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Abstract

High performance intra-node communication sup-
port for MPI applications is critical for achieving the
best performance out of clusters of SMP workstations.
Although the performance of system area networks has
improved in the recent years, intra-node communica-
tion still remains orders of magnitude faster than the
network. Present day MPI stacks cannot make use of
operating system kernel support for intra-node commu-
nication. This is primarily due to the lack of an ef-
ficient, portable, stable and MPI friendly interface to
access the kernel functions. In this paper we attempt
to address design challenges for implementing such a
high performance and portable kernel module interface.
We implement a kernel module interface called LiMIC
and integrate it with MVAPICH, an open source MPI
over InfiniBand. Our performance evaluation reveals
that the point-to-point latency can be reduced by 72%
and the bandwidth improved by 405% for 64KB message
size. In addition, LiMIC can enhance the performance
of NAS IS Class B benchmark by up to 13.5%.

1 Introduction

Cluster based computing systems are becoming pop-
ular for a wide range of scientific applications owing
to their cost-effectiveness. These systems are typ-
ically built from Symmetric Multi-Processor (SMP)
nodes connected with high speed Local Area Networks
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(LANs) or System Area Networks (SANs) [8]. A major-
ity of these scientific applications are written on top of
the Message Passing Interface (MPI) [15]. Even though
the high performance networks have evolved and have
very low latencies, below 5µs, intra-node communica-
tion still remains order of magnitudes faster than the
network. In order to fully exploit this, MPI applica-
tions usually run a set of processes on the same physical
node.

To provide high performance to the MPI applica-
tions, an efficient implementation of intra-node mes-
sage passing becomes critical. Although several MPI
implementations [3][16] provide intra-node communica-
tion support, the performance offerred is not optimal.
This is mainly due to several message copies involved
in the process of intra-node message passing. Every
process has its own virtual address space and can-
not directly access another process’s message buffers.
Consequently, explicit shared memory is used in mes-
sage passing, thus introducing copies. One approach
to avoid extra message copies is to use the Operat-
ing System kernel to provide a direct copy from one
process to another. While some researchers have sug-
gested this approach [17][11][19][18][16], their efforts
fall short because of several design limitations and the
lack of portability. Accordingly, the current generation
high performance MPI implementations do not have
the Operating System kernel support for high perfor-
mance intra-node message passing.

In this paper, we design and implement a portable
approach to intra-node message passing at the kernel
level. To achieve this goal, we design and implement
a Linux kernel module that provides an MPI friendly
interface. This module is independent of a any commu-
nication library or interconnection network and offers
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portability across the Linux kernels. We call this ker-
nel module as LiMIC (Linux kernel module for MPI
Intra-node Communication).

InfiniBand [1] is a high-performance interconnect
based on open standards. It offers very low message la-
tency, less than 5 µs and high bandwidth of 880 Million
Bytes per second. MVAPICH [3] is an implementation
of MPI over InfiniBand. MVAPICH is based on the
Abstract Device Layer of MPICH [12]. InfiniBand net-
work cards support efficient intra-node message pass-
ing. To evaluate the impact of our design of LiMIC,
we integrate it into MVAPICH. Our performance eval-
uation reveals that for point-to-point operations, we
can achieve a 405% benefit in bandwidth and 72% im-
provement in latency for 64KB message size. Further,
our application level evaluation with the NAS bench-
marks [6], Integer Sort, reveals a performance benefit
of up to 12.66% and 13.5% executing Class A and B
respectively.

The rest of this paper organized as follows: Section 2
describes design alternatives for intra-node communi-
cation. We propose a kernel based memory mapping
scheme in Section 3. Then we detail design challenges
and implementation issues of LiMIC in Section 4 and
present its performance evaluation results in Section 5.
Section 6 addresses related works. Finally, this paper
concludes in Section 7.

2 Existing Approaches

In this section we detail some of the existing ap-
proaches in current generation MPI implementations.
In addition, we describe the relative benefits and draw-
backs of each alternative.

2.1 NIC-Based Message Loopback

An intelligent NIC can provide a NIC based loop-
back. When a message transfer is initiated, the NIC
can detect whether the destination is the same phys-
ical node or not. By intiating a local DMA from the
NIC memory back to the host memory, we can gain
achieve higher performance. Firstly, we can reduce
the overhead introduced by the network components
like switches. Secondly, we can avoid flooding the net-
work by unecessary messages. Thirdly, we can save
the CRC checks which are usually done on packets
which are received over the network. However, there
still exist two DMA operations. Although I/O buses
such as PCI are getting faster, the DMA overhead
for small messages is significantly high compared to
User-Space Shared Memory based implementation de-
scribed in Section 2.2. Additionally, the bandwith of

the I/O bus is shared between the copy-out and the
copy-in operations, hence this alternative can give us
only half the bandwidth available for the I/O bus. Fur-
ther, the DMA operations cannot utilize the cache ef-
fect for small or medium messages. Hence, this ap-
proach does not provide good benefits for smaller mes-
sage sizes. Figure 1 illustrates this scheme.

InfiniHost[14] is a Mellanox’s[2] second generation
InfiniBand(IB) Host Channel Adapter (HCA). It pro-
vides internal loopback for packets transmitted be-
tween two Queue Pairs (connections) that are assigned
to the same HCA port.
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Figure 1. NIC based message loopback

2.2 User-Space Shared Memory

This design alternative involves each MPI process
on a local node, attaching itself to a shared memory
region. This shared memory region can then be used
amongst the local processes to exchange messages and
other control information. This shared memory based
design has been used in MPICH-GM[16] and other
MPI implementations such as MVAPICH over Infini-
Band [3]. The sending process copies the message along
with other information required for message matching
to the shared memory area. The receiving process
can then match the tags of the posted receives and
accordingly copy over the correct message to its own
buffer. We note that this approach involves minimal
setup overhead for every message exchange. However,
there are at least two copies involved in the message ex-
change. This approach might tie down the CPU with
memory copy time. This method is feasible for shorter
messages, where the send, receive and shared buffer
are probably present in the cache. But as the size of
the message grows, the performance deteriorates. Such
vigorous copy-in and copy-out also destroys the cache
contents for the end MPI application. Figure 2 shows
the various memory transactions which happen dur-
ing the message transfer. We note that for transfer-
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ring large messages (greater than data cache size), we
can safely assume that application buffers and shared
buffers are out of cache. In the first memory transac-
tion labeled as 1; the MPI process needs to bring the
send buffer to the cache. The second operation is a
write into the shared memory buffer, labeled as 3. If
the block of shared memory is not in cache another
memory transaction, labeled 2 will occur to bring the
block in cache. After this, the shared memory block
will be accessed by the receiving MPI process. The
memory transactions will depend on the policy of the
cache coherency implementation and can result in ei-
ther operations 4a or 4b-1 followed by 4b-2. Then the
receiving process needs to write into the receive buffer,
operation labeled as 6. If the receive buffer is not in
cache, then it will result in operation labeled as 5. Fi-
nally, depending on cache block replacement scheme, 7
might occur.
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Figure 2. User-space shared memory

In addition, this approach is prone to skew between
applications. If the receiving process arrives earlier
than sending process, it returns to the application af-
ter posting the receive. However, the message is not
copied into the receive buffer until the receiving pro-
cess arrives at any other MPI call. We note that this
is not the only case in which skew can affect message
transfer progress.

3 Proposed Kernel-Based Memory
Mapping Scheme

This section describes the data path of direct mem-
ory copy by a kernel function. Earlier attempts at
such an approach are described in Section 6, however
their designs lacked portability across various inter-
connects and different communication libraries. Our
design principles and details of this approach are de-
scribed in Section 4.

Kernel-Based Memory Mapping approach takes help
from the operating system kernel to copy messages di-

rectly from one user process to another. The sender
or the receiver process posts the message request de-
scriptor in a message queue indicating its virtual ad-
dress, tags etc. This memory is then mapped into the
kernel address space. When the other process (either
sender or receiver) arrives at the message exchange
point, the message descriptors are matched at the ker-
nel level and the kernel performs a direct copy from the
sender buffer to the receiver application buffer. Thus
this approach involves only one copy. This approach re-
duces the number of copies. However, there are other
overheads. The overheads include time to trap into
the kernel, TLB flush and locking of other kernel data
structures. In addition, one CPU is still required to
perform the copy operation. We note that these over-
heads are relatively less as compared to typical message
transfer latencies of medium and large messages. Fig-
ure 3 demonstrates the memory transactions needed for
copying from the sender buffer directly to the receiver
buffer. In step 1, the receiving process needs to bring
the sending process’ buffer into its cache block. Then
in step 3, the receiving process can write this buffer
into its own receive buffer. This may generate step 2
based on whether the block was in cache already or
not. Then, depending on the cache block replacement
policy, step 4 might be generated implicitly.
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Figure 3. Kernel-Based memory mapping
It is noted to be that the number of possible mem-

ory transactions for the Kernel-Based Memory Map-
ping is always lesser than the number in User-Space
Shared Memory approach. In addition, this approach
is not prone to skew between applications. Regardless
of either the sender or the receiver arriving later, the
message copy is performed as soon as a message match
is made. We also note that due to the reduced number
of copies to and from various buffers, we can maximize
the cache utilization.

It is to be noted that the Kernel-Based Memory
Mapping approach has the potential to provide good
benefits. In this paper we design and implement this
method of intra-node message passing. We also try
to generalize our approach and address portability is-
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sues by implementing this scheme as a runtime load-
able kernel module which does not require any kernel
modifications.

4 Design Challenges and Implementa-
tion Issues

4.1 LiMIC : Portable and MPI Friendly Interface

In this section we describe in detail our design ap-
proach in coming up with a new kernel module interface
for intra-node message passing. This section sharply
distinguishes our approach and design philosophy from
earlier research in this direction.

Traditionally, researchers have explored kernel based
approaches as an extension to the features available
in user-level communication libraries. As a result,
most of this work has been non-portable to other user-
level communication libraries or other MPI implemen-
tations. In addition, these earlier designs did not take
into account MPI message matching semantics and
message queues. Further, the MPI library blindly calls
routines provided by the communication library. Since,
some of the communication libraries are proprietary,
this mechanism denies any sort of optimization-space
for the MPI library developer. A high level description
of these earlier methodologies is shown in Figure 4.

MPI Layer

Specific Network

User Level Protocol (VAPI, GM, etc.)

Kernel Support for

Intra−Node Communication

Figure 4. Earlier Design Approaches

In order to avoid the limitations of the past ap-
proaches we look towards generalizing the kernel-access
interface and making it MPI friendly. We also note that
such a design is readily portable across different inter-
connects. Also, this design gives the flexibility to the
MPI library developer to optimize various schemes to
make appropriate use of the one copy kernel mecha-
nism. A high level diagram showing our approach is
shown in Figure 5. Our implementation of this inter-
face is called LiMIC (Linux kernel module for MPI
Intra-node Communication).

User Level
Protocol

(VAPI,

GM, etc)

MPI Layer

Any Network

LiMIC

Figure 5. LiMIC Design Approaches

In order to achieve portability across various Linux
systems, we design LiMIC to be a runtime loadable
module. This means that no modifications to the
kernel code is necessary. Kernel modules are usually
portable across major versions of mainstream Linux.
The LiMIC kernel module can be either an independent
module with device driver of interconnection network
or a part of the device driver. In addition, the inter-
face is designed to avoid using communication library
specific or MPI implementation specific information.

In order to utilize the interface functions, very little
modification to the MPI layer are needed. These are
required just to place the hooks of the send, receive
and completion of messages. The LiMIC interface just
traps into the kernel internally by using the ioctl()

system call. We briefly describe the major interface
functions provided by LiMIC.

- LiMIC Isend(int dest, int tag, int

context id, void* buf, int len,

MPI Request* req): This call issues a non
blocking send to a specified destination with
appropriate message tags. An entry is placed in
the LiMIC message queue.

- LiMIC Irecv(int src, int tag, int

context id, void* buf, int len,

MPI Request* req): This call issues a non-
blocking receive. It is much like the LiMIC Isend

call. It is to be noted that either the sender or
the receiver, whichever arrives later will have the
message buffer copied to the destination buffer.
Also, blocking send and receive can be easily
implemented over non-blocking primitives and
just blocking on LiMIC Wait.

- LiMIC Wait(int src/dest, MPI Request*

req): This call just polls the LiMIC completion
queue once for incoming sends/receives.

4



4.2 Memory Mapping Mechanism

This section describes in detail the design of the
memory mapping mechanism in LiMIC. We discuss
various issues to achieve efficient memory mapping
keeping in mind of the overall design goals of LiMIC.

To achieve one-copy intra-node message passing, a
process should be able to access the other processes’
virtual address space so that the process can copy
the message to/from the other’s address space directly.
This can be achieved by the memory mapping mecha-
nism that maps a part of the other processes’ address
space into its own address space. After the memory
mapping the process can access mapped area as its
own.

For the memory mapping, we use the kiobuf pro-
vided by the Linux kernel since version 2.3.12. The
kiobuf supports the abstraction that hides the com-
plexity of the virtual memory system from device
drivers. This was originally designed for I/O and other
device drivers. The kiobuf structure consists of several
fields that store user buffer information such as page
descriptors corresponding to the user buffer, offset to
valid data inside the first page, and total length of the
buffer. The Linux kernel exposes functions to allocate
kiobuf structures. Also it allows us to make a mapping
between kiobuf and physical memory of user buffer.
In addition, since the kiobuf internally takes care of
pinning down the memory area, or locking of pages in
physical memory, we can easily gurantee that the user
buffer is present in the physical memory when another
process tries to access it. Further, we can avoid many
unstability issues come from using memory mapping
functions because we are utilizing kiobuf abstraction
to handle this. Therefore, we can take advantage of
kiobuf as a simple and safe way of memory mapping
and page locking.

Although the kiobuf provides many features, there
are several issues we must address in our implementa-
tion of the kernel module. The kiobuf functions pro-
vide a way to map between kiobuf and physical mem-
ory of target user buffer only. Therefore, we still need
to map the physical memory into the address space of
the process which wants to access the target buffer. To
do so, we use the kmap() kernel function. Another issue
is a large allocation overhead of kiobuf structures. We
performed tests on kiobuf allocation time on our clus-
ter (description in Section 5) and found that it takes
around 60µs to allocate one kiobuf. To remove this
overhead from the critical path, LiMIC kernel module
preallocates some amount of kiobuf structures during
the module loading phase and manages this kiobuf

structure pool. This pool is shared between all pro-

cesses running on the same node until the kernel mod-
ule is removed from the system. Further, the option
to allocate additional kiobufs upon exhaustion of the
pre-allocated pool is provided to the MPI library.

Figure 6 shows the internal memory mapping oper-
ation performed by LiMIC. When either of the mes-
sage exchanging processes arrives, it issues a request
through ioctl() (Step 1). If there is no posted re-
quest that can be matched with the issued request, the
kernel module simply maps user buffer to the kiobuf

by calling map user kiobuf() (Step 2). Then, the ker-
nel module puts this request in a request queue (Step
3). After that when the other message partner is-
sues a request (Step 4), the kernel module finds the
posted request (Step 5) and maps the user buffer to
the kernel memory by calling kmap() (Step 6). Fi-
nally, if the process is the receiver, the kernel module
copies the data from kernel memory to user buffer using
copy to user(), otherwise the data is copied from user
buffer to kernel memory by copy from user() (Step
7).

4.3 Copy Mechanism

This section describes the various design issues in-
volved in deciding when the kernel module performs the
message copy. Since the copy needs CPU resources and
needs to access pinned memory, we have to carefully
decide the timing of the message copy. The message
copy could be done in either of the three ways: copy
on function calls of receiver, copy on wait function call,
and copy on send and receive calls.

Intuitively, messages are more important to the re-
ceiver, we can make receive (i.e., LiMIC Irecv) and
wait (i.e., LiMIC Wait) functions of receiver side per-
form the copy operation. However, it presents heavy
dependency on the receiver to make a progress of the
communication. In the case of one-copy intra-node
communication, if the copy operation is performed on
only one of either sender or receiver, the ability of
communication progress is significantly degraded. It is
mainly because there is no intermediate buffer. An ex-
ample of such a degradation is when the receiver arrives
first at the communication point and calls MPI Irecv,
then the sender arrives and calls MPI Send. Then the
receiver calls MPI Wait after a large computation or
skew. In this case, the sender has to wait for (skew +
message copy time).

In order to provide better progress, we consider a
design that gives the ability of copy operation to both
sender and receiver. So, we consider an approach that
performs the copy operation on MPI Wait. Although
this approach can provide better progress, this ap-
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Figure 6. Memory Mapping Mechanism

proach has several drawbacks. Both buffers of sender
and receiver should be mapped into kiobufs, since we
do not know which communication partner will call
MPI Wait earlier. As a result, it will increase the us-
age of the kiobuf pool. Also, both the sender and the
receiver buffers will be needed to be pinned.

In this paper we suggest the design where the copy
operation is performed by send and receive functions
(i.e., LiMIC Isend and LiMIC Irecv) so that we can
provide better progress and less resource usage. The
actual copy operation is performed by the process
which arrives later at the communication call. So,
regardless of sender or receiver, the operation can be
completed as soon as both the processes have arrived.
In addition, only the first process is required to pin
down the user buffer. Figure 7 shows the state transi-
tion diagram of our kernel module.

4.4 Critical Section Locking

The kernel module data structures are shared be-
tween different instances of the kernel executing on
the send and the receiver processes. To gurantee con-
sistency, we have to design and implement a locking
scheme. To provide efficient message transfer, we have
to avoid introducing too much overhead for the queue-
ing and locking.

The design alternatives for implementing the locking
mechanism are as follows:

• Coarse Grained Locking: An easy way to ap-
proach this is to think of the kernel trap as one
big critical section. So, if we follow this approach,
only one process, either the sender or the receiver

End
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Memory
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Copy

Wait Wait

Kiobuf
Map

Start

Send Call Recv Call

Kiobuf
Map

Recv Call Send Call

Send Call
Recv_wait Call

Recv Call
Send_wait Call

Recv_wait CallSend_wait Call
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Figure 7. Copy by process arriving later
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can access the kernel module functions. This ap-
proach, however, prevents an overlapping between
intra-node communications, i.e., if the sender and
receiver kernel modules are copying different mes-
sages, they need to be forcibly serialized.

• Fine Grained Locking: On the other hand, a
finer grained approach is to lock every shared data
structure before access. While this approach can
maximize the communication overlap, this intro-
duces a lot of overhead due to frequent locking and
unlocking.

• Medium Grained Locking: To tackle the de-
feciencies of coarse and fine grained locking, we
come up with a medium grained locking approach.
First, we introduce a separate lock variable for
managing the kiobuf pool. For each process we
include one lock for the send and receive and also
a lock for the completion queue. The copy opera-
tion and memory mapping operation is placed out
of the critical section since for high performance,
these operations should not be serialized.

4.5 MPI Message Matching

In this section we discuss the design alternatives
of LiMIC kernel module in order to support message
matching with MPI semantics. There is a separate
message queue for messages sent or received through
the kernel. This is done to allow portability to various
other MPI like message queues. So, in general the
LiMIC does not assume any specific message queue
structure. MPI messages are matched based on Source,
Tag and the Context ID. In MPICH, the Context ID
usually refers to the MPI communicator and has infor-
mation about whether the message is a point-to-point
message or part of a collective operation. Message
matching can also be done by using wildcards like
MPI ANY SOURCE or MPI ANY TAG. LiMIC implements
MPI message matching in the following manner:

• Source in the same node: In this case, the re-
ceive request is not posted into the generic MPI
message queue. Rather it is directly posted into
the queue maintained by LiMIC. On the arrival
of the message, the kernel instance at the re-
ceiver side matches the message based on the tag
and context id information and then it passes the
buffer into user space.

• Source in a different node: In this case, LiMIC
is no longer responsible for matching the message.
The interface hooks provided in the MPI should

take care of not posting the receive request into
the kernel message queue.

• Source in the same node and MPI ANY TAG: As
in the first case, the receive request is not posted in
the generic MPI message queue, but directly into
the LiMIC message queue. Now, the matching is
done only by the context id and message source.

• MPI ANY SOURCE and MPI ANY TAG: This case is
a little more challenging than the others. The
source of the message might be on the same physi-
cal node but also it can be some other node which
is communicating via the network. In this case
the receive request is posted in both the message
queues. In addition, a flag is associated with the
request. Whenever the LiMIC finds a message
which matches this request, it marks this request
as matched and sets the flag. A similar approach
is also followed by the user-level message match-
ing mechanism. As mentioned in section 4.4, the
update of the flag is guarded by locks to ensure
atomicity.

5 Performance Evaluation

In this section we evaluate the performance of
LiMIC. We compare the performance of LiMIC with
MVAPICH [3] version 0.9.4. MVAPICH 0.9.4 imple-
ments a combination of User-space shared memory ap-
proach and NIC-based message loopback.

We conducted experiments on an 8 node cluster with
the following configuration:

SuperMicro SUPER X5DL8-GG nodes with dual In-
tel Xeon 3.0 GHz processors, 512 KB L2 cache, 1 GB
memory, PCI-X 64-bit 133 MHz bus. The Linux kernel
version used was 2.4.22smp from kernel.org.

First we present experimental results on message
transfer breakdown, descriptor posting overhead, etc.
Then we proceed to Microbenchmark level evaluation
and then finally application level results.

5.1 LiMIC Cost Breakdown for Message Transfer

We present results on the various relative cost break-
downs for MPI operations, such as message transfer
and posting message descriptors.

5.1.1 Message Transfer Breakdown

We observe that the message copy time dominates
the overall send/recv operation as the message size
increases. For shorter messages, we see that a con-
siderable amount of time is spent in the kernel trap
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(around 3µs) and around 0.5µs in queueing and locking
overheads (indicated as “rest”). We also observe that
the time to map the user buffer to the kernel address
space (using kmap()) increases as the number of pages
in the user buffer increases. The overhead breakdown
is shown in Figure 8.

LiMIC Message Transfer Breakdown

0%

20%

40%

60%

80%

100%

4k 32k 1M
Message Size (bytes)

copy kmap trap rest

Figure 8. Message Transfer Breakdown

5.1.2 Descriptor Post Breakdown

We observe that the time to map the kiobuf with the
page descriptors of the user buffer forms a large portion
of the time to post a descriptor. This step also involves
the pinning of the user buffer into physical memory.
The breakdown is shown in Figure 9.

LiMIC Descriptor Post Breakdown
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Figure 9. Descriptor Post Breakdown

5.2 Microbenchmarks

In this section, we describe our tests for microbench-
mark level evaluation of our design and implementation
of LiMIC.

5.2.1 Point-to-Point

We conducted point-to-point latency and bandwidth
tests with LiMIC and compared them with MVAPICH
0.9.4 performance. The latency test is carried out in

the standard ping-pong fashion. The sender sends a
message and waits for a reply from the receiver. The
time for this is recorded by the sender and then it is
divided by two to find out one-way latency. For mea-
suring the bandwidth, a simple window based approach
was followed. The sender sends WindowSize number
of messages and waits for a message from the receiver
for every WindowSize messages. The WindowSize

used in our experiments was 64. The latency graph is
shown in Figure 10 and the bandwidth graph is shown
in Figure 11. We observe an improvement of 71% for la-
tency and 405% for bandwidth for 64KB message size.

5.2.2 MPI Alltoall Performance

We conducted an evaluation of the impact of LiMIC on
the collectives as well. MPI Alltoall is a dense com-
munication collective. In MPI Alltoall each process
exchanges a different message with every other process.
The order of communication is n2. Even though the to-
tal communication volume contains a major fraction of
inter-node communication, we can see a positive ben-
efit of optimizing intra-node communication from the
results. We conduct the experiments in two configura-
tions, (2x2) and (2x4). (2x2) implies two process on
two physical nodes. Similarly, (2x4) implies two pro-
cesses on four physical nodes. It is to be noted that
each node in our cluster is a dual node. The perfor-
mance results can be seen in Figures 12 and 13. We
observe an improvement of 24% for 64KB message size
on (2x2) configuration.

5.3 NAS Benchmarks

We conducted performance evaluation of LiMIC on
the IS benchmark in the NAS Parallel Benchmark
suite [6]. IS is an integer sort benchmark kernel that
stresses the communication aspect of the network. We
conducted experiments with the classes A and B on
the configurations (2x1), (2x2), (2X4), and (2X4). We
not only measured the benchmark results but also pro-
filed the time spent in MPI calls. This profiling was
made possible by a lightweight profiling library called
mpiP [4]. The time spent in MPI is reported as the
average time spent by every process inside MPI calls.
The results are shown in Figures 14 and 15. Further,
we profile the number of intra-node messages larger
than 1KB and their sizes being used by IS across dif-
ferent classes and problem sizes. They are shown in
Table 1 and 2. We can see from this message distri-
bution that as the system size increases, the size of
the messages for each class reduces. Since our LiMIC
performs well for medium and larger message sizes, we
see overall less impact of LiMIC. However, this is not
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Figure 10. MPI level Latency
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Figure 11. MPI Level Bandwidth
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Figure 12. Alltoall for small messages on (2x2) and (2x4) con figurations
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a limitation imposed by LiMIC, rather a characteristic
of the IS benchmark.

Message Size (Bytes) 2x1 2x2 2x4 2x8
1k-8k 44 44 44 44

32k-256k 0 0 0 22
256k-1M 0 0 22 0
1M-4M 0 22 0 0
4M-8M 11 0 0 0
8M-16M 11 0 0 0
16M-32M 0 0 0 0
32M-64M 0 0 0 0

Table 1. Intra-node message size distribution
for IS Class A

Message Size (Bytes) 2x1 2x2 2x4 2x8
1k-8k 44 44 44 44

32k-256k 0 0 0 0
256k-1M 0 0 0 22
1M-4M 0 0 22 0
4M-8M 0 0 0 0
8M-16M 0 22 0 0
16M-32M 11 0 0 0
32M-64M 11 0 0 0

Table 2. Intra-node message size distribution
for IS Class B

5.4 High Performance Linpack

In order to evaluate the importance of intra-node
communication on the high performance benchmarks,
we run the well known HPL [7] benchmark with LiMIC.
Further, we also profile the MPI communication time
of Linpack with mpiP. The results are shown in Figure
16. We note that LiMIC can improve the overall com-
putational capacity of each node with the HPL bench-
mark. We intend to carry out our evaluation of HPL
on a larger system size in the final version and technical
report of this paper.

6 Related Work

Several researchers have proposed different designs
for efficiently implementing intra-node communication
in clusters. In this section, we describe in brief their
contributions. Geoffray, Tourancheau, Prylli et al
[17][11][10] suggest a BIP-SMP multi-protocol layer for
intra-node and inter-node communication. Takahashi
et al [19][18] provide a device driver called PM/Shmem

that supports a direct memory access between pro-
cesses. MPICH-GM[16] provides a User level shared
memory approach for MPI. It also provided a kernel
level approach but the support is withdrawn currently
to the best of our knowledge. LiMIC is distinguished
with previous works in the sense, that it provides a
MPI friendly interface and is independent of intercon-
nection networks. Moreover, LiMIC has no limitation
that only one of sender or receiver can do the copy
operation. The kernel module of MPICH-BPI/SMP
allows only receiver to copy. With respect to hetero-
geneous computing environment such as Grid comput-
ing, MPICH-Madeleine[5] and MPICH-G2[9][13] sup-
port multiprotocol communication.

7 Conclusions and Future Work

In this paper, we have proposed a design for
high performance intra-node communication and im-
plemented a Linux kernel module called LiMIC, which
provides an MPI friendly interface and independency
on communication libraries or interconnection net-
works. The LiMIC can be applied to any MPI imple-
mentations with only minor modifications regardless of
interconnection networks. In addition, it can be easily
integrated with a device driver of an interconnection
network.

To measure the performance of LiMIC, we have
integrated it with MVAPICH, an open source MPI
implementation for InfiniBand, and performed vari-
ous benchmarks. Through the benchmark results, we
could observe that LiMIC improved the point-to-point
latency and bandwith up to 71% and 405%, respec-
tively. In addition, we could see its benefit on collective
communications. Moreover, LiMIC improved NAS IS
benchmark by 13.5%.

As a future work, we plan to exploit the memory-to-
memory DMA engine instead of using CPU resource to
copy the message. Also we intend to study on SMP-
aware collectives by utilizing LiMIC. We would like to
optimize the LiMIC on NUMA architecture and mod-
ify the kiobuf manipulation part of LiMIC for Linux
kernel version 2.6.
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