
Workload-driven Analysis of File Systems in Shared Multi-tier Data-Centers
over InfiniBand

K. VAIDYANATHAN, P. BALAJI, H. -W. JIN AND D. K. PANDA

Technical Report
OSU-CISRC-12/04-TR65



Workload-driven Analysis of File Systems in Shared Multi-tier Data-Centers
over InfiniBand

�

K. Vaidyanathan P. Balaji H. -W. Jin D. K. Panda
Computer Science and Engineering

The Ohio State University�
vaidyana, balaji, jinhy, panda � @cse.ohio-state.edu

Abstract

The phenomenal growth and popularity of cluster-based
multi-tier data-centers has not been accompanied by a
system-wide understanding of the various resources and
their deployment strategies. Each tier in a multi-tier data-
center has different requirements and behavior. Accord-
ingly, it is a non-trivial problem to analyze the impact of
various system resources and their influence on each tier. In
addition, typical data-center workloads have a wide range
of characteristics. They vary from high to low temporal lo-
cality, large documents to small documents, the number of
documents and several others. The different characteristics
of each kind of workload makes this problem quite chal-
lenging. Further, in the past few years several researchers
have proposed and configured data-centers providing mul-
tiple independent services, known as shared data-centers.
The requests for these different services compete with each
other while sharing the resources available in data-center,
thus further complicating this problem. In this paper, we
focus on analyzing the impact of the file system in a shared
data-center environment. We study the impact of both local
file systems (ext3fs and ramfs) and network-based file sys-
tems (PVFS and Lustre) in three broad aspects namely: (i)
Network Traffic Requirements, (ii) Aggregate cache size and
(iii) Cache pollution effects. Based on the insights gained
from these broad issues we propose a multi file system data-
center environment to utilize each file system only for en-
vironments where it is most suited for, thus taking the best
capabilities of all the file systems. Our experimental results
show that this approach can improve the performance by up
to 48% in a shared data-center environment for static (time
invariant) workloads showing high temporal locality, up to
15% for static workloads with low temporal locality and up

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429, and #CCR-0311542

to 40% for dynamic (time variant) workloads.

1 Introduction

With the increasing adoption of Internet as the primary
means of interaction and communication, highly scalable
and available web servers have become a critical require-
ment. On the other hand, cluster systems have become the
main system architecture for a number of environments. In
the past, they had replaced mainstream supercomputers as a
cost-effective alternative in a number of scientific domains.
Based on these two trends, several researchers have pro-
posed the feasibility and potential of cluster-based multi-tier
data-center environments [20, 14, 17, 4].

A cluster-based multi-tier data-center is an Internet
server oriented cluster architecture, which is distinguished
from high performance computing systems in several as-
pects. In particular, data-centers are required to execute var-
ious server software that demand different system resources
and characteristics; these are distinguished from high per-
formance computing systems by using duplicated programs
performing symmetric jobs to maximize parallelism. Each
of these duplicated programs receive a request from the end
user using a higher level protocol such as HTTP. Depending
on the request, each program can either directly fetch a doc-
ument from the file system and return it to the user or fetch
some raw data from the file system, process it and send the
processed output to the user. In either case, the interaction
of the duplicated programs with the file system plays an im-
portant role in the end performance perceived by the users.

Multi-tier data-centers generally consist of three tiers;
the proxy tier, the application/web tier and the database tier.
Since each tier has different requirements and behavior, it
is a non-trivial problem to analyze the impact of various
system resources (such as the file system) and their influ-
ence on each tier. In addition, typical data-center workloads
have a wide range of characteristics. They vary from high to

1



low temporal locality, large documents to small documents
(download sites vs book stores), the number of documents
and several others. The different characteristics of each kind
of workload makes this problem quite challenging. Further,
in the past few years several researchers have proposed and
configured data-centers providing multiple independent ser-
vices, known as shared data-centers [9, 10]. For example,
several ISPs and other web service providers host multi-
ple unrelated web-sites on their data-centers. The requests
for these different web-sites compete with each other while
sharing the resources available in data-center, thus further
complicating this problem.

In this paper, we focus on analyzing the impact of the file
system in a shared data-center environment. We study the
impact of both local file systems such as ext3fs and ramfs
and network-based file systems such as PVFS and Lustre in
three broad aspects:

1. Network Traffic Requirements: Network file systems
require data to be fetched over the network on every re-
quest to the file system. This has several implications.
First, if the amount of data fetched over the network
is very high, this might cause a network traffic bottle-
neck and might hinder with other network operations
performed in the data-center environment. Second, ob-
taining the handle to a file is no longer a local opera-
tion; this might cause file opening and closing to be
a significantly expensive operation as compared to lo-
cal file systems. Third, fetching data over the network
is beneficial when the data is fetched in large bursts,
thus utilizing the bandwidth provided by the network.
Fetching small bursts of data might under-utilize the
network and might lead to sub-optimal performance.

2. Aggregate cache size: While local file systems have a
low cache hit time, they do not have any interaction
with the other nodes in the system as far as the file
management is concerned. Thus, the documents that
need to be served for a web-site (or multiple web-sites)
need to be replicated on each server node. While this
might not be a concern with respect to disk space for
most websites, it might limit the aggregate amount of
cached content due to replication of the content on the
various nodes. On the other hand, network-based file
systems allow the cache to be distributed (or striped)
across various nodes, thus getting rid of the replication
requirement.

3. Cache pollution effects: Caching has a significant im-
pact on the performance of the web/proxy server. Due
to the high frequency of accesses, popular files tend
to be highly sensitive to the caching capability of the
file system. Ideally, we would like these popular docu-
ments to always be cached. However, in a shared data-

center environment hosting multiple websites, the be-
havior of the file system cache becomes unpredictable.
It is highly possible that a large file which is seldom
accessed may push many of the small but “hot” files
out of the cache resulting in several cache misses and
a significant drop in performance. As we will see in
the later sections, for shared data-center environments,
this degradation can be up to ten times in some cases.

Based on the insights gained from these broad issues
associated with shared data-centers, in this paper we pro-
pose a multi file system data-center environment. This ap-
proach attempts to handle the above mentioned issues by
utilizing each file system only for environments where it
is most suited for, thus taking the best capabilities of all
file systems. Our experimental results show that this ap-
proach can improve the performance by up to 48% in a
shared data-center environment for static (time invariant)
workloads showing high temporal locality, up to 15% for
static workloads with low temporal locality and up to 40%
for dynamic (time variant) workloads.

The remaining part of the paper is organized as follows:
Section 2 provides a brief background about multi-tier data-
centers, the Parallel Virtual File System (PVFS) and the
Lustre File System. In Section 3 we mention the workload
and testbed that we used. In Section 4, we evaluate the dif-
ferent file system in the data-center environment using dif-
ferent workloads and provide several solutions that allow
the design of next generation data-centers to be tightly cou-
pled with the expected workload characteristics. We con-
clude the paper in Section 6.

2 Background

In this section, we give a brief overview of the archi-
tecture of multi-tier data-centers, the Parallel Virtual File
System (PVFS) and the Lustre File System.

2.1 Data-Center Tiered Architecture

A typical data-center architecture consists of multiple
tightly interacting layers known as tiers. Each tier can con-
tain multiple physical nodes. Requests from clients are
load-balanced on to the nodes in the proxy tier. This tier
mainly does caching of content generated by the other back-
end tiers. Other functionalities of this tier include balanc-
ing the requests sent to the back-end based on certain pre-
defined algorithms such as the load on the different nodes
and other such services. include embedding inputs from
various application servers into a single HTML document,

The second tier consists of two kinds of servers. First,
those which host static content such as documents, images
and others which do not change with time are referred to

2



as web-servers. Second, those which compute results based
on the query itself and return the computed data in the form
of a static document to the users. These servers, referred
to as application servers, usually handle compute inten-
sive queries which involve transaction processing and im-
plement the data-center business logic.

The last tier consists of database servers. These servers
hold a persistent state of the databases and other data repos-
itories. These servers could either be compute intensive or
I/O intensive based on the query format. For simple queries,
such as search queries, etc., these servers tend to be more
I/O intensive requiring a number of fields in the database to
be fetched into memory for the search to be performed. For
more complex queries, such as those which involve joins
or sorting of tables, these servers tend to be more compute
intensive.

Other than these three tiers, various data-center models
specify multiple other tiers which either play a supporting
role to these tiers or provide new functionalities to the data-
center. For example, the CSP architecture [20] specifies an
additional edge service tier which handles security, caching,
SAN enclosure of packets for TCP termination and several
others.

Figure 1 shows the typical data-center architecture. In
this paper, we only deal with the traditional 3-tier data-
center architecture without the edge services.

�����������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������

������
������
������
���

��������������������������������������������

������������������������������������	�	�	�	�	�	
�
�
�
�


��
��

��
��

��������������������

��������������������������������������������������������

��
��

��
��

��������������������������������������������

��������������������������������������������������������

��
��

��
��

��������������������������������������������

����������������������������������������������������������������������������

��
��

��
��

��������������������������������������������

 � � � � �  � � � � �  � � � � �  � � � � � !�!�!�!�!�!!�!�!�!�!�!"�"�"�"�"�""�"�"�"�"�"

##
##

$$
$$%�%�%�%�%�%%�%�%�%�%�%&�&�&�&�&�&&�&�&�&�&�&

''
''

((
((

)�)�)�)�)�))�)�)�)�)�))�)�)�)�)�)
*�*�*�*�*�**�*�*�*�*�**�*�*�*�*�*+�+�+�+�+�++�+�+�+�+�+,�,�,�,�,�,,�,�,�,�,�,

--
--

..
..

/�/�/�/�/�//�/�/�/�/�//�/�/�/�/�/
0�0�0�0�0�00�0�0�0�0�00�0�0�0�0�01�1�1�1�1�11�1�1�1�1�12�2�2�2�2�22�2�2�2�2�2

33
33

44
44

5�5�5�5�5�55�5�5�5�5�55�5�5�5�5�5
6�6�6�6�6�66�6�6�6�6�66�6�6�6�6�67�7�7�7�7�78�8�8�8�8�8

99
99

::
::

;�;�;�;�;�;;�;�;�;�;�;;�;�;�;�;�;
<�<�<�<�<�<<�<�<�<�<�<<�<�<�<�<�<=�=�=�=�=�==�=�=�=�=�=>�>�>�>�>�>>�>�>�>�>�>

?�??�?
?�??�?
?�??�?

@@
@@
@@

A�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�A

B�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BC�C�C�C�C�C�C�CC�C�C�C�C�C�C�CD�D�D�D�D�D�DD�D�D�D�D�D�D

EE
EE
EE

FF
FF
FF

G�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�GG�G�G�G�G�G

H�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�HH�H�H�H�H�H

II
II
II

JJ
JJ
J

K�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�K

L�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LM�M�M�M�M�M�MM�M�M�M�M�M�MM�M�M�M�M�M�M
N�N�N�N�N�N�NN�N�N�N�N�N�NN�N�N�N�N�N�N O�O�OO�O�OO�O�OO�O�OO�O�OO�O�OO�O�O

P�PP�P
P�PP�P
P�PP�P
P�P

Q�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RS�S�S�S�S�S�S�S�SS�S�S�S�S�S�S�S�ST�T�T�T�T�T�T�T�TT�T�T�T�T�T�T�T�T

UU
UU

VV
VV

W�W�W�W�W�WW�W�W�W�W�WW�W�W�W�W�WW�W�W�W�W�W

X�X�X�X�X�XX�X�X�X�X�XX�X�X�X�X�XX�X�X�X�X�X

Y�Y�Y�Y�Y�Y�YY�Y�Y�Y�Y�Y�YZ�Z�Z�Z�Z�Z�ZZ�Z�Z�Z�Z�Z�Z
Internet

Network
Enterprise 

Applications Applications

Services
Edge 

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design [20])

Shared Data-Centers: A clustered data-center environ-
ment essentially tries to utilize the benefits of a cluster
environment (e.g., high performance-to-cost ratio) to pro-
vide the services requested in a data-center environment.
As mentioned earlier, researchers have proposed and con-
figured data-centers to provide multiple independent ser-
vices, such as hosting multiple web-sites, forming what is
known as shared data-centers. For example, several service
providers host multiple websites in their data-centers. Host-
ing multiple services or websites in a single data-center en-
vironment has interesting implications on the caching capa-
bilities of the data-center.

2.2 Parallel Virtual File System (PVFS)

PVFS [8] is a parallel cluster-based file system. It was
designed to meet the increasing I/O demands of parallel ap-
plications. A number of nodes in the cluster system can
be configured as I/O servers and one of them (either on
I/O server node or on a different node) as a metadata man-
ager. Figure 2 demonstrates a typical PVFS environment.
As shown in the figure, a number of nodes in the cluster
system can be configured as I/O servers and one of them
(either an I/O server or an a different node) as a metadata
manager.

.

.

.
Compute

Node

Compute
Node

Compute
Node

Metadata
Manager

. ...
.
.

Data

cache

cache

..

Data

Data

Node
I/O server

Node
I/O server

Network

Meta

Figure 2. A Typical PVFS Setup

PVFS achieves high performance by striping a file across
a set of I/O server nodes allowing parallel access to the file.
It uses the native file system on the I/O servers to store in-
dividual file stripes. An I/O daemon runs on each I/O node
and services requests from the client nodes. A manager dae-
mon running on a metadata manager node handles metadata
operations like file permissions, file stripe characteristics,
etc., but does not participate in read/write operations. The
metadata manager provides a cluster-wide consistent name
space to applications.

PVFS supports a set of feature-rich interfaces, including
support for both contiguous and non-contiguous accesses
to memory and files [11]. PVFS can be used with mul-
tiple APIs: a native PVFS API, the UNIX/POSIX API,
MPI-IO [22], and an array I/O interface called the Multi-
Dimensional Block Interface (MDBI). The presence of mul-
tiple popular interfaces contributes to the wide success of
PVFS in the industry.

2.3 Lustre File System

Lustre [12] is an open source, high-performance cluster
file system designed to eliminate the problems of perfor-
mance, availability, scalability in distributed systems. Lus-
tre uses object based disks for storage and metadata servers
(MDS) for storing the metadata. Distributed Object Storage
Targets (OSTs) are responsible for the actual file I/O. Fig-
ure 3 demonstrates a typical Lustre environment. As shown
in Figure, apart from increased network bandwidth, Lustre

3



also supports client-side caching. On the other hand, PVFS
does not support this feature and we will see the impact of
client-side caching especially for database workloads and
its benefits compared the PVFS in later sections.

. ...
.
.

Data

cache

cache

Metadata
Servers
(MDS)

..
I/O server

Node
(OST)

I/O server
Node
(OST)

Compute
Node

Compute
Node

Compute
Node

cache

cache

cache

.

..

Data

Meta
Data

Network

Figure 3. A Typical Lustre Setup

Lustre leverages open standards such as Linux, XML,
SNMP, readily available source libraries and existing file
systems to provide scalable, reliable and powerful dis-
tributed file system. Lustre maximizes the performance and
productivity by using sophisticated fail-over, recovery and
replication techniques to eliminate downtime and maximize
file system availability. In addition, Lustre also supports
strong file and metadata locking semantics to maintain co-
herency of the file system.

3 Data-center Requirements

Typical data-center workloads have a wide range of char-
acteristics. These range of characteristics, coupled with the
requirements and behavior of exclusive as well as shared
data-centers, makes analyzing the impact of the various
components in the data-center such as the file system, a non-
trivial problem. In Section 3.1, we discuss the broad charac-
teristics of different kinds of workloads. In Section 3.2, we
discuss the implications of the different kinds of file systems
on the exclusive as well as shared data-centers. Experimen-
tal analysis of these implications is presented in Section 4.

3.1 Workload

Different workloads have different characteristics. Some
workloads may vary from high to low temporal locality,
following a Zipf-like distribution [7]. Similarly workloads
vary from small documents (e.g., online book stores, brows-
ing sites, etc.) to large documents (e.g., download sites,
etc.). Further, workloads might contain requests for simple
cacheable static or time invariant content or more complex
dynamic or time variant content via CGI, PHP, and Java
servlets with a back-end database. Due to these varying
characteristics of workloads, in this paper, we classify the
workloads in four broad categories: (i) Single-file Micro

Web Interaction Browsing Shopping Ordering
Mix Mix Mix

Browse 95% 80% 50%
Home 29.00% 16.00% 9.12%
New Products 11.00% 5.00% 0.46%
Best Sellers 11.00% 5.00% 0.46%
Product Detail 21.00% 17.00% 12.35%
Search Request 12.00% 20.00% 14.53%
Search Results 11.00% 17.00% 13.08%

Order 5% 20% 50%
Shopping Cart 2.00% 11.60% 13.53%
Customer Registration 0.82% 3.00% 12.86%
Buy Request 0.75% 2.60% 12.73%
Buy Confirm 0.69% 1.20% 10.18%
Order Inquiry 0.30% 0.75% 0.25%
Order Display 0.25% 0.66% 0.22%
Admin Request 0.10% 0.10% 0.12%
Admin Confirm 0.09% 0.09% 0.11%

Table 1. TPC-W Benchmark Workload distri-
bution

workloads, (ii) Zipf-like workloads and (iii) Dynamic con-
tent workloads.

Single-File Micro workloads: This workload contains
only a single file. Several clients request the same file mul-
tiple times. This workload is used to study the basic perfor-
mance achieved by the data-center environment for differ-
ent file systems without being diluted by other interactions
in more complex workloads. In this paper, we have used
several such single-file micro workloads falling in various
categories. Typically, browsing sites have files which are a
few kilobytes in size. Streaming and download servers on
the other hand, may have large audio and video files which
are a few MBytes in size. In order to address all these work-
loads, we used has a wide range of file sizes from 1 KB to
64 MB.

Zipf-like Workloads: It has been well acknowledged in
the community that most workloads for data-centers hosting
static content, follow a Zipf-like distribution [7]. According
to Zipf law, the relative probability of a request for the i’th
most popular document is proportional to

�������
, where �

determines the randomness of file accesses. In our exper-
iments, we have used two kinds of workloads. In the first
kind of workloads, we use workloads which have constant
� value but vary the working set size i.e., the total size of the
documents served by the data-center. In the second kind of
workloads, we use a constant working set size, but vary the
� in order to vary the behavior from high to low temporal
locality.

Dynamic Content Workloads: We used three kinds of
dynamic content workloads: (i) A Transactional web bench-
mark (TPC-W) to emulate the operations of an e-commerce
website, (workload specifications in Table 3.1), (ii) RUBiS
benchmark to represent auction sites [21] modeled after

4



eBay.com and (iii) RUBBoS benchmark to represent bul-
letin board systems [6] modeled after slashdot.org.

3.2 File System Implications on Data-Centers

Figure 4 shows the interaction of the data-center with the
file system. For local file systems, the servers can serve the
content locally without requiring any interaction with other
nodes as far as the file management is concerned. On the
other hand, in a network-based file system, the servers have
to contact one or more of the file system servers over the
network to retrieve the file.

�����
�����
�����
�����

�����
�����
�����
�����

SAN SAN

Database

Server

Server
Proxy

Web
Server

Application

Server

System
File

System
File

Local

Local

Network−based File System

Processes

Figure 4. Data-Center and File System Inter-
action

In this section, we discuss three broad aspects asso-
ciated with the interaction of the various workloads with
the file system component in the data-center environment,
namely: (i) Network Traffic Requirements, (ii) Aggregate
Cache Size and (iii) Cache pollution effects.

3.2.1 Network Traffic Requirements

Network file systems require data to be fetched over the net-
work on every request to the file system. This has several
implications.

Amount of data fetched: If the amount of data fetched
over the network is very high, this might cause a network
traffic bottleneck and might hinder with other network oper-
ations performed in the data-center environment. For static
content (e.g., html pages, etc), the data transfer path is quite
straight forward. The file requested by the clients is directly
present on the file system; it needs to be retrieved from the
file system and sent to the end client. Therefore, the amount
of data retrieved from the file system is equal to the amount
of data sent to the client. Thus, we can derive a straight
forward correlation between the amount of data requested
by the client and the total amount of network traffic this re-
quest would generate (including the transfer of the file to
the client and the retrieval of the file from the file system
for network-based file systems).

For dynamic content (e.g., output generated by CGI
scripts, Java servlets, etc), the data transfer path is more
complicated. For example, in transactional workloads (such
as TPC-W), the database needs to retrieve and access sev-
eral objects in the database from the file system. Once this
raw data is retrieved, it needs to be processed and the pro-
cessed output is sent to the client. Thus, there is no straight
forward correlation between the amount of data retrieved
from the file system and the amount of data sent to the
client.

Metadata operations: For network-based file systems,
metadata operations on files such as obtaining the handle
to read a file are no longer a local operation. For exam-
ple, PVFS has a manager daemon that handles metadata
operations like file create, open, close, and remove oper-
ations. This might cause file opening and closing to be a
significantly expensive operation as compared to local file
systems. The manager, however, does not participate in
read/write operations; the client library and the I/O daemons
handle all file I/O without the intervention of the manager.

Network Utilization: Fetching data over the network
is beneficial when the data is fetched in large bursts, thus
utilizing the bandwidth provided by the network. Fetch-
ing small bursts of data might under-utilize the network and
might lead to sub-optimal performance. For dynamic con-
tent, since the retrieval of raw data from the file system is ac-
companied by processing of this data, it might not be done
in a single burst of data read, but rather as multiple reads of
small data bursts.

3.2.2 Aggregate Cache Size

As mentioned earlier, while local file systems have a low
cache hit time, they do not have any interaction with the
other nodes in the system as far as the file management is
concerned. Thus, if three servers are assigned to service
requests coming to a certain website, each of these servers
is completely unaware of the existence of the other servers.
Accordingly, all required documents are made available lo-
cally to the server. Further, since the servers are unaware
of each other, the documents that need to be served for the
web-site need to be replicated on each server node. While
this might not be a concern with respect to disk space used
for most websites, it might limit the aggregate amount of
cached content due to replication of the content on the vari-
ous nodes.

For example, suppose each server has a 512MB memory-
based file system cache. Now, if the total size of the fre-
quently accessed content for the website served is 200MB,
each server can cache the frequently accessed content sep-
arately; thus there would be no issue. However, if the total
size of the frequently accessed content served is 1GB, each
server cannot cache the frequently accessed content sepa-

5



rately (since each server has only 512MB memory); this
leads to cache misses on each server resulting in a loss of
performance. On the other hand, if a number of servers (say
four) form a network-based file system such as PVFS, the
aggregate cache of the file system would be close to 2GB
(512MB x 4 servers). Thus, all the frequently accessed con-
tent can be placed in the file system cache. This issue is
especially of a great concern in shared data-centers. Since
such data-center host multiple websites, the aggregate size
of the frequently accessed content increases linearly with
the number of websites.

As mentioned earlier, for dynamic content, the data used
to produce the results (database) and the final output sent to
the client are different. Thus, there are two kinds of caching
that are possible: (i) caching the raw database objects them-
selves and (ii) caching the final output generated that is sent
to the client. Caching the final output generated has sev-
eral research issues associated with it, including maintain-
ing consistency and coherency of the output file with the
data objects present in the database, etc. We have done
some previous work in this direction [17], but do not con-
centrate on that aspect in this paper. On the other hand,
caching the raw database objects themselves is handled by
the database itself.

In this paper, we study the impact of this issue for static
(time invariant) workload. However, the ideas are also rel-
evant for caching the raw database objects in dynamic con-
tent workloads.

3.2.3 Cache pollution effects

Caching has a significant impact on the performance of the
web/proxy server. Each website in a data-center has a set of
frequently accessed popular files. Due to the high frequency
of accesses, these popular files tend to be highly sensitive to
the caching capability of the file system. Ideally, we would
like these popular documents to always be cached. While
most of the requests in the website are for these frequently
accessed files, some requests for other not-so-frequently-
accessed files are also possible. Such requests tend to fetch
the non-frequently accessed content to the file system cache,
thus polluting the cache content and requiring later arriving
requests for frequently accessed documents to result in a
cache miss.

This issue is especially concerning for shared data-
centers. With multiple websites sharing the same resources
in a shared data-center, each website now has a lesser
amount of file system cache to utilize. Further, since the
frequency of access of different documents is different in a
typical data-center environment (Zipf like distribution), the
amount of degradation can increase in a super-linear man-
ner as compared to the number of websites serviced in the
shared data-center.

To understand the reason for this behavior in more de-
tail, we classify the frequently accessed documents into two
classes: ‘‘moderately hot” files and ‘‘very hot” files. As
the names suggest, the most frequently accessed half of the
popular files are classified as ‘‘very hot” files. Obviously,
the number of requests for the ‘‘very hot” files is signifi-
cantly larger as compared to the ‘‘moderately hot” files.

In a data-center hosting just one website, all the fre-
quently accessed documents (both the ‘‘moderately hot”
files as well as the ‘‘very hot” files) are present in cache.
Now, accessing a large infrequently accessed document re-
sults in the frequently accessed documents to be evicted
and results in some cache misses. Applying this in the
shared data-center environment hosting two websites, since
the amount of memory present on the data-center servers is
constant, they can now cache only about half the number of
popular files from each website; this would result in only
the ‘‘very hot” files being cached from both the websites.
Since these files are accessed a lot more frequently than the
‘‘moderately hot” files, they are significantly more sensitive
to cache pollution effects. This results in a super-linear and
sometimes drastic drop in the number of cache hits.

4 Experimental Analysis

In order to study the impact of the performance of the
various file systems in a cluster-based multi-tier data-center,
we performed various system-level micro-benchmarks and
application level tests. We consider both local file systems
(ext3fs and ramfs) as well as network-based file systems
(PVFS and Lustre). In this section, we analyze the peak
performance achieved by these file systems and study their
impact on the client’s response time and throughput in a
multi-tier data-center environment. Especially, we study on
network requirements, aggregated cache volume, and cache
pollution effect for each file system. The analysis results
show that the network-based file systems can provide a large
aggregated cache volume while they have network require-
ments. We also observe that ramfs can sustain the cache
pollution. To take the advantages of each file system, we
also propose utilizing a multi file system in this section.

For all our experiments we used the following two clus-
ters:

Cluster1: A cluster system consisting of 8 nodes built
around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus and 512 MB
of main memory. We used the RedHat 9.0 Linux distribu-
tion.

Cluster2: A cluster system consisting of 8 nodes
built around SuperMicro SUPER X5DL8-GG mother-
boards with ServerWorks GC LE chipsets which include

6



64-bit 133 MHz PCI-X interfaces. Each node has two In-
tel Xeon 3.0 GHz processors with a 512 kB L2 cache and
a 533 MHz front side bus and 2 GB of main memory. We
used the RedHat 9.0 Linux distribution.

Clusters 1 and 2 used the following interconnect:
Interconnect: InfiniBand network with Mellanox Infini-

Host MT23108 DualPort 4x HCA adapter through an In-
finiScale MT43132 twenty-four 4x Port completely non-
blocking InfiniBand Switch. The Mellanox InfiniHost
HCA SDK version is thca-x86-3.1-build-003. The adapter
firmware version is fw-23108-rel-3 00 0001-rc4-build-001.
The IPoIB driver for the InfiniBand adapters was provided
by Voltaire Incorporation [14]. The version of the driver
used was 2.0.5 10.

Cluster 1 was used as the server nodes in the data-center
environment and Cluster 2 was used as the clients. We
used Apache version 2.0.48, PVFS 1.6.2, Lustre 1.0.4, PHP
4.3.1 and MySQL 4.0.12 in all our experiments. Requests
from the clients were generated using eight threads on each
node.

4.1 Basic Performance of Different File Systems

In this section, we analyze the basic performance
achieved by the different file systems: ramfs, ext3fs, PVFS
and Lustre. We show the data transfer rates achieved by
these file systems in two scenarios, transferring cached data
and transferring uncached data. We also show the overhead
in performing metadata operations such as file open(),
close(), etc.

For all experiments, in the PVFS and the Lustre setups,
three I/O nodes are configured with each I/O node using
ext3fs as the local file system. The stripe size used was
64KB.

Table 2 shows three different measurements for the dif-
ferent file systems, (i) the overhead of metadata operations
such as read() and write(), (ii) read latency for small
(4K) and large (1M) cached content and (iii) read latency
for small (4K) and large (1M) uncached content.

Comparing the metadata operations for the different file
systems, since this is only a local operation for the local file
systems (ext3fs and ramfs), the overhead can be expected to
be low. On the other hand, since the network-based file sys-
tems (PVFS and Lustre) need to access their metadata man-
agers to handle file permission issues, the overhead can be
significant for them. Further, this implies that for small file
transfers, the metadata operations can take up a significant
portion of the transfer time in network-based file systems.

Coming to the data transfer rates, for files in cache, we
can expect the performance of the local file systems to be
better than the network-based file systems since its only a
local operation. However for files not in cache, we see
that the network-based file system give better or comparable

performance compared to the local file system due to paral-
lel accesses from different I/O servers. However it is to be
noted that the numbers we reported here for read latencies
do not include the file open() and close() overheads.

4.2 Network Requirements of file systems

Network file systems require data to be fetched over the
network on every request to the file system. This has several
implications in the overall performance of the data-center.
For example, if the amount of data fetched over the network
is very high, this might cause a network traffic bottleneck
and may hinder other network operations performed in the
data-center environment.

In order to study the network requirements of different
file systems in the data-center environment, we evaluate the
various file systems under static and dynamic content work-
loads based on the network requirements of these work-
loads. we perform three sets of experiments. The first ex-
periment evaluates the absolute amount of network traffic
generated by each file system. The second experiment eval-
uates the rate at which data is requested over the network.
These two experiments provide an indication about (i) the
potential of the network becoming a bottleneck while us-
ing a network-based file system and (ii) the utilization of
the network bandwidth provided by the data access patterns
of the different workloads. The third experiment shows the
end performance achieved by the different file systems un-
der various workloads (Zipf Class0 through Zipf Class3)
with a high temporal locality coefficient ( � = 0.9). This ex-
periment indicates the impact of the high overhead of meta-
data operations associated with network-based file systems.
Since the workloads have a high temporal locality coeffi-
cient and most files accessed are small files, this overhead
can be expected to be the worst in this scenario.

Absolute Network Traffic Generated: Figure 5a shows
the amount of network data transferred for a data-center en-
vironment hosting static content. We used the Linux utility
netstat to monitor the network traffic and report the total
number of packets received and sent from the web server.
For the local file system, the network requirements will be
the total number of packets exchanged between the proxy
and web server. However for the cluster file systems, in ad-
dition to the network traffic between the proxy and the web
server, it would also include the communication between
the web server and the file system servers for fetching the
document over the network. We can see that the amount
of network traffic associated with PVFS increases propor-
tionally as compared to the local file system. For Lustre,
however, the network traffic is very close to that of the local
file system. This is due to client-side cache used by Lustre,
i.e., Lustre maintains a cache of the fetched documents on
the webserver nodes too thus reducing the requirement to go

7



Table 2. File access latency of different file systems
Latency ext3fs ramfs pvfs lustre

(usecs) (usecs) (usecs) (usecs)
4K 1M 4K 1M 4K 1M 4K 1M

Open & Close overhead 6 6 6 6 1060 1060 876 876

Read Latency (cache) 4 1602 4 1578 680 13825 7.7 1998

Read Latency (no cache) 1500 76312 1400 2379 9600 44108 3000 50713

0

100000

200000

300000

400000

500000

600000

700000

800000

Zipf Class 0 Zipf Class 1 Zipf Class 2 Zipf Class 3

Working Set

#p
ac

ke
ts

 s
en

t/r
ec

ei
ve

d

ext3fs
pvfs
lustre

0

50000

100000

150000

200000

250000

300000

TPCW Class 0 TPCW Class 1 TPCW Class 2 TPCW Class 3

#p
ac

ke
ts

 s
en

t/r
ec

ei
ve

d

ext3fs pvfs lustre

Figure 5. Network requirements for various workloads: (a) Static Content (Zipf) (b) Dynamic Content
(TPC-W)

over the network for every request. The network traffic for
ramfs is skipped in this graph and is expected to be similar
to ext3fs since both file systems do not create any additional
network traffic for file management.

Figure 5b shows the amount of network traffic generated
for the different file systems for dynamic content in a data-
center environment. For the dynamic content workload, we
use the TPC-W Browsing type of benchmark. As shown in
the figure, surprisingly, the network traffic does not increase
with the increasing workload size. For ext3fs the amount
of network traffic almost remains constant mainly due the
nature of these transaction-based queries. However even
for the network-based file systems, the network traffic does
not increase. The main reason for this is the indexing and
caching capabilities of database systems. Database systems
implement indexing and memory based caching as an ef-
fective means of query searching and processing. Several
databases maintain this intelligent mapping and send file
I/O requests for only the relevant non-cached data from the
file system resulting in very less network traffic for network-
based file systems. We see similar trend in lustre but the
total number of packets received is similar to the ext3fs.

Data transfer rate: Figure 6a shows a snapshot of the
I/O activity for static content workload in a data-center en-
vironment. We use the Linux iostat utility to monitor the
I/O traffic at the web server tier. We observe that small
workloads tend to have very less disk activity compared to

larger workloads. This is mainly due to the caching nature
of the file system in the web-server tier. Furthermore, we
see that Zipf class 0, Zipf class 1, Zipf class 2 have very
less I/O activity but for Zipf class 3, the amount of I/O
read from the disk increases. For Zipf class 4, the amount
of disk I/O activity is significantly larger compared to all
workloads. For network-based file systems, this I/O activity
would correspond to the network traffic generated. We ob-
serve that the rate at which data is accessed over the network
is about 40MBytes/s. This is less than 25% of the network
bandwidth provided by TCP/IP over the InfiniBand network
we are using (TCP/IP achieves a peak bandwidth of about
200MBytes/sec in our testbed). In general, this rate of data
transfer can be expected to be pretty low for most current
networks.

On the other hand, as seen in Figure 6b, the amount of
disk I/O for dynamic content is significantly lesser in com-
parison to the static workloads. This shows that the read and
write patterns for databases are in forms of many bursts of
small data reads or writes. Thus, using a network-based file
systems for dynamic workloads might result in an under uti-
lization of the network bandwidth because of multiple small
reads and writes.

Overhead of Metadata operations and Network Traf-
fic: To understand the overall impact of the high overheads
of metadata operations in network-based file systems, we
show the end performance achieved by the different file

8



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Time

K
B

/s
ec

Zipf Class 0 Zipf Class 1 Zipf Class 2
Zipf Class 3 Zipf Class 4

0

50

100

150

200

250

300

1 8 15 22 29 36 43 50 57 64 71 78

Time (sec)

K
B

/s
ec

TPCW Class 0 TPCW Class 1
TPCW Class 2 TPCW Class 3

Figure 6. I/O requirements for various workloads: Snapshot of the I/O activity (a) Static Content (Zipf)
(b) Dynamic Content (TPC-W)

0

2000

4000

6000

8000

10000

12000

14000

Zipf Class 0 Zipf Class 1 Zipf Class 2 Zipf Class 3

Working Set

T
P

S

ext3fs
ramfs
pvfs
lustre

0

50

100

150

200

250

TPCW
Class 0

TPCW
Class 1

TPCW
Class 2

TPCW
Class 3

T
P

S

ext3fs
ramfs
pvfs
lustre

Figure 7. Data-center performance with different file systems (a) Static Content (Zipf) (b) Dynamic
Content (TPCW: Browsing Mix)

9



Table 3. Workload Classification
Class File Sizes Working Set Size
Zipf Class 0 1K - 250K 25 MB
Zipf Class 1 1K - 1MB 100 MB
Zipf Class 2 1K - 4MB 450 MB
Zipf Class 3 1K - 16MB 2 GB
Zipf Class 4 1K - 64MB 6 GB

systems under various workloads (Zipf Class0 through Zipf
Class3; described in Table 3) with a high temporal locality
( � = 0.9). Since the workloads have a high temporal locality
coefficient and most files accessed are small files, the per-
formance of these traces is dominated by the performance
for small files.

FileSize ext3fs ramfs pvfs lustre
(usecs) (usecs) (usecs) (usecs)

4K 462 362 2506 1540
64K 1221 1117 3225 2463
256K 2932 2777 4807 4347
1M 10638 10989 10101 10869

Table 4. Response time achieved by different
file systems in a data-center with all files in
file system cache

FileSize ext3fs ramfs pvfs lustre
(usecs) (usecs) (usecs) (usecs)

4K 12500 692 14285 14705
64K 16393 2645 16949 1666
256K 21276 3584 20000 20366
1M 47619 13888 35714 38461

Table 5. Response time achieved by different
file systems in a data-center with all files not
in file system cache

Tables 4 and 5 show the response time achieved by the
clients for the different file systems for the cases when the
data is cached and the data is not cached respectively. First,
when the files are not cached, we see a significantly lower
performance for all file systems as compared to when the
files are cached; this is due to the disk access overhead as
compared to fetching the file from memory. Second, when
the data is cached, the local file systems (ext3fs and ramfs)
either perform better or comparably to the network-based
file systems (pvfs and lustre). This is because of the high
file open() and close() overhead associated with the
network-based file systems for small files. Third, when the
data is not cached, the local file systems perform better for
small files (because of the file open() and close() over-
heads) while the network-based file systems perform better

for large files. The better performance of the network-based
file systems for large files is mainly due to the parallel I/O
bandwidth achieved due to striping the file on several nodes.

Table 6 shows the performance of the data-center in
Transactions per Second (TPS) for different single file
traces (file sizes 4K and 1M) in two cases: when the data ac-
cessed is in cache and the case when the data accessed is not
in cache, respectively. In both the cases, for small file sizes
the network-based file systems perform worse than the lo-
cal file systems due to the high file open() and close()
overheads. For large files, network-based file systems per-
form either comparably or worse than local file systems. On
the whole, for Zipf traces with a high temporal locality co-
efficient (which are dominated by small files), this overhead
can be expected to be the worst.

To show the impact of file system performance on dif-
ferent data-center workloads, we evaluate the data-center
performance with different file systems under five different
workloads (Table 3).

Figure 7a shows the throughput achieved by various file
systems on different workloads. With small workloads,
since most of the files can be cached in the file system cache,
ext3fs and ramfs achieve significantly better performance
in comparison to pvfs and lustre. This degradation in the
performance is mainly attributed to the high overheads of
open() and close() operations for network-based file
systems with small files. Further, since the workloads con-
sidered in this section show a high temporal locality, this
would result in the most popular documents being fetched
most of the time; these are small documents in our work-
loads, thus resulting in an overall degradation of perfor-
mance.

Figure 7b shows the performance of data-center for dif-
ferent classes of dynamic content workloads (TPCW Class
0 refers to a workload with the TPC-W specifications, but
the database size is equal to the working set size of the Zipf
Class 0 workload). We see that the data-center performance
with ramfs or ext3fs is significantly better than the pvfs file
system. One point to note is that most databases do not open
or close the files corresponding to the database for every re-
quest. The files corresponding to the database are opened
during initialization and stay open through the course of the
experiment. Thus, for the dynamic content workload, the
network-based file systems do not have to face the overhead
of file open() and close() operations. However, as
shown in Figure 6b, the data accesses for dynamic content
is in many bursts of small data transfers. This causes severe
under-utilization of the network and can cause a drop in the
performance for network-based file systems. This behavior
is reflected in the performance of the PVFS file system com-
pared to ext3fs and ramfs. Lustre on the other hand does
comparably to ext3fs and ramfs. This is due to the client-
side caching supported by it; the database server avoids the

10



Table 6. Throughput achieved by different file systems in a data-center
TPS ext3fs ramfs pvfs lustre

4K 64K 256K 1M 4K 64K 256K 1M 4K 64K 256K 1M 4K 64K 256K 1M
File in
cache 11241 2870 855 221 11378 2791 1045 253 699 565 423 211 1054 839 486 215
File not
in cache 1488 325 201 66 2149 796 295 110 484 231 145 28.8 502 282 138 26.8

0

20

40

60

80

100

120

140

160

180

200

TPCW Class
0

TPCW Class
1

TPCW Class
2

TPCW Class
3

T
P

S

ext3fs
ramfs
pvfs
lustre

0

20

40

60

80

100

120

140

160

180

TPCW Class 0 TPCW Class 1 TPCW Class 2 TPCW Class 3

T
P

S

ext3fs
ramfs
pvfs
lustre

Figure 8. Data-center performance with different file systems (a) Dynamic Content (TPCW: Shopping
Mix) (b) Dynamic Content (TPCW: Ordering Mix)

network traffic most of the times because of the cache main-
tained by the Lustre file system on the database node itself.
We see similar trend for both shopping and browsing mix
type of workloads as shown in Figure 8a and Figure 8b.
Since the number of updates in the database increases as we
go from browsing to shopping mix and shopping to ordering
mix, the TPS values decreases.

4.3 Aggregate Cache Size for file systems

0

20

40

60

80

100

�  =
0.8

�  =
0.75

�  =
0.7

�  =
0.65

�  =
0.6

�  =
0.55

�  =
0.5

�  =
0.4

�  =
0.3

Different temporal locality of a 4 GB Workload

T
P

S

ext3fs

pvfs

lustre

Figure 9. Caching requirements for Static
Workloads

As mentioned earlier, local file systems do not inter-

act with other nodes in the data-center as far as the file
management is concerned. Thus if we have multiple web-
servers serving multiple web-sites, the document that needs
to served to web-sites needs to replicated on each of the
server node. This might limit the aggregate amount of
cached content due to the replication of the content on sev-
eral nodes.

To analyze the impact of the aggregate cache offered by
network-based file systems, we measure the performance
achieved by the data-center for various workloads. For all
the workloads, we fix the working set size to 4GB and vary
the � value to demonstrate workloads with different coeffi-
cients of temporal locality.

The total size of the workload increases to an extent that
the local file system would not be able to cache all the popu-
lar files accessed resulting in severe cache misses and penal-
ties in performance for frequently going to the disk and
fetching the data. However, in a cluster file system due to
the presence a larger aggregate cache, we avoid such penal-
ties and improve the performance of data-centers in such
scenarios.

Figure 9 shows the transactions per second (TPS)
achieved by a network-based file system (pvfs) and a local
file system (ext3fs) for this type of workload. We see that,
with an � value of 0.75, the data-center performance with
ext3fs file system is better than pvfs due to the better cache
hit time of the local file system. However, as the aggregate
size of the popular content increases, in other words as the
� value increases, the data-center performance with ext3fs

11



is worse than data-center performance with pvfs. This is be-
cause of the larger aggregate cache size provided by PVFS.
We see similar trend for the lustre file system as shown in
Figure 9.

4.4 Cache Pollution Effects

In shared data-center environments, requests from mul-
tiple web-sites compete with each other to utilize the cache
provided by the file system. Thus, requests for one website
might pollute the file system cache causing the requests for
the second website to be handled as cache misses. In this
section, we analyze this behavior.

Caching has a significant impact on the performance of
the web/proxy server. Ideally, we expect that the “hot” data
files (frequently accessed files) to always be cached. How-
ever, in a shared data-center environment hosting multiple
websites, the behavior of the file system cache becomes un-
predictable. It is highly possible that a large file which is
seldom accessed may push many of the small but “hot” files
out of the cache. Due to the high frequency of accesses
of these small files, they tend to be highly sensitive to the
caching capability of the file system. Thus, it is desirable
that “hot” files must be given a higher priority in the cache.

0%

20%

40%

60%

80%

100%

S
in

gl
e

S
ha

re
d

S
in

gl
e

S
ha

re
d

S
in

gl
e

S
ha

re
d

S
in

gl
e

S
ha

re
d

S
in

gl
e

S
ha

re
d

Zipf Class 0 Zipf Class 1 Zipf Class 2 Zipf Class 3 Zipf Class 4

P
er

ce
nt

ag
e 

of
 C

ac
he

d/
N

on
C

ac
he

d 
co

nt
en

t

Cached NonCached

Figure 10. Shared Data-Center Environment:
Percentage of Cached and NonCached con-
tent for various workloads

In order to study this effect, we designed a test to study
the amount of cache corruption that can occur for varying
workloads. In this experiment, we compare the percentage
of cache hits for different workloads in two scenarios. In the
first scenario (legend Single), we host only one website on
the data-center; this makes sure that most the “hot” files for
that website remain in cache. In the second scenario (legend
Shared), we host two identical websites on the data-center
and compare the number of cache hits with that of the first
scenario.

Figure 10 shows the total amount of cached and non-
cached accesses for the various workloads. This figure

gives us several insights. First, for very small workloads
(Zipf Class 0 and Zipf Class 1) there is no difference in
the number of cache hits. This is because the servers have
enough memory space available to cache the frequently
accessed documents for both the websites. Second, for
medium ranged workloads (Zipf Class 2), the number of
cache misses start increasing. This is because the servers
do not have enough memory to cache all the frequently ac-
cessed documents for all the websites; thus increasing the
number of websites hosted increases the cache misses.

Third, for large workloads (Zipf Class 3 and Zipf Class
4), the number of cache hits drops drastically in the shared
data-center scenario. Ideally, we expect the decrease in
the number of cache hits to be lesser than 50% since the
same cache is shared by two websites now; so about half
of the popular documents from each website can still stay
in cache. However, as the figure shows, this is not the case
and the drop in the number of cache hits is by nearly a fac-
tor of ten. The reason for this is the impact of the requests
for large non-frequently accessed documents. For a better
understanding of this behavior, we repeat the example pro-
vided Section 3.2.3 in the context of the results seen in this
figure.

Again, we classify the frequently accessed documents
into two classes: ‘‘moderately hot” files (lower half in the
frequency of accesses) and ‘‘very hot” files (upper half in
the frequency of accesses). In a single data-center, all the
frequently accessed documents (both the ‘‘hot” files as well
as the ‘‘very hot” files) are present in cache. Now, access-
ing a large infrequently accessed document results in some
of the frequently accessed documents to be evicted and re-
sults in some cache misses. These evicted documents would
most likely be the ‘‘moderately hot” files due to the lesser
frequency of their access.

In the shared data-center environment, however, since
the servers do not have enough memory space to accom-
modate all the popular files from both the websites, they
can cache approximately half the popular files from each
website; this would result in only the ‘‘very hot” files be-
ing cached from both the websites. Now, accessing a large
infrequently accessed document results in some of the fre-
quently accessed documents to be evicted. Since the file
system cache does not contain any “moderately hot” files in
this scenario, some of the ‘‘very hot” files will need to be
evicted. Since these files are accessed a lot more frequently
than the ‘‘moderately hot” files, they are significantly more
sensitive to cache pollution effects. This results in a drastic
drop in the number of cache hits for shared data-centers.

4.5 Multi File System Data-Centers

In the previous few sections, we have shown the im-
pact of three broad issues in the shared data-center envi-

12



ronment: (i) Network Traffic Requirements, (ii) Aggregate
Cache Size and (iii) Cache Pollution Effects. Based on our
observations on these broad issues, in this section, we pro-
pose utilizing a multi file system based data-center environ-
ment. This approach attempts to handle the above men-
tioned issues by utilizing each file system only for envi-
ronments where it is most suited for, thus taking the best
capabilities of all file systems.

As we have seen in Section 4.2, for static content with
high temporal locality, network-based file systems do not
perform well. This is because most of the requests for these
workloads tend to access small documents, and the over-
head for open() and close() operations associated with
the network-based file systems is quite dominant for small
files. Also, for dynamic content several databases tend to
access data in multiple bursts for small data requests. This
results in a severe under-utilization of the available network
bandwidth for network-based file system result in a signif-
icant degradation in the performance. For both these kinds
of workloads, we therefore concentrate on local file systems
instead of network based file systems.

In addition, as we have seen in Section 4.3, for static
content with low temporal locality, the aggregate amount of
cached content is limited for local file systems due to the
replication of the content on several nodes. On the other
hand, network-based file systems avoid this replication of
content by distributing the documents (by striping for PVFS
and Lustre) on several nodes. Thus, for workloads with low
temporal locality, we concentrate on network-based file sys-
tems.

Further, as we have seen in Section 4.4, in shared data-
centers requests from multiple web-sites compete with each
other to utilize the cache provided by the file system. Thus,
requests for one website might pollute the file system cache
causing the requests for the second website to be handled
as cache misses. In such a scenario giving a higher prior-
ity to place the “hot” files on to file system cache would be
beneficial. However, since such a prioritization is not sup-
ported for several file systems, we utilize ramfs to cache the
“hot” content. Since this uses a separate ramdisk to store
the content, these documents would not be affected by the
cache replacement policy for the rest of the not-so-popular
documents.

Based on the insights gained from the above three is-
sues, the multi file system approach uses a combination of
ramfs and ext3fs to serve websites serving (i) static content
with a high temporal locality or (ii) dynamic content. Sim-
ilarly the approach uses a combination of ramfs and either
PVFS or Lustre for websites serving static content with low
temporal locality. For simplicity, we will refer to ext3fs,
PVFS and Lustre as the “backing file system” in the respec-
tive environments. In this approach, we place the most fre-
quently accessed files in ramfs and the remaining files on

the backing file system.
We focus on three kinds of workloads in this section:

(i) Static content with high temporal locality (Zipf Class 0
through Zipf Class 4), (ii) Static content with low temporal
locality (Zipf trace with varying � values) and (iii) Dynamic
content

To show the impact in terms of performance, we emu-
late a web service provider hosting two web sites. For the
first web site, we place all the files in the backing file sys-
tem. For the second web site, we set up two scenarios. In
the first scenario, all files are placed in the backing file sys-
tem. In the second scenario, all the “hot” files are placed
on ramfs, and all other files in the backing file system. Re-
quests for both web sites are serviced simultaneously. The
performance difference of the second website between the
two scenarios is our focus.

Figure 11a shows the percentage improvement achieved
by the second web site when the websites serve static con-
tent with high temporal locality. As mentioned earlier, for
this workload we use a combination of ramfs and ext3fs to
store the files. We see that the multi file system approach
achieves a performance improvement of up to 48% in some
cases.

A similar strategy can be followed for dynamic content
also. However, for dynamic content websites, the entire
database is usually huge and may not be able to completely
fit in the ramfs. Hence we may have to place only a part of
the database in the ramfs. For example, we can place the
tables that are frequently accessed in the ramfs. Though di-
rectly placing the database in a memory based file system
might be inappropriate due to reliability and fault-tolerance
issues, researchers have worked on semi-reliable databases
and memory based fault-tolerant databases in the past. In
this paper, we do not consider these issues and assume that
the database is equipped with these features, thus allowing
the usage of memory based file systems. In our experiment,
we place the tables which are frequently accessed in ramfs
and the remaining tables in the backing file system. For ex-
ample in a TPC-W browsing type of benchmark, we realize
that the ‘select’ queries are more frequently accessed than
the ‘update’ queries. Also these ‘select’ queries predomi-
nantly access the customer, item tables frequently. Hence
we place the files pertaining to these tables in ramfs.

Figure 11 shows the improvement achieved by the sec-
ond web site while using ramfs to cache the frequently ac-
cessed tables which can fit in the cache. As mentioned be-
fore, in the figure, we call the workload on the first web
site as background workload (shown as the x-axis in the
figure), and the workload on the second web site as fore-
ground workload (shown as the legends in the figure). We
see a similar trend in comparison to static content; the larger
the working set of the background workload, the higher the
improvement that can be achieved. Compared to placing

13



0%

10%

20%

30%

40%

50%

60%

Low Load Medium Load Heavy Load

Background Trace

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Zipf Class 0
Zipf Class 1
Zipf Class 2

0%

10%

20%

30%

40%

50%

60%

Low Load Medium Load Heavy Load

Background Traces

P
er

ce
nt

ag
e 

Im
pr

ov
em

en
t

TPCW Class 0

TPCW Class 1

TPCW Class 2

Figure 11. Shared Data-Center Environment: Impact of a Hybrid file system (a) Static Content (Zipf)
(b) Dynamic Content (TPC-W: Browsing Mix)

0%

10%

20%

30%

40%

50%

60%

Low Load Medium Load High Load

Background Traces

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t TPCW Class 0

TPCW Class 1
TPCW Class 2

0%

10%

20%

30%

40%

50%

60%

Low Load Medium Load High Load

Background Traces

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t TPCW Class 0

TPCW Class 1
TPCW Class 2

Figure 12. Shared Data-Center Environment: Impact of a Hybrid file system (a) Dynamic Content
(TPC-W: Shopping Mix) (b) Dynamic Content (TPC-W: Ordering Mix)

14



the small files on ext3fs, placing them on ramfs achieves a
performance improvement of up to 40% with TPCW Class
3 workload as the background trace.

We also see similar trends for TPC-W Shopping type of
benchmark and Ordering type of benchmark as shown in
Figure 12. Since the number of updates increases in shop-
ping and ordering type of TPC-W benchmark, the perfor-
mance improvement in these cases is less in comparison to
Browsing type of benchmarks.

Figure 13 shows the improvement achieved by real traces
like RUBiS and RUBBoS obtained from Rice University.
For RUBiS and RUBBoS type of benchmark, we see that
placing some of the files in ramfs achieves a performance
improvement up to 8% and 3% respectively with TPCW
Class 3 workload running as a background trace.

0%

10%

20%

30%

40%

50%

60%

Low Load Medium Load High Load

Background Traces

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

RUBiS
RUBBoS

Figure 13. Shared Data-Center Environment:
Impact of a Hybrid file system with RUBiS and
RUBBoS traces

Figure 14 shows the data-center performance for work-
loads with varying coefficients of temporal locality. We can
see that placing the “hot” files in ramfs gives an improve-
ment of up to 15% in some cases. There are two reasons
for this. The first reason is the avoidance of cache pollution
because of placing the “hot” files in ramfs. The second rea-
son is the reduced overhead of the open() and close()
system calls because of placing several small files in a lo-
cal file system. As the temporal locality decreases, we see
that there is a reduction in the amount of benefit achieved.
This is because with very low temporal locality, the num-
ber of cache hits reduces; thus avoiding cache pollution
cannot be expected to give high benefits. Secondly, with
very low temporal locality, the number of requests for the
smaller files reduces; thus the overhead of the open() and
close() system calls is not as much of a concern.

5 Related Work

Hu et al. [13] have quantitatively analyzed performance
bottlenecks of the Apache server and proposed several tech-

0

2

4

6

8

10

12

14

16

18

20

�  = 0.75 �  = 0.65 �  = 0.55 �  = 0.45

Different Temporal Locality of a 4GB workload

T
P

S

pvfs
pvfs with ramfs

Figure 14. Hybrid File System: Frequently ac-
cessed tables in ramfs and remaining tables in
pvfs

niques to improve the same. Several others have studied the
performance of a busy WWW server [1, 16]. Joubert et
al. [15] proposed memory-based web servers in improving
its performance. Most of the approaches mentioned above
concentrate on evaluating only the WWW server whereas
in our approach we evaluate a shared multi-tier data-center
environment.

Wang et al. [23] have done detailed file system work-
load analysis. However the analysis was done for scien-
tific applications and does not apply to data-center appli-
cations. Wang and Li [24] suggest a temporary file sys-
tem which works in conjunction with the regular file sys-
tem. However the web servers need to manage their own
data and meta-data on raw disks and also the analysis was
simulation-based. In the multi-file system approach we run
real traces and identify the benefits of placing documents
on ram disks in shared data-center scenarios. Martin F. Ar-
litt et al. [2] have studied workload characteristics that are
common to different workloads and emphasized the impor-
tance of caching and performance issues in web servers.
Also, Jaidev et al. [19] have looked at network process-
ing overhead in web servers. They claim that protocol of-
fload would give significant benefits for static workloads
(compute-intensive) and not for I/O intensive workloads.
However, to the best of our knowledge, our study is unique
since we propose a multi file system for multi-tier data-
centers and identify its impact in shared data-center scenar-
ios. We have also evaluated PVFS [25, 4] in our previous
work and we expect the results to be similar over different
high speed interconnects.

6 Concluding Remarks

In this paper, we analyzed the impact of the file system
in a shared data-center environment. We studied the impact
of both local file systems (ext3fs and ramfs)and network-
based file systems (PVFS and Lustre) in three broad aspects

15



namely: (i) Network Traffic Requirements, (ii) Aggregate
cache size and (iii) Cache pollution effects. We showed
the capabilities and disadvantages of each file system in the
light of the above mentioned three aspects. Finally, based
on the insights gained from these broad issues, we proposed
a multi file system data-center environment to utilize each
file system only for environments where it is most suited for,
thus taking the best capabilities of all the file systems. Our
experimental results show that this approach can improve
the performance by up to 48% in a shared data-center envi-
ronment for static (time invariant) workloads showing high
temporal locality, up to 15% for static workloads with low
temporal locality and up to 40% for dynamic (time variant)
workloads.

Dynamic reconfiguration of resources has been studied
in the context of nodes [5, 3] and storage environments [18].
However, dynamic reconfigurability for caching and retriev-
ing file documents based on support from the file system is
quite novel and holds a lot of promise. The work in this pa-
per was performed as an initial study to understand the im-
plications of such dynamic reconfigurability with file sys-
tem support. We plan to extend the knowledge gained in
this study to implement a full-fledged dynamic reconfigura-
tion module for file management.

7 Acknowledgments

We would like to thank Dr. Jiesheng Wu for helping us
with the PVFS component of this paper. We would also like
to thank Weikuan Yu for his help in setting up the Lustre
file system. Lastly, we would like to thank the PVFS team
at the Argonne National Laboratory and Clemson Univer-
sity for giving us access to the latest version of the PVFS
implementation and for providing us with insights into the
implementation details.

References

[1] J. Almeida, V. Almeida, and D. Yates. Measuring the
behavior of a world-wide web server. Technical Re-
port 1996-025, 29, 1996.

[2] M. F. Arlitt and C. L. Williamson. Web server work-
load characterization: The search for invariants. In
Measurement and Modeling of Computer Systems,
pages 126–137, 1996.

[3] P. Balaji, S. Narravula, K. Vaidyanathan, H. W. Jin,
and Dhabaleswar K. Panda. On the Provision of Prior-
itization and Soft QoS in Dynamically Reconfigurable
Shared Data-Centers over InfiniBand. In the Proceed-
ings of the IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS),
2005.

[4] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Sockets Direct
Protocol over InfiniBand in Clusters: Is it Beneficial?
In the Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems and Soft-
ware (ISPASS), Austin, Texas, March 10-12 2004.

[5] P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha,
H. W. Jin, and D. K. Panda. Exploiting Remote Mem-
ory Operations to Design Efficient Reconfiguration for
Shared Data-Centers. In Workshop on Remote Direct
Memory Access (RDMA): Applications, Implementa-
tions, and Technologies (RAIT), San Diego, CA, Sep
20 2004.

[6] RUBBoS: Bulletin Board Benchmark. http://jmob.
objectweb.orgrubbos.html.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: Evidence and
implications. In INFOCOM (1), pages 126–134, 1999.

[8] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur. PVFS: A Parallel File System for Linux
Clusters. In 4th Annual Linux Showcase and Confer-
ence. USENIX Association, 2000.

[9] A. Chandra, W. Gong, and P. Shenoy. Dynamic Re-
source Allocation for Shared Data Centers Using On-
line Measurements. In Proceedings of ACM Sigmet-
rics 2003, San Diego, CA, June 2003.

[10] L. Cherkasova and S. R. Ponnekanti. Optimizing a
content-aware load balancing strategy for shared Web
hosting service. In 8th International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, pages 492 – 499, 29 Aug
- 1 Sep 2000.

[11] A. Ching, A. Choudhary, W. Liao, R. Ross, and
W. Gropp. Noncontiguous I/O through PVFS. In Clus-
ter Computing, 02.

[12] Cluster File System, Inc. Lustre: A Scalable, High
Performance File System, 2004.

[13] Y. Hu, A. Nanda, and Q. Yang. Measurement, analy-
sis and performance improvement of the apache web
server, 1997.

[14] Voltaire Inc. http://www.voltaire.com/.

[15] P. Joubert, R. King, R. Neves, M. Russinovich, and
J. Tracey. High-Performance Memory-Based web
servers: Kernel and User-Space performance. pages
175–188.

16



[16] A. Mahanti. Web proxy workload characterisation and
modelling, 1999.

[17] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Supporting
Strong Coherency for Active Caches in Multi-Tier
Data-Centers over InfiniBand. In the Proceedings of
the IEEE International Workshop on System Area Net-
works (SAN), 2004.

[18] D. OHare, P. Tandon, H. Kalluri, and P. Mills. SNIA
SSF Virtualization Demonstration. In IBM Systems
Group - TotalStorage Software: White Paper, October.

[19] J. P. Patwardhan, A. R. Lebeck, and D. J. Sorin. Com-
munication breakdown: Analyzing cpu usage in com-
mericial web workloads. In IEEE Internation Sym-
posium on Performance Analysis of Systems and Soft-
ware, 2004.

[20] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine,
R. S. Madukkarumukumana, and G. J. Regnier. CSP:
A Novel System Architecture for Scalable Internet
and Communication Services. In the Proceedings of
the 3rd USENIX Symposium on Internet Technologies
and Systems, pages pages 61–72, San Francisco, CA,
March 2001.

[21] RUBiS: Rice University Bidding System. http://rubis.
objectweb.org.

[22] R. Thakur, W. Gropp, and E. Lusk. On Implement-
ing MPI-IO Portably and with High Performance. In
the 6th Workshop on I/O in Parallel and Distributed
Systems, 1999.

[23] F. Wang, Q. Xin, B. Hong, S. Brandt, E. Miller,
D. Long, and T. McLarty. File system workload anal-
ysis for large scale scientific computing applications,
2004.

[24] J. Wang and D. Li. A light-weight, temporary file sys-
tem for large-scale web servers.

[25] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. In ICPP,
2003.

17


