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Abstract

Isosurfaces obtained from densely sampled datasets often contain a
large number of simplices that do not provide any useful topologi-
cal or geometric information. It might be beneficial if one could re-
place them without losing too much information with fewer, larger
simplices.

An algorithm to identify regions in the dataset where there was no
significant topological event happening was proposed by us in an
earlier paper [R. Kazhiyur-Mannar et al. 2003]. The paper also
described an algorithm to construct crack-free isosurface from an
adaptive resolution dataset.

We report the performance statistics of our implementation of the
algorithms.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Hierarchy and geometric transfor-
mations;

Keywords: adaptive resolution, isosurface, multiresolution, sur-
face simplification, controlled topology simplification

1 Introduction

Given a continuous scalar field, i.e., a scalar function of RY, an iso-
surface is a set of points with identical scalar values. Lorensen and
Cline [Lorensen and Cline 1987] gave a simple, efficient algorithm,
called the Marching Cubes algorithm, for constructing a polyhedral
approximation of an isosurface from a regular grid sampling of a
scalar function in R3. The regular grid divides a volume into cubes
whose vertices are the grid vertices.

The Marching Cubes algorithm reconstructs the isosurface within
each cube and returns the union of these patches as the approxi-
mation of the isosurface. Various modifications were proposed to
avoid cracking problems in the original algorithm [Montani et al.
1994; Nielson and Hamann 1991].

Subsequently, Bhaniramka, Wenger and Crawfis [Bhaniramka et al.
2000] gave a hypercube based Marching Cubes algorithm in higher
dimensions. The higher dimensional algorithms reconstruct (d—1)-
dimensional surface patches within simplices or hypercubes and the
union of these surface patches forms the isosurface.

In order to capture the topology of the underlying isosurface ac-
curately, and ensure a close approximation of its geometry, these
algorithms require a dense sampling of the data. Consequently, the
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output surface mesh has a high simplex count. This increases the
storage space, and rendering time it requires.

Many of these simplices represent relatively flat portions of the iso-
surface, and could be replaced by fewer large simplices. One way
of reducing isosurface complexity is to generate flat portions of the
isosurface from larger mesh elements, ignoring the grid vertices in
the interior of those regions.

A grid with pairs of different sized elements adjacent to each other
has some grid vertices belonging to the smaller element of a pair
that is not a vertex of the larger element. Thus, it is not a complex.
At the intersections, the isosurface develops cracks, as described
in [Miiller and Stark 1993].

In an earlier work [R. Kazhiyur-Mannar et al. 2003], we described
certain conditions for adaptively subsampling a dataset in R<,
which could provide guarantees regarding the topology of the out-
put isosurface. We also described a new algorithm to handle the
cracking problem. In this work, we report the performance of our
implementation of the algorithms.

In Section 2, we describe the strategies we proposed
in [R. Kazhiyur-Mannar et al. 2003]. In Section 4, we pro-
vide analysis of some results we have obtained from our
implementation, including an analysis of the parameters which
could affect the performance of the algorithm.

2 Algorithm

We will now provide a brief overview of our adaptive sampling
strategy, and the strategy we adopt to solve the cracking problem.
We refer the reader to [R. Kazhiyur-Mannar et al. 2003] for de-
tailed description of our algorithm and references to previous work.

Our adaptive subsampling approach is similar to that described
in [He et al. 1996]. A grid vertex is labeled "+’ if its scalar value
is greater than the isovalue and ’-’, otherwise. A region where all
‘+’ vertices precede the ‘-’ vertices or vice versa in an axis-parallel
direction is monotonic in that direction.

A rectangular region in the labeled grid has the monotonicity prop-
erty if it is either zero dimensional or it is monotonic in any axis-
parallel direction, and both the facets of the region orthogonal to
that direction have the monotonicity property. We stated, along with
an outline of the proof, that the isosurface patch inside a rectangular
region that has the monotonicity property is a (d—1)-disk.

In [Miiller and Stark 1993], it was proved that if subsets of a 2D
isosurface, each of which is a 1-disk, are piece-wise replaced by
other 1-disks, the global topology of the isosurface is preserved,
provided there are no self-intersections. In [R. Kazhiyur-Mannar
et al. 2003], we argued that this generalizes to higher dimensions
too.

Our adaptive subsampling strategy is to rectangular regions that
satisfy the monotonicity property, and replace them with a d-
dimensional hypercube. The isosurface patch that is obtained from
this hypercube, as described in [Bhaniramka et al. 2000], would be
a (d—1)-disk, and hence, a topology preserving replacement for the



Figure 1: Tolerance Band: In the modified version, instead of con-
sidering the true isosurface, we consider the interval volume be-
tween two isosurfaces around the true isosurface. If a disk can be
fit into this volume, (as shown as the dotted line) the region is mono-
tonic.

intersection of the region with the full-resolution isosurface, also an
(d—1)-disk.

The detection of regions could proceed in either both top-down and
bottom-up fashion. The relative advantage of using top-down ap-
proach is that we would merge bigger regions first, reducing the
candidates to be considered later. However, if the isosurface is
very complex, this could be a disadvantage, since we would en-
counter many failures in the first iterations. In bottom-up approach,
we could also consider caching the monotonicity information from
lower levels and computing the monotonicity of a region from the
sub-regions that encompass it.

To fix cracks, we adopted a novel approach of hexahedral mesh
collapses, where every vertex of the hexahedral mesh which is not
corner of every hypercube it is incident on (called a hanging vertex)
collapsed to a corner of a hypercube of which it is not a corner.
This results in a conforming grid, which is a complex. Though the
elements of this grid are no more hypercubes, we could consider
them as hexahedral elements, with some edges having zero length,
and use the algorithm of [Bhaniramka et al. 2000] to extract the
conforming isosurface.

The crack-fixing method, however could alter topology due to mul-
tiple collapses if the corner to which a hanging vertex collapses
itself is a hanging vertex. To preclude this possibility, we intro-
duced a preprocessing stage, called step-down in which each block
with a neighbor smaller than itself is subdivided in that direction
in which the neighbor is smaller. This makes all hanging vertices
stable, but could create new hanging vertices. However, these new
vertices would always collapse to vertices that are stable, preclud-
ing multiple collapses.

Controlled topology simplification may be required if dataset has
topological features that are insignificant. Standard image process-
ing methods, such as salt-and-pepper noise removal could be ex-
tended to higher dimensions for this purpose. However, there could
be features that are geometrically large, but created because of in-
significant variation in the height field of the underlying dataset.

For such cases, we proposed a tolerance band scheme where the
monotonicity condition was altered so that if a volume interval of
a user-specified thickness (in terms of height value) around the iso-
surface contains an (d—1)-disk, the region could be merged.

The error introduced by the merger of voxels in a region invariably
increases with the size of the region, and it bound by it. To re-
duce geometric distortion, we limit the maximum size of the region
considered for merger. This, however, invariably leads to a loss in

simplification achieved.

3 Datasets

We report results of our adaptive resolution algorithm on 3D and
4D data using different levels of adaptive subsampling, defined
by the maximum block size that is allowed, and tolerance band
widths. The performance measurements were done on a machine
with Intel® Xeon™?2.8 GHz processor and 2 GB RAM. All times
shown are wall times, and include overheads such as disk I/O and
caching.

We used medical data sets from University of lowa’s radiology data
set collection, and a online collection of data sets by Dr. Stefan
Roettger of the University of Erlangen. For 4D data, we used 33
time steps of the Vortex and Jetstream data sets.

The dimensions of data sets used in this section and the size of the
full resolution isosurfaces are listed in Table 2.

In our analysis of the performance of our algorithm, we measure the
simplification achieved in terms of the number of simplices in the
adaptive resolution mesh, and the total time taken by the algorithm.
We measure wall times and not processor times. Thus, they include
the overheads including time taken for swapping memory and disk
1/Os.

4 Results

4.1 Cost of Individual Stages

To analyze the effect of each stage on the performance, we consider
their individual performance in terms of their execution time and
the effect on the simplification of the surface.

The simplification cannot be measured directly after each stage.
However, we could get an idea of the progression of the simpli-
fication from the number of blocks that are left at the end of each
stage.

Figure 3 shows a break-up of time spent in each stage. We note
that, understandably, subsampling is the costliest of the stages. For
our sample data, subsampling stage accounts for between 71% to
82% of the total running time. The percentage is higher for datasets
that did not yield good simplification. This is primarily because the
stages that follow run slower. Thus, the overall running time for
these datasets is correspondingly high.

Figure 4 shows a comparison of the number of blocks that are left
after each stage. Obviously, we want less number of blocks. How-
ever, while subsampling reduces the number of blocks, balancing
and step-down increase that number and grid conforming does not
affect it.

If the dataset is subsampled more-or-less regularly, we would find
less number of blocks split for balancing. We find that for all our
datasets, the ratio between the number of blocks left after step-down
to those left after subsampling is between 2 and 3. Even for very
smooth datasets, such as geometric datasets, this holds true.

4.2 Effect of User Specified Parameters

Besides the topology and geometry of the isosurface itself, there
are three user defined parameters that could affect the performance



Dataset Dimensions IsoValue Size (# simplices) Time
Full Resolution Decimated (sec)
Foot 256x256x256 75 1,979,452 428,522 (21%) 1860
Lobster 301x324x56 25 464,800 158,342 (34%) 258
Sheep Heart 352x352x256 50 4,012,826 476,619 (11%) 3660
Visible Male (Head) 128x256x256 60 1,067,744 122,114 (11%) 543
Visible Male (Head) 128x256x256 70 1,841,056 881,532 (47%) 1110
CT-Chest 384x384x240 100 4,016,014 1,203,719 (29%) 1968
CTA-Brain 512x512x120 100 3,360,896 806,600 (24%) 858
Daisy Pollen 192x180x168 60 515,620 178,711 (34%) 468
Engine 256x256x256 25 1,214,992 74,495 (6%) 216
Frog 256x226x44 50 426,072 152,743 (35%) 198
Baby 256x256x98 75 737,270 81,776 (11%) 126
Jetstream (4D) 104x128x128x33 0.0001 Fk 17,733,459 300 min
Vis Male (Interval Volume) | 128x256x256x17 [56,73] Hkok 3,035,579 132 min

Figure 2: Sizes of the simplified isosurface when the decimation is performed with maximum block size set to 4. Note that these do not use

tolerance bands, and hence, are topology preserving.

Dataset IsoValue | Partitioning | Subsampling | Balancing | Step-down | Conforming | Surface Extraction | Total Time
(sec) (sec) (sec) (sec) (sec) (sec) (sec)
VW Head 1100 57 417 36 13 15 20 558
Bucky Balls 50 0 1 0 0 0 18 19
Foot 75 12 175 260 99 230 5,213 5,987
Lobster 25 3 24 12 4 22 694 759
Sheep Heart 50 24 135 79 32 103 2,518 2,887
Visible Male (Head) 60 3 31 21 6 15 406 482
Visible Male (Head) 70 4 42 82 25 76 1,971 2,200
CT-Chest 100 16 146 171 56 150 3,553 4,092
Tooth 250 5 44 42 14 39 949 1,093
Daisy Pollen 60 3 23 18 8 18 436 506

Figure 3: Comparing Running Times of Individual Stages

of the algorithm. In this section, we describe three important pa-
rameters that might affect the algorithm’s performance, in terms of
simplification achieved, and running time.

4.2.1 Maximum Block Size

Surface simplication commonly entails a loss of geometry. In our
algorithm, the allowable geometric distortion could be controlled
easily by limiting the maximum size of the regions considered for
merger.

This parameter is especially important if we use top-down ap-
proach, because, absent this parameter, the whole dataset would
have to be considered for merger, and checking the monotonicity of
the whole dataset might be very costly.

For a smaller value of the maximum block size, the algorithm
spends less time in the subsampling phase. The resultant blocks
also tend to be more uniform. Therefore, less number of blocks
would require changes during balancing, step-down and conform-
ing. However, the increase in the number of blocks would offset
these advantages. The extent of simplification obtained may drasti-
cally reduce for very small values.

Performance of the algorithm for various values of the maximum
block size allowed is Figure 5. When the maximum block size is set
at 2, we get twice as many simplices as that for a maximum block
size of 4. In contrast, the difference between the simplex counts
for block sizes of 8 and 16 are hardly different. In most cases, the
running time for a maximum block size of 16 is more than that for

a block size of 8. This is because of the time the algorithm spends
in trying to find very big monotonous blocks, which rarely exist.

For most real datasets, we found that the simplification was opti-
mal for a maximum block size of 4. This could be different for
very smooth (uniformly varying) datasets, where the simplification
increases with the maximum block size allowed.

4.2.2 Tolerance Width

In topologically complex, or especially noisy datasets, the effect of
tolerance could be drastic. Tolerance improves both running time
and the simplification achieved. However, the topology of the iso-
surface is not necessarily preserved when a tolerance is specified.
A large value for tolerance might lead to elimination of features and
significant components of the isosurface.

Table 6 shows the improvemnt in performance of our algorithm
when tolerance bands are used. Note the difference in the im-
provement seen in the case of the two isosurfaces of the Visible
Male dataset. The surface corresponding to isovalue 60 represents
the skin, which is smooth, and does not comprise of many small
topological features. The surface corresponding to isovalue 70,
which represents the bone has many non-persistent internal struc-
tures. Hence, even a narrow band yields tremendous benefit in the
case of the bone surface, while in the case of the skin surface, it has
comparitively small effect.



Dataset IsoValue | Post-Subsampling | Post-Balancing | Post-Step-down

VW Head 1100 199,903 232,033 471,669

Bucky Balls 50 1,872 3,052 7,183

Foot 75 496,917 656,999 1,189,315

Lobster 25 59,993 94,513 199,125

Sheep Heart 50 205,801 333,118 689,079

Visible Male (Head) 60 57,857 84,699 163,311

Visible Male (Head) 70 268,178 416,050 863,704

CT-Chest 100 394,088 635,122 1,365,759

Daisy Pollen 60 84,765 106,188 170,908

Engine 25 60,212 79,160 130,441

Tooth 250 181,405 241,119 415,987

Figure 4: Number of Blocks left after each stage
Dataset IsoValue Final Simplex Count Time (s)
m=2 4 8 16 m=2 4 8 16

VW Head 1100 821,623 429,151 388,293 386,493 921 570 537 548
Bucky Balls 50 4,452 6,055 7,384 7,736 19 15 19 9
Engine 25 173,087 74,532 92,528 139,338 656 216 222 292
Lobster 25 152,691 158,592 178,497 187,835 753 634 759 853
Sheep Heart 50 — 476,619 537,803 609,922 — 3,655 2,887 | 3,348
Visible Male (Head) 60 186,716 122,114 130,147 147,465 1,907 544 482 695
Visible Male (Head) 70 — — 881,532 906,215 — — 2,200 | 2,355
CT-Chest 100 1,337,323 | 1,203,719 | 1,278,761 | 1,350,177 | 6,109 3,930 4,092 | 4,597
Tooth 250 325,821 310,257 326,074 345,441 | 3,032 1,194 1,093 | 1,126
Daisy Pollen 60 181,503 178,711 180,392 183,339 677 472 506 533
Jet Stream (4D) 0.001 — 17,733,459 — — — 300 min

Figure 5: Final Simplex Count for Maximum Block Size

4.2.3 Minimum Component Size

Salt-and-pepper noise in the dataset is removed by specifying the
minimum size of a component of the isosurface. A union-find op-
eration is used to detect components in the dataset, and all com-
ponents that do not contain the minimum number of grid vertices
specified are artificially eliminated by flipping the signs of the ver-
tices in them.

Eliminating small components may increase or decrease the run-
ning time, and may increase the simplification obtained. If the
dataset is noisy with the isosurface having small floating compo-
nents, the performance could improve (sometimes drastically). If,
however, the dataset does not have too much noise, the cleanup
operation would be wasteful, reduce the performance in terms of
running time.
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Dataset

IsoValue | Simplex Count Time Simplex Counts Times (s)
Without Band | Without Band With Bands With Bands

A B A B

Bucky Balls 50 7,384 19 6,695 (10) 6,430 (15) 17 16
Lobster 25 178,497 759 129,461 (10) | 146,283 (5) 565 | 619
Visible Male (Head) 60 130,147 482 103,808 (5) 98,612 (7) 429 | 413
Visible Male (Head) 70 881,532 2,200 162,243 (5) | 156,328 (10) | 429 | 413
CT-Chest 100 1,278,761 4,092 302,020 (10) | 84,576 (20) | 1,080 | 679
Engine 25 92,528 448 60,590 (10) 70,100 (5) 313 | 351
Daisy Pollen 60 180,392 506 152,475 (8) | 124,430 (16) | 436 | 376
Baby 75 737,270 302,020 81,776(5) 73,115(10) 220 | 240
Frog 50 426,072 152,743 144,959 (10) | 138,629 (15) | 205 | 224

Figure 6: Effect of Tolerance Band width.

Figure 7: Foot dataset without tolerance band (1,261,993 triangles) and with tolerance band of width 15 (580,647 traingles).

Figure 8: Foot isosurface, decimated with maximum block size set to 4. A closer look at the surface shows the adaptive resolution of the

surface.
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Figure 9: Lobster at different resolution levels. Clockwise from top-left: Full Resolution (232,692 triangles), adaptive resolution with
maximum block sizes set at 2(152,691 triangles), 4(158,592 triangles), and 8 (178,497 triangles).

Figure 10: Lobster isosurfaces at adaptive resolutions with maximum block sizes of 8 and 4. Notice the variation in the isosurface resolution
in the relatively flat regions such as the pincer, compared to the smaller features like antennae.
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Figure 11: Engine at different resolution levels: Full Resolution (1,226,632 triangles), and at maximum block sizes 2 (173,087 triangles), 4
(74,532 triangles), 8 (92,528 triangles), and 16(139,338 triangles). The last image shows the variation in the resolution in the isosurface with
maximum block size 8.



Figure 12: Isosurface from the Frog dataset. The resolution at the toes is maintained at a higher level than in the body region. The use of
tolerance has resulted in simplification of the internal structures of the surface.
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Figure 13: Isosurfaces from the Visible Male dataset adaptive resolution isosurface (with maximum block size set at 4).
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Figure 14: Adaptive resolution isosurface (with maximum block size set at 4) in the Baby dataset. The closer view in the right shows the
variation in the resolution in the regions with small features such as the corner of the lips, compared to flatter regions such as the cheek.



