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Abstract—A typical auditory scene in a natural environment 

contains multiple sources. Auditory scene analysis (ASA) is the 
process in which the auditory system segregates an auditory scene 
into streams corresponding to different sources. Segmentation is a 
major stage of ASA by which an auditory scene is decomposed 
into segments, each containing signal mainly from one source. We 
propose a system for auditory segmentation based on analyzing 
onsets and offsets of auditory events. The proposed system first 
detects onsets and offsets, and then generates segments by 
matching corresponding onset and offset fronts. This is achieved 
through a multiscale approach based on scale-space theory. A 
quantitative measure is suggested for segmentation evaluation. 
Systematic evaluation shows that most of target speech, including 
unvoiced speech, is correctly segmented, and target speech and 
interference are well separated into different segments. Our 
approach performs much better than a cross-channel correlation 
method. 
 

Index Terms—Auditory segmentation, event detection, onset 
and offset, multiscale analysis 
 

I. INTRODUCTION 

In a natural environment, multiple sounds from different 
sources form a typical auditory scene. An effective system that 
segregates target speech in a complex acoustic environment is 
required for many applications, such as robust speech 

 
 

recognition in noise and hearing aids design. In these 
applications, a monaural (one microphone) solution of speech 
segregation is often desirable. Many techniques have been 
developed to enhance speech monaurally, such as spectral 
subtraction [15] and hidden Markov models [23]. Such 
techniques tend to assume a priori knowledge or certain 
statistical properties of interference, and these assumptions are 
often too strong in realistic situations. Other approaches, 
including sinusoidal modeling [16] and comb filtering [8], 
attempt to extract speech by exploiting the harmonicity of 
voiced speech. Obviously such approaches cannot handle 
unvoiced speech. Monaural speech segregation remains a very 
challenging task. 

On the other hand, the auditory system shows a remarkable 
capacity in monaural segregation of sound sources. This 
perceptual process is referred to as auditory scene analysis 
(ASA) [3]. According to Bregman, ASA takes place in the 
brain in two stages: The first stage decomposes an auditory 
scene into segments (or sensory elements) and the second 
stage groups segments into streams [3]. Considerable research 
has been carried out to develop computational auditory scene 
analysis (CASA) systems for sound separation and has 
obtained success in separating voiced speech [26] [7] [4] [10] 
[24] [14] (see [22] [5] for recent reviews). A typical CASA 
system decomposes an auditory scene into a matrix of time-
frequency (T-F) units via bandpass filtering and time 
windowing. Then the system separates sounds from different 
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sources in two stages, segmentation and grouping. In 
segmentation, neighboring T-F units responding to the same 
source are merged into segments. In grouping, segments likely 
belonging to the same source are grouped together.  

In addition to the conceptual importance of segmentation for 
auditory scene analysis, a segment as a region of T-F units 
contains global information of the source that is missing from 
individual T-F units, such as spectral and temporal envelope. 
This information could be key for distinguishing sounds from 
different sources. As shown in [14], grouping segments instead 
of individual T-F units is more robust for segregating voiced 
speech. A recent model of robust automatic speech recognition 
operates directly on auditory segments [1]. In our view, 
effective segmentation provides a foundation for grouping and 
is essential for successful CASA.  

Previous CASA systems generally form segments according 
to two assumptions [7] [4] [24] [14]. First, signals from the 
same source are likely to generate responses with similar 
temporal or periodic structure in neighboring frequency 
channels. Second, signals with good continuity in time likely 
originate from the same source. The first assumption works 
well for harmonic sounds, but not for noise-like signals, such 
as unvoiced speech. The second assumption is problematic 
when target and interference have significant overlap in time.  

From a computational standpoint, auditory segmentation 
corresponds to image segmentation, which has been 
extensively studied in computer vision. In image segmentation, 
the main task is to find bounding contours of visual objects. 
These contours usually correspond to sudden changes of 
certain local image properties, such as luminance and color. In 
auditory segmentation, the corresponding task is to find onsets 
and offsets of individual auditory events, which correspond to 
sudden changes of acoustic energy. In this paper we propose a 
system for auditory segmentation based on onset and offset 
analysis of auditory events. Onsets and offsets are important 
ASA cues for the reason that different sound sources in an 
environment seldom start and end at the same time. In 
addition, there is strong evidence for onset detection by 
auditory neurons [21]. There are several advantages for 
applying onset and offset analysis to auditory segmentation. In 
the time domain, onsets and offsets form boundaries between 
sounds from different sources. Common onsets and offsets 
provide natural cues to integrate sounds from the same source 
across frequency. In addition, since onsets and offsets are 
common cues of all types of sounds, the proposed system can 
in principle deal with both voiced and unvoiced speech. 

Specifically, we apply scale-space theory, a multiscale 
analysis widely used in image segmentation [25], to onset and 
offset analysis for auditory segmentation. The advantage of 
using a multiscale analysis is to provide different levels of 
detail for an auditory scene so that one can detect and localize 
auditory events at appropriate scales. Our multiscale 
segmentation takes place in three stages. First, an auditory 
scene is smoothed to different degrees. The smoothed scenes 
at different scales compose a scale space. Second, the system 

detects onsets and offsets at certain scales, and forms segments 
by matching individual onset and offset fronts. Third, the 
system generates a final set of segments by integrating 
segments at different scales.  

This paper is organized as follows. In Sect. II, we propose a 
working definition for an auditory event in order to clarify the 
computational goal of segmentation. Details of the system are 
given in Sect. III. In Sect. IV, we propose a quantitative 
measure to evaluate the performance of auditory segmentation. 
The results of the system on speech segmentation are reported 
in Sect. V. The paper is ended with a discussion in Sect. VI. 
 

II. WHAT IS AN AUDITORY EVENT? 

Consider the signal from one source as containing a series 
of acoustic events separate in time. One may define the 
computational goal of segmentation as identifying the onsets 
and offsets of these events. However, at any time there are 
infinite acoustic events taking place simultaneously in the 
world, and one must limit the definition to an acoustic 
environment relative to a listener; in other words, only events 
audible to a listener should be considered. To determine the 
audibility of a sound, two perceptual effects need to be 
considered. First, a sound must be audible on its own, i.e. its 
intensity must exceed a certain level, referred to as the 
absolute threshold in a frequency band [19]. Second, when 
there are multiple sounds in the same environment, a weaker 
sound tends to be masked by a stronger one [19]. Hence, we 
consider a sound to be audible in a local T-F region if it 
satisfies the following two criteria: 

� Its intensity is above the absolute threshold.  
� Its intensity is higher than the summated intensity of all 

other signals in that region. 
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Fig. 1. A sound mixture and its ideal speech segments. (a) Cochleogram 
representation of a female utterance, “That noise problem grows more 
annoying each day,” mixed with a crowd noise with music. (b) The ideal 
segments of the utterance. The total number of ideal segments is 96. 
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The absolute threshold of a sound depends on frequency and 
is different for different listeners [19]. For simplicity, we take 
as the absolute threshold a constant value, 15 dB sound 
pressure level (SPL), which is approximately the average 
absolute threshold from 200 Hz to 10 kHz for young adults 
with normal hearing [17]. 

Based on the above criteria, we define an auditory event as 
the collection of all the audible T-F regions for an acoustic 
event. This definition is consistent with the ASA principle of 
exclusive allocation, that is, a T-F region should be attributed 
to only one event [3]. Thus the computational goal of auditory 
segmentation is to generate segments for contiguous T-F 
regions from the same auditory event. To make this goal 
concrete requires a T-F representation of an acoustic input. 
Here we employ a cochleogram representation of an acoustic 
signal, which refers to analyzing the signal in frequency by 
cochlear filtering (e.g. by a gammatone filterbank) followed by 
some form of nonlinear rectification corresponding to hair cell 
transduction, and in time through some form of windowing 
[18]. Specifically, we use a filterbank with 128 gammatone 
filters centered from 50 Hz to 8 kHz [20], and decompose 
filter responses into consecutive 20-ms windows with 10-ms 
window shifts. Fig. 1(a) shows such a cochleogram for a 
mixture of a target female utterance and crowd noise with 
music, with the overall mixture signal-to-noise ratio (SNR) of 
0 dB. Here, the nonlinear rectification is simply the response 
energy within each T-F unit.  

As a working definition, we consider each phoneme of the 
target utterance as an acoustic event (see Sect. VI for more 
discussion on this working definition). Fig. 1(b) shows the 
ideal segments – the segments produced from premixing target 
and interference – of the target utterance in the mixture. 
Segments are represented by regions with different gray levels 
between neighboring regions, except for white regions, which 
form the background corresponding to the entire interference. 

 

III. SYSTEM DESCRIPTION 

The proposed system contains three stages: smoothing, 
onset/offset detection and matching, along with multiscale 
integration. An acoustic mixture is first normalized at 60 dB 
SPL. Then it is passed through a bank of gammatone filters – a 
standard model of cochlear filtering [20]. The output from 
each filter channel is half-wave rectified, low-pass filtered (a 
filter with a 74.5-ms Kaiser window and a transition band from 
30 Hz to 60 Hz) and then downsampled to 400 Hz, which 
yield the temporal envelope of each filter output. The 
logarithm of the temporal envelope, referred to as the intensity 
of filter output across time, is used for onset and offset 
analysis.  

A.  Smoothing 
Onsets and offsets correspond to sudden intensity increases 

and decreases. To find these sudden intensity changes, we take 
the derivative of the intensity with respect to time and then 
identify the peaks and valleys of the derivative. However, 

because of the intensity fluctuation within individual events, 
many peaks and valleys of the derivative do not correspond to 
real onsets and offsets. Therefore, the temporal envelope is 
smoothed over time to reduce the intensity fluctuation. Since 
an event usually has synchronized onsets and offsets across 
frequency, the temporal envelope is further smoothed over 
frequency (or filter channels) to enhance common onsets and 
offsets in adjacent channels. One way to perform the 
smoothing is to use a diffusion process [25], which is often 
applied for smoothing in image segmentation. A one-
dimensional diffusion of a quantity v across a physical 
dimension x can be described by the following partial 
differential equation: 
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where t is  the diffusion time, and D is a function controlling 
the diffusion process. Eq. (1) describes a process in which the 
change of v is determined by its gradient across x. When D 
satisfies certain conditions, v will change in a manner so that 
its gradient across x gradually approaches a constant, i.e., v is 
gradually smoothed over x [25]. The longer is t, the smoother 
is v. The diffusion time t is referred to as the scale parameter. 
The smoothed v values at different scales compose a scale 
space. 

As an example, we consider a simple case where D = 1. Eq. 
(1) becomes 
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According to Eq. (2), the v value at a local minimum increases 
as t increases since ∂2v/∂x2 > 0 at such a point. Similarly, the v 
value at a local maximum will decrease as t increases since 
∂2v/∂x2 < 0. As local minima of v gradually increase and local 
maxima of v gradually decrease, v becomes smoother over x 
during the diffusion process. In fact, (2) is equivalent to 
Gaussian smoothing [25]: 
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where G(0, 2t) is a Gaussian function with mean 0 and 
variance 2t, and “∗” denotes convolution.  

To perform smoothing, we let the intensity or logarithmic 
temporal envelope of each filter output be the initial value of v, 
and let v diffuse across time and frequency. That is, 
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where x(c, n) is the intensity at time step n in channel c. t c is 
the scale, or diffusion time, for the diffusion across frequency, 
and tn the scale for the diffusion across time characterizing the 
input. Note the difference between the diffusion time, 
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represented by t, and the time domain characterizing acoustic 
signal, represented by n. To avoid confusion, in the following 
text, we use “time” exclusively to refer to the time dimension 
of the input signal, and “scale” to refer to the diffusion time. 
With appropriate Dc and Dn, the output of the diffusion process 
at each scale, v = v(c, n, tc, tn), will be a smoothed version of 
x(c, n). Unlike the horizontal and the vertical dimension of a 
visual image, time and frequency are very different physical 
dimensions and shall undergo the diffusion process separately. 
More specifically, to obtain v(c, n, tc, tn), the intensity first 
diffuses across time to yield v(c, n, 0 , tn). Then it diffuses 
across frequency to yield v(c, n, tc, tn).  

We apply Gaussian smoothing for the diffusion across 
frequency, i.e., Dc = 1. For the diffusion across time, we have 
considered an isotropic diffusion as well as Gaussian 
smoothing in a preliminary study [13]. A critical issue of both 
diffusion processes is how to determine the scale, or when the 
diffusion process stops (see [6] for further discussion). The 
diffusion process needs to stop at a certain scale to preserve 
sharp intensity changes signaling onsets and offsets; otherwise, 
this important information will eventually be lost. This scale is 
task-dependent and there is no general rule to determine it. 
Given that smoothing is in fact lowpass-filtering, we use a 
series of lowpass filters to smooth the intensity instead. The 

cutoff frequency of each lowpass filter corresponds to a 
particular smoothing scale, and a smaller cutoff frequency 
corresponds to a larger smoothing scale. The smallest cutoff 
frequency, which corresponds to the scale when the diffusion 
stops, can be determined according to the acoustic and 
perceptual properties of the target. For speech, 4 Hz may be 
used as the smallest cutoff frequency since temporal envelope 
variations down to 4 Hz is essential for speech intelligibility 
[9]. Consequently we represent the smoothing scale as (tc, tn), 
where 2tc is the variance of the Gaussian function for the 
smoothing over frequency and tn is the reciprocal of the cutoff 
frequency of the lowpass filter for the smoothing over time.  

As an example, Figure 2 shows the initial and smoothed 
intensities at three scales, (0.125, 1/14), (18, 1/14) and (18, 
1/4), for the input mixture shown in Fig. 1(a). Fig. 2(a) shows 
the initial intensity. The corresponding smoothed intensities at 
the three scales are shown in Fig. 2(b), 2(c) and 2(d), 
respectively. A lowpass filter with a 112.5-ms Kaiser window 
and a 10-Hz transition band is used for the smoothing across 
time. As we can see from the figure, the smoothing process 
gradually reduces the intensity fluctuations. Local details of 
onsets and offsets also become blurred, but the major intensity 
changes corresponding to onsets and offsets are preserved. To 
display more details, Fig. 2(e) shows the initial intensity of the 
output from a single frequency channel centered at 560 Hz. 
The corresponding smoothed intensities at three scales are 
shown in Fig. 2(f), 2(g) and 2(h), respectively. 

B. Onset/offset Detection and Matching 
At a certain scale (tc, tn), onset and offset candidates are 

detected by marking peaks and valleys of the time derivative 
of the smoothed intensity, ∂v(c, n, tc, tn)/∂n. The derivative is 
calculated by taking the difference between consecutive 
samples. An onset candidate is removed if the corresponding 
difference is smaller than a threshold θON, which suggests that 
the candidate is likely an insignificant intensity fluctuation. We 
choose θON(tc, tn) = µ(tc, tn) + σ(tc, tn), where µ(tc, tn) and σ(tc, 
tn) are the mean and standard deviation of all the samples of 
∂v(c, n, t c, tn)/∂n, respectively. 

To perform onset and offset matching, the system first 
determines in each channel the offset time for each onset 
candidate. Let nON[c, i] represent the time of the ith onset 
candidate in channel c. The system identifies the 
corresponding offset time, denoted as nOFF[c, i], among the 
offset candidates located between nON[c, i] and nON[c, i+1]. 
The decision is simple if there is only one offset candidate in 
this range. When there are multiple offset candidates, we 
choose the one with the largest intensity decrease, i.e., with the 
smallest ∂v/∂n. We have also considered choosing either the 
first or the last offset candidate, but their performance is not as 
good. Note that there is at least one offset candidate between 
two onset candidates since there is at least one local minimum 
between two local maxima.  

In order to merge adjacent channels from the same event, 
the system first merges common onsets and offsets into onset 
and offset fronts since an event usually has synchronized 
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Fig. 2. Smoothed intensity values at different scales. (a) Initial intensity for 
all the channels. (b) Smoothed intensity at the scale (0.125, 1/14). (c) 
Smoothed intensity at the scale (18, 1/14). (d) Smoothed intensity at the 
scale (18, 1/4).  (e) Initial intensity in a channel centered at 560 Hz. (f) 
Smoothed intensity in the channel at the scale (0.125, 1/14). (g) Smoothed 
intensity in the channel at the scale (18, 1/14). (h) Smoothed intensity in 
the channel at the scale (18, 1/4). The input is the same as shown in Fig. 
1(a). 
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onsets and offsets. More specifically, an onset candidate is 
merged with the closest onset candidate in an adjacent channel 
if their distance in time is less than 20 ms in our 
implementation; the same applies to offset candidates. If an 
onset front thus formed occupies less than three channels, we 
do not further process it because it is likely insignificant. Onset 
and offset fronts are vertical contours in the 2-D time-
frequency representation.  

The next step is to match individual onset and offset fronts 
to form segments. Let (nON[c, i1], nON[c+1, i2], …, nON[c+m−1, 
im]) denote an onset front with m consecutive channels starting 
from c, and (nOFF[c, i1], nOFF[c+1, i2], …, nOFF[c+m−1, im]) the 
corresponding offset times as described earlier. The system 
first selects all the offset fronts that cross at least one of these 
offset times. Among them, the one that crosses the most of the 
these offset times is chosen as the matching offset front, and 
all the channels from c to c+m−1 occupied by the matching 
offset front are labeled as “matched”. The offset times in these 
matched channels are updated to those of the matching offset 
front. If all the channels from c to c+m−1 are labeled as 
matched, the matching procedure is finished. Otherwise, the 
process repeats for the remaining unmatched channels. In the 
end, the T-F region between (nON[c, i1], nON[c+1, i2], …, 
nON[c+m−1, im]) and the updated offset times (nOFF[c, i1], 
nOFF[c+1, i2], …, nOFF[c+m−1, im]) yields a segment.  

In segmentation, we assume that onset candidates in 
adjacent channels correspond to the same event if they are 
sufficiently close in time. This assumption may not always 
hold. To reduce the error of merging different sounds with 
similar onsets, we further require the corresponding temporal 
envelopes to be similar since sounds from the same source 
usually produce similar temporal envelopes. More specifically, 
for an onset candidate nON[c, i1], let nON[c+1, i2] be the closest 
onset candidate in an adjacent channel c+1. Let (n1, n2) be the 
overlapping duration between (nON[c, i1], nOFF[c, i1]) and 
(nON[c+1, i2], nOFF[c+1, i2]), where nOFF in a channel is the 
corresponding offset time of nON as described earlier. The 
similarity between the temporal envelopes from these two 
channels in this duration is measured by their correlation (see 
[24]): 
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where v̂  indicates the normalized v with zero mean and unity 
variance within (n1, n2). Then in forming onset fronts, we 
further require temporal envelope correlation to be higher than 
a threshold θC. By including this requirement, our system 
reduces the errors of accidentally merging sounds from 
different sources into one segment. 

C. Multiscale Integration 
As a result of smoothing, event onsets and offsets of small 

T-F regions may be blurred at a larger (coarser) scale. 
Consequently, the system may miss small events or generate 
segments combining different events, a case of under-

segmentation. On the other hand, at a smaller (finer) scale, the 
system may be sensitive to insignificant intensity fluctuations 
within individual events. Consequently, the system tends to 
separate an event into several segments, a case of over-
segmentation. Therefore, it is difficult to obtain satisfactory 
segmentation with a single scale. Our system handles this issue 
by integrating segments generated across different scales in an 
orderly manner. It starts to segment at a larger scale. Then, at a 
smaller scale, it locates more accurate onset and offset 
positions for segments, and new segments can be created 
within the current background. Segments are also expanded 
along the formed onset and offset fronts as follows. Let (nON[c, 
i1], nON[c+1, i2], …, nON[c+m−1, im]) and (nOFF[c, i1], 
nOFF[c+1, i2], …, nOFF[c+m−1, im]) be the onset times and 
offset times of a segment occupying m consecutive channels 
starting from c. Note that lower-frequency channels are at 
lower positions in our cochleogram representation (see Fig. 
1(a)). The expansion works by considering the onset front at 
the current scale crossing nON[c+m−1, im] and the offset front 
crossing nOFF[c+m−1, im]. If both of these fronts extend beyond 
the segment, i.e. occupying channels above c+m−1, or 
channels with higher center frequencies, the segment will 
expand to include the channels that are crossed by both the 
onset and the offset fronts. Similarly, the expansion considers 
the channels below c, or the channels with lower center 
frequencies. At the end of expansion, segments with the same 
onset times in at least one channel are merged. 

Since we let the temporal envelope diffuse across time and 
frequency separately, it is possible to move from a coarser 
scale to two finer scales so that one has a smaller tc and the 
other has a smaller tn. In this situation, how to order the two 
scales becomes ambiguous in multiscale integration. To avoid 
this situation, we only consider scales that are unambiguously 
ordered. In other words, among the scales considered, tc and tn 
of a coarser one are always not smaller than those of a finer 
one.  

In our implementation, the system forms segments in three 
scales from coarse to fine: (tc, tn) = (18, 1/4), (18, 1/14) and 
(0.125, 1/14). At the finest scale, i.e. (0.125, 1/14), we do not 
form new segments since these segments tend to occupy 
insignificant T-F regions. The threshold θC is 0.95, 0.95 and 
0.85, respectively; the larger θC is used in the coarser scales 
because smoothing over frequency increases the similarity of 
temporal envelopes in adjacent channels. At each scale, a 
lowpass filter with a 112.5-ms Kaiser window and a 10-Hz 
transition band is applied for the smoothing over time. We 
have also considered segmentation using more scales, but 
results are not significantly better.  

Fig. 3 shows the bounding contours of segments at different 
scales for the mixture in Fig. 1(a), where Fig. 3(a) shows the 
segments formed at scale (18, 1/4), Fig. 3(b) those from the 
multiscale integration of two scales (18, 1/4) and (18, 1/14), 
and Fig 3(c) those from the integration of all three scales. 
Comparing these contours with Fig. 1(b), we can see that at the 
largest scale, the system captures a majority of speech events, 
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but misses some small segments. As the system integrates 
segments generated at smaller scales, more speech segments 
are formed; at the same time, some segments from interference 
also appear. 

One could also start from a fine scale and then move to 
coarser scales. However, in this case, the chances of over-
segmenting an input mixture are much higher, which is less 
desirable than under-segmentation since in subsequent 
grouping larger segments are preferred (see Sect. IV). 

 

IV. EVALUATION METRICS 

Only a few previous models have explicitly addressed the 
problem of auditory segmentation [7] [4] [24] [14] but none 
have separately evaluated the segmentation performance. How 
to quantitatively evaluate segmentation results is a complex 
issue, since one has to consider various types of mismatch 
between a collection of ideal segments and that of estimated 
segments. On the other hand, similar issues occur also in 
image segmentation, which has been extensively studied in 
computer vision and image analysis. So we have decided to 
adapt region-based metrics by Hoover et al. [11], which have 
been widely used for evaluating image segmentation systems. 
Our evaluation is focused on comparing estimated segments 
with ideal segments for target, since it is sometimes hard to 

determine the ideal segments of interference and in many 
situations one is interested in only extracting target speech. 
Hence we will treat all the T-F regions where interference 
dominates as the background. Furthermore, the evaluation 
scheme discussed below can be easily extended to situations 
where one aims to evaluate segments from interference, say, 
when interference is a competing talker.  

The general idea of the region-based evaluation is to 
examine the overlap between ideal segments and estimated 
segments. Based on the degree of overlapping, we label a T-F 
region as correct, under-segmented, over-segmented, missing, 
or mismatch. Fig. 4 illustrates these cases, where ovals 
represent ideal target segments (numbered with Arabic 
numerals) and rectangles estimated segments (numbered with 
Roman numerals). As shown in Fig. 4, estimated segment I 
well covers ideal segment 1, and we label the overlapping 
region as correct. So is the overlap between segment 7 and 
VII. Segment III well covers two ideal segments, 3 and 4, and 
the overlapping regions are labeled as under-segmented. 
Segment IV and V are both well covered by segment 5, and 
the overlapping regions are labeled as over-segmented. All the 
remaining regions from ideal segments  segment 2 and 6 and 
the gray parts of segments 5 and 7  are labeled as missing. 
The black region in segment I belongs to the ideal background, 
but it is merged with ideal segment 1 into an estimated 
segment. We label this black region as mismatch, as well as 
the black region in segment III. Note the major difference 
between under-segmentation and mismatch. The former occurs 
when multiple segments from the same source are merged. The 
latter occurs when segments from different sources are 
merged. Segment II is well covered by the ideal background, 
which is not considered in the evaluation. Much of segment VI 
is covered by the ideal background and therefore we treat the 
white region of the segment the same as segment II (Note the 
difference between I and VI).  

Quantitatively, let {rI[k]}, k=0,1,… , K, be the set of ideal 
segments, where rI[0] indicates the ideal background and 
others the ideal segments of target. Let {rS[l]}, l=0,1,… , L, be 
the estimated segments produced by the system, where rS[l], 
l>0, corresponds to an estimated segment and rS[0] the 
estimated background. Let r[k, l] be the overlapping region 
between rI[k] and rS[l]. Furthermore, let E[k, l], EI[k], and ES[l] 
denote the corresponding energy in these regions. Given a 
threshold θE∈[0.5, 1), we define that an ideal segment rI[k] is 
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Fig. 4. Illustration of correct segmentation, under-segmentation, over-
segmentation, missing, and mismatch. Here an oval indicates an ideal 
segment and a rectangle an estimated one. 
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well-covered by an estimated segment rS[l] if r[k, l] includes 
most of the energy of rI[k]. That is,  

][],[ kElkE IE ⋅> θ .              (8) 

Similarly, rS[l] is well-covered by rI[k] if  

][],[ lElkE SE ⋅> θ .              (9) 

The definition of well-coveredness ensures that an ideal 
segment is well covered by at most one estimated segment, and 
vice versa. 

Then we label a non-empty overlapping region as follows: 
� A region r[k, l], k>0 and l>0, is labeled as correct if rI[k] 

and rS[l] are mutually well-covered.  
� Let {rI[k′]}, k ′=k1, k 2 , … , kK′, and K ′>1, be all the ideal 

target segments that are well-covered by one estimated 
segment, rS[l], l>0. The corresponding overlapping 
regions, {r[k′, l]}, k ′=k1, k 2 , … , kK′, are labeled as under-
segmented if these regions combined include most of the 
energy of rS[l], that is: 

   
KSEk

kkkklElkE ′′ =′⋅>′� ,,,],[],[ 21 �θ     (10) 

� Let {rS[l′]}, l ′= l1, l2 , … , lL′, and L ′>1 be all the 
estimated segments that are well-covered by one ideal 
segment, rI[k], k>0. The corresponding overlapping 
regions, {r[k, l′]}, l ′= l1, l2 , … , lL′, are labeled as over-
segmented if these regions combined include most of the 
energy of rI[k], that is: 

 
LIEl

llllkElkE ′′ =′⋅>′� ,,,],[],[ 21 �θ      (11) 

� If a region r[k, l] is part of an ideal segment of target 
speech, i.e., k>0, but cannot be labeled as either correct, 
under-segmented, or over-segmented, it is labeled as 
missing.  

� For a region r[0, l], the overlap between the ideal 
background rI[0] and an estimated segment rS[l], it is 
labeled as mismatch if rS[l] is not well-covered by the 
ideal background.   

According to the above definitions, some regions may be 
labeled as either correct or under-segmented. Figure 5 
illustrates this situation, where estimated segment I and ideal 
segment 1 are mutually well-covered.  Hence, r[1, I] is labeled 
as correct. On the other hand, segment I also well covers ideal 
segments 2 and 3, and obviously ideal segments 1-3 together 
well cover segment I. According to the definition of under-
segmentation, r[1, I], r[2, I], and r[3, I] should all be labeled 

as under-segmented. Therefore, r[1, I] can be labeled as either 
correct or under-segmented. Similarly, some regions may be 
labeled as either correct or over-segmented. To avoid labeling 
a region more than once, we consider a region to be correctly 
labeled as long as it satisfies the definition of correctness. 

Let EC, EU, EO, EM, and EN be the summated energy in all 
the regions labeled as correct, under-segmented, over-
segmented, missing, and mismatch, respectively. Further let EI 

be the total energy of all ideal segments of target, and ES that 
of all estimated segments, except for the estimated 
background. We use the following metrics for evaluation: 

� The correct percentage is the percentage of the total 
energy of correctly segmented target to the total energy 
of ideal segments of target, i.e., PC  = EC /EI  × 100%. 

� The percentage of under-segmentation is the percentage 
of the total energy of under-segmented target to the total 
energy of ideal segments of target, i.e., PU  = EU /EI  × 
100%. 

� The percentage of over-segmentation is the percentage of 
the total energy of over-segmented target to the total 
energy of ideal segments of target, i.e., PO  = EO /EI  × 
100%. 

� The percentage of missing is the percentage of the total 
energy of target missing from the estimated segments to 
the total energy of ideal segments of target, i.e., PM  = 
EM /EI  × 100%. 

� The percentage of mismatch is the percentage of total 
interference energy captured in estimated target segments 
to the total energy of estimated segments, i.e., PN = 
EN /ES × 100%. 

Since EC + EU + EO + EM = EI, or PC + PU + PO + PM = 1, only 
three out of these four percentages need to be measured.  

The advantage of evaluation according to each category is 
that it clearly shows different types of error. In the context of 
speech segregation, under-segmentation is not really an error 
since it basically produces larger segments for target speech, 
which is good for subsequent grouping. In image 
segmentation, the region size corresponding to each segment is 
used for evaluation literally. Here, we use the energy of each 
segment because for acoustic signal, T-F regions with strong 
energy are much more important to segment than those with 
weak energy. 

 

V. EVALUATION RESULTS 

To systematically evaluate the performance of the proposed 
system, we have applied it to a mixture corpus created by 
mixing 20 speech utterances and 10 intrusions. We consider 
the utterances, which are randomly selected from the TIMIT 
database, as target. The intrusions are: white noise, electrical 
fan, rooster crow and clock alarm, traffic noise, crowd noise in 
a playground, crowd noise with music (used earlier), crowd 
noise with clapping, bird chirp with waterflow, wind, and rain. 
This set of intrusions represents a broad range of real sounds 
encountered in typical acoustic environments. As described in 
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Fig. 5. Illustration of multiple labels for one overlapping region. Here an 
oval indicates an ideal segment and a rectangle an estimated one. 
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Sect. II, we consider each phoneme as an acoustic event of 
speech and obtain ideal target segments from target speech and 
interference before mixing. 

Fig. 6 shows the average PC, PU, PO, and PN for different θE  
values. Note that the evaluation is more stringent for higher 
θE . Speech and interference are mixed at 0 dB SNR. As shown 
in the figure, the correct percentage is 59.4% when θE  is 0.5, 
and it decreases to 3.8% as θE  increases to 0.95. A significant 
amount of speech is under-segmented, which is due mainly to 
coarticulation of phonemes. As we have discussed in Sect. IV, 
under-segmentation is not really an error. By combining PC 
and PU together, the system correctly segments 83.3% of target 
speech when θE  is 0.5. Even when θE  increases to 0.85, more 
than 50% of speech is correctly segmented. In addition, we can 
see from the figure that over-segmentation is negligible. The 
main error comes from missing, which indicates that portions 
of target speech are buried in the background. The percentage 
of mismatch is 7.6% when θE  is 0.5, and increases to 16.9% 
when θE  increases to 0.95. Considering the overall SNR of 0 
dB, the percentage of mismatch is not significant. This shows 
that the interference and the target speech are well separated in 
the estimated segments. 

Since the voiced speech is generally much stronger than 
unvoiced speech, the above result mainly reflects the 
performance of the system on voiced speech. To see how the 
system performs on unvoiced speech, Fig. 7 shows the average 
PC, PU, and PO for stops, fricatives, and affricates, which are 
the three main consonant categories that contain unvoiced 
speech energy. Here we compute PC as the percentage of the 
total energy of correctly segmented stops, fricatives, and 
affricates to the total energy of these phonemes in the ideal 
segments. PU and PO are computed similarly. As shown in Fig. 
7, much energy of these phonemes is under-segmented. As 

expected, the overall performance on these phoneme 
categories is not as good as that for other phonemes since 
unvoiced speech is weaker and more prone to interference. 
The average PC+PU in the figure is 73.9% when θE  is 0.5, and 
it drops below 50% when θE  is larger than 0.8.  

Fig. 8 shows the performance of the system at different SNR 
levels, where Fig. 8(a) shows the average PC+PU for all the 
phonemes, Fig. 8(b) the average PC+PU for stops, fricatives, 
and affricates, and Fig. 8(c) the average PN. When SNR is 10 
dB or higher, the interference has relatively insignificant 
influence on the system performance, and the PC+PU scores 
are similar. The performance drops as SNR decreases beyond 
10 dB, and the drop is most pronounced from 5 dB to 0 dB.  

Because the low-frequency portion of speech is usually 
much more intense than the high-frequency portion, the above 
energy-based evaluation may be dominated by the low-
frequency range. To present a more balanced picture, we apply 
a first-order highpass filter with the coefficient 0.95 to the 
input mixture to pre-emphasize its high-frequency portion, 
which approximately equalizes the average energy of speech in 
each filter channel. Then energy of each segment after pre-
emphasis is used for evaluation. Figure 9 presents a 
comparison with and without pre-emphasis for mixtures at 0 
dB SNR. Figs. 9(a) and 9(b) show the resulting average PC  
and PU for all the phonemes. With pre-emphasis the PC  scores 
are slightly higher than those without pre-emphasis, whereas 
the PU scores are about 10% lower. This suggests that more 
voiced speech is under-segmented in the low-frequency range. 
Figs. 9(c) and 9(d) show the average PC  and PU for stops, 
fricatives, and affricates. With pre-emphasis, the PC  scores for 
these phonemes are much higher, whereas the PU scores are 
much lower. The PC+PU scores together are slightly higher 
with pre-emphasis. This suggests that our system under-
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Fig. 7. The results of auditory segmentation for stops, fricatives, and 
affricates. Target and interference are mixed at 0 dB SNR. (a) The 
average correct percentage. (b) The average percentage of under-
segmentation. (c) The average percentage of over-segmentation. 
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Fig. 6. The results of auditory segmentation. Target and interference are 
mixed at 0 dB SNR. (a) The average correct percentage. (b) The average 
percentage of under-segmentation. (c) The average percentage of over-
segmentation. (d) The average percentage of mismatch. 
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segments most of the energy of stops, fricatives, and affricates 
in the low-frequency range, which is mainly voiced. On the 
other hand, it correctly separates most of the energy of stops, 
fricatives, and affricates in the high-frequency range, where the 
energy of unvoiced speech is more distributed, from 
neighboring phonemes as well as from interference. Fig. 9(e) 
shows the average PN , which is reduced with pre-emphasis, 
showing less mismatch in the high-frequency range. 

To put the system performance in perspective, we now 
compare it with the cross-channel correlation method for 
segmentation described in [14]; a more complex method of 
cross-channel correlation is presented in [4] which is based on 
clustering of neighboring channels. The cross-channel 
correlation method computes the correlation of normalized 
correlogram and merges T-F units if their correlation exceeds 
a certain threshold (cf. Eq. 7). The correlogram is a running 
autocorrelation of the filter response and the response 
envelope (see [14]). In addition, neighboring time frames are 
merged. Figure 10 shows the comparative results for mixtures 
at 0 dB SNR (without pre-emphasis). Fig. 10(a) shows the 
average PC+PU scores for all the phonemes by the proposed 
system and those by the cross-channel correlation method. The 
cross-channel correlation method yields much lower PC+PU 
scores. This is primarily because the correlation method fails 
to merge resolved harmonics of target speech efficiently; 
specifically, neighboring harmonics often yield different filter 
responses. Since cross-channel correlation was proposed 
mainly for segmenting voiced sound, a further comparison for 
only voiced speech in terms of PC+PU is given in Fig. 10(b). In 
this case, the voiced portions of each utterance are determined 
using Praat, which has a standard pitch determination 
algorithm for clean speech [2]. The performance gap in Fig. 
10(b) is not much different from that in Fig. 10(a). Fig. 10(c) 

shows the average PN. The correlation method produces lower 
PN  errors, because segmentation exploits harmonic structure 
and most intrusions in the evaluation corpus are noise-like. 
Taken together, our method performs much better than the 
cross-channel correlation method for auditory segmentation. 

VI. DISCUSSION 

To determine ideal segments of target speech, we need to 
decide what constitutes acoustic events of a speech utterance 
(see Sect. II). Here we treat a phoneme, a basic phonetic unit 
of speech, as an acoustic event. There are two issues for 
treating individual phonemes as events. First, two types of 
phonemes, stops and affricates, have clear boundaries between 
a closure and a subsequent burst in the middle of these 
phonemes. Therefore, we treat a closure in a stop or an 
affricate as an event on its own. This way, the acoustic signal 
within each event is generally stable. The second issue is that 
neighboring phonemes can be coarticulated, and there are 
reasons to treat strongly coarticulated phonemes as a single 
event. As a result, coarticulation may lead to unnatural 
boundaries in ideal segments, and in this case under-
segmentation can be more desirable. This problem is partly 
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Fig. 9. The results of auditory segmentation with and without pre-
emphasis. Target and interference are mixed at 0 dB SNR. (a) The 
average correct percentage for all the phonemes. (b) The average 
percentage of under-segmentation for all the phonemes. (c) The average 
correct percentage for stops, fricatives, and affricates. (d) The average 
percentage of under-segmentation for stops, fricatives, and affricates. (e) 
The average percentage of mismatch. 
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Fig. 8 The results of auditory segmentation at different SNR levels. (a) The 
average correct percentage plus the average percentage of under-
segmentation for all the phonemes. (b) The average correct percentage plus 
the average percentage of under-segmentation for stops, fricatives, and 
affricates. (c) The average percentage of mismatch. 
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taken care of in our evaluation which does not consider under-
segmentation as error. Alternatively, one may define a syllable, 
a word, or even a whole utterance from the same speaker as an 
acoustic event. In such a definition coarticulation is no longer 
an issue. However, many valid acoustic boundaries between 
phonemes are not taken into account, and over-segmentation 
becomes an issue. In other words, it is not clear whether an 
instance of over-segmentation is caused by a true boundary 
between two phonemes or a genuine error. 

Our system employs two steps to integrate sounds from the 
same source across frequency based on common onset/offset 
and cross-channel correlation. The latter step helps to reduce 
the errors of merging different sounds with similar onsets. In 
our evaluation, the improvement from this step is not 
significant. This is mainly due to the fact that common onset 
and offset are already quite effective for our test corpus. 
However, under reverberant conditions, onset and offset 
information is likely to be more corrupted than that of 
temporal envelope. We expect that cross-channel correlation 
of temporal envelope will play a more significant role for 
segmentation in reverberant conditions.  

In summary, our study on auditory segmentation makes a 
number of novel contributions. First, it provides a general 
framework for segmentation. Although we have tested only on 
speech segmentation, the system should be easily extended to 
other signal types, such as music, because the model is not 
based on specific properties of speech. Second, it performs 
segmentation for general auditory events based on onset and 
offset analysis. Although it is well known that onset and offset 
are important ASA cues, few computational studies have 
explored their use. Brown and Cooke incorporated common 

onset and common offset as grouping cues but did not find 
performance improvements [4]. In a previous study, we 
demonstrated the utility of the onset cue for segregating stop 
consonants [12]. This study on auditory segmentation further 
shows that event onsets and offsets may play a fundamental 
role in sound organization. Third, we have extended scale-
space theory to the auditory domain. To our knowledge, it is 
the first time this theory has been used for auditory analysis. 
Finally, our system generates segments for both unvoiced and 
voiced speech. Little previous research has been conducted on 
organization of unvoiced speech, and yet monaural speech 
segregation must address unvoiced speech. 
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