
Performance Modeling of Subnet Management on Fat Tree InfiniBand Networks
using OpenSM

ABHINAV VISHNU, AMITH R MAMIDALA, HYUN-WOOK JIN AND D. K. PANDA

Technical Report
OSU-CISRC-1/05-TR05

Performance Modeling of Subnet Management on Fat Tree InfiniBand Networks
using OpenSM

�

Abhinav Vishnu Amith R Mamidala Hyun-Wook Jin Dhabaleswar K. Panda
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210�

vishnu, mamidala, jinhy, panda � @cse.ohio-state.edu

Abstract

InfiniBand is becoming increasingly popular in the area
of cluster computing due to its open standard and high per-
formance. Fat Tree is a primary interconnection topology
for building large scale InfiniBand clusters. Instead of us-
ing a shared bus approach, InfiniBand employs an arbitrary
switched point-to-point topology. In order to manage the
subnet, InfiniBand specifies a basic management infrastruc-
ture responsible for discovery, configuration and maintain-
ing the active state of the network. In the literature, sim-
ulation studies have been done on irregular topologies to
characterize the subnet management mechanism. However,
there is no study to model subnet management mechanism
on regular topologies using actual implementations.

In this paper, we take up the challenge of modeling
subnet management mechanism for Fat Tree InfiniBand
networks using a popular subnet manager OpenSM. We
present the timings for various subnet management phases
namely topology discovery, path computation and path dis-
tribution for large scale fat tree InfiniBand subnets and
present basic performance evaluation on small scale Infini-
Band cluster. We verify our model with the basic set of
results obtained, and present the results for the model by
varying different parameters on Fat Trees.

1 Introduction

In the past couple of years, the computational power of
commodity PCs has been doubling about every eighteen
months. At the same time, commodity network intercon-
nects that provide low latency and high bandwidth are also
emerging. This trend makes it very promising to build high

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542, and grants from Intel and Mellanox, Inc.

performance computing environments by using Clusters. It
combines the computational power of commodity PCs and
the communication performance of high speed network in-
terconnects. Fat Trees [6] are being used as a primary inter-
connection topology for building large scale clusters. Re-
cently, InfiniBand Architecture [5] has been proposed as
the next generation interconnect for I/O and inter-process
communication. Due to its open standard and high per-
formance, InfiniBand is becoming increasingly popular for
cluster computing.

InfiniBand defines a technology for interconnecting the
I/O nodes with the processing nodes, which forms a System
Area Network (SAN). The end nodes are connected to each
other in a switched point-to-point fashion. The end nodes
can have one or more Channel Adapters to connect to the
network.

InfiniBand specifies a small number of management
classes. It specifies a Subnet Management mechanism
which monitors the state of the subnet and takes appropriate
steps to assimilate topology changes in a smooth fashion. It
specifies an entity called Subnet Manager (SM) which is in
charge of discovery, configuration and maintainence of the
subnet.

A lot of simulation based studies have been presented in
the recent past to evaluate the subnet management mecha-
nism [3] [4]. However, these studies are based on irregular
topology networks and lack the management model on reg-
ular topologies using actual implementations.

In this paper, we take up the challenge of modeling sub-
net management mechanism for Fat Tree InfiniBand net-
works using OpenSM [1]. We present the timings for var-
ious subnet management phases in InfiniBand [3] such as
topology discovery, path computation and path distribution
for large scale fat tree InfiniBand networks. We also present
the timings on a small scale InfiniBand cluster with different
configurations to understand the behaviour of subnet man-
ager. We verify our model with the basic set of results ob-

1

tained, and present the results for the model by varying dif-
ferent parameters on Fat Trees.

The rest of the paper is organized as follows: In Section
2, we provide background information for InfiniBand, Sub-
net Management and Fat Trees. In Section 3, we discuss
various phases in subnet management. In Section 4, we
present the timings for various management phases using
OpenSM for small scale InfiniBand network configurations.
In Section 5, we present the subnet management model on
Fat Tree Networks. In Section 6, we show the performance
results using our management model and validate it by us-
ing the timings from section 4. In section 7, we present the
related work of this paper. In section 8, we conclude and
discuss the future directions.

2 Background

In this section, we provide background information for
our work. We first provide a brief introduction of InfiniBand
Subnet Management machanism and then discuss about fat
tree topologies used in building large scale clusters.

2.1 InfiniBand Subnet Management

The InfiniBand Architecture (IBA) [5] defines a switched
network fabric for interconnecting processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In
an InfiniBand network, processing nodes and I/O nodes are
connected to the fabric by Channel Adapters (CA). Host
Channel Adapter (HCA) sit on processing nodes.

InfiniBand defines a small number of management
classes. The Subnet Management class defines an entity
called Subnet Manager (SM), which is in charge of discov-
ering, configuring, activating and managing the subnet. The
subnet manager can reside in any subnet device (Switch,
Router or Channel Adapter (CA)). By using the subnet man-
agement interface (SMI), SM can exchange control packets
with the subnet management agents (SMA) present in every
subnet device. The SMI is associated to an internal manage-
ment port in switches, or to a physical port in the rest of the
devices. Figure 1 shows the physical model of the subnet
management.

The control packets used by subnet management are
called subnet management packets (SMPs). Each SMP con-
sists of 256 bytes of data. SMPs use the Unreliable Data-
gram service, which contain a key to authenticate the sender
and use the management virtual lane (VL15).

The SMPs can be classified into LID routed and Direct
routed SMPs. LID routed SMPs are routed by switches by a
table lookup of the forwarding table. They are mostly used
to check the status of active ports in the subnet. The data
packets are routed in the same way as LID routed SMPs.

Direct routed SMPs contain the information of the output
port to which they need to be fowarded to at each interme-
diate hop. Direct routed SMPs are used during the subnet
discovery before the subnet initialization. LID routed SMPs
have lesser overhead than direct routed SMPs, because the
direct routed SMPs have to be processed at each intermedi-
ate SMI.

SMA

Switch

SMA

Switch

SMA

SMA

Channel
Adapter

SMA

Channel
Adapter

SMA

Channel
Adapter

SMA

Channel
Adapter

SMA

Switch

Master Subnet Manager

Router

Figure 1. Physical Model of Subnet Management

The SMP header defines the operation to be performed
by the SM. These subnet management operations are : Get,
Set, GetResp, Trap and TrapRepress. The Get operation
is used to get the information about the CA, Switch or a
Router port. The Set operation is used by the subnet man-
ager to set the attributes of a port at the end of the subnet
discovery. The GetResp operation is the response to the Get
SMP of a subnet manager.

The subnet manager performs a sweep to discover the
subnet. In addition to sweeping, a switch may optionally
inform the SM about the change of the state of a local node
by sending a Trap notice SMP. In addition, the SMA may
periodically repeat the Trap message until it receives a noti-
fication from the SM to stop the trap by sending a TrapRe-
press message.

The SMI injects SMPs generated by the SM and SMAs
into the network. In addition, it validates and delivers in-
coming SMPs.

SMAs are passive management entities. SMAs process
received SMPs, respond to the SM, and configure local
components according to the management information re-
ceived. The received SMPs can contain information about
LID assignment of physical ports, the state of the ports, and
the number of data operational VLs. Other SMPs are used
to update the local forwarding table, the SL to VL mapping
table, and the VL arbitration tables. In switches, the SMA

2

can send traps to the SM to notify the change in state of a
local port.

SM is a management entity which manages the subnet.
With the help of SMPs the SM is able to discover the subnet
topology, configure subnet ports and switches, and receive
traps from SMAs. In addition to the Master SM, multiple
Subnet Managers may be present in the subnet. However,
only one of them can be the master SM. The rest of the
Subnet Managers are Standby SMs. The standby SMs pe-
riodically poll on the master SM and wait for a successful
response. In case of failure of the Master SM, one of the
Standy SMs becomes the master SM.

2.2 Fat Tree Topology

Figure 2. (a)Traditional Binary Tree (b)Binary Fat Tree

Fat tree is a general purpose interconnection topology,
which is used for effective utilization of hardware resource
devoted to communication. Fat trees differ from the tradi-
tional trees in the amount of resource bandwidth available
at different levels of the tree. In traditional trees, the link
bandwidth is fixed at all levels of the tree. Due to this con-
figuration, there is congestion near the root of the tree.

In a Fat tree, the link bandwidth is higher near the root in
comparison to the leaves. For a complete Fat tree, the link
bandwidth doubles at every level, starting from the leaves.
Figure 2 shows the difference between a traditional fat tree
and a binary fat tree. In a Fat tree based interconnection net-
work, leaf nodes represent processors, internal nodes repre-
sent switches, and edges correspond to bidirectional links
between parents and children.

3 Subnet Management Mechanism

In this section, we present various phases of subnet man-
agement in InfiniBand. A more detailed description is
present in [3]. The topology discovery phase consists of
sending direct routed SMPs to every port in the subnet and
processing the responses. The path computation phase com-
prises of computing valid paths between each pair of end
nodes. The path distribution phase consists of configuring
forwarding table on switches.

3.1 Subnet Discovery

In order to start the discovery process, the SM sends
a Get SMP message to its local node using an empty di-
rected path, and waits for the response. Upon receipt of the
response, it sends direct routed SMPs with additive depth
to facilitate the discovery of other nodes in the subnet and
so on. During the discovery process, the SM configures
the port attributes, sending Set SMPs to the CA and switch
ports. A subnet manager may decide to send multiple explo-
ration SMPs to discover the subnet at any point in time [3].
However, OpenSM [1] uses one outstanding SMP for explo-
ration, in order to perform controlled breadth first search.
The subnet discovery phase can be characterized into mul-
tiple phases:

� Setup time for switch ports

� Setup time for CA ports

OpenSM sends a Get SMP with NodeInfo attribute to get
the kind of end node (Switch, CA or Router) and a Get SMP
with PortInfo to get the port attributes. It sends a Set SMP to
set the LIDs and other port attributes. OpenSM provides an
option of Trap based subnet discovery. In order to allow a
switch to notify the subnet manager about topology change,
SM initializes every port on the switch, even though it may
not have any active connection with a CA.

3.2 Path Computation

Once the topological information of the subnet is re-
ceived, the subnet manager needs to compute the paths for
data packets to follow in order to reach the destinations.
This would constitute the computation of forwarding tables.
The InfiniBand specification does not impose any specific
routing algorithm for the path computation. When multiple
paths are available between the end nodes, OpenSM selects
the one with the least number of hops. In case of a tie, one
of the available paths is chosen randomly. We characterize
the path computation time as a function of the number of
end nodes in section 5.

3.3 Path Distribution

Once the paths to every device in the subnet have been
computed, the forwarding tables at each switch need to be
configured for routing of data packets. InfiniBand specifi-
cation clearly defines the SMPs for updation of switch for-
warding tables. However, the update order is not specified.
OpenSM [1] performs the forwarding table configuration
phase once the path computation phase is complete. This
policy is optimal, because during the complete subnet dis-
covery, nodes are not ready for communication, unless the
whole subnet is in ACTIVE state.

3

4 OpenSM Basic Performance

In this section, we present the performance of OpenSM
on a small scale InfiniBand cluster. We consider a set of
configurations: A 1-switch configuration, which consists of
an 8-port crossbar switch and 6-switch configuration which
consists of six 8-port crossbar switch blocks connected in a
fashion as shown in the Figure 3.

Block
Switch

Block
Switch

Block
Switch

Block
Switch

Block
Switch

Block
Switch

12357 4

16−Port Switch

8 6

Figure 3. The 6-switch Configuration

For the 6-switch configuration, in order to take the results
for k nodes, the nodes numbered from 1 to k were used. An
x represents an unused port in the switch.

4.1 Total Discovery time

Figure 4 shows the total discovery time for multiple
switch configurations. The total discovery time increases
with the increasing number of nodes. We divide this time
in multiple management phases and show the results in the
following sections.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8

T
im

e
(m

s)

Number of Nodes

1-switch
6-switch

Figure 4. Total Discovery time

We notice that the total discovery time for any of the
configurations above does not increase exactly in a linear
fashion. This is because, even if a subset of switch ports

are connected to end nodes, OpenSM needs to setup all the
switch ports to facilitate trap based discovery. Hence, as
shown in Figure 7, the switch setup time remains constant
with increasing the number of end nodes.

4.1.1 Subnet Discovery

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8
T

im
e

(m
s)

Number of Nodes

1-switch
6-switch

Figure 5. Path Computation Time

The channel adapter setup time remains almost the same
for both 1-switch and 6-switch configurations. There is a
slight difference for 8 nodes on 1-switch in comparison with
the 6-switch configuration as shown in Figure 6. This is due
to the difference in number of hops and hence increased
SMI processing for the 6-switch configuration. However,
SMI processing time is much smaller in comparison to the
total setup time and hence we ignore its effect to simplify
the performance modeling in section 5.

Once the topology discovery is complete, OpenSM needs
to configure valid routes between end nodes.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

1 2 4 8

T
im

e
(m

s)

Number of Nodes

1-switch
6-switch

Figure 6. Channel Adapter Setup time

4

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8

T
im

e
(m

s)

Number of Nodes

1-switch
6-switch

Figure 7. Switch Setup Time

4.1.2 Path Computation

We calculate the overhead of path computation in terms
of the number of end nodes in the subnet. From Figure 8
we can clearly see, that the path computation overhead in-
creases almost linearly with the number of end nodes. The
path distribution phase consists of distributing the forward-
ing tables to the switches in the subnet. Clearly, it is de-
pendent on the number of switches and number of entries
which need to be configured per switch. As shown in Fig-
ure 9, for a 6-switch configuration, for the same number
of nodes, the path distribution time is higher, because the
SM needs to configure the forwarding table on 6 switches
instead of 1-switch.

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 4 8

T
im

e
(m

s)

Number of Nodes

1-switch
6-switch

Figure 8. Path Computation Time

4.1.3 Path Distribution

It is interesting to see that the path distribution time remains
almost constant with increasing number of nodes. This is

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8

T
im

e
(m

s)

Number of Nodes

1-switch
6-switch

Figure 9. Path Distribution time

because, the per table entry overhead is very small. Each ta-
ble entry occupies 16-bit for LID and 8-bit for the forward-
ing port. Hence only one Set SMP with LinearForward-
ingTable attribute is required for every

���������
	��
nodes per

switch. In our experimentation platform, the MTU is 2048
bytes and thus only one Set SMP is required for 8 nodes.

5 Subnet Management Model on Fat Tree
Networks

Routing in a complete Fat tree is simple as there ex-
ists a unique shortest path between every pair of process-
ing nodes [7]. However, the requirement of increasing arity
of switches makes the physical implementation of switch-
based Fat tree infeasible. To solve this problem, some al-
ternatives have been proposed to construct fat trees using
constant size elements or use fixed arity switches.

Based on the fixed arity of the communication switches
to construct a fat tree network, we use an m-port n-tree con-
figuration of a fat tree in our analysis and evaluation. Given
an m-port n-tree, it has the following characteristics.

� The tree consists of ������ � ���� processing nodes and
������������ ��� � !� �#"%$ communication switches

� Each communication switch has m communication
ports

Before the end nodes can communicate with each other,
the SM needs to configure the routes for the intermediate
switches and end nodes after the subnet discovery. As men-
tioned before, to start the discovery process, the SM first
sends a Get(NodeInfo) to its local node (using an empty di-
rected path) and waits for a response. Each time the SM
receives a response GetResp SMP, it sends another SMP by
increasing the length of the direct route. The SM sends one

5

SMP per port with AttributeID as NodeInfo to determine the
nature of the port and with AttributeID as PortInfo to get in-
formation about the port. Then it sends Set SMPs to config-
ure the port attributes of discovered devices. Thus the total
number of Get SMPs is the sum of SMPs with NodeInfo and
PortInfo AttributeID.

Let GetS(m,n) denote the number of Get SMPs gener-
ated during topology discovery, let ���������
	����� ��� 	
������� � ,����������	������ ��� 	
����� � � be the Get SMPs with NodeInfo and
PortInfo attributes respectively. Thus the number of SMPs
generated during the discovery algorithm can be calculated
as a function of m and n:

������� ����� � ����������� � 	����! ��� 	 ����� � ��"#������� ��	������ ��� 	 ������� �
(1)

As mentioned before, OpenSM uses controlled breadth
first exploration SMPs. As a result, each port is disocovered
only once. Let $&% �('�)+*+��,+-/.0!1�32�4 and $&% �('�)+*+��,�5�6 be
the number of ports with Switches and Channel Adapters
respectively. Hence, we have the following:

������� �
	����! ��� 	 ����� � �7�8$9% �:'�)+*+��, -/.0!;�32�4 "#$9% �:'�)+*+��, 5�6
(2)

Since each communication switch has m communication
ports, we have:

���������
	����! ��� 	
����� � �7� ���� � ����� ���
� �� �#" $ � �9" %� ��� � �� �

(3)
Trivially, the total number of NodeInfo SMPs is equal to

PortInfo SMPs. Hence the total number of Get SMPs are

������� ����� � �<� ��=!� � �������� � �� � " $ � �>"#= � ��� � �� � (4)

Set SMPs are required during multiple phases in the sub-
net management. During the topology discovery phase,
they are used to configure the switch and CA ports with
AttributeID as PortInfo. However, during the path distribu-
tion phase, they are used for setting up the forwarding tables
with AttributeID as LinearForwardingTable. More than one
Set SMP may be required per switch for setting up the linear
forwarding table. In particular, each forwarding table entry
is 3 bytes (16-bit for LID and 8-bit for forwarding port in-
formation). Since SMPs are based on UD transport service,
one Set SMP is required for every

������� ��	
�
end nodes.

Let SetS(m, n) denote the number of Set SMPs which are
generated and �<����� �?	������ ��� 	 , �������0@BA�C be the Set SMPs
with attribute as PortInfo and LinearForwardingTable, re-
spectively. Hence the total number of Set SMPs are

������� ����� � ���D�������0��	������ ��� 	 ������� ��"E�<����� @FA�C ������� �
(5)

������� �?	������ ��� 	 ����� � �<� � ���
� �� � (6)

������� @FA�C ������� �G� �
� � � � � ��� � �� �#" $ �9� (7)

where � is � �7" � � ��� � �� ��� 	#� ����� � �

We now present the timings for various phases in the
subnet management. We define � CIH , �J��5 and �J� H as the
time taken for topology discovery, path computation and
path distribution phases, respectively.

The topology discovery time can be calculated in terms
of the processing time for Get and Set SMPs. From the
results of section 4, we can conclude that the processing
time for both type of SMPs is nearly same. In addition, each
of these SMPs needs to be processed at each intermediate
SMI. However, intermediate SMI processing time is much
smaller than the end SMI processing time, hence we ignore
the intermediate SMI processing time to simplify the model.

Hence the topology discovery time can be summarized
as:

�JCIH ������� �<�8�JCIH � �K� ����� �3������� ������� ��"L������� ����� � ���
(8)

From the basic model, we can see that the total path com-
putation time increases almost linearly with the number of
nodes. Hence, we calculate the path computation time as:

�J��5������ � �G�8�J��5 � �K� � ��� � ��� � !� � (9)

The path distribution phase is dependent on the num-
ber of enteries in the forwarding table and the number of
switches in the subnet. However, it does not increase lin-
early with the number of enteries. This is becuase, each
forwarding table entry requires 8-bit for port output, and 16-
bit for LID, making it 3-bytes per entry. Each UD packet is
of Maximum Transfer Unit (MTU) bytes, hence one MTU
is sufficient for sending information for

�������
	
- header-

sizeSet(LinearForwardingTable) devices, which can be ap-
proximated as MTU/3 since the headersize is small. Thus,
the path distribution time is:

�J� H ������� �<�8�J� H � ��� ���%� ��
� � � � � ��� � �� � " $ �M� (10)

where � is
� �� � ��� � !� � � 	 � � ����� � �

6 Performance Evaluation of the Subnet
Management Model

In this section, we evaluate the subnet management
model presented in section 5. We also verify our results
presented in section 4 using our model.

Tables 1 and 2 show the results obtained from the model
presented in the previous section alongside with the results
obtained in section 4.

For 1-switch configuration we take m as 8 and n as 1.
However, for 6 switch configuration, for a fairer compari-
son, we remove the overhead of unused ports. Hence, we
take m as 4 and n as 2. In essence, we remove the overheads
of the ports which do not have end nodes connected to them.

6

Table 1. Model Verification Results, (m, n) = (8, 1), 1-

switch

Phase Experimental Model

� CIH 10.82 10.6
�J��5 82.1 81.3
�J� H .38 .36

Table 2. Model Verification Results, (m, n) = (4, 2), 6-

switch

Phase Experimental Model

� CIH 22.4 21.6
�J��5 83.11 81.3
�J� H 2.32 2.24

We do not show the number of Get and Set SMPs, be-
cause they exactly match the proposed fat tree model. How-
ever, the timings are slightly different, because we have ap-
proximated our model slightly in terms of the intermediate
SMI processing to simplify the timing equations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 32 128 512 2K 8K

T
im

e
(s

se
co

nd
s)

Number of Nodes

m = 8
m = 16
m = 24

Figure 10. Topology Discovery Time

Figure 10 shows the topology discovery time with dif-
ferent number of ports per switch for the same number of
nodes. Notice that some of the points are missing for 8-
port switch and 16-port switch configurations, since it is
not possible to construct systems in fat tree configuration
with these values of m. We also show the results for 24-port
switch configuration, with system sizes of 24, 288 and 3456
respectively.

The discovery time increases significantly for 8-port
switches, because the number of switch ports not connected
to the CA increase much more than for 16-port switch for

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 32 128 512 2K 8K

T
im

e
(s

ec
on

ds
)

Number of Nodes

Fat Tree Model

Figure 11. Path Computation Time

the same number of nodes. The topology discovery time
reduces by 22% for 16-port switch, when compared with
8-port switch for 8192 nodes.

Notice that we do not show the Path computation time
for different values of m, because in our model, the path
computation time is only dependent on the number of
nodes. Hence, this timing does not change with different
topologies.

Figure 12 shows the behaviour of path distribution time.
For small number of nodes, one Set SMP is sufficient per
switch for setting up the forwarding tables. However, as the
number of nodes increases, the number of SMPs required
also increases.

 0

 10

 20

 30

 40

 50

 60

8 32 128 512 2K 8K

T
im

e
(s

)

Number of Nodes

m = 8
m = 16
m = 24

Figure 12. Path Distribution Time

The path distribution time increases much more for 8-
port switch when compared with other configurations, since
the number of switches are much more for 8-port switch
configuration. The path distribution time reduces by 24%
for 16-port switch configuration.

7

7 Related Work

InfiniBand Specification [5] defines a set of management
classes, the functions performed by subnet Manager and in-
teractions of various components associated with the Subnet
Management. The work in [3] is simulation based study,
which characterizes the Subnet Management time into mul-
tiple phases and evaluate the performance in terms of num-
ber of switches, and the behavior of the subnet manager on
addition/removal of a switch. In addition, it also presents
the number of discarded packets as a result of topology
change. The work in [4] presents an adaptive algorithm
for partial discovery. The algorithm performs discovery for
only the nodes which are affected by the topology change.
This reduces the number of direct routed SMPs which are
generated in the subnet, hence reducing the total discovery
time.

The work in [9] uses LMC mechanism to provide a fully
adaptive routing mechanism for InfiniBand and presents a
motivation for using it in parallel MPI applications. The
work in [8] presents a strategy to avoid deadlocks in Infini-
Band networks by using destination renaming. The work
in [2] provides a framework for Quality of Service in In-
finiBand Networks, with the use of SL-VL mapping and
effcient mechanisms for virtual lane arbitration. However,
none of the previous papers model the behavior of OpenSM
and study the impact for large systems.

8 Conclusions and Future Work

In this paper, we have presented an evaluation of the
popular subnet management implementation, OpenSM [1].
We have primarily focussed on the subnet disovery time
and various management phases involved within the discov-
ery time. The results were obtained by varying the differ-
ent configuration parameters, like the number of ports per
switch, number of switches, and number of nodes. An an-
alytical model for discovery time and the number of SMPs
generated for Fat tree networks has been proposed and vali-
dated. Also, within each management phase, we have char-
acterized the timings for various sub-phases to model the
discovery time.

In future, we plan to perform evaluations for large scale
subnets to verify the results of our model. We also plan to
model for different interconnection topologies, in particular
3-D Torus, which is the interconnection topolgy for large
scale future InfiniBand networks, with fault tolerance. In
addition, we plan to use the information provided by the
Subnet Manager to schedule the messages at the MPI layer.

References

[1] Mellanox technologies, opensm release notes. 2004.

[2] F. J. Alfaro, J. L. Sanchez, and J. Duato. Qos in infiniband
subnetworks. IEEE Transactions on Parallel and Distributed
Systems, 15(9):810–823, September 2004.

[3] A. Bermudez, B. Casado, T. M. Pinkston, J. Duato, and F. J.
Quiles. Evaluation of a subnet management mechanism for
infiniband networks. International Conference on Parallel
Processing, pages 117–124, October 2003.

[4] A. Bermudez, R. Casado, F. J. Quiles, T. M. Pinkston, and
J. Duato. On the infiniband subnet discovery process. IEEE
International Conference on Cluster Computing, pages 512–
517, December 2003.

[5] InfiniBand Trade Association. InfiniBand Architecture Spec-
ification, Release 1.2. October 2004.

[6] C. E. Leiserson. Universal networks for hardware-efficient
supercomputing. October 1985.

[7] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang. A multiple lid rout-
ing scheme for fat-tree-based infiniband networks. Parallel
and Distributed Processing Symposium, April 2004.

[8] P. Lopez, J. Flich, and J. Duato. Deadlock-free routing in
infiniband through destination renaming. International Con-
ference on Parallel Processing, pages 427–434, September
2001.

[9] J. C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato.
Supporting fully adaptive routing in infiniband networks. In-
ternational Parallel and Distributed Processing Symposium,
April 2003.

8

