communication which makes it dif-
ficult for nodes to stay synchronized to a fixed sleeping
pattern.

Several MAC protocols have been proposed to con-
serve energy in sensor networks. Protocols such as
S-MAC [?, ?], T-MAC [?] and DMAC are based on
synchronization of wakeup schedules. Frequent syn-
chronization messages consume significant energy in
such networks even when there are no events to re-
port. Other approaches such as GeRaF [?, ?], B-MAC
[?], PEAS [?] and GAF [?] do not use synchronization
messages. However, GeRaF is prone to high latency
because of non-synchronized sleeping schedules which
either leads to multiple packet retransmissions or the
discovery of sub-optimal routes. B-MAC requires long
preambles and brief sleeping periods that limit its capa-
bility to conserve energy. PEAS and GAF both require
overhead messages even when there is no traffic in the
network.

To meet our design goals, we propose a combined
wakeup schedule and routing approach that converges
from anycasting in an unsynchronized network to uni-
casting on synchronized routes. Due to its capability
to converge from anycasting to unicasting, we call our
approach Convergent-MAC, or CMAC. Unicasting is
based on greedy forwarding like in GPSR [?], and any-
casting prefers forwarding nodes that are closer to the
greedy choice. Triggered by the flow of data packets,
the routes progressively converge to greedy routes at
which point the protocol becomes akin to unicasting.
Nodes on the unicast route start following a wakeup
schedule to efficiently forward data with low latency.
The proposed convergent wakeup structure results in
low average latency and low energy consumption. It re-
quires zero communication during periods with no event
activity.

We implement our protocol in ns2 [?] and compare
it with GeRaF, 802.11 based unicasting, and anycast-
ing approaches. The highlights of our simulation based
study are as follows:

• For static events scenario, our protocol outper-
forms IEEE 802.11 based unicast with 100% duty
cycle and anycast based GeRaF. With higher
throughput and lower latency, we can save more
energy than GeRaF, up to 88.5% energy spent in
802.11 based unicast.

• For dynamic events, our protocol achieves
90%∼99% throughput of 802.11 based unicast with
comparable latency, while saving up to 72%∼83%
energy spent in 802.11 based unicast.

The rest of the paper is organized as follows. Sec-
tion 2 motivates the design of our protocol. Section
3 presents the details of our protocol. In Section 4, we

present results from simulations comparing CMAC with
other protocols. Section 5 summarizes related work on
this topic Finally, Section 6 concludes the paper.

2 Motivation

Various MAC layer protocols have been proposed for
power conservation in sensor networks. In this section,
we first outline the key weaknesses of some of these pro-
tocols to motivate our design. We then present a sim-
ulation result comparing our protocol with other ap-
proaches in a simple scenario to illustrate the advan-
tages of our scheme. We make the following key ob-
servations based on the properties of the current MAC
protocols for power conservation.

• Synchronized wakeup is wasteful: If nodes in a net-
work converge to a synchronized wakeup schedule,
communication can be restricted to the awake pe-
riods to conserve energy. Such synchronization of-
ten requires periodic messages. In [?, ?], authors
reported that for typical sensor hardware, one mes-
sage every 10 seconds is needed for synchronization.
Protocols such as S-MAC [?, ?] and T-MAC [?] are
based on synchronized wakeup schedule. Although
the latency is low in such protocols, the overhead
of synchronization is high.
The DMAC [?] protocol requires the overhead of
synchronization, but unlike S-MAC, it staggers
the wakeup schedule of nodes to reduce the la-
tency even further. Although staggering of wakeup
schedule of nodes is a desired feature for low la-
tency, the overhead of synchronization messages is
not.

• Anycasting has high latency in non-synchronized
networks: To address the overhead of synchroniza-
tion in resource constrained sensor networks, pro-
tocols for networks with non-synchronized wakeup
schedule have been proposed. GeRaF [?, ?] is one
such protocol that uses local anycast to forward
packets to any one of the neighboring nodes closer
to the destination. It assumes that the location of
neighbors and the location of the sink is known to
all nodes. Such information can be made available
during network deployment and can be maintained
with very low periodic updating mechanisms. Any-
cast based GeRaF has the following two disadvan-
tages over unicast based protocols. First, the route
computed could be longer as the optimal forward-
ing nodes may be sleeping. Second, the overhead
of anycast is higher than unicast as a sending node
has to wait to hear a response from one of the for-
warding nodes, and the wait is typically longer than
in unicast. In GeRaF there is no synchronization
overhead, but the latency is typically higher than
synchronized protocols.

Based on the above observations, we derive the fol-
lowing four design principles for our protocol. First,

2

synchronized wakeup should not be used, and anycast-
ing can be used during initial event detection. Sec-
ond, for sustained traffic, the forwarding mechanism on
the routes should progressively converge from anycast
to unicast, to avoid the above mentioned downsides of
anycast. Third, once the routes have converged, the for-
warding nodes can use a staggered pattern of wakeup
schedule like DMAC to forward packets with low la-
tency but without requiring a 100% duty cycle even
while forwarding packets. And fourth, convergence to
unicasting and the staggered wakeup schedule can be
driven by the flow of data packets.

2.1 An Example

Our design of the protocol, called Convergent MAC or
CMAC, is based on the above principles. To demon-
strate its performance, we consider a linear topology
of 10 nodes, with 200 m separation between adjacent
nodes. The transmission range is 250 m. The traf-
fic is from a single sender at one end to a single sink
at the other end. We compare our protocol to unicast
based 802.11 with 100% duty cycle and anycast based
forwarding with 100% duty cycle. For simplicity we as-
sume that the initial duty cycle is also 100% for all three
protocols. We consider a traffic load of 10 packets per
second. Figure 1 shows that the latency is significantly
less while the throughput is higher than the other two
protocols. The reduction in interference due to the stag-
gered wakeup schedule after convergence has resulted in
improvement in both latency and throughput.

0

500

1000

1500

2000

2500

802.11 anycast convergent anycast
0

5

10

15

20

25

30

Throughput Latency

Th
ro

ug
hp

ut
 (b

its
/s

)

La
te

nc
y

(s
)

Figure 1: Throughput and latency simulation result in sim-
ple scenario.

3 Convergent MAC (CMAC)

In this section we present a high level overview of the
protocol, a description of our assumptions, and a de-
tailed description of the protocol.

3.1 Overview

All sensor nodes use unsynchronized random wakeup
schedules with a pre-configured duty cycle, called the
idle duty cycle. Upon observing an event, nodes use

anycasting with greedy routing to forward packets to-
wards the sink. While anycasting, neighbors closer to
the destination respond before the neighbors nearer to
the transmitter. Thus, anycasting prefers neighbors
that are closer to the destination. The node that is se-
lected as the receiver during anycasting, remains fully
awake for a fixed duration. This ensures that anycast
for subsequent packets will be received by this receiver
or a neighbor that is even closer to the sink. Thus, the
anycast progressively converges to unicast driven by the
flow of data packets. This convergence typically com-
pletes within a few packet transmissions. Once the for-
warding nodes are fixed for unicast, their wakeup sched-
ules are matched to efficiently forward packets with low
latency. After convergence, the wakeup schedule follows
a different duty cycle called the active duty cycle. Thus
CMAC avoids synchronization messages, minimizes the
overhead of anycasting, and computes convergent routes
and staggered wakeup schedules for low latency packet
delivery while consuming much less energy.

3.2 Assumptions

In event triggered sensor networks, applications typi-
cally need to associate events with a location or a re-
gion in the sensor field. This requires all sensor nodes
to know their own locations. As the network is static,
such information can be obtained by using localization
techniques right after the network deployment. In ad-
dition to its own location, we assume that each sensor
knows the location of the sink and the location of its
neighbors. Such information can be disseminated dur-
ing localization. We also assume that the network has
only one sink, but CMAC can be easily generalized for
multiple sinks.

3.3 Detailed Protocol Description

In this section, we present details of the CMAC proto-
col. We discuss the anycasting technique, the mech-
anism for converging to unicasting, wakeup schedule
synchronization on a single route, wakeup schedule syn-
chronization on converging routes, and an extension of
CMAC that deals with cross-route interference.

3.3.1 Anycasting Protocol

Due to the unsynchronized sleeping pattern, initially
when an event is observed, unicast based forwarding
may require a large number of attempts especially when
the network is operating at a low duty cycle. To in-
crease the chances of making progress in forwarding
the packet closer to the sink, following GeRaF’s ap-
proach, we use anycasting. This saves synchronization
messages that are required in other protocols such as
S-MAC [?, ?] and T-MAC [?]. Our implementation
of anycasting uses a RTS-CTS exchange between the
sender and the prospective receiver. As there are mul-
tiple neighbors who can respond with a CTS, the time

3

instant at which they can start sending CTS is stag-
gered to give preference to neighbors that are closer to
the sink. Following the principles of greedy forwarding
[?], only nodes that are closer to the sink than the cur-
rent sender are allowed to respond with a CTS. In order
to decide when to send the CTS, the node coverage area
that is closer to the sink than the node itself is divided
into n regions, R1, R2, · · · Rn such that all nodes in
Ri are closer to the sink than nodes in Rj where i < j.
Figure 2 shows an example where this area is divided
into three regions. Nodes in region Ri send the CTS
in time slot i. Nodes in the same region will choose a
random time between 0 and k, to decide on a mini-slot
to start transmitting the CTS, where k is the number
of mini-slots per slot. If nodes overhear any traffic be-
fore transmitting CTS, they cancel the CTS transmis-
sion. Nodes in R2 will have the opportunity to send
the CTS, only if all nodes in R1 are sleeping or are un-
able to send the CTS. Therefore, the nodes closer to the
sink always have higher priority in transmitting CTS.
The DATA and ACK packets follow the CTS like in the
802.11 protocol [?].

5%
5%

5%
5%

AB

C

D

E

F

G

Source

Sink

R1R2R3

Figure 2: Coverage area closer than the sender is divided
into regions according to the distance to the sink.

Although anycast obviates the need for synchroniza-
tion messages, it has two main shortcomings. First,
anycast does not always choose the best route. The best
next hop may not be able to send the CTS because it is
sleeping or because of interference. Second, if there are
no nodes in region R1, the transmission will always be
delayed because the CTS is delayed. Even when there
are nodes in R1, due to random backoff there could be
a delay of more than one mini-slots before the CTS is
transmitted.

3.3.2 Convergent Anycast

Anycast is a simple and robust scheme to quickly find
a route to the sink. However, to avoid the inefficiency
of anycasting and inefficiency due to higher number of
hops, the route needs to converge to an optimal route
on which unicast based traffic forwarding can be used
to replace anycasting.

When the sender receives a CTS from a receiver, it
first determines the region in which the receiver lies. If
the receiver is in region R1, the sender converges to uni-
casting to that receiver for subsequent packets. The two
nodes then start following a staggered wakeup schedule
with the active duty cycle. The details are described
in Section 3.3.3. The sender indicates its willingness
to synchronize to the receiver by using a synchroniza-
tion flag in the DATA packet header. The MAC layer
ACK from the receiver serves as a confirmation for the
receiver’s acceptance to a synchronized staggered sched-
ule.

The sender and receiver will maintain the schedule
as long as there is traffic between them. If there is
no traffic for a certain period, the synchronization will
timeout, and the nodes go back to the unsynchronized
mode and start following the idle duty cycle.

The node that is selected as the receiver during any-
casting, but is not selected to synchronize with the
sender, remains fully awake for a fixed duration. This
ensures that anycast for the next packet will be received
by the current receiver or a neighbor that is even closer
to the sink than the current receiver. If it cannot find a
better next hop to synchronize with for a period, it will
assume that there is no better node, and will start to
synchronize with the latest receiver. Thus anycasting
progressively converges to unicasting on a synchronized
route.

3.3.3 Synchronization Schedule on a Single
Route

The synchronization schedule is illustrated in Figure 3.
Each wakeup cycle has a sleep time slot and an active
time slot. In active time slot, time is divided into a
receiving slot and a transmitting slot. Nodes can only
transmit data during the transmitting slot. Figure 4
illustrates the synchronization schedules of some syn-
chronized nodes. The receiving and transmitting slots
are staggered from the source to the sink to minimize
interference and reduce latency.

 One cycle

active sleep

Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx

Tx Tx Tx Tx
Source

Hop 1

Hop 2

Hop 3

As described in section [], when the receiver received the data packet and found that
the sender wanted to synchronize with him, the receiver will start the schedule
immediately. Therefore, the sender and receiver must agree on which point the
schedule will start. There are two scenarios: (a) The sender is the source, therefore it
is not synchronized. (b) The sender is an intermediate node, and is already
synchronized with its up stream node and running the schedule. When a sender is not
synchronized, the schedule can be started at anytime. When a sender is already
synchronized and running the schedule, the receiver can only start it schedule right
after the sender’s receiving slot. Figure [] illustrates that the unsynchronized sender
wants to synchronize with the receiver. The sender sends the RTS at time a but failed,
so it retries at time b and succeeded. The schedule will be assumed to be started on
time b. Figure [] illustrates that the synchronized sender wants to synchronize with the
receiver. Though the transmission is succeeded on transmitting on time b, the
schedule is still considered started on time a.

Because nodes are not synchronized, so the time between two nodes may be different.
Therefore the “relative time” is used to indicate the starting time of the

Figure 3: Synchronization Schedule.

When two nodes agree to synchronize, they must
schedule their wakeup periods in a staggered way. We
consider the following two cases for synchronizing.

1. The sender is the source and is not synchronized.
When a sender is not synchronized, the schedule
can be started at anytime. Figure 5 illustrates a
scenario where an unsynchronized sender wants to

4

 One cycle

active sleep

Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx Tx Rx Tx Rx Tx

Rx

Tx Tx Tx Tx
Source

Hop 1

Hop 2

Hop 3

As described in section [], when the receiver received the data packet and found that
the sender wanted to synchronize with him, the receiver will start the schedule
immediately. Therefore, the sender and receiver must agree on which point the
schedule will start. There are two scenarios: (a) The sender is the source, therefore it
is not synchronized. (b) The sender is an intermediate node, and is already
synchronized with its up stream node and running the schedule. When a sender is not
synchronized, the schedule can be started at anytime. When a sender is already
synchronized and running the schedule, the receiver can only start it schedule right
after the sender’s receiving slot. Figure [] illustrates that the unsynchronized sender
wants to synchronize with the receiver. The sender sends the RTS at time a but failed,
so it retries at time b and succeeded. The schedule will be assumed to be started on
time b. Figure [] illustrates that the synchronized sender wants to synchronize with the
receiver. Though the transmission is succeeded on transmitting on time b, the
schedule is still considered started on time a.

Because nodes are not synchronized, so the time between two nodes may be different.
Therefore the “relative time” is used to indicate the starting time of the

Figure 4: Staggered synchronization schedules.

synchronize with the receiver. The schedule will
be started as of the time the sender sends the RTS
packet for the first successful data transmission.

synchronization. As in figure [] shows, when RTS packet is sent, it record the
“relative time difference” between the desired starting time and the RTS transmitting
time in the header. When the receiver gets the packet, it can calculate when the sender
wants him to start the schedule.

Next Rx time for receiver

Tx

One cycle length

Rx

Unsynch.
sender

Unsync
receiver

Tx

Tx

Rx

Next Tx time for sender

RTS of first successful
data transmission

One cycle length

Unsync.
sender

Unsync.r
eceiver

Rx

Relative time
offset

Tx

Rx Tx Rx

Tx Rx Tx Rx

Next Rx Time for receiver

RTS of first successful
data transmission

Figure 5: Unsynchronized sender synchronizes with the re-
ceiver. The schedule will be started as of the time the sender
sends the RTS packet of the first successful data transmis-
sion.

2. The sender is an intermediate node, and is al-
ready synchronized with its upstream node. As the
sender is already synchronized, it can not change
its schedule. So when it needs to synchronize, it
explicitly indicates the time elapsed since the be-
ginning of the current transmitting slot (see Figure
6). The receiver uses this offset to determine its
staggered wakeup schedule to properly match the
sender. Therefore even if the transmission failed
for first few times, the receiver can still know the
time to start the schedule.

synchronization. As in figure [] shows, when RTS packet is sent, it record the
“relative time difference” between the desired starting time and the RTS transmitting
time in the header. When the receiver gets the packet, it can calculate when the sender
wants him to start the schedule.

Next Rx time for receiver

Tx

One cycle length

Rx

Unsynch.
sender

Unsync
receiver

Tx

Tx

Rx

Next Tx time for sender

RTS of first successful
data transmission

One cycle length

Unsync.
sender

Unsync.
receiver

Rx

Relative time
offset

Tx

Rx Tx Rx

Tx Rx Tx Rx

Next Rx Time for receiver

RTS of first successful
data transmission

Figure 6: Synchronized sender synchronizes with the re-
ceiver. The sender will explicitly indicates the receiver the
time elapse offset of its schedule in DATA header.

3.3.4 Synchronization Schedule on Multiple
Converging Routes

As discussed before, our approach is to synchronize
starting from the sources. This has the advantage of
quick synchronization. However, a special case at nodes
where routes merge, needs to be handled separately. As-
sume that a route from a source to the sink is already
converged and synchronized. Another route merges to
an intermediate node on the synchronized route. In this
case, we have a scenario where a sender wants to syn-
chronize with a receiver that is already synchronized to
another sender. Such situations may arise in the case of
simultaneous multiple event detections and in the case
of mobile events. If the sender is not synchronized, the
sender will follow the receiver’s schedule. The receiver
indicates the time elapsed since the beginning of the last
receiving time slot in the CTS header, and the sender
will know when to start its transmitting slot. If the
sender is synchronized, there are several ways to deal
with this scenario:

• The sender can match the receiver’s schedule and
ask its downstream nodes to adjust their wakeup
schedules. However, this causes a ripple effect that
needs to be propagated to the leaf nodes of the tree.

• The receiver switches to a wakeup schedule that
satisfies the new sender as well as the old sender(s).
However, this requires the receiver to have a higher
duty cycle than the active duty cycle (see Figure
7).

• The sender splits its receiving and transmitting
slots to match with its upstream as well as down-
stream nodes as shown in Figure 8. We have imple-
mented this approach for performance evaluation.

Synchronized
Sender

Rx Tx

Rx Tx

Tx Rx

Rx TxSynchronized
Receiver

RTS of first successful
data transmission

Extending Rx time
to match sender

Synchronized
Sender

Rx Tx

Rx Tx

Tx Rx Rx

Rx TxSynchronized
Receiver

RTS of first successful
data transmission

Splitting Rx/Tx to
match receiver

There is a third scenario: when a sender wants to synchronize with a synchronized
receiver. This may happen in multiple traffic situations because of multiple events or
mobile events. In this scenario, the receiver will reply its schedule in “relative time
difference” in the CTS header to notify the sender. If the sender is not synchronized
yet, it will follow the receiver’s schedule. However, if the sender is also synchronized
with its upstream node, there will be a confliction. To deal with this situation, we can
either let the receiver to adopt all its upstream nodes’ schedule, or we can let the
sender to split its receiving and transmitting slot, therefore it can receive packets from
its upstream node, and also transmit packets to its downstream node.

Optimization

1. Temporary synchronization
Nodes will temporarily synchronized with their upstream/downstream nodes even
if they are not best next hop nodes, to ensure the packet can still be forward in
routes not worse than the current one.

2. Separate RX and TX slots to avoid contention between upstream and downstream
nodes, and to deal with traffic merge problem.

Figure 7: The receiver extends its receiving slot to accom-
modate the new sender.

3.3.5 CMAC Extension

Although the staggering helps alleviate the contention
between upstream nodes and downstream nodes, mul-
tiple merging routes can cause significant cross-route
interference. Such interference is observed when multi-
ple events occur simultaneously and also when the event
is moving.

5

Synchronized
Sender

Rx Tx

Rx Tx

Tx Rx

Rx TxSynchronized
Receiver

RTS of first successful
data transmission

Extending Rx time
to match sender

Synchronized
Sender

Rx Tx

Rx Tx

Tx Rx Rx

Rx TxSynchronized
Receiver

RTS of first successful
data transmission

Splitting Rx/Tx to
match receiver

There is a third scenario: when a sender wants to synchronize with a synchronized
receiver. This may happen in multiple traffic situations because of multiple events or
mobile events. In this scenario, the receiver will reply its schedule in “relative time
difference” in the CTS header to notify the sender. If the sender is not synchronized
yet, it will follow the receiver’s schedule. However, if the sender is also synchronized
with its upstream node, there will be a confliction. To deal with this situation, we can
either let the receiver to adopt all its upstream nodes’ schedule, or we can let the
sender to split its receiving and transmitting slot, therefore it can receive packets from
its upstream node, and also transmit packets to its downstream node.

Optimization

1. Temporary synchronization
Nodes will temporarily synchronized with their upstream/downstream nodes even
if they are not best next hop nodes, to ensure the packet can still be forward in
routes not worse than the current one.

2. Separate RX and TX slots to avoid contention between upstream and downstream
nodes, and to deal with traffic merge problem.

Figure 8: The sender splits its receiving and transmitting
slots.

To address this problem, we propose a simple exten-
sion to CMAC. After converging from anycast to uni-
cast, the nodes remain fully awake without any syn-
chronization. So, nodes can transmit and receive at
any time. Though this increases the energy consump-
tion during active periods, only nodes forwarding data
are required to remain fully awake. When the traffic
ceases, the nodes go back to follow the unsynchronized
idle duty cycle.

4 Performance Evaluation

To evaluate the proposed scheme, we compare the
throughput, latency and energy consumption of our
protocols with other protocols using the network sim-
ulator ns2. Our study is based on the following five
protocols:

• Unicast: Using RTS-CTS-DATA-ACK 802.11
protocol with optimal routing. Nodes have a duty
cycle of 100%.

• Anycast: Using RTS-CTS-DATA-ACK anycast-
ing protocol described in Section 3.3.1. Nodes are
always active and they use anycast to forward pack-
ets.

• GeRaF: Just like Anycast, but nodes only work
on 10% duty cycle. Our implementation has some
differences from the description of GeRaF in [?].
First we do not use busy tone to detect if the chan-
nel is busy. Second, we use the anycast protocol
described in 3.3.1, which is slightly different from
the anycast protocol described in GeRaF [?].

• CMAC: Our proposed scheme described in Sec-
tion 3. Nodes work on a 10% idle duty cycle. When
node are synchronized, they will work on a 50% ac-
tive duty cycle. The active time is split equally into
receiving and transmitting slots. The length of the
receiving and transmitting slot is just long enough
to receive and transmit one packet.

• CMAC-Ext: Our proposed scheme with the ex-
tension described in Section 3.3.5. Nodes work on
a 10% idle duty cycle. When nodes are synchro-
nized, they remain active with a 100% duty cycle
to receive and forward packets.

The radio transmission range is 250 meters, which is
the default value in ns2. According to the Mica2 data
sheet [?], we configure the bandwidth to 38.4Kbps, the
maximum transmission power to 27mA, the receiving
power to 10mA and idle listening power to 10mA. The
CTS for anycast contains extra information of the re-
ceiver’s address (6 bytes) and the offset value of the
receiver’s schedule (2 bytes) as described in 3.3.4, there-
fore the size of CTS for anycast is 14+6+2 = 22 bytes.
The length of a time slot for receivers to reply the CTS
should be long enough such that the probability of CTSs
collision for nodes in the same region is low. We use
0.2ms in the following simulations. Table 4 lists the
parameters we used in the simulations.

Tx range 250m RTS size 14 bytes

Bandwidth 38.4Kbps CTS size 14 bytes

Tx power 27mA ACK size 28 bytes

Rx power 10mA Data header 20 bytes

Idle power 10mA Data payload 50 bytes

Preamble+PLCP 24 bytes Anycast CTS 22 bytes

Table 1: Simulation parameters

We summarize the key results from our simulations
below:

• CMAC outperforms all the other four protocols in
terms of throughput, latency and energy saved in
static event scenarios. With higher throughput and
lower latency, CMAC can save up to 88.5% of en-
ergy spent in unicast.

• CMAC-Ext performs very close to unicast in terms
of throughput and latency in static event networks,
but can save up to 88% energy spent in unicast.

• In mobile event scenario, the performance of
CMAC and CMAC-Ext is close to unicast under
low traffic load. Under high traffic load, CMAC
and CMAC-Ext achieve 80% and 87% throughput
of unicast with similar latency, but can save about
84% of energy spent in unicast.

• Idle duty cycle has little impact on CMAC and
CMAC-Ext.

4.1 Impact of Duty Cycles on CMAC

We evaluate the impact of the active duty cycle for
CMAC protocol. CMAC uses a different duty cycle
(active duty cycle) from the idle duty cycle after syn-
chronizing. Figure 9 shows the throughput for different
active duty cycle for a static event. It shows that at
50% duty cycle, CMAC has the best performance. With
larger duty cycle, nodes have more time to receive and
transmit packets. But when the duty cycle exceeds a
threshold, nodes start to interfere with their upstream
and downstream nodes as the interference range is typ-
ically larger than the transmission range (in the simu-
lator, the interference range is twice the transmission

6

range). A packet transmission can interfere with nodes
3 hops away because of the the CTS packet. Therefore it
takes 3 more transmission time to forward a packet out
of the interference range. Nodes working on 50% duty
cycle, with 25% on receiving and 25% on transmitting,
can avoid the interference. Therefore we use 50% active
duty cycle in CMAC for the following simulation.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
hr

ou
gh

pu
t (

bi
ts

/s
)

Active duty cycle

interval 0.1

Figure 9: The throughput of CMAC vs. active duty cy-
cle.At 50% active duty cycle, CMAC performs best by hav-
ing longer time to transmit while reducing the interference
between up/down stream nodes.

We study the impact of idle duty cycle on the CMAC
protocol. We compare the performance of GeRaF,
CMAC and CMAC-Ext using different idle duty cycles.
Figure 10 shows the result in one static event network.
It shows that the idle duty cycle has little impact on
CMAC and CMAC-Ext. This is because after converg-
ing to unicast, nodes communicate only with their syn-
chronized nodes, and only active duty cycle affects our
protocols.

 250

 300

 350

 400

 450

 500

 550

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
hr

ou
gh

pu
t (

bi
ts

/s
)

Idle duty cycle

geraf
cmac

cmac-ext

Figure 10: The throughput of GeRaF, CMAC and CMAC-
Ext vs. idle duty cycle.Initial duty cycle has little impact on
CMAC and CMAC-Ext since they will converge to unicast
and use synchronized schedule to forward packets.

Figure 11 shows the convergence time of
CMAC/CMAC-Ext using different idle duty cy-
cles in networks with 100, 225, and 400 nodes in a one
kilometer square area. Convergence time decreased
when the idle duty cycle increased, or when the nodes
density increased. Increasing idle duty cycle or the
nodes density increases the number of active nodes
at the same time. Therefore CMAC/CMAC-Ext has
better chances to find a good node to synchronize
with. We can see that at 10% idle duty cycle, CMAC
typically converge after only a few seconds. Packets
are still being forwarded to sink while converging,
therefore the convergence time has little impact on the
performance of our protocols. Figure 10 confirms the
performance of our protocols are not affect by the idle
duty cycle.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
on

ve
rg

en
ce

 ti
m

e
(s

)

Idle duty cycle

cmac-100
cmac-225
cmac-400

cmac-ext-100
cmac-ext-225
cmac-ext-400

Figure 11: The converging time of CMAC vs. idle duty
cycle in networks with different node density.The higher the
idle duty cycle or node density, the lower the convergence
time.

4.2 Static Event

We use a grid network to evaluate the five protocols.
The grid size is 20 nodes by 20 nodes, and the distance
between two nodes is 50 meters. First we evaluate these
protocols in one static event network. The source that
detect the event is located at the left-bottom corner,
and the sink is located at the right-upper corner. We
vary the traffic load from 2 packets per second to 10
packet per second. When the data rate is lower than
5 packets per second, all protocols can deliver 100% of
the packets with low latency except GeRaF, therefore
we only show the simulation results for data rate be-
tween 5 packets per second and 10 packets per second.
Each result is the average of 5 independent simulations
running for 400 seconds each. Figure 12, 13 and 14
show the simulation result of throughput, latency and
energy consumption of different mechanisms.

In low traffic load networks, the throughput and la-
tency of these protocols are almost the same except
GeRaF, but the energy consumption in our protocols

7

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

bi
ts

/s
)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 12: Throughput of protocols with one static event.
CMAC outperforms all other four protocols because of stag-
gered receiving and transmitting slots, and CMAC-Ext per-
forms close to unicast.

 0

 10

 20

 30

 40

 50

 60

 70

 5 6 7 8 9 10

L
at

en
cy

 (s
)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 13: End-to-end latency of protocols with one static
event. CMAC has the lowest end-to-end delay and CMAC-
Ext performs close to unicast.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 6 7 8 9 10

Po
w

er
 c

on
su

m
pt

io
n

(J
/b

yt
e)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 14: Normalized energy consumption. The amount
of energy spent per byte.

are the lowest. GeRaF suffers from low throughput
and high latency because the forwarding path is not
fixed. Without high node density, the packets may get
dropped in the middle of a route because all its neigh-
boring nodes may be sleeping. When the traffic load is
high, CMAC outperforms all other protocols in every
aspect. This is because CMAC staggers the receiving
and transmitting slots, thus, reducing the contention
between upstream and downstream nodes. With higher
throughput and lower latency, CMAC can save up to
88.5% of energy spent in unicast while working on 10%
idle duty cycle.

We can see from the simulation results that the
throughput of anycast protocol is better than the uni-
cast protocol, but with higher delay. This is because in
a grid network, nodes have multiple choices for next hop
to forward packets to. As long as one receiver is avail-
able to receive the packet, the packet can be forwarded,
thus increase the utilization of the channel. Since it
does not use optimal route, the average hop count will
be high, too. Therefore the delay in anycast is higher
than unicast. Figure 15 shows the average hop count in
different protocols. The hop count of the optimal route
is 6, which is the hop count used in unicast. CMAC
and CMAC-Ext depend on the anycast protocol to con-
verge to a unicast path when the next hop is located in
the farthest region, therefore they have lower hop count
compared to the GeRaF.

 6

 6.5

 7

 7.5

 8

 8.5

 5 6 7 8 9 10

H
op

 c
ou

nt

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 15: Average hop count of packet forwarding path in
static event network.

4.3 Mobile Event

We evaluate the performance of these five protocols in
mobile event scenario in the grid network. An event
moves randomly in the network for 293 seconds at the
speed of 10 m/s. The sensing range of sensors is con-
figured to 35.5 meters. This ensures that the event is
always in range of at least one sensor. Figure 16, 17 and
18 show the simulation results of throughput, latency
and energy consumption of different protocols. Figure
19 shows the average hop count for different protocols.

8

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 2.5 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

bi
ts

/s
)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 16: Average throughput of protocols with one mo-
bile event.CMAC and CMAC-Ext perform close to unicast
in lower traffic load network, and can achieve 80% to 87%
throughput in high traffic load and high intereference net-
work.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2.5 3 4 5 6 7 8 9 10

L
at

en
cy

 (s
)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 17: Average end-to-end latency delay with one mo-
bile event.The latency of CMAC-Ext is very close to unicast.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2.5 3 4 5 6 7 8 9 10

Po
w

er
 c

on
su

m
pt

io
n

(J
/b

yt
e)

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 18: Normalized energy consumption, the amount of
energy spent per byte.

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 2.5 3 4 5 6 7 8 9 10

H
op

 c
ou

nt

Data rate (packets/s)

unicast
anycast

geraf
cmac

cmac-ext

Figure 19: Average hop count of packet forwarding path in
mobile event network.

In mobile event networks, CMAC and CMAC-Ext
still use the least energy, while achieving 80% to 87% of
throughput in unicast with a slighly higher latency. The
reason for the performance drop of CMAC and CMAC-
Ext is because the event may move out of a sensor’s
sensing range before the route converges. Therefore
the benefit of converging to unicast route is reduced.
However, unicast achieves highest throughput with very
high power consumption as nodes remain awake with a
100% duty cycle. When the network is idle, unicast
will spend 10 times more energy than CMAC/CMAC-
Ext. When there are events, unicast provides only 15%
higher throughput than CMAC-Ext, but spends 4 to 6
times more energy than CMAC/CMAC-Ext. Therefore
CMAC/CMAC-Ext are still the best for networks that
require longer network lifetime.

We can also see that CMAC-Ext performs better than
CMAC for mobile event. This is because of high in-
terference from neighboring data flows. In the mobile
event network, there may be 4 or more neighboring
nodes transmitting packets concurrently, which causes
very high contention and interference. As described in
Section 3.3.5, the staggered receiving and transmitting
slots may reduce the channel utilization in high con-
tention scenario. CMAC-Ext improves the performance
of throughput and latency by allowing more nodes to
contend for the channel at the same time.

In summary, CMAC and CMAC-Ext perform very
well in both static and mobile event scenarios, and in
both high and low traffic load networks. CMAC out-
performs unicast and anycast and still can save about
88% energy in static event networks. In high traf-
fic load with moving event scenario, CMAC-Ext per-
forms slightly better than anycast, and achieves 90%
throughout of unicast in high traffic load network, while
saving 73% energy of unicast and anycast. Therefore,
CMAC/CMAC-Ext are very suitable for extending the
network lifetime of sensor networks.

9

5 Related Work

Sensor networks can increase the network lifetime by
putting nodes into sleep mode for brief periods periodi-
cally. However, nodes are unable to forward data while
they are sleeping. Therefore different approaches are
proposed to ensure that the packets can be forwarded
to destination despite some nodes are sleeping. These
approaches can be broadly divided into two categories:
synchronized and unsynchronized.

Synchronized approaches: Protocols using this
mechanism require nodes to periodically synchronize
with their neighbors using synchronization messages,
and nodes wake up and sleep according to the synchro-
nized schedule.

In S-MAC [?], nodes exchange their wakeup and sleep
schedules with their neighbors before starting their pe-
riodic listening and sleeping schedule. This can sig-
nificantly reduce the time spent on idle listening and
therefore save energy. In later work [?], the authors
extend S-MAC abilities to use adaptive listening to re-
duce the latency. Nodes overhearing their neighbor’s
RTS or CTS packets will wake up for a short duration
at the end of the transmission to check if there is data
for them.

T-MAC [?] uses the same mechanism as S-MAC to
synchronize nodes, but save more energy by using adap-
tive duty cycle to reduce the amount of idle listening.
In S-MAC, the listening time is fixed. When a node
wakes up to listen, it will remain active until its listen-
ing time ends. In T-MAC, instead of idle listening the
channel for entire listening time, nodes will go back to
sleep if there is no event happened.

DMAC [?] and [?] schedule the nodes’ active/sleep
time like a ladder from sources to the sink such that
the packet can be forward to the sink without delay.
The active time is divided into receiving and trans-
mitting slots to avoid interference with the upstream
and downstream nodes. In DMAC, nodes can dynami-
cally adapt to higher traffic load by using more-to-send
(MTS) packet to adjust their wakeup frequency.

Unsynchronized approaches: Synchronization mes-
sages consume significant energy in networks even if
there is no event. Therefore other approaches are pro-
posed to avoid the overhead incurred by synchronization
message .

In [?], nodes in power-save mode are sleeping most of
the time, and wake up periodically to check for pending
data. Nodes are triggered by communication events,
such as route discovery messages or data packets, to
switch from power-save mode to active mode. In active
mode, nodes are active with 100% duty cycle to receive
and transmit packets. Nodes will go back to power-save
mode if there is no traffic for a certain duration.

GAF [?] saves energy by putting nodes that are re-
dundant in the aspect of routing into sleep. In GAF,
nodes are divided into virtual grids. Every node in a
grid is in the radio range of nodes in adjacent grids.

Therefore, one active node in each grid is enough to
maintain the network connectivity. Nodes in GAF can
be in three states: sleeping, discovery and active. All
nodes are in discovery state initially, and set a timer
to broadcast a discovery message. If nodes receive a
discovery message from other nodes before they broad-
cast their discovery message, they will go to sleeping
state; otherwise they will enter the active state. In ac-
tive state, nodes will set a timer to define how long they
will stay active, and periodically broadcast the discov-
ery message. When the timer expires, the active node
will go back to discovery state.

In B-MAC [?], nodes wake up periodically to check
if there is traffic. It uses clear channel access (CCA) to
detect if the channel is busy, and use low power listening
(LPL) to check the radio activity. When a node wakes
up, it uses CCA to check the radio activity. If no activ-
ity is detected, the node goes back to sleep. If activity
is detected, the node stays awake to receive the packets.
In order to let the nodes detect the traffic reliably, the
packet preamble length must be long enough to be de-
tected. For example, if a node checks the channel every
100ms, the preamble must be at least 100ms long to be
detected. By using low power listening, nodes can work
on very low duty cycle and therefore can save energy
and extend network lifetime.

PEAS [?] provides a resilient, long-lived sensor net-
work for a unreliable environment. Nodes in PEAS go
to sleep and wakeup periodically. When a node wakes
up, it sends a PROBE message to probe if any of its
neighbors are awake. Nodes that receive the PROBE
message will broadcast a REPLY message to notify that
they are awake. Since some of the nodes in coverage
area are awake, it’s not necessary for that node to be
active, so the node will go back to sleep for a period ac-
cording to the information gathered from the REPLY
message.

GeRaF [?][?] eliminates the synchronization and
probing message required by protocols mentioned be-
fore by using anycast. In GeRaF, nodes know the lo-
cation of their neighbors and the sink. When a node
wants to send packets to the sink, it broadcasts an RTS
to all its neighbors. Nodes that receive the RTS will
reply with a CTS packet according to their distance to
the sink. Nodes that are closer to the sink will send the
CTS first. When the source node receives the CTS, it
sends the DATA packet to the node from which the CTS
was sent. Other nodes overhearing the data packet can-
cel their CTS transmission. This mechanism is simple
because nodes don’t have to maintain synchronization
or exchange schedule information with their neighbors.
Moreover, with high enough node density, nodes can
work on very low duty cycle while maintaining network
connectivity.

Anycasting: GeRaF uses anycast to forward data.
Anycast allows a node to transmit packets to any node
among a subset of nodes. When a node transmits a
packet, as long as one of its neighbors acknowledges it,
the packet can be forwarded. [?] proposed another any-

10

cast protocol using similar handshaking protocol as in
802.11 DCF. The sender broadcasts an MRTS packet
containing multiple next hops provided by the routing
protocol. These next hops are assigned with a priority
order according to some metric, such as their address
position in MRTS packet, or their hop count to the
destination. The receivers will reply with a CTS ac-
cording to their priority. The node with the highest
priority sends the CTS after an SIFS time. The second
node sends the CTS after a period equal to the time to
transmit a CTS plus 3 SIFS time to ensure that CTSs
do not collide. When the sender receives the CTS, it
transmits the DATA packet to the sender of the CTS.
Other nodes overhearing the DATA packet will cancel
their CTS transmission.

6 Conclusion

This paper proposes a MAC layer approach for conserv-
ing energy in sensor networks. Based on the current
protocols for energy conservation, we make two key ob-
servations to motivate our design. First, synchronized
wakeup is wasteful in sensor networks due to the over-
head of synchronization messages. Second, anycasting
has high latency in non-synchronized sensor networks.
Based on these observations, we design the CMAC pro-
tocol. During idle periods, the nodes are unsynchro-
nized and use a small duty cycle (termed idle duty cy-
cle) to randomly wakeup and sleep. CMAC initially
uses anycasting due to lack of synchronization across
nodes, but quickly converges to unicasting to reduce la-
tency. The converged routes switch to using an active
duty cycle with staggered synchronized schedules. We
found that a 50% active duty cycle results in the best
throughput. The staggered wakeup schedules result in
routes with less interference and low latency. The use
of low idle duty cycle during idle periods and active
duty cycle during active periods result in low energy
consumption and longer network lifetime. A simple ex-
tension to CMAC, termed CMAC-Ext is proposed for
dealing with cross-route interference. In CMAC-Ext
nodes remain fully awake as long as they are forward-
ing traffic and time is not split into transmission and
reception slots. Using extensive simulations, we observe
that for detection of static events, CMAC outperforms
other protocols in terms of throughput and latency with
only 11.5% energy consumption of unicast. For mobile
events, CMAC-Ext achieves 90% to 99% throughput of
unicast with similar latency while spends only 17% to
28% energy of unicast and anycast. Based on our study,
we conclude that CMAC is highly suited for event trig-
gered sensor networks that require long network life-
time. Currently we are planning to implement CMAC
on the Mica2 motes to evaluate its performance.

References

[1] “ GlacsWeb: Autonomous Sub-glacial Probes,”
http://envisense.org/glacsweb.htm.

[2] “ Networked Infomechanical Systems,”
http://www.cens.ucla.edu .

[3] “ Center for Embedded Networked Sensing at
UCLA,” http://www.cens.ucla.edu .

[4] J. Polastre, “ Design and Implementation of
Wireless Sensor Networks for Habitat Monitoring,”
Master’s Thesis, Spring 2003.

[5] A. Mainwaring, R. Szewczyk, J. Anderson, and
J. Polastre, “Habitat Monitoring on Great Duck
Island,” http://www.greatduckisland.net.

[6] A. Arora, P. Dutta, and S. Bapat, “ Line in
the Sand: A Wireless Sensor Network for Tar-
get Detection, Classification, and Tracking,” OSU-
CISRC-12/03-TR71, 2003.

[7] Sental Corporation, “ Chemi-
cal/Bio Defense and Sensor Networks,”
http://www.sentel.com/html/chemicalbio.html .

[8] D. Culler, J. Demmel, G. Fenves, S. Kim,
T. Oberheim, and S. Pakzad, “ Structural
Health Monitoring of the Golden Gate Bridge,”
http://envisense.org/glacsweb.htm.

[9] A. El-Hoiydi and J.D. Decotignie, “ WiseMAC:
An Ultra Low Power MAC Protocol for Multi-Hop
Wireless Sensor Networks,” in Algosensors, July
2004.

[10] Wei Ye, John Heidemann, and Deborah Estrin, “
An energy-efficient MAC protocol for wireless sen-
sor networks,” 2002.

[11] Wei Ye, John Heidemann, and Deborah Estrin, “
Medium access control with coordinated adaptive
sleeping for wireless sensor networks,” 2004.

[12] Tijs van Dam and Koen Langendoen, “ An adap-
tive energy-efficient MAC protocol for wireless sen-
sor networks,” in Proceedings of the 1st interna-
tional conference on Embedded networked sensor
systems, 2003.

[13] Michele Zorzi and Ramesh R. Rao, “Geographic
Random Forwarding (GeRaF) for Ad Hoc and Sen-
sor Networks: Energy and Latency Performance,”
in IEEE Trans. on Mobile Computing, October-
December 2003(Vol. 2, No. 4), 2003.

[14] Michele Zorzi and Ramesh R. Rao, “Geographic
Random Forwarding (GeRaF) for Ad Hoc and Sen-
sor Networks: Multihop Performance,” in IEEE
Trans. on Mobile Computing, October-December
2003(Vol. 2, No. 4), 2003.

[15] Joseph Polastre, Jason Hill, and David Culler,
“Versatile low power media access for wireless sen-
sor networks,” in Proceedings of the 2nd interna-
tional conference on Embedded networked sensor
systems, 2004, pp. 95 – 107.

11

[16] F. Ye, G. Zhong, S. Lu, and L. Zhang, “ PEAS: A
Robust Energy Conserving Protocol for Long-lived
Sensor Networks,” 2003.

[17] Ya Xu, John S. Heidemann, and Deborah Estrin,
“Geography-informed energy conservation for Ad
Hoc routing,” in Mobile Computing and Network-
ing, 2001, pp. 70–84.

[18] B. Karp and H. T. Kung, “ GPSR: Greedy Perime-
ter Stateless Routing for Wireless Networks,” in
Proc. of ACM MOBICOM 2000, Aug. 2000, pp.
243–254.

[19] “ The Network Simulator: ns-2,”
http://www.isi.edu/nsnam/ns/ .

[20] Gang Lu, Bhaskar Krishnamachari, and Cauligi S.
Raghavendra, “ An Adaptive Energy-Efficient
and Low-Latency MAC for Data Gathering in
Wireless Sensor Networks,” in 18th Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS’04), 2004.

[21] IEEE, “ Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications,”
ISO/IEC 802-11:1999, 1999.

[22] “ Crossbow Technology,” http://www.xbow.com/.

[23] Mihail L. Sichitiu, “ Cross-layer scheduling for
power efficiency in wireless sensor networks,” in
IEEE INFOCOM 2004, vol. 23, no. 1, 2004, pp.
1741–1751.

[24] Rong Zheng and Robin Kravets, “ On-demand
Power Management for Ad Hoc Networks,” in
Proc. IEEE INFOCOM ’03, 2003.

[25] S. Jain and S. R. Das, “ Exploiting Path Diversity
in the Link Layer in Wireless Ad Hoc Networks,”
http://www.cs.sunysb.edu/ samir/Pubs/anycast.pdf,
2004.

12

