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Abstract

Modern day MPI implementations provide several
communication channels for optimizing performance.
To obtain the best performance for the most demanding
contemporary applications, it becomes critical to man-
age these communication channels efficiently. Various
issues related to overhead for message discovery and
thresholds for choosing different channels need to be
considered for designing the MPI layer. It is not a
trivial task to choose these parameters since application
characteristics and demands from the MPI layer vary
widely. In this paper we try to address these issues. We
propose several different schemes such as static priority
and dynamic priority to efficiently implement channel
polling. Our results indicate that we can reduce latency
by unto 37% and message discovery time upto 45%.
Further, we explore several different methodologies to
choose appropriate thresholds for different channels.

1 Introduction

Cluster based computing systems are becoming pop-
ular for a wide range of scientific applications owing
to their cost-effectiveness. These systems are typ-
ically built from Symmetric Multi-Processor (SMP)
nodes connected with high speed Local Area Networks
(LANs) or System Area Networks (SANs). A major-
ity of these scientific applications are written on top of
the Message Passing Interface (MPI) [11]. Even though
the high performance networks have evolved and have
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very low latencies, below 5µs, intra-node communica-
tion still remains order of magnitudes faster than the
network. In order to fully exploit this, MPI applica-
tions usually run a set of processes on the same physi-
cal node. Therefore, MPI applications usually perform
both intra and inter node communications on SMP
clusters.

To optimize intra and inter node communication,
many MPI implementations such as MVAPICH [2] pro-
vide multiple communication channels. These channels
may either be for network communication or for intra-
node communication. Efficient polling of these commu-
nication channels for discovering new messages is often
considered to be one of the key design issues in imple-
menting MPI over any network layer. In order to ef-
ficiently design an implement these channel interfaces,
we need a centralized policy. Since communication pat-
terns as well as need of overlap of communication and
computation vary widely over different applications, it
becomes hard to design a general purpose policy. We
need to carefully consider the overheads and benefits
offered by each channel.

In this paper, we try to bring forward important fac-
tors that should be considered to efficiently utilize sev-
eral MPI channels through in-depth measurements and
analysis. Our study starts with polling schemes among
multiple channels. By our experiments we observe that
the intra-node latency can be improved by 37% using
our static polling scheme. Further, the adaptive polling
scheme can reduce the new message discovery overhead
by 45%. Then, we explore methodologies to decide the
threshold between multiple channels.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of the various communi-
cation channels used in MVAPICH. Section 3 describes
the various schemes we devise for polling different chan-
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nels. Section 4 describes the methodology followed for
choosing efficient thresholds for different channels. In
section 5 we detail the previous work done in this di-
rection. Then finally we conclude in section 6 and state
our future work directions.

2 Background

MVAPICH [2] is an open-source implementation of
MPI over InfiniBand [1]. MVAPICH is based on the
Abstract Device Layer of MPICH [6]. In this section we
give a brief background of the various communication
channels used in MVAPICH.

2.1 Network Channel

InfiniBand Architecture offers both send/receive
and RDMA semantics. MVAPICH uses both of them
for efficient communication.

2.1.1 RDMA Channel

The MPI eager protocol is mapped to the RDMA
channel design. Small and control messages are ea-
gerly placed into the receiving MPI’s internal buffers.
The RDMA Write InfiniBand primitive is used for
this channel. Since there is no software involvement
at the receiver side, the receiver can only discover
new messages based on polling memory contents. The
RDMA buffers are maintained in a circular queue, and
a pointer is kept to the buffer in which the new mes-
sage is expected. The sender and the receiver main-
tain persistent-association of RDMA buffers [9]. After
the head and the tail pointers of the sender point to
the same location, the sender cannot send any more
RDMA messages. It has to wait for a message from
the receiver (with a piggy-backed ACK) or an explicit
ACK message.

2.1.2 Send/Receive Channel

In this channel the messages are sent over InfiniBand
send/receive primitives. The receiver pre-posts a num-
ber of buffers at the initialization time. For transferring
a message, the sender first copies the application buffer
into the registered (pinned) buffer and then issues an
InfiniBand send operation. Upon arrival of the message
at the receivers end, a completion entry is generated for
the receive (which was pre-posted earlier). The receiver
has to poll the completion queue to detect the new ar-
rival. It is to be noted that the same completion queue
can be shared among all connections.

2.2 Shared Memory Channel

This channel involves each MPI process on the same
node attaching itself to a shared memory region. This
shared memory region can then be used amongst the
local processes to exchange messages and other con-
trol information. This shared memory based design
has been used in MPICH-GM[12] and other MPI im-
plementations such as MVAPICH. The sending pro-
cess copies the message along with other information
required for message matching to the shared memory
area. The receiving process can then match the tags
of the posted receives and accordingly copy over the
correct message to its own buffer. We note that this
approach involves minimal setup overhead for every
message exchange. However, there are at least two
copies involved in the message exchange. This ap-
proach might tie down the CPU with memory copy
time. This method is feasible for shorter messages,
where the send, receive and shared buffer are probably
present in the cache. But as the size of the message
grows, the performance deteriorates. Such vigorous
copy-in and copy-out also destroys the cache contents
for the end MPI application.

2.3 Kernel Module Channel

This channel has been designed and implemented in
a previous work [7]. This approach takes help from the
operating system kernel to copy messages directly from
one user process to another. The sender or the receiver
process posts the message request descriptor in a mes-
sage queue indicating its virtual address, tags etc. This
memory is then mapped into the kernel address space.
When the other process (either sender or receiver) ar-
rives at the message exchange point, the message de-
scriptors are matched at the kernel level and the kernel
performs a direct copy from the sender buffer to the re-
ceiver application buffer. Thus this approach involves
only one copy. This approach reduces the number of
copies. However, there are other overheads, which in-
clude time to trap into the kernel and locking of other
kernel data structures. In addition, one CPU is still
required to perform the copy operation. We note that
these overheads are relatively less as compared to typi-
cal message transfer latencies of medium and large mes-
sages.

2



3 Channel Polling

3.1 Channel Polling Overheads

Each channel has different polling overhead and
mechanism to deliver messages to the MPI layer. An
efficient polling scheme should minimize the overhead
associated with discovery of new messages.

3.1.1 Network Channel Overhead

MVAPICH [2] uses two methods to communicate over
the InfiniBand network. For short and control mes-
sages, it uses the Eager protocol. This protocol uses
RDMA. Since there is no software involvement at the
receiver side, the only way to check for incoming mes-
sages is by polling memory locations. The polling over-
head involved in polling memory locations is negligible.
Polling this RDMA channel is equivalent to polling n

bytes, where n is the number of processes on different
physical nodes. Another network communication chan-
nel used is the InfiniBand sends and receives. These
generate message completions at the receiver side. The
receiver polls the completion queue and can look at
new incoming messages. The overhead associated with
polling the completion queue is constant and does not
vary across the number of processes. However, the
overhead to poll an empty completion queue, it takes
around 0.3µs.

3.1.2 Shared Memory Channel Overhead

The shared memory channel uses a FIFO queue for
each shared memory connection. In addition, the chan-
nel maintains a counter which indicates whether a new
message is available for this connection. So, polling
the shared memory channel is equivalent to polling n

bytes, where n is the number of processes on the same
physical node.

We note that in the industry, mostly 2 to 16 way
SMPs are used. Hence, the polling overhead for this
shared memory channel is not significant.

3.1.3 Kernel Module Channel Overhead

The kernel module channel [7] copies messages directly
from the sender buffer to the receiver buffer. This ap-
proach can avoid multiple copies to and from a shared
memory region. Also, it avoids the pinning cost at one
side. To reduce the pinning cost at one side, the copy
is performed in either the send or the receive. Polling
of the kernel module channel is expensive as it requires

a context-switch to the kernel-space. The kernel mod-
ule can provide two mechanisms to poll for incoming
messages:

• Busy polling of the kernel module in the blocking
MPI send, receive or wait functions. In this case,
we poll the kernel module channel explicitly when
a message is expected to arrive from that channel.

• The kernel module can provide some signalling bit
to indicate the arrival of new messages to the MPI
layer. Although it can reduce the number of con-
text switches, still we need to trap into the ker-
nel to match MPI headers. In the worst case, if
some unexpected message arrives in the kernel, the
MPI layer still needs to poll that message because
the signal bit does not have information about the
MPI header.

In order to avoid multiple context-switches and
needlessly introducing overhead polling the kernel
module, we place the polling of the kernel module out-
side the main MPI progress engine. So, if any messages
are not expected from the kernel module channel, then
that channel is not polled at all. All unexpected mes-
sages arriving through the kernel module channel are
kept queued by the kernel module. The messages are
copied when the receiver posts the matching receive.

3.2 Channel Polling Schemes

As described in section 3.1 there are different costs
associated with polling of each channel. In this section
we design different polling schemes to reduce the over-
head associated with polling network and shared mem-
ory channels and enable faster message discovery. As
we have described in section 3.1, the polling of the ker-
nel module is placed outside the main progress engine.
Since, the kernel module is not polled if no messages
are not expected from it, we exclude the kernel mod-
ule from the study of these polling schemes. Broadly
speaking, the channel polling schemes can be classi-
fied as static and dynamic depending on whether the
scheme itself changes over time or not.

3.2.1 Static Channel Polling Schemes

Static polling schemes are decided at the start of the
MPI application. This scheme can assign different pri-
orities (or weights) to different channels. The intuitive
idea behind such schemes is that some channels may
be used more or faster than the others. Many such
schemes are possible based on various considerations.
Some of them can be listed as:
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• Latency Based Priority Scheme: In this
scheme the channel with the lowest latency is given
the highest priority. Hence, in this scheme mes-
sages from the lowest latency channel are discov-
ered before messages from other channels.

• Overhead Based Priority Scheme: In this
scheme the channels which have the least over-
head of polling are given the highest priority. This
scheme tries to minimize the overall overhead as-
sociated with the MPI progress engine.

In our paper, we consider both the schemes. In sec-
tion 4.2, we notice that the shared memory channel
has the lowest latency. Also, in section 3.1 we notice
that the overhead of polling this channel is the least. In
the new hybrid polling scheme, we give most priority
to the shared memory channel. In addition, since the
overhead of polling this channel is the least, we always
poll this channel with at least as much weight as the
other channels.

3.2.2 Dynamic Channel Polling Schemes

Dynamic polling schemes can change over the course
of the execution of the MPI application. There are
various factors to be considered while designing such a
dynamic scheme:

• Update rate: This factor determines how often
the priority ratios are calculated. A very high
update rate would imply increased overheads for
short messages, whereas a low update rate would
miss smaller bursts of messages from other chan-
nels.

• Message history: This factor determines the
number of messages recorded for computing the
new priority ratio. The more messages are consid-
ered, the slower the priority ratio will change. This
might miss smaller bursts of messages, whereas
when lower number of messages are considered a
lot of fluctuation may occur even with small bursts
of messages from a channel.

In section 3.3.2, we design a MPI micro benchmark
to evaluate the average time taken to discover a mes-
sage. We then vary the update rate and the message
history to observe the variation of the discovery time.

3.3 Performance evaluation of Polling Schemes

We conducted experiments on an 8 node cluster with
the following configuration:

Super Micro SUPER X5DL8-GG nodes with dual
Intel Xeon 3.0 GHz processors, 512 KB L2 cache, 2
GB memory, PCI-X 64-bit 133 MHz bus. The Linux
kernel version used was 2.4.22smp from kernel.org. The
Mellanox InfiniBand stack [10] was used. The version
of VAPI was 3.2 and firmware version 3.2.

3.3.1 Evaluation of Static Polling Scheme

One crucial factor to determine for the static polling
scheme is “how much priority should be given to the
shared memory channel?” Obviously, if we give more
priority to shared memory channel, then the shared
memory latency will reduce. But at the same time the
latency of messages coming over the network will also
increase. To find out the optimal priority ratio, we
conducted the standard ping-pong latency test with
different priority ratios. Figure 2 shows variation of
ping-pong latency with various priority ratios.

We can observe from these figures that if we give the
shared memory channel a priority ratio of 50 : 1, then
we can get a reasonable balance between improvement
of shared memory latency and not hurt the network
latency. Our experiments indicate that we can achieve
upto 37% improvement in intra-node latency using the
static polling scheme scheme with 1000 : 1.

3.3.2 Evaluation of Dynamic Polling Scheme

In order to evaluate the dynamic polling schemes we
need to devise a new MPI micro benchmark that ap-
propriately captures the message discovery time at the
MPI layer. There are three processes in the bench-
mark. Two processes are on the same node, whereas
one process is on a separate node. This process sends
messages over the network, whereas the process on the
same node sends messages exclusively through shared
memory channel. On the receipt of each message the
“root” process replies with an ACK. The process send-
ing the “burst” number of messages to the root is al-
ternately selected between the network peer and the
shared memory peer. This test captures the message
discovery time by the root process before it can send
an ACK to the peer process. As the rate of updation
of the priority ratios is changed, there are tradeoffs
between reducing the message discovery time of the
shared memory messages and network messages. Fig-
ure 1 illustrates this micro benchmark where we are
trying to measure time T .

Figure 3 shows the performance results of this micro
benchmark with message burst sizes of 100 and 200
with varying update rates.

We observe that with the increase of update rate,
the message discovery time actually decreases. How-
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Figure 1. Message Discovery Micro bench-
mark

ever, when the update rate becomes higher, the over-
head causes the discovery time to rise. We also observe
that when the burst size is equal to the update rate,
the discovery time increases significantly due to con-
tinuous wrong predictions. We conclude from these
figures that an update rate of 8 or 10 is enough not
to introduce too much overhead and also sustain fairly
small burst of messages. Our experiments indicate that
we can achieve upto 45% improvement rate of message
discovery time with burst size of 200.

4 Channel Thresholds

As described in section 2 each communication chan-
nel has different performance characteristics. Some
channels have low latency and some channels have high
bandwidth. In addition, some channels do not require
the involvement of the host CPU. In this section, we
take a look at selecting appropriate thresholds for effi-
cient message passing.

4.1 Threshold Decision Methodology

In this section we discuss different approaches to
choosing appropriate thresholds for choosing the best
possible channel for communication.

4.1.1 Microbenchmark Based Decision

In general, it is very difficult to decide the threshold of
communication channel for all applications. However,
it is widely accepted that such decisions are based on
latency and bandwidth measurements. Therefore we
can look at MPI microbenchmarks to see the basic per-
formance of each channel. We evaluate based on the
standard ping-pong latency and bandwidth tests [8].

4.1.2 CPU Utilization Based Decision

In this approach we calculate the CPU utilization for
message passing. Although some channels might pro-
vide higher latency but they may effectively overlap
computation and communication. This might be ben-
eficial for applications that are efficiently programmed
to overlap them. However, this is very application spe-
cific. For applications which mostly use blocking op-
erations, simply providing the lowest latency channel
would be enough.

4.2 Evaluation of Threshold

In this section we run the above mentioned decision
approaches on the cluster described in section 3.3. We
use the standard ping-pong latency and bandwidth to
evaluate the threshold points for the three channels.

Figure 5 shows the experimental results of the la-
tency and bandwidth tests.

We find that for messages less than 4KB size, it is
beneficial to use the shared memory based approach.
This is because the shared memory channel avoids
context-switch cost and maximizes cache effect. For
messages greater than that, it is useful to have the ker-
nel module based approach. This is mainly because the
number of copies has been reduced to one.

Figure 4 shows the CPU utilization taken by each
channel. We note that the CPU utilized by the network
is close to 1% whereas the other copy based schemes
it is higher since the CPU is tied down with the copy
operation. Therefore, if the MPI application tries to
maximize the overlap between computation and com-
munication, the network channel can be better than
others even for intra-node communication. We are an-
alyzing the high CPU utilization of the kernel module.
We will include that analysis in our technical report
and final version.
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5 Related Work

Several researchers have proposed different designs
for efficiently implementing intra-node communication
in clusters. In this section, we describe in brief
their contributions. Geoffray, Tourancheau, Prylli et
al [13][5][4] suggest a BIP-SMP multi-protocol layer
for intra-node and inter-node communication. Taka-
hashi et al [15][14] provide a device driver called
PM/SHMEM that supports a direct memory access be-
tween processes. MPICH-GM[12] provides a User level
shared memory approach for MPI. It also provided a
kernel level approach but the support is withdrawn cur-
rently to the best of our knowledge. Although many
researchers have suggested different channels for intra-
node communication, they have not considered the de-
sign factors to optimize polling among different chan-
nels and communication/computation overlap.

In addition it is to be noted that Brightwell, et al
have shown the impact of the usage of MPI queue on
latency and applications[16] [3].

6 Conclusion

In this paper we proposed several different schemes
for polling the communication channels in MVAPICH.
We evaluated several approaches, both static and dy-
namic approaches to polling. In addition, we evaluated
thresholds for each channel both based on raw MPI la-
tencies and bandwidths and also CPU utilization.

We note that the static polling scheme can reduce
intra-node latencies by 37%. By the adaptive polling
scheme we can reduce the message discovery overhead
by 37% for a message burst of 100. For a message
burst of 200, we could reduce the discovery overhead
to 45%. Also, we evaluated the thresholds for all the
communication channels.

We would like to continue work in this direction. We
would like to evaluate the impact of these schemes on
end MPI applications.
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