
PVFS2 over Quadrics: Design, Implementation and Performance Evaluation

Weikuan Yu Shuang Liang Dhabaleswar K. Panda

Technical Report
OSU-CISRC-12/04-TR64

PVFS2 over Quadrics: Design, Implementation and
Performance Evaluation∗

Weikuan Yu Shuang Liang Dhabaleswar K. Panda

Network-Based Computing Laboratory
Dept. of Computer Sci. & Engineering

The Ohio State University
{yuw,liangs,panda}@cse.ohio-state.edu

Abstract

Parallel I/O needs to keep pace with the ever-
increasing computing power of high performance com-
puters for the real world applications to perform well.
Exploiting high-end interconnect technologies such as
Quadrics to reduce the network access cost and scale
the aggregated bandwidth is one of the ways to increase
the performance of storage systems. In this paper, we
explore the challenges of supporting parallel file system
with modern features of Quadrics, including user-level
communication and RDMA operations. We then design
and implement a Quadrics-capable version of a parallel
file system (PVFS2) by overcoming Quadrics static com-
munication model and providing an efficient transport
layer over Quadrics, which includes an optimized non-
contiguous IO support using multiple zero-copy RDMA
operations with a chained event. Experiment results
indicates that, with Quadrics user-level protocols and
RDMA operations, the performance of PVFS2 is sig-
nificantly improved in terms of both data transfer and
management operations. With four IO server nodes, our
implementation improves PVFS2 aggregated read band-
width by up to 140% compared to PVFS2 over TCP/IP.
Moreover, it delivers significant performance improve-
ment in terms of IO access to application benchmarks
such as mpi-tile-io [24] and BT-IO [26]. To the best of
our knowledge, this is the first work in the literature to
report the design of a high performance parallel file sys-
tem over Quadrics user-level communication protocols.

Keywords:Parallel IO, Parallel File System, RDMA,
Zero-Copy, Quadrics

∗This research is supported in part by a DOE grant #DE-FC02-
01ER25506 and NSF Grants #EIA-9986052 and #CCR-0204429.

1. Introduction

Parallel computing architecture has recently evolved
into systems with thousands of processors. In the mean
time, the gap between computer processing power and
disk throughput is becoming wider as the growth of the
latter continuously lags behind that of the former [21].
Large I/O-intensive applications on these platforms de-
mand increasingly higher I/O throughput. Correspond-
ingly, scalable parallel I/O needs to be available for these
real world applications to perform well. Both commer-
cial [13, 15, 9] and research projects [19, 12, 1] have
been developed to provide parallel file systems for I/O
accesses on such architectures. Among them, the Par-
allel Virtual File System 2 (PVFS2) [1] has been cre-
ated with the intention of addressing the needs of next
generation systems using low cost Linux clusters with
commodity components.

On the other hand, high performance interconnect
technologies such as Myrinet [4], InfiniBand [14],
and Quadrics [3] not only have been deployed into
large commodity component-based clusters to provide
higher computing power, but also have been utilized
in commodity storage systems to achieve scalable par-
allel I/O support. For example, the low-overhead
high-bandwidth user-level communication provided by
VI [30], Myrinet [20], and InfiniBand [27] has been uti-
lized to parallelize I/O accesses to storage servers and
increase the performance of parallel file systems.

One of the leading interconnect technologies,
Quadrics Interconnects [23, 3], provides very low la-
tency (≤ 2µs) and high bandwidth. It also supports
many of the cutting-edge communication features, such
as OS-bypass user-level communication, remote direct
memory access (RDMA), as well as hardware atomic
and collective operations. Moreover, Quadrics net-
work interface provides a programmable network co-

processor, which offloads much of the communica-
tion processing down to the network interface and con-
tributes greatly to its efficient point-to-point and collec-
tive communication. These salient features and their
performance advantages of Quadrics have not been
leveraged to support scalable parallel IO throughput at
the user-level, though some of these modern features,
like RDMA, are exploited in other interconnects, such
as Myrinet [20] and InfiniBand [27]. Currently, some
distributed file systems that exploit the advantages of
Quadrics are developed on top of Quadrics kernel com-
munication library , e.g., Lustre [8]. But this approach
incurs higher network access overhead because the oper-
ating system is included in the communication path. In
addition, as a distributed file system Lustre is designed
to scale the aggregated bandwidth for accesses to files
on different servers, while parallel file accesses from a
single parallel job cannot directly take its maximum ben-
efits. For example, concurrent writes from multiple pro-
cesses in a single parallel job cannot benefit with Lustre.
A typical platform may utilize a parallel file system such
as PFS [15] to export scalable bandwidth to a single job
by striping the data of a single parallel file system over
multiple underlying file systems such as Lustre. How-
ever, the extra multiplexing process adds more to the
cost in the path of IO accesses.

In this paper, we examine the feasibility of support-
ing parallel file systems with Quadrics user-level com-
munication and RDMA operations. PVFS2 [1] is used
as a parallel file system in this work. We first char-
acterize the challenges of supporting PVFS2 on top of
Quadrics interconnects, focusing on: (a) constructing
a client-server model over Quadrics at the user-level,
(b) mapping an efficient PVFS2 transport layer over
Quadrics, and (c) optimizing the performance of PVFS2
over Quadrics such as efficient non-contiguous commu-
nication support. Accordingly, we implement PVFS2
over Quadrics by taking advantage of Quadrics RDMA
and event mechanisms.

We then evaluate the implementation using PVFS2
and MPI-IO [18] benchmarks. The performance of our
implementation is compared to that of PVFS2 over TCP.
Quadrics IP implementation on top of its interconnect is
used in the TCP implementation to avoid network differ-
ences. Our work demonstrates that: (a) a client/server
process model necessary for file system communication
is feasible with Quadrics interconnects; (b) the transport
layer of a parallel file system can be efficiently layered
on top of Quadrics; and (c) the performance of PVFS2
can be significantly improved with Quadrics user-level
protocols and RDMA capabilities. Compared to a PVFS
implementation over TCP/IP over Quadrics, our imple-
mentation increases the aggregated read performance of
PVFS2 by 140%. It is also able to deliver significant
performance improvement in terms of IO access to ap-

plication benchmarks such as mpi-tile-io [24] and BT-
IO [26]. To the best of our knowledge, this is the first
work in the literature to report the design of a high per-
formance parallel file system over Quadrics user-level
communication protocols.

The rest of the paper is organized as follows. In
the next section, we provide overviews of Quadrics
and PVFS2, and the challenges to design PVFS2 over
Quadrics. Section 3 provides the design of client/server
model over Quadrics. Sections 4 and 5 discuss the de-
sign of the PVFS2 transport layer over Quadrics com-
munication mechanisms. The implementation is pro-
vided in Section 6, followed by the performance eval-
uation in Section 7. Section 8 gives a brief review of
related works. Section 9 concludes the paper.

2. Challenges in Designing PVFS2 over
Quadrics/Elan4

Quadrics interconnects [3] and its parallel program-
ming libraries, libelan and libelan4 [23], are
widely used to support high performance computing.
However little is known about how to leverage Quadrics
high performance user-level communication to support
high performance parallel file system. This section pro-
vides a brief overview of Quadrics/Elan4 and PVFS2,
and discusses the challenging issues in designing PVFS2
over Quadrics/Elan4.

2.1. Overview of Quadrics/Elan4

Quadrics [22, 23] has recently released its second
generation network, QsNetII [3]. This new release
provides very low latency, high bandwidth communi-
cation with its two building blocks: the Elan-4 net-
work interface card and the Elite-4 switch, which are
interconnected in a fat-tree topology. As shown in
Fig. 1, Quadrics provides two communication libraries:
libelan and libelan4 in the user space, and a
kernel communication library on top of its Elan4 net-
work [23]. While the kernel communication library pro-
vides communication support to Lustre (CFS) [8] and
IP protocols, the user-level communication libraries (li-
belan and libelan4) can provide OS-bypass communi-
cation and Remote Directed Message Access (RDMA)
directly to parallel user applications.

2.2. Overview of PVFS2

PVFS2 [1] is the second generation parallel file
system from the Parallel Virtual File System (PVFS)
project team. It incorporates the design of the original
PVFS [20] to provide parallel and aggregated I/O per-
formance. A client/server architecture is designed in

Driver

User Applications

Hardware

Kernel Space

User Space

Elan Kernel
Library

IP CFS

libelan4

libelan
System Services

Elan4 / Elite4

Device

Fig. 1. Quadrics/Elan4 Communication Archi-
tecture

PVFS2. Both the server and client side libraries can
reside completely in user space. Clients communicate
with one of the servers for file data accesses, while the
actual file IO is striped across a number of file servers.
Metadata accesses can also be distributed across multi-
ple servers. Storage spaces of PVFS2 are managed by
and exported from individual servers using native file
systems available on the local nodes. More information
about PVFS2 can be found in [1].

2.3. Challenges

PVFS2 provides a network abstraction layer to en-
capsulate all the functionalities needed for communica-
tion support. The resulting component is called Buffered
Message Interface (BMI), which interacts with other
components in the software architecture to support low-
level IO accesses. Fig. 2 shows a diagram of PVFS2
components on both the client side and the server side.
As shown in the figure, BMI functionalities can be fur-
ther classified into three categories: connection man-
agement between processes, message passing activities
for interprocess communication (IPC) and the memory
management needed for IPC. In particular, Quadrics
user-level programming libraries has a unique design for
running Higher Performance Computing (HPC) appli-
cations. All parallel jobs over Quadrics need to start
from a static pool of application processes [23]. This is
rather incompatible to the needs of file systems, which
start servers first and deliver IO services to incoming
clients. In addition, PVFS2 interprocess communication
between servers and clients needs to be properly lay-
ered over Quadrics communication mechanisms to ex-
pose the best capability of Quadrics hardware. In this
work, we take on the following issues to design PVFS2
over Quadrics: (a) constructing a client/server commu-
nication model in terms of connection management, (b)
designing PVFS2 basic transport protocol to appropri-
ate Quadrics communication mechanisms for message
transmission, and (c) optimizing PVFS2 performance
over Quadrics.

Network (Ethernet, Myrinet, InfiniBand, ...)

Job Interface

Server

Operation State Machine

flowBMI

System Interface

Client

Job Interface

flow Trove
BMI connection

mesgmemory memory

Storage

Fig. 2. The Architecture of PVFS2 Components

3. Designing a Client/Server Communica-
tion Model Over Quadrics/Elan4

As described in Section 2.2, PVFS2 is designed as
a client/server architecture. In contrast, a parallel job
over Quadrics libraries runs as a static pool of appli-
cation processes [23]. All of these processes join or
leave the Quadrics network in a synchronized manner.
In addition, to facilitate this process, Quadrics requires
a resource management framework such as RMS [23] to
launch the parallel applications. To provide a PVFS2
client/server architecture over Quadrics, it is neces-
sary to break the model of static process pool used in
Quadrics parallel jobs and eliminate the need of a re-
source management framework.

3.1. Allocating a Dynamic Pool of Processes over
Quadrics

Each process must acquire a unique Virtual Process
ID (VPID) and use it as an identity for network ad-
dressing before the communication starts over Quadrics.
VPID is an abstract representation of Quadrics capabil-
ity, which describes the network node ID and context
ID owned by a process, and the range of network nodes
and the range of contexts all processes have. Typically,
Quadrics utilizes RMS [23] to allocate appropriate ca-
pabilities for all application processes before launching
a parallel job. The capabilities from all processes share
the same range of network nodes and the same range of
contexts. Together with the network node ID and a con-
text ID, each process can determine its VPID based on
the capability. In this way, a static pool of application
processes is launched over Quadrics network.

To allocate a dynamic pool of processes over
Quadrics, we change the aforementioned allocation
scheme. First, we expand the range of nodes to include
every node in the network. Second, a large range of con-
texts is provided on each node. Table 1 shows the for-
mat of Elan4 capability for all PVFS2 processes. On
each node, the first context is dedicated to the server
process, if present, and the rest of the contexts are left
for the client processes. The VPID is needed to iden-
tify an elan4 process is calculated with this formula:

node id ∗ (j − i + 1) + (ctx − i). A client process
obtains the corresponding parameters from the PVFS2
fstab entry as shown on the third row of Table 1. Clients
connect to a server on a dynamic basis, and notify the
server when they leave. Servers allocate communicat-
ing resources as new clients join in, and deallocate when
they disconnect or timeout. There are no restrictions for
processes to synchronize memory allocation and syn-
chronized startup.

Table 1. Elan4 Capability Allocation for Dy-
namic Processes

Setting Value
Capability node{0..N}ctx{i..j}

VPID node id ∗ (j − i + 1) + (ctx − i)
fstab elan4://serverid:serverctx/pvfs2-fs

3.2. Fast Connection Management

A process over Quadrics needs to know both the
VPID and an exposed memory location of a remote
process before sending a message. Parallel jobs built
from default Quadrics libraries, typically use a global
memory address to initiate communication because the
memory allocation is synchronized and a global vir-
tual memory [23] is available. Without the use of
a global memory, we design two different schemes
for clients to initiate communication to PVFS2 servers
over Quadrics/Elan4. Initially, a basic scheme utilizes
TCP/IP-based socket. A server opens a known TCP port
and polls for incoming communication requests from
time to time. Clients connect to this known TCP port
and establish a temporal connection to exchange VPID
and memory addresses.

Because establishing and tearing down the connec-
tions between clients and servers is so common for file
I/O services, it is desirable to design a fast connec-
tion management scheme to achieve scalable IO access.
In another scheme, we use native communication over
Quadrics for communication initiation. All servers start
with a known node ID and context ID, which together
determine the VPID according to the allocation scheme
described earlier in this section. A set of receive queue
slots are also allocated, which start at a unified memory
address across all the servers. Servers then poll on this
receive queue for new connection requests (and also IO
service), using a Queue-based Direct Memory Access
model. The QDMA model is described in more detail in
Section 4.1. Because this memory for the receive queue
(a portion of the NIC memory mapped to the host ad-
dress space) is allocated dynamically at run time in the
current Quadrics implementation, one constraint here is

that the server needs to report its address at the startup
time. We pass this address to clients as an environmental
parameter. Further investigation will study the feasibil-
ity and impact of mapping Quadrics NIC memory to a
fixed memory space.

As shown in Fig. 3, a client process that is initiat-
ing the connection with a server. The client obtains the
VPID of the server based on the pvfs2 fstab file and the
memory address of the server’s receive queue through
an environmental variable,SERVER ADDR. Using the
known memory address and the known VPID, a client
can initiate a message to the server, which includes its
own VPID and address of its exposed memory location.
When a connection is initiated, the corresponding net-
work addressing information is recorded into a global
address list. Lists to record all the outstanding oper-
ations are also created. This address information and
associated resources are removed when a connection is
finalized as if no connection has been established earlier.

ENV: SERVER_ADDR

server_addr

client:

server:

elan4://server:ctx/pvfs2−fs

Fig. 3. Connection Initiation over Native Elan4
Communication

4. Designing PVFS2 Basic Transport Layer
over Quadrics/Elan4

All PVFS2 [1] network message transmission func-
tionalities are included in the BMI interface [6]. Two
models of message transmission, matched and unex-
pected, are included. All network operations are de-
signed in a nonblocking manner to allow multiple
of them in service concurrently. Several test APIs
are specified for the completion of outstanding mes-
sages. Quadrics provides two basic interprocess com-
munication models: Queue-based Direct Memory Ac-
cess (QDMA) and Remote Direct Memory Access
(RDMA) [23]. QDMA can only transmit messages up
to 2KB. The other model, RDMA read/write, supports
transmission of arbitrary messages over Quadrics net-
work. Using these two models, the transport layer of
PVFS2 over Quadrics/Elan4 is designed with two proto-
cols, eager and rendezvous, to handle different size mes-
sages.

4.1. Short and Unexpected Messages with Eager
Protocol

The QDMA model allows a process to check incom-
ing QDMA messages posted by any process into its re-
ceive queue. An eager protocol is designed with this
model to transmit short and unexpected messages. As
mentioned in Section 3.2, this QDMA model is used in
initiating dynamic client/server connection scheme with
Quadrics native communication.

recv slots

� � �� � �
� � �� � � � � � �� � � �

� � � �� � � �

short/unexpted

Send Recv

se
co

nd
ar

y
bu

ffe
r

zo
ne

send slots

Fig. 4. Eager Protocol for Short and Unexpected
Messages

As shown in Fig. 4, in the eager protocol, a num-
ber of sender buffers are allocated on the sender side to
form a send queue, and a fixed number of receive queue
slots are created on the receiver side to form a receive
queue. In addition, a secondary receive buffer zone is
created with another set of receive buffers. The num-
ber of receive buffers in the secondary zone can grow
or shrink on an on-demand basis. In this eager proto-
col, a new message is first copied into a sender queue
slot, sent over the network, and eventually received into
a receive queue slot. If the message is an unexpected
message, it is then copied into a receiver buffer imme-
diately without waiting for a matching receive operation
to be posted. The receive queue slot is then recycled
to receive new messages. For a message that needs to
be matched, it remains in the receive queue slot until a
matching receive operation is posted. This can save an
extra message copy if the operations is posted in time.
However, if the number of receive queue slots becomes
low under various situations, these messages are copied
into the receive buffers in the secondary buffer zone to
free up receive slots for more incoming messages. When
the messages are eventually matched, the receive buffers
are also recycled into the secondary buffer zone. If there
are relatively a large number of free receive buffers in
the secondary zone, they are deallocated to reduce the
memory usage.

4.2. Long Messages withRendezvousProtocol

Quadrics RDMA (read/write) communication model
can transmit arbitrary size messages [23]. Arendezvous

protocol is designed with this model for long messages.
Two schemes are proposed to take advantage of RDMA
read and write, respectively. As shown in Fig. 5 left di-
agram, RDMA write is utilized in the first scheme. A
rendezvousmessage is first initiated from the sender to
the receiver in both schemes. The receiver returns an
acknowledgment to the sender when it detects aren-
dezvousmessage. The sender then sends the full mes-
sage with a RDMA write operation. At the completion
of RDMA write, a control fragment, typed as FIN, is
sent to the receiver for the completion notification of
the full message. The right diagram in Fig. 5 shows
the second scheme with RDMA read. When theren-
dezvousmessage arrives at the receiver, instead of re-
turning an acknowledgment to the sender, the receiver
initiates RDMA read operations to get the data. When
these RDMA read operations complete, a different con-
trol message, typed as FINACK, is sent to the sender,
both for acknowledging the arrival of the earlierren-
dezvousfragment and notifying the completion of the
whole message.

a) RDMA Write

−Rendezvous

RDMA Write

FIN

FIN_ACK

RDMA Read

−Rendezvous

b) RDMA Read

Fig. 5. RendezvousProtocol for Long Messages

5. Optimizing the Performance of PVFS2
over Quadrics

To improve the basic design discussed in Section 4,
we have explored several further design issues including
zero-copy non-contiguous network IO access, adaptive
rendezvousmessage transfer with RDMA read/write and
optimization on completion notification.

5.1. AdaptiveRendezvouswith RDMA Read and
RDMA Write

As discussed in Section 4.2, RDMA read and write
are both utilized in therendezvousprotocol. This
achieves zero-copy transmission of long messages. File
systems, such as DAFS [10], also take advantage of sim-
ilar RDMA-based message transmission. Typically the
server decides to use RDMA read or write based on

whether the client is performing a read or write oper-
ation: a read operation is implemented as RDMA write
from the server, and a write operation as a RDMA read.
Thus a server process can be potentially overloaded with
a large number of outstanding RDMA operations, which
can lead to suboptimal performance due to the band-
width drop-off [5]. Therefore a basic throttling mecha-
nism is needed to control the number of concurrent out-
standing RDMA operations. We introduce an adaptive
throttling mechanism to regulate the number of RDMA
operations at any given time. Under a light load, the
sender initiates a long message operation to the receiver,
which in turn pulls the message from the sender through
RDMA read. If either side has a large number of out-
standing RDMA operations, the receiver gathers this
knowledge from its local communicate state and the
information passed from the sender in the initialren-
dezvouspacket. When the receiver is heavily loaded,
it notifies the sender accordingly and the sender com-
pletes the operation through RDMA write. For the rea-
son of fairness to multiple clients, if both the sender and
the receiver are heavily loaded, the priority is given to
the server and have the client carry out the RDMA op-
erations. It does not matter whether it is a sender or a
receiver. Table 2 provides a sample receiver’s decision
table for the RDMArendezvousprotocol.

Table 2. Receiver’s Decision Table for Adaptive
RDMA RendezvousProtocol

load: sender<> receiver loaded server? RDMA
greater yes write
greater no read
equal yes write
equal no read
less yes write
less no read

5.2. Optimizing Completion Notification

Event mechanisms that enable both local and remote
completion notification are available in Quadrics com-
munication models. In particular, this mechanism can be
used to enable notification of message completion along
with RDMA read/write operations. In therendezvous
protocol, so long as the control information contained in
the last control message is available to the remote pro-
cess, the completion of a full message can be safely noti-
fied through an enabled remote event. We have designed
this as an optimization to therendezvousprotocol. A
sender process allocates a completion event and encodes
the address of this event in the firstrendezvousmessage.
When the receiver pulls the message via RDMA read, it

also triggers a remote event to the sender using the pro-
vided event address. Similarly, in the case of RDMA
write, the receiver provides the address of such an event
in its acknowledgment to the sender. The receiver de-
tects the completion of a full message through the re-
mote event triggered by a RDMA write operation. In ei-
ther case, both sides notice the completion of data trans-
mission without the need of an extra control message.

5.3. Zero-Copy Non-Contiguous IO

Non-contiguous I/O access is the main access pat-
tern in scientific applications. Thakur et. al. [25] also
noted that it is important to achieve high performance
MPI-IO to have native noncontiguous access support in
file systems. PVFS2 provides list network I/O inter-
face in its BMI interface to support communication over
non-contiguous memory. The corresponding communi-
cation operations on the sender and receiver sides do
not have to exactly match in terms of offset, length or
the number of units, so long as the receiver is provid-
ing enough memory for the incoming data. Basic list
IO non-contiguous communication support usually re-
sorts to memory packing and unpacking to convert non-
contiguous communication to contiguous. An alterna-
tive is to use multiple contiguous operations, this would
require multiple send and receiver operations on both the
sender and receiver sides. The former leads to an un-
necessary memory copy on both the sender and receiver
sides; the latter leads to more processing and smaller
communication operations. Both would result in perfor-
mance degradation.

Quadrics provides non-contiguous communication
operations in the form ofelan putvandelan getv. How-
ever, these operations are specifically designed for the
shared memory programming model (SHMEM) over
Quadrics. They cannot be utilized for efficient support
of PVFS2 non-contiguous IO operations because they
are built on top of a global memory space, which is only
available to the group of processes that are started un-
der Quadrics static process model. In addition, the final
placement of the data will still require a memory copy
from the global memory to the application destination
memory. We propose to utilize a single event chained
to multiple RDMA to support zero-copy non-contiguous
communication. An example of zero-copy list IO oper-
ation is shown in Fig. 6.

In the example shown in Fig. 6, the receiver side
has collected the information about list IO fragments
on both the sender and receiver sides. It first deter-
mines the number of required contiguous RDMA read
operations,N . Then it constructs the same number of
RDMA descriptors in the host memory and writes them
together into the Quadrics Elan4 command port (a com-
mand queue to the NIC formed by a memory-mapped

Command Port

Source

R
D

M
A

 R
ea

d

Destination

host_event

elan_event: N

descriptors

Fig. 6. Zero-Copy Non-Contiguous Communi-
cation with RDMA Read and Chained Event

user accessible NIC memory) through programmed IO.
An Elan4 event is created to wait on the completion
of N RDMA. As this event is triggered, the comple-
tion of list IO operation is detected through a host-side
event. The remote side is notified through a separated
chained message as described in Section 4.2 or simply a
remote event as described in Section 5.2. Note that, us-
ing this approach, multiple RDMA operations are issued
without calling extra sender or receiver routines. Zero-
copy is achieved by directly addressing the source and
destination memory. If RDMA write is chosen based
on the adaptiverendezvousprotocol, similar zero-copy
non-contiguous support can be achieved by issuing mul-
tiple RDMA write operations, all being chained with an-
other Elan4 event of countN .

6. Implementation

With the design of client/server connection model
and the transport layer over Quadrics communica-
tion mechanisms, we have implemented PVFS2 over
Quadrics/Elan4. The implementation is based on the
recent release of PVFS2-1.1-pre1. Due to the compat-
ibility issue of PVFS2 and Quadrics RedHat Linux ker-
nel distribution, we have utilized a patched stock kernel
linux-2.4.26-4.23qsnet. Our implementation is layered
on top of Quadrics library, libelan4, and completely re-
sides in the user space. We include the following choices
in our implementation: short messages are transmitted
in the eager protocol along with the chained control mes-
sage; long messages are transmitted through the adap-
tive rendezvousprotocol using zero-copy RDMA read
and write; zero-copy non-contiguous IO is supported us-
ing multiple RDMA and a single chained event; a throt-
tling mechanism is enforced to regulate the number of
concurrent RDMA read and write operations.

7. Performance Evaluation

In this section, we describe the performance
evaluation of our implementation of PVFS2 over
Quadrics/Elan4. The experiments were conducted on a
cluster of eight SuperMicro SUPER X5DL8-GG nodes:
each with dual Intel Xeon 3.0 GHz processors, 512
KB L2 cache, PCI-X 64-bit 133 MHz bus, 533MHz
Front Side Bus (FSB) and a total of 2GB PC2100 DDR-
SDRAM physical memory. All eight nodes are con-
nected to a QsNetII network [23, 3], with a dimension
one quaternary fat-tree [11] QS-8A switch and eight
Elan4 QM-500 cards. Each node has a 40GB, 7200
RPM, ATA/100 hard disk Western Digital WD400JB.
The operating system is RedHat 9.0 Linux. To minimize
the impact in network capacity, we used the TCP imple-
mentation of PVFS2 as a comparison. As mentioned in
Section 2.1, Quadrics provides an IP implementation on
top of its kernel communication library.

7.1. Performance Comparisons of Different
Communication Operations

Table 3 shows the comparisons of the latency and
bandwidth between TCP/IP over Quadrics and Quadrics
native communication operations, including QDMA and
RDMA read/write. Quadrics IP implementation is of-
ten referred to as EIP based on the name of its Ethernet
module. The performance of TCP stream over Quadrics
is obtained using the netperf [2] benchmark. The per-
formance of Quadrics native operations is obtained us-
ing microbenchmark programs,pgping andqping,
available from standard Quadrics releases [23].

Table 3. Network Performance over Quadrics

Operations Latency Bandwidth
TCP/EIP 23.92µs 482.26MB/s
Quadrics RDMA/Write 1.93µs 910.1MB/s
Quadrics RDMA/Read 3.19µs 911.1MB/s
Quadrics QDMA 3.02µs 368.2MB/s

As shown in the table, Quadrics native operations
provide better performance in terms of both latency and
bandwidth compared to the performance of TCP over
Quadrics. Moreover, the host CPU has less involvement
in the communication processing when using Quadrics
RDMA operations because of its zero-copy message de-
livery. More CPU cycles can be used to handle compu-
tation in other components and contribute to better over-
all file system performance. To demonstrate the poten-
tial and effectiveness of leveraging Quadrics capabili-
ties, we focus on the following aspects: the performance
of bandwidth-bound data transfer operations, the per-

formance of the latency-bound management operations,
and the performance benefits to application benchmarks,
such as MPI-Tile-IO [24] and BT-IO [26].

7.2. Performance of Data Transfer Operations

To evaluate the data transfer performance of PVFS2
file system, we have used a parallel program that itera-
tively performs the following operations: create a new
PVFS2 file, concurrently write data blocks to disjoint
regions of the file, flush the data, concurrently read the
same data blocks back from the file, and then remove the
file. MPI collective operations are used to synchronize
application processes before and after each I/O opera-
tion. In our program, each process writes and then reads
a contiguous 4MB block of data at disjoint offsets of a
common file based on its rank in the MPI job. At the
end of each iteration, the average time to perform the
read/write operations among all processes is computed
and recorded. Seven iterations are performed, and the
lowest and highest values are discarded. Finally, the av-
erage values from the remaining iterations are taken as
the performance for the read and write operations.

 0

 300

 600

 900

 1200

 1500

 1800

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 3S
Elan4 4S

TCP 1S
TCP 2S
TCP 3S
TCP 4S

Fig. 7. Performance Comparisons of PVFS2
Concurrent Read

We have divided the eight-node cluster into two
groups: servers and clients. Up to four nodes are con-
figured as PVFS2 servers, and the remaining nodes are
running as clients. Experimental results are labeled as
NS for a configuration with N servers. Fig. 7 shows
the read performance of PVFS2 over Elan4 compared
to the PVFS2 over TCP. PVFS2 over Elan4 improves
the aggregated read bandwidth by more than 140% com-
pared to that of PVFS2 over TCP. This suggests that the
read performance of PVFS2 is much limited by the net-
work communication and can significantly benefit from
the improvement in the network performance.

We have also performed experiments to evaluate the
write performance of PVFS2/Elan4. We have observed

less than 10% performance improvement compared to
PVFS2/TCP (data not shown). This is because the net-
work bandwidth of both Elan4 and TCP are more than
350MB/s, which is much higher than the performance of
the local IDE disk in the order of 40MB/s. Instead, we
have used a memory-resident file system, ramfs, to avoid
the bottleneck of disk access. This is shown in Fig.8.
With varying numbers of clients concurrently writing to
the file system, PVFS2 over Elan4 improves the aggre-
gated write bandwidth by up to 82% compared to that
of PVFS2 over TCP. This suggests that PVFS2 write
bandwidth can also benefit from Quadrics communica-
tion mechanisms, though it is relatively less bounded by
the network communication compared to the read per-
formance.

 0

 250

 500

 750

 1000

 1250

 1 2 3 4 5 6 7

A
gg

re
ga

te
d

B
an

dw
id

th
 (

M
B

/s
)

Number of Clients

Elan4 1S
Elan4 2S
Elan4 3S
Elan4 4S

TCP 1S
TCP 2S
TCP 3S
TCP 4S

Fig. 8. Performance Comparisons of PVFS2
Concurrent Write

7.3. Performance of Management Operations

PVFS2 parallel file system is designed to provide
scalable parallel IO operations that match MPI-IO se-
mantics. For example, management operations, such
as MPI File open and MPI File set size, are
shown to be very scalable in [16]. These management
operations typically do not involve massive data transfer.
To evaluate the benefits of Quadrics low latency commu-
nication to these management operations, we have per-
formed the following experiments using a microbench-
mark program available in the PVFS2 distribution.

With the eight-node cluster, a PVFS2 file system is
configured with two servers, both act as metadata and
IO servers. The first experiment measures the average
time to create a file using collectiveMPI File open
with different numbers of clients. The second exper-
iment measures the average time to perform a resize
operation using collectiveMPI File set size with
different numbers of clients. As shown in Table 4, our
PVFS2 implementation over Elan4 improves the time

Table 4. Comparison of the Scalability of Man-
agement Operations

No. of clients TCP Elan4
Create (milliseconds)

1 28.114 27.669
2 28.401 28.248
3 28.875 28.750
4 28.892 28.710
5 29.481 29.123
6 29.611 29.410

Resize (milliseconds)
1 0.192 0.141
2 0.248 0.187
3 0.330 0.201
4 0.274 0.180
5 0.331 0.226
6 0.338 0.213

to resize a file by as much as 125µs (37%) for up to 6
clients. However, the improvement on the time to create
a file is just marginal compared to the total time. This is
because the time in allocating the storage spaces at the
PVFS2 server for the new file, though small, still dom-
inates over the communication between the client and
the server. On the other hand, once the file is created,
the time for the operations that update the file metadata,
as represented by the resize operation, can be reduced
by the PVFS2 implementation over Elan4. Therefore
PVFS2 implementation over Elan4 is also beneficial to
the scalability of MPI-IO management operations.

7.4. Performance of MPI-Tile-IO

MPI-Tile-IO [24] is a tile reading MPI-IO applica-
tion. It tests the performance of tiled access to a two
dimensional dense dataset, simulating the type of work-
load that exists in some visualization applications and
numerical applications. Four of eight nodes are used as
server nodes and the other four as client nodes running
MPI-tile-IO processes. Each process renders a2 × 2 ar-
ray of displays, each with1024×768 pixels. The size of
each element is 32 bytes, leading to a file size of 96MB.

PVFS2 provides two different modes for its IO
servers: trovesync and notrovesync. The former is the
default mode in which IO servers performfsync op-
erations to flush its underlying file system buffer cache;
the latter allows the IO servers to take the cache effects
of the local file system for better performance. We have
evaluated both the read and write performance of mpi-
tile-io over PVFS2/Elan4 under both modes. As shown
in Fig. 9, compared to PVFS2/TCP, PVFS2/Elan4 im-
proves MPI-Tile-IO write bandwidth by 170% with

server side caching effects (under notrovesync mode,
W/N), and 12% without caching effects (under tro-
vesync mode, W/T). On the other hand, MPI-Tile-IO
read bandwidth is improved by about 240% with or
without server side caching effects. These results in-
dicate our implementation is indeed able to leverage
the performance benefits of Quadrics mechanisms into
PVFS2: when the server disk access is a bottleneck, it
improves the write performance with its zero-copy user-
level communication which competes less with the disk
access for CPU time; when the server disk access is not
a primary bottleneck, it improves both the read and write
bandwidth significantly.

Write W/T Read W/T Write W/N Read W/N
0

50

100

150

200

250

300

350

400

B
an

dw
id

th
 (

M
B

/s
)

PVFS2/TCP
PVFS2/Elan4

Fig. 9. Performance of MPI-Tile-IO Benchmark

7.5. Performance of NAS BT-IO

The BT-IO benchmarks are developed at NASA
Ames Research Center based on the Block-Tridiagonal
problem of the NAS Parallel Benchmark suite. These
benchmarks test the speed of parallel IO capability of
high performance computing applications. The entire
data set undergoes complex decomposition and par-
tition, eventually distributed among many processes,
more details available in [26]. We have used four of
eight nodes used as server nodes and the other four
as client nodes. The BT-IO problem size class A is
evaluated. Table 5 shows the BT-IO performance of
PVFS2/Elan4 and PVFS2/TCP, along with the perfor-
mance of BT benchmark without IO access. Com-
pared to pure BT benchmark, the BT-IO benchmark
has only 2.12 seconds extra IO time when access-
ing a PVFS2/Elan4 file system, but 5.38 seconds IO
time when accessing a PVFS2/TCP file system. With
PVFS2/Elan4, the IO time of BT-IO is reduced by 60%
compared to PVFS2/TCP.

Table 5. Performance of BT-IO Benchmark (sec-
onds)

Type Duration IO Time
No IO 61.71 −−
BT/IO Elan4 63.83 2.12
BT/IO TCP 67.09 5.38

8. Related Work

Previous research have studied the benefits of using
user-level communication protocols to parallelize IO ac-
cess to storage servers. Zhou et. al. [30] have studied
the benefits of VIA networks in database storage. Wu
et. al. [27] have described their work on InfiniBand over
PVFS1 [20]. DeBergalis et. al. [10] have further de-
scribed a file system, DAFS, built on top of networks
with VIA-like semantics. Our work is designed for
Quadrics Interconnects over PVFS2 [1].

Models to support client/server communication and
provide generic abstractions for transport layer over dif-
ferent networks have been described in [29, 17, 6]. Our
work explores the ways to overcome Quadrics static
process/communication model and optimize the trans-
port protocols with Quadrics event mechanisms. Ching
et. al [7] have implemented list IO in PVFS1 and eval-
uated its performance over TCP/IP. Wu et. al [28] have
studied the benefits of leveraging InfiniBand hardware
scatter/gather operations to optimize non-contiguous IO
access in PVFS1. Our work exploits a communica-
tion mechanism with a single event chained to multiple
RDMA to support zero-copy non-contiguous network
IO over Quadrics.

9. Conclusions

In this paper, we have examined the feasibility of de-
signing a parallel file system over Quadrics [23] to take
advantage of its user-level communication and RDMA
operations. PVFS2 [1] is used as the parallel file sys-
tem platform in this work. The challenging issues in
supporting PVFS2 on top of Quadrics interconnects are
identified. Accordingly, strategies have been designed
to overcome these challenges, such as constructing a
client-server connection model, designing the PVFS2
transport layer over Quadrics RDMA read and write, and
providing efficient non-contiguous network IO support.
The performance of our implementation is compared to
that of PVFS2/TCP over Quadrics IP implementation.
Our experimental results indicate that: the performance
of PVFS2 can be significantly improved with Quadrics
user-level protocols and RDMA capabilities. Compared
to a PVFS2 implementation over TCP/IP over Quadrics,

our implementation improves the aggregated read per-
formance by more than 140%. It is also able to deliver
significant performance improvement in terms of IO ac-
cess to application benchmarks such as mpi-tile-io [24]
and BT-IO [26]. To the best of our knowledge, this is
the first high performance design and implementation of
a user-level parallel file system, PVFS2, over Quadrics
interconnects.

In future, we intend to leverage more features of
Quadrics to support PVFS2 and study their possible
benefits to different aspects of parallel file system.
For example, we intend to study the feasibility of of-
floading PVFS2 communication-related processing into
Quadrics programmable network interface to free up
more host CPU computation power for disk IO opera-
tions. We also intend to study the benefits of integrating
Quadrics NIC memory into PVFS2 memory hierarchy,
such as data caching with client and/or server-side NIC
memory.

Acknowledgment

We gratefully acknowledge Dr. Pete Wyckoff from
Ohio Supercomputing Center and Dr. Jiesheng Wu from
Ask Jeeves, Inc for many technical discussions. We
would like to thank members from the PVFS2 team for
their technical help. Furthermore, We also would like to
thank members Drs Daniel Kidger and David Addison
from Quadrics, Inc for their valuable technical support.

References

[1] The Parallel Virtual File System, version 2. http://www.
pvfs.org/pvfs2.

[2] The Public Netperf Homepage. http://www.netperf.org/
netperf/NetperfPage.html.

[3] J. Beecroft, D. Addison, F. Petrini, and M. McLaren.
QsNet-II: An Interconnect for Supercomputing Appli-
cations. Inthe Proceedings of Hot Chips ’03, Stanford,
CA, August 2003.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area Network.IEEE Micro,
15(1):29–36, 1995.

[5] D. Bonachea, C. Bell, P. Hargrove, and M. Welcome.
GASNet 2: An Alternative High-Performance Commu-
nication Interface, Nov. 2004.

[6] P. H. Carns, W. B. Ligon III, R. Ross, and P. Wyck-
off. BMI: A Network Abstraction Layer for Parallel I/O,
2004.

[7] A. Ching, A. Choudhary, W. Liao, R. Ross, and
W. Gropp. Noncontiguous I/O through PVFS. InPro-
ceedings of the IEEE International Conference on Clus-
ter Computing, Chicago, IL, September 2002.

[8] Cluster File System, Inc. Lustre: A Scalable, High Per-
formance File System. http://www.lustre.org/docs.html.

[9] A. M. David Nagle, Denis Serenyi. The Panasas Ac-
tiveScale Storage Cluster – Delivering Scalable High
Bandwidth Storage. InProceedings of Supercomputing
’04, November 2004.

[10] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct Access
File System. InProceedings of Second USENIX Con-
ference on File and Storage Technologies (FAST ’03),
2003.

[11] J. Duato, S. Yalamanchili, and L. Ni.Interconnection
Networks: An Engineering Approach. The IEEE Com-
puter Society Press, 1997.

[12] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and
D. S. Blumenthal. PPFS: A High Performance Portable
Parallel File System. InProceedings of the 9th ACM In-
ternational Conference on Supercomputing, pages 385–
394, Barcelona, Spain, July 1995. ACM Press.

[13] IBM Corp. IBM AIX Parallel I/O File System: In-
stallation, Administration, and Use. Document Number
SH34-6065-01, August 1995.

[14] Infiniband Trade Association. http://www.infinibandta.
org.

[15] Intel Scalable Systems Division. Paragon System User’s
Guide, May 1995.

[16] R. Latham, R. Ross, and R. Thakur. The impact of file
systems on mpi-io scalability. InProceedings of the
11th European PVM/MPI Users’ Group Meeting (Euro
PVM/MPI 2004), pages 87–96, September 2004.

[17] J. Liu, M. Banikazemi, B. Abali, and D. K. Panda. A
Portable Client/Server Communication Middleware over
SANs: Design and Performance Evaluation with Infini-
Band. In In SAN-02 Workshop (in conjunction with
HPCA), February 2003.

[18] Message Passing Interface Forum.MPI-2: Extensions
to the Message-Passing Interface, Jul 1997.

[19] N. Nieuwejaar and D. Kotz. The Galley Parallel File
System.Parallel Computing, (4):447–476, June 1997.

[20] P. H. Carns and W. B. Ligon III and R. B. Ross and R.
Thakur. PVFS: A Parallel File System For Linux Clus-
ters. InProceedings of the 4th Annual Linux Showcase
and Conference, pages 317–327, Atlanta, GA, October
2000.

[21] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks. InProceedings
of the 1988 ACM SIGMOD International Conference on
Management of Data, Chicago, IL, 1988.

[22] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The Quadrics Network: High Performance Clus-
tering Technology.IEEE Micro, 22(1):46–57, January-
February 2002.

[23] Quadrics, Inc. Quadrics Linux Cluster Documentation.
[24] R. B. Ross. Parallel i/o benchmarking consortium. http://

www-unix.mcs.anl.gov/rross/pio-benchmark/html/.
[25] R. Thakur, W. Gropp, and E. Lusk. On Implementing

MPI-IO Portably and with High Performance. InPro-
ceedings of the 6th Workshop on I/O in Parallel and Dis-
tributed Systems, pages 23–32. ACM Press, May 1999.

[26] P. Wong and R. F. Van der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report NAS-03-
002, Computer Sciences Corporation, NASA Advanced
Supercomputing (NAS) Division.

[27] J. Wu, P. Wychoff, and D. K. Panda. PVFS over Infini-
Band: Design and Performance Evaluation. InProceed-
ings of the International Conference on Parallel Pro-
cessing ’03, Kaohsiung, Taiwan, October 2003.

[28] J. Wu, P. Wychoff, and D. K. Panda. Supporting Effi-
cient Noncontiguous Access in PVFS over InfiniBand.
In Proceedings of Cluster Computing ’03, Hong Kong,
December 2004.

[29] R. Zahir. Lustre Storage Networking Transport Layer.
http://www.lustre.org/docs.html.

[30] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F.
Philbin, and K. Li. Experiences with VI Communica-
tion for Database Storage. InProceedings of the 29th
Annual International Symposium on Computer Architec-
ture, pages 257–268. IEEE Computer Society, 2002.

