
Dynamic Classification of Defect Structures in Molecular Dynamics
Simulation Data

S. Mehta∗ S. Barr† T. Choy† H. Yang∗ S. Parthasarathy∗ R. Machiraju∗

J. Wilkins†
∗Department of Computer Science and Engineering, Ohio State University

†Department of Physics, Ohio State University
Contact: {mehtas,srini,raghu}@cse.ohio-state.edu

October 5, 2004

Abstract

In this application paper we explore techniques to classify
anomalous structures (defects) in data generated from ab-
initio Molecular Dynamics (MD) simulations of Silicon (Si)
atom systems. These systems are studied to understand the
processes behind the formation of various defects as they
have a profound impact on the electrical and mechanical
properties of Silicon. In our prior work we presented tech-
niques for defect detection [11, 12, 14]. Here, we present
a two-step dynamic classifier to classify the defects. The
first step uses upto third-order shape moments to provide a
smaller set of candidate defect classes. The second step as-
signs the correct class to the defect structure by considering
the actual spatial positions of the individual atoms. The dy-
namic classifier is robust and scalable in the size of the atom
systems. Each phase is immune to noise, which is character-
ized after a study of the simulation data. We also validate the
proposed solutions by using a physical model and properties
of lattices. We demonstrate the efficacy and correctness of
our approach on several large datasets. Our approach is able
to recognize previously seen defects and also identify new
defects in real time.

1 Introduction

Traditionally, the focus in the computational sciences has
been on developing algorithms, implementations, and en-
abling tools to facilitate large scale realistic simulations of
physical processes and phenomenon. However, as simu-
lations become more detailed and realistic, and implemen-
tations more efficient, scientists are finding that analyzing
the data produced by these simulations is a non-trivial task.
Dataset size, providing reasonable response time, and mod-
eling the underlying scientific phenomenon during the anal-
ysis are some of the critical challenges that need to be ad-
dressed.

In this paper we present a framework that addresses these
challenges for mining datasets produced by Molecular Dy-
namics (MD) simulations to study the evolution of defect
structures in materials. As component size decreases, a de-
fect - any deviation from the perfectly ordered crystal lattice -
in a semiconductor assumes ever greater significance. These
defects are often created by introducing extra atom(s) in the
Silicon lattice during ion implantation for device fabrication.
Such defects can aggregate to form larger extended defects,
which can significantly affect device performance in an un-
desirable fashion.
Simulating defect dynamics can potentially help scientists
understand how defects evolve over time and how aggre-
gated/extended defects are formed. Some of these defects
are stable over a period of time while other are short-lived.
Efficient, automated or semi-automated analysis techniques
can help simplify the task of wading through a pool of data
and help quickly identify important rules governing defect
evolution, interactions and aggregation. The key challenges
are: i) to detect defects; ii) to characterize and classify both
new and previously seen defects accurately; iii) to capture
the evolution and transitioning behavior of defects; and iv) to
identify the rules that govern defect interactions and aggre-
gation. Manual analysis of these simulations is a very cum-
bersome process. It takes a domain expert more than eight
hours to manually analyze a very small simulation of 8000
time frames. Therefore, a systemic challenge is to develop an
automated, scalable and incremental algorithmic framework
so that the proposed techniques can support in-vivo analysis
in real time.
In our previous work [11, 12, 14], we presented algorithms
to address the first challenge. Here we address the sec-
ond challenge coupled with the systemic challenge outlined
above. The design tenets include not only accuracy and ex-
ecution time but also both statistical and physical validation
of the proposed models. We also present preliminary results

to show that our approach can aid in handling the third chal-
lenge.
The main contributions of our application case study paper
are:

1. We develop a two-step incremental classifier that clas-
sifies both existing and new defects (generates a new
class label).

2. We validate each step of our 2-step classifier theoreti-
cally, relying on both physical and statistical models.

3. We validate our approach on large (greater than 4GB)
real MD simulation datasets and demonstrate both the
exceptional accuracy and efficiency of the proposed
framework.

4. We present initial results which show that our approach
can be used to capture defect evolution and to generate
labeled defect trajectories.

Our paper is structured in the following manner. Sec-
tion 2 discusses the basic terminology of MD and related
work. An overview of our framework is provided in Sec-
tion 3. We present our algorithm in Section 4. Results on
large simulation datasets are presented in Section 5. Finally,
we conclude and discuss directions for future work in Sec-
tion 6.

2 Background and Related Work

2.1 Background: In this section, we first define basic
terms that are used throughout this article. Later, we describe
pertinent related work. A lattice is an arrangement of points
or particles or objects in a regular periodic pattern in three
dimensions. The elemental structure that is replicated in a
lattice is known as a unit cell. Now, consider adding a single
atom to the lattice. This extra atom disturbs the geometric
structure of lattice. This disturbance, comprised of atoms
which deviate from the regular geometry of lattice is referred
to as the defect structure. Defects created by adding an
extra atom are known as single-interstitial defects. Similarly
one can define di- and tri-interstitial defects by adding two
or three single interstitial defects in a lattice respectively.
Figure 1(a) shows a Si bulk lattice with a certain unit
cell shaded differently (black). Figure 1(b) shows another
lattice with a single interstitial defect. Figure 1(c) depicts
two interstitials: in the lower left and upper right corners
respectively of a 512-atom lattice. The different shades again
represent separate and distinct defects.

We use the Object-Oriented High Performance Multi-
scale Materials Simulator (OHMMS) that some of us de-
veloped (primarily led by co-author Wilkins) [4] as our
workhorse. The equation of motion as described by New-
ton’s second law is used to determine atom locations. While
the exact forces must be derived from quantum mechanical

studies and computations, these classical equations serve as
a suitable approximation.

2.2 Related Work: Traditionally, physicists have used
ground energy and electrostatic potential to find defects in
lattice. For example ab-initio methods are used to locate in-
terstitial defects in a Si lattice [2, 19]. These methods ex-
ploit anomalies in the energy/potential fields available at all
points in the lattice . However, the calculation and analy-
sis of these energies/potential is very time consuming. The
most pertinent work that is closely related to our own work
employs the method of Common Neighbor Analysis (CNA)
[3, 8]. CNA attempts to glean crystallization structure in lat-
tices and uses the number of neighbors of each atom to deter-
mine the structure sought. However, it should be noted that
the distribution of neighbors alone cannot characterize the
defects, especially at high temperatures. Related to our work
is the large body of work in biomolecular structure analysis
[1, 10, 16, 20]. In these techniques, the data is often ab-
stracted as graphs and transactions and subsequently mined.
However, such an abstraction often does not exploit and ex-
plain many of the inherent spatial and dynamical properties
of data that we are interested in. Moreover, while some of
these techniques [17, 20], deal with noise in the data, the
noise handling capabilities are limited to smoothing out un-
correlated and small changes in spatial location of atoms.
Within the context of MD data, noise can also change the
number of defect atoms detected, for essentially the same
defect structure at different time frames. None of the meth-
ods in the biological data mining literature deal with this un-
certainty. Matching of two structures has drawn a lot of at-
tention in recent past. Zhang et al.[22], propose a protein
matching algorithm that is rotation and translation invariant.
This method relies on the shape of the point cloud and it
works well for proteins given the relatively large number of
atoms; the presence of a few extra atoms does not change
the shape of point cloud. A potential match is not stymied
by the presence of extra atoms. However, in MD simulation
data, we are interested in anomalous structures which can
be as small as just six atoms. Extra atoms that may be in-
cluded in a defect given the thermal noise will skew a match
significantly even if the two defects differ by one atom. Geo-
metric hashing, an approach that was originally developed in
the robotics and vision communities [21], has found favor
in the biomolecular structure analysis community [15, 20].
Rotation and translations are well handled in this approach.
The main drawback of geometric hashing is that it is very ex-
pensive because an exhaustive search for optimal basis vec-
tor is required. A more detailed discussion on various shape
matching algorithms can be found in the survey paper by
Veltamp and Hagedoorn [18]. We use statistical moments to
represent the shape of a defect for initial pruning. The semi-
nal work by Hu [13] described a set of seven moments which

Figure 1: (a)Original lattice with unit cell marked (b)Lattice with one interstitial defect (c)Lattice with two interstitial defects

captures many of the features of a two-dimensional binary
images. In recent work, Galvez [7] proposed an algorithm
which uses shape moments to characterize 3D structures us-
ing moments of its two-dimensional contours. However, ow-
ing to relatively small number of atoms present in a typical
defect, the contours or the corresponding implicit 3D surface
are impossible to obtain with accuracy.

3 Dynamic Classification Framework

Figure 2 shows our framework for MD simulation data
analysis. The framework is divided into 3 phases. Phase 1 -
Defection Detection: this phase detects, spatially clusters (or
segments) defects and handles periodic boundary conditions.
Detailed explanation on this phase is given in our earlier
work [11, 14, 12]. Phase 2 - Dynamic Classification: this
phase classifies each defect found in Phase 1. This phase
consists of three major components:

1. Generating a feature vector for each detected defect.
This feature vector is composed of weighted statistical
moments.

2. Pruning the defect classes based on the feature vector.
This step provides a smaller subset of defect classes to
which an unlabeled defect can potentially belong to.

3. An exact matching algorithm that assigns the correct
class label to the defect. This steps takes into account
the spatial position of the atoms. The defect is assigned
a class label if it matches with any of the previously
seen defects, otherwise the defect is considered new.

Phase 2 maintains 3 databases for all detected defects.
Section 4 gives detailed information regarding these three
databases and their update strategies.
The framework is made robust by modeling noise in both
Phase 1 and Phase 2. Our noise characterization models
the aggregate movement of the defect structure and the
arrangement of the atoms (in terms of neighboring bonds).
Our framework can be deployed to operate in a streaming
fashion. This is important since it enables us to naturally
handle data in a continuous fashion while a simulation is in

progress. Phase 1 handles the entire frame and detects all the
defects. Each defect is then pipelined into Phase 2. Thus, we
are able to incrementally detect and classify detected defects
while consistently updating the database in real time.
Phase 3 - Knowledge Mining: this phase uses the databases
generated by Phase 2. These databases store the information
about all the defects in a given simulation. These databases
can be used to track and generate the trajectories of the de-
fects, which can assist us to better understand the defect evo-
lution process. Additionally, various data mining algorithms
can be applied on the databases. Mining spatial patterns
within one simulation can aid in understanding the interac-
tions among defects. Finding frequent patterns across multi-
ple simulations can help to predict defect evolution. In this
paper, we describe Phase 2 in detail. We also show some
initial results for Phase3.

4 Algorithm

Our previous work [11, 12, 14] describes the defect detec-
tion phase in detail. Every atom in the lattice is labeled ei-
ther as a bulk atom or as a defect atom. However, upon fur-
ther evaluation we found that this binary labeling is not well
suited for robust classification of defect structures. There-
fore, we propose to divide the atoms into three classes based
on their membership or proximity to a defect. We also val-
idate the correctness of this taxonomy by using a physical
model. Our taxonomy is:

• Core-Bulk Atoms (CB): The atoms which conform
to the set of rules defined by the unit cell are bulk or
non-defect atoms. Bulk atoms which are connected
exclusively to other bulk atoms are labeled as core bulk
atoms.

• Core-Defect Atoms (CD): The atoms which do not
conform to the set of rules are defect atoms. All the
defect atoms which are connected to more defect atoms
than bulk atoms are labeled as core defect atoms. These

Feature Vector
Generation

Defects

Phase1: Defect Detection

16 dimension

Feature Vector

K - classesPruning

Shape Moments

Summary
New Defect?

Phase2: Dynamic Classification

Phase 3: Knowledge Mining

Y/N

Y

Y

Exact
Matching

Figure 2: Defect Detection and Classification Framework

atoms dominate the shape and properties of a defect.

• Interface Atoms (I): These atoms form the boundary
between a core bulk atom and a core defect atom. These
atoms fail to conform the prescribed set of rules by a
small marginally (i.e. the thresholds for bond lengths
and angles, are violated in a marginal way) thus are
marked as defect atoms; however, the majority of their
nearest neighbors are core bulk. Thus, they form a
ring between core bulk atoms and core defect atoms.
Presence or absence of these atoms can considerably
change the shape of a defect, which makes matching of
defect structures very difficult.

Figure 4(a) illustrates all three types of atoms. The black
atoms belong to core defect, white atoms form core bulk
and the gray atoms are interface atoms. We next, justify this
taxonomy.

Physical Validation: A lattice system can be represented
by the Mechanical Molecular Model as follows: atoms are
represented by spheres, and bonds by springs connecting
these spheres. The energy of an atom in the lattice system
is calculated by the following equation:

Etotal = Elength + Eangle + Einteractions

where Elength and Eangle are the energies due to bond
stretching and angle bending respectively. Also, each atom
in the lattice interacts with every other atom. Einteractions

accounts for energy generated by these interactions. How-
ever, we can ignore Einteractions for the MD datasets be-
cause OHHMS only considers the effect of first neighbors of

(a) (b))

Figure 3: (a) Original Defect (b) Detected Defect with extra
atoms

an atom while solving MD equations. The physics behind
springs can be used to calculate these energies. Hooke’s law
for springs states that the force exerted by a spring is pro-
portional to the distance by which it is stretched. The energy
of a spring can be derived by using relationship between en-
ergy and force. The energy is calculated by the following
equation:

E =
1
2
Kδ2 (4.1)

where K is the spring constant and δ is the distance by which
a spring is stretched from its uncompressed state.
Elength and Eangle for each atom can be computed by us-
ing appropriate spring constants, Klength and Kangle re-
spectively. Information about the ideal bond length and
bond angle present in the existing literature can be used

for uncompressed spring state. Drexer [5] lists the val-
ues for Klength and Kangle as 185 Newton/meter and
0.35 Newton/radian respectively for the Silicon lattice.
For each atom we find the bond lengths and bond angles it
forms with its first neighbors and then find the δs. Core bulk
atoms deviate very little from the ideal bond angle and bond
length, therefore their corresponding δs should be very low;
whereas for core defect atoms the δs should be high. Since
the energy is directly proportional to δ2, core bulk atoms
should have low energy whereas core defect atoms should
have high energy.
To validate our taxonomy, we sampled 1400 frames from
different simulations and calculated the energy for each atom
in the lattice. Figure 4(b) shows the distribution of energy. It
is clear from the distribution that the majority of the atoms
have very low energy (∈ [0, 0.2]). These atoms are core
bulk atoms. The core defect atoms have very high energy
(≥ 1.2). All the atoms which lie between low and high
energy levels are interface atoms. Thus, this physical model
clearly validates our taxonomy of atoms. Therefore we refine
our original binary labeling [11] of individual atoms by
further dividing defect atoms into core defect atoms and
interface atoms.
Before describing the classification method, we discuss the
challenges which need to be addressed to build a robust
and efficient classifier for MD data. We list each of them
and describe how they are addressed within the context of
the proposed algorithm. For each proposed solution we
also provide the physical validation using the Mechanical
Molecular Model and properties of the lattice system.

4.1 Challenges and Proposed Solutions

4.1.1 Thermal Noise: Thermal agitations can cause
atoms to change their spatial positions. Such changes can
potentially have two kinds of effect on the defect structures:

1. The precise location of the atoms and their inter-pair
distances will not be exactly the same from frame
to frame. Thus the classification method should be
tolerant to small deviations in the spatial positions.

2. The change in the spatial positions can also force a
previously labeled bulk atom to violate the rules and
be labeled as a defect atom (and vice versa) in the next
time frame. Therefore the number of atoms in a defect
can change, which in turn changes the overall shape of
the defect structure which makes the classification task
more difficult.

To address the first problem we consider a data driven ap-
proach to derive noise thresholds. From our study of physics,
we know that the movement of each atom is influenced by the
position and number of its neighbors. To model this behavior
we define a random variable Di:

Di = 1
F+1 (Mi +

F∑

j=1

Mj)

where Mi is the movement of atom i between two consec-
utive time steps, having F first neighbors within a distance
of 2.6Å (bond length for Si), and i ∈ [1, N], N being the
total number of atoms in the lattice. We empirically observe
that Di can be effectively approximated by using a normal
distribution with parameters, µnoise and σnoise (the average
mean and standard deviation of all Dis). We found µnoise to
be very close to 0 (which is expected because a given atom
cannot move very far from its original location between two
consecutive time frames). The parameter σnoise is used to
model the effect of noise in the defect classification algo-
rithm. From a set of randomly selected 4500 frames, we
found the value of σnoise to be 0.19Å.

Physical Validation: The noise threshold can be validated
by using the Mechanical Molecular Model. The bond energy
B of Si-Si bond is 52 Kcal/mol, which is the amount of
energy needed to break a Si-Si bond. Using Equation 4.1
we can compute the maximum distance a Si atom can be
displaced before the bond is broken. Essentially we solve
the following equation for the value of δ :

B ≤ 1
2Kδ2

By substituting the values of K and B we found the value
of δ to be 0.2Å which implies that two bonded atoms cannot
be moved more than 0.2Å apart without breaking the bond
between them. Thus, the empirically observed value is very
close to the theoretical value given by the physical model.

To solve the second problem posed by thermal noise, we
propose a weighting mechanism. The weighting mechanism
is based on the following two observations:

• Observation 1: In two consecutive time frames the core
defect atoms cannot change considerably.

• Observation 2: Interface atoms can make a transition
from bulk to defect (and vice-versa) very quickly.

Figure 3(a) and Figure 3(b) show the defect detected from
two different frames after applying local operators. The
defect in Figure 3(b) has extra atoms (interface) but the
core defect (black atoms) remains unchanged. Therefore,
a weighting mechanism is proposed to reduce the influence
of interface atoms relative to that of core atoms within a
defect structure. Essentially, the weight assigned to each
atom in a given defect is proportional to the number of its
first neighbors in the defect structure. Thus core defect
atoms contribute more to defect classification than interface
atoms. These weights are also used for handling translations
(described below) and for computing the feature vector
(weighted moments).

(a) (b)

Figure 4: (a) Taxonomy of atoms (b) Energy Plot

Physical Validation: Observation 1 can be explained as
follows. Each atom in the lattice interacts most with its first
neighbors. The more the number of first neighbors of an
atom, the more connected it is and hence the more restricted
its movement. The core defect atoms have high connectivity
with other defect atoms, which makes it more difficult for
them to move very far in a short period of time.
Observation 2 can be explained as follows. Interface atoms
labeled as defect (or bulk), usually fail (or conform to) the
set of rules by a small margin. A very small variation in their
spatial locations can change their labels. These interface
atoms, however, are very loosely connected to the core defect
atoms. Most of their first neighbors are core bulk atoms.
To summarize, over a period of time core defect atoms will
change considerably less than interface atoms. Therefore
more emphasis (weight) should be given to core defect atoms
while matching two defect structures. This is precisely what
our weighting mechanism does.

4.1.2 Translational and Rotational Invariance: Transla-
tions and rotations pose another problem in defect classi-
fication. The same defect can occur in different positions
and orientations in the lattice. To classify a defect correctly,
translations and rotations should be resolved before assign-
ing the class. We next present our approach to attain transla-
tional and rotational invariance.

Feature Vector Generation: We describe the shape of
a defect by using statistical moments. We chose to use
all first, second and third order moments. Third order
moments capture skewness in defects. To account for the
interface atoms we calculate weighted moments instead of
simple moments. (Recall that the weighting mechanism

assigns high weights to core defect atoms and low weights to
interface atoms). The feature vector comprising of weighted
moments of a defect is calculated as :

Wmnp = 1
N∑

j=1

wj

N∑

i=1

wi ∗ Dm
ix ∗ Dn

iy ∗ Dp
iz

where m + n + p ≤ 3

where Dix is the x-ordinate of ith atom of defect D. An im-
portant property of this feature vector is that it is translation
invariant if the weighted center of mass (given by the first
three weighted moments) is translated to zero.
Since all the rotations in the lattice are symmetry operations
(see below for an explanation of symmetry operation), rota-
tional ambiguity can be resolved easily by applying the ap-
propriate permutation on the feature vector. For example, if
the defect is rotated by 180 degrees across the X-plane (a
mirror transform), all the moments involving an odd power
of the X-component will change sign. In a similar fashion,
all the rotations can be resolved by checking the pre-defined
permutations of original moments. There are a total of 3 first-
order moments, 6 second-order moments and 10 third-order
moments. Of these, since the center of mass is translated to
the origin (to deal with translations), W100, W010 and W001

are all zero. Therefore we have a 16-dimensional feature
vector represented by Dw.

Physical Validation: Interface atoms change the shape of
the defect, which can change the center of mass considerably.
Therefore using center of mass without the weights can
assign a new class label to a defect even if the core defect
is not new. Thus core defect atoms should contribute more

towards the calculation of the center of mass. A lattice
cannot be rotated in arbitrary directions. The only rotations
possible in the lattice are those which carry the lattice onto
itself. This means that after rotation each atom of the
lattice is exactly at a position occupied by an atom prior
to the rotation. These rotations are known as symmetry
operations [9]. Under this constraint, only a finite number
of rotations are possible in lattices. For example, in the Si
lattice system only 24 types of rotations are possible.

4.1.3 Shape Based Classification: While matching two
defect structures, the classifier should take into account the
positions of all individual atoms in the defects. This atom-to-
atom matching is relatively expensive. Furthermore because
of large number of defect classes present in simulation
datasets, it would be unrealistic to carry out such an atom-
to-atom matching for all classes at each and every time
step. Therefore a scheme is needed to effectively reduce the
number of candidate classes on which an exhaustive atom-
to-atom matching is performed.
We address this challenge by adopting a two step classifica-
tion process. The first step uses weighted moments to find a
smaller subset of defect classes to which the unlabeled de-
fect can potentially belong and passes it to the next step.
Weighted moments (feature vector) are used because mo-
ments are known to capture the overall shape of an object
very well [13]. The second step then finds the closest class
by taking into account the positions of the atoms and their
arrangement in three dimensional space. In essence, both
steps use the information about the shape of a defect. The
first step uses the high level information about defect struc-
ture whereas the next step refines it by matching individual
atoms. We achieve the desired efficiency because the first
step is computationally very cheap and reduces the search
space considerably for the next step. Experimental results to
corroborate this are shown in Section 5.

Physical Validation: The majority of the physical properties
of a defects are governed by its shape. Most of the stable
defects seen so far have a very compact shape. Unstable
structures tend to re-organize the atoms to form such a
compact structure. The movement of the defect in the lattice
is also governed by the shape of the defect.

4.1.4 Emergence of new defect classes: The underlying
motivation of our effort is to discover information which can
assist scientists to better understand the physics behind de-
fect evolution, ideally in real time. This defect evolution
can result in new defect classes which are not in existing
literature. This requires the classification process to be dy-
namic [6]. The classifier should be dynamic in the classi-
cal sense, as in new streaming data elements can be clas-
sified, but should also be dynamic in the sense that new

classes(defects) if discovered can be added to the classifier
model in real time. The new defect should be available when
the next frame is processed.
We next present our two-step classification process which
integrates all the proposed solutions to the above-mentioned
challenges.

4.2 Two Step Classification Algorithm: This phase clas-
sifies the defect(s) detected in Phase1. Given a defect D,
the goal is to find the type T of this defect. If D does not
match any of the previously seen defects in the simulation,
it is labeled as a new defect and stored in the databases
IDshape and IDmoment, where ID is a unique simulation
identification number, IDshapestores the actual three dimen-
sional co-ordinates and IDmoment stores the weighted cen-
tral moments (feature vector) of the defect structure. These
databases store all the unique defects detected in the cur-
rent simulation. The label of a new defect is of the form
defect i j, indicating that the new defect is the jth defect in
the ith frame of the simulation. If D is not new then a pointer
to the defect class which closely matches D is stored. Be-
sides these two databases a summary file is generated which
stores names of all detected defects in the simulation along
with corresponding frame numbers. We now proceed to de-
scribe the two steps of our classifier in detail.

4.2.1 Step 1 - Feature Vector based Pruning: We use a
variant of the KNN classifier for this task. The value of K
is not fixed: instead, it is determined dynamically for each
defect. Given the feature vector (DW) of a defect D, we
compute and sort the distances between DW and IDMi

,
where IDMi

is the moment vector of the ith defect in IDM .
All classes having distances less than an empirically-derived
threshold are chosen as candidate classes. Step 2, then,
works on these K classes only. If no class can be selected,
D is considered as a new defect. Databases IDshape and
IDmoment are updated immediately, so that D is available
when the next frame is processed.
In a similar fashion, one can use Naive Bayes and Voting
based classifiers. Like the KNN classifier, these classifiers
also provide metrics which can be used to select the top K
candidate classes. More specifically, a Naive Bayes classifier
provides the probabilities of a feature vector belonging to
each class, and a voting based classifier gives the number of
votes for each class. The top K classes can then be chosen
based on probabilities and votes. We chose VFI as our voting
based classifier. As for other types of classifiers, such as the
decision tree-based ones, it is not trivial to pick K candidate
classes, therefore they are not considered in this work.
From the three applicable classifiers, the KNN classifier is
chosen because it gives the highest classification accuracy, as
described in Section 5. Besides its high accuracy, the KNN
classifier is incremental in nature. In other words, there is

no need to re-build the classification model from scratch if
a new class is discovered. In contrast, Naive Bayes and VFI
will require the classification model to be re-built every time
a new class is discovered.
The K candidate classes are passed to Step 2. The repre-
sentative shapes of these K classes are matched using an ex-
act shape matching algorithm based on the Largest Common
Substructure (LCS). Next, we explain the main steps of our
exact matching approach.

4.2.2 Step 2 - Largest Common Substructure based
algorithm: Assume, A is a defect of unknown type and B
is the defect representing one of the candidate classes from
Step 1. The defects are mean centered and the rotation is
resolved. We next describe all the steps of the LCS algorithm
in detail.

• Atom Pairs Formation: The defects are sorted w.r.t.
their x-ordinate. Two atoms i and j in defect A form
an atom pair Aij if distance(Ai,Aj) ≤ bond length.
This step uses the information about neighbors and
connectivity calculated in Phase 1. These atom pairs
are calculated for both defects. For each atom pair
Aij , we store the projection onto X ,Y and the Z-axes
represented by Aijx, Aijy and Aijz respectively.

• Find matching Pairs: For each pair Aij we find all
pairs Bkl such that

|Aijx − Bklx| ≤ σnoise

|Aijy − Bkly| ≤ σnoise

|Aijz − Bklz| ≤ σnoise

where threshold σnoise is obtained as explained in
Section 4.1.1.

We represent this equality of atom pairs as Aij ↔ Bkl,
which implies that the length and orientation of the
bond formed by atoms i and j of defect A is similar
to the bond formed by atoms k and l of defect B.

By comparing each projection separately, we intrinsi-
cally take care of both: bond length and orientation.

• Find Largest Common Substructure (LCS): The
rules generated in the previous step are used to find the
largest common substructure between two defects. We
use a region growing based approach to find LCS.

The pseudo code for finding LCS is shown in Figure 5.

Before explaining each step in detail, we define the
notion of compatible substructures:

Two substructures U and V are considered compatible
w.r.t. the rule Aij ↔ Bkl, if the last atom added to U is

the ith atom of defect A and the last atom added to V
is the kth atom of defect B.

Being compatible implies that the two substructures
have the same number of atoms and the orientation
of atoms (which defines shape) is approximately same
(within noise thresholds).

The algorithm starts by finding all compatible sub-
structures U and V w.r.t to the rule Aij ↔ Bkl (Line
4). The length of U (and V) is increased by 1 and atom
j (and l) is added. Lines 5-10 of Figure 5 show this
process. However, if no compatible substructures are
found then a new substructure U (and V) is initialized
with atoms i and j (k and l). Lines 11-16 in Figure 5
refer to this case. The same process is then repeated for
all the rules.

1 Input : All rules
2 For each rule : Aij ↔ Bkl

3 {
4 Find Compatible substructures U and V
5 If U and V found
6 {
7 Length = Length+1;
8 U [Length] = j;
9 V [Length] = l;
10 }
11 else
12 {
13 Create new U and V ;
14 Store i and j in U ;
15 Store k and l in V ;
16 }
17 }

Figure 5: Pseudo code for finding Largest Common Sub-
structure

This method also provides the correspondence between
atoms. Atoms in U and V have a one-to-one relation-
ship between them.

• Similarity Metric Computation: The Largest
Structure (LS) is then chosen from the common sub-
structures. We use the following metric to determine
the similarity between A and B:

Sim(A, B) =
2 ∗ ‖LS‖

‖A‖ + ‖B‖
This similarity is calculated between A and all the K
candidate defect classes. The class which gives the
maximum similarity greater than a user defined thresh-
old is chosen as the target class. If the maximum sim-
ilarity is less than the user defined threshold the defect

is considered new and both the databases, IDshape and
IDmoment are updated. The summary database is up-
dated for each defect (previously seen or new).

5 Experiments and Results

In this section we present the results of our framework. As
noted earlier we use OHMMS (see Section2) to generate the
datasets. We first, show the advantage of weighted moments
over unweighted moments by comparing the accuracies of
various classifiers. Next, we demonstrate the accuracy of the
LCS algorithm bootstrapped with different classifiers: KNN,
Naive Bayes and VFI. Later, we show the scalable aspects
of our framework by deploying it on very large datasets (in
the giga-byte range). Finally, we present preliminary results
demonstrating how our two-step classifier can help us gain a
better understanding of defect evolution.

5.1 Robust Classification: To illustrate the importance of
using weighted moments as opposed to unweighted mo-
ments, we performed the following experiment: a total of
1, 400 defects were randomly sampled across multiple simu-
lations conducted at different temperatures. The noise in the
simulation depends on the temperature at which the lattice is
simulated. Therefore two defects belonging to the same class
can have different number of atoms and/or different positions
of atoms depending on the temperature, even though their
core defect shape remains approximately the same. This
sampling strategy ensures that no two defects of the same
class are exactly the same. Each defect, in this experiment,
belongs to one of the fourteen classes of single interstitial
defects that are known to arise in Si.
For comparison purposes, we tried nine different classifiers.
Figure 6 clearly demonstrates that all classifiers perform
better when weighted moments were used. Classification
accuracies of VF1, KNN (K=1) and Decision tree based
classifiers are comparable (close to 90%). SMO (SVM based
classifier), also provided good accuracy (85%) but it was
quite slow; classifying 1,400 defects took over 25 minutes.
On average the classification accuracy increased by 8% when
weighted moments were used.
Next, we present the classification accuracies of Naive
Bayes, KNN and VFI. These classifiers are modified to pick
the K most important classes dynamically (as explained
in Section 4). Figure 7 shows the results for this experi-
ment. KNN with weighted moments outperforms all other
classifiers by achieving an accuracy of 99% whereas Naive
Bayes is the least accurate with an accuracy of 86%. Again,
weighted moments outperform unweighted moments.
An important point to note is that all the 1, 400 defects
used for this experiment were labeled manually by a domain
expert. However, in actual simulation data there are no
predetermined labels since new classes can be created as
the simulation progresses. Also there is no training data

0

10

20

30

40

50

60

70

80

90

100

Na
ïv
e
Ba
ye
s

LW
L

Hy
pe
rp
ip
e

VF
I

De
cis
io
nt
re
e

on
eR

SM
O

Jr
ip

KN
N
(K
=1
)

Classifier

A
c
c
u
ra
c
y
(%

)

Unweighted M om ents

W eighted M om ents

Figure 6: Accuracies of various classifiers

to build the initial model for Decision tree and Naive Bayes
classifiers. For the purpose of this experiment, we artificially
divided the dataset into training (90%) and testing data
(10%) for all the classifiers that require training data to build
model. Classifier accuracies are averaged over 10 runs of the
classifiers.
Only KNN and VFI can discover new classes in real time.
Both classifiers calculate a similarity metric for classifica-
tion: distance in the case of KNN and votes for VFI. If this
similarity metric is less than a user defined threshold, a new
class label can be assigned to the defect. However, VFI will
have to build the whole classification model from start when-
ever a new defect class is discovered. Since large number of
defect classes can be created in a simulation, rebuilding the
classification model repeatedly will degrade the performance
considerably.

0

10

20

30

40

50

60

70

80

90

100

KNN Bayes VfI

Classifier

A
c
c
u
ra
c
y
(%

)

Unweighted M om ents

W eighted M om ents

Figure 7: Classification accuracy with Dynamic K

Thus the LCS algorithm bootstrapped with the KNN clas-
sifier using weighted central moments is the best choice in
terms of accuracy and efficiency.

(a) (b) (c)

Figure 8: Transitions in Three Interstitials(a) 1st Frame (b) 20000th frame (c) 130,000th frame

5.2 Scalable Classification - Large Simulations: We use
three large datasets, namely Two Interstitials, Three Inter-
stitials, and Four Interstitials for these experiments. Ta-
ble 1 summarizes the number of frames, size of the dataset,
total number of defects present in the simulation and number
of unique defect classes identified by our framework. For all
three datasets, our framework was able to correctly identify
all the defect structures. However, given the paucity of space
we only present an in-depth analysis of the Three Intersti-
tials dataset. Similar results were also obtained for other
datasets.

Dataset Number of Size Total Defects Unique Defects

Frames (in GB) Detected

Two Interstitials 512,000 4 350,000 2,841

Three Interstitials 200,200 6 320,000 1,543

Four Interstitials 297,000 10 410,000 3,261

Table 1: Datasets Used in Evaluation

This simulation starts with three disconnected interstitial
defects. The defects move around in the lattice during the
first 19, 000 time frames. However, at the 20, 000th time
frame two of the defects join and form a ’new’ larger defect.
This larger defect does not change for a long period of
time. However, at the 130,000th time frame the third defect
joins the ’new’ defect and forms a single large defect which
remains unchanged until the end of the simulation. Figure 8
shows the evolution of the defects in the simulation. For the
rest of this paper we refer to changes in defect shape or type
as ”transitions”.
Though these transitions occur over a large period (thou-
sands of time steps), atoms do not stay at the exact same po-
sition in two consecutive frames due to thermal noise. Such
thermal agitations can also cause bulk atoms to be labeled
as defect atoms (and vice versa). As a result, there exist
marginal fluctuations in the shape of a defect from frame to
frame. However, the effect of these changes on weighted
central moments is relatively small. For example, in the

Three Interstitials dataset, the total number of defect instan-
tiations in the simulation was around 320, 000. However, our
classifier detected only 1, 543 unique defect classes. These
1, 543 defects capture the actual transitions as verified by a
domain expert. To reiterate, the use of weighted moments
minimizes false positives and ensures robust classification.
The use of weighted moments and pruning in Step 1 also
allows our approach to achieve good scalability. Finding
the LCS is a relatively expensive algorithm, therefore we
want to use it as infrequently as possible. In most cases the
number of candidate classes K from Step 1 (KNN classifier)
of our dynamic classifier is less than 3. For example, in
the Two interstitials dataset 2, 841 unique defects were
found however, the LCS algorithm only evaluates less than
3 closest matches. This underlines the usefulness of the
pruning step of our classifier. The discovery of all the
unique defect classes demonstrates that the correct defect
class is not pruned away. To summarize, pruning based
on weighted moments provides scalability to the framework
without affecting the accuracy.
Many of these defects are not stable, i.e, they may exist
for as few as 100 time frames; however these unstable
defect structures are extremely important since they allow
one to understand the physics behind the creation of, and
transitioning to, stable structures. We can easily eliminate
these unstable structures from our repositories by either
maintaining simple counts or by time averaging the frames.
However, using both these techniques will result in loss of
transition information. To illustrate this point we took the
same Three Interstitials dataset and averaged it over every
128 frames. In this averaged data, we found only 18 unique
defects. It turns out that we found all the possible stable
structures, but the actual transitioning behavior was lost.

5.2.1 Timing Results: Figure 9 shows the time taken by
OHHMS to complete the simulation and time taken by our
framework to analyze the data. The figure also shows the in-
dividual time taken by Phase1 (defect detection) and Phase2
(classification). Phase1 takes around 45% of the time and

Phase2 requires the rest of the time. All the experiments
are carried out on Pentium 4 2.8GHz dual processor ma-
chine with 1 GB of main memory. Our classifier can ana-
lyze the data almost 1.5 times faster than the data generation
rate. This allows us to analyze the data and build the defect
databases in real time without dropping/losing any frames.
Another advantage is that we are not required to store the
large simulation file (of the order of 15GB) on disk. All the
needed information about defect type(s), number(s) and tran-
sitions, can be obtained from the simulation databases and
the summary file.

0

5

10

15

20

25

30

35

40

Two Interstitial Three Interstitial Four Interstitial

Datasets

T
im
e
 (
in
 h
o
u
rs
)

O HM M S

Fram ework

Phase1

Phase2

Figure 9: Timing Results

Next we show how the results produced by the framework
can be used for tracking and understanding the movement of
defects in the simulation.

5.3 Meta-stable Transitions: The transitions between
two meta-stable defect structures are even more important
than the creation of transient structures. We, next present ex-
perimental results on a simulation that depicts the transition
of a single defect to another defect.
This is a fairly small but extremely useful simulation. The
simulation has 1, 300 frames with 67 atoms in each frame
and one interstitial defect. We were able to detect the
50 unique defects which actually capture the transitions
from defect of type I3us-01 to I3us-03. (These labels are
provided by domain experts). The defect does not break
into multiple parts; therefore, we do not have to deal with
the correspondence problem in this case1. Again, all these
results have been verified by our domain expert by manually
checking every frame of the simulation.

5.4 Generating defect trajectories: From the summary
database produced at the end of simulation analysis, we can

1Correspondence allows the labeling of two defects with the same class
label at two different time epochs.

glean important information about the movement of a defect
in lattices. The summary database provides information to
construct a defect’s motion trajectory over a period of time.
We use a 10, 000 frame simulation to show this. In this
simulation the defect moves in the −z direction through the
lattice, reaches the end of the lattice and then stays in the xy
plane. We found 70 unique defects in this simulation. All
the detected defects are labeled as one of these 70 classes.
Most of these defects were highly unstable. We plot the
(x,y,z) coordinates of the all the detected defect’s weighted
centroid at each time stamp. Figure 10 clearly shows the
movement of the defect in the −z direction. This idea can be
extended to a multiple defect simulation. Since the defects
in the summary database are labeled therefore, it should
be fairly easy to construct multiple trajectories for multiple
defects. By studying these labeled trajectories, one can gain
more insight on how a defect evolves and interacts with other
defects over time.

6 Conclusions

In this application case study, we propose a two-step clas-
sifier to classify the defects in large scale MD simulation
datasets. The classifier is scalable and incremental in nature.
New classes of defects can be discovered and added to clas-
sifier model in real time. The approach is also robust to noise
(inherent to MD simulations). We present various noise han-
dling schemes and validate these schemes using a physical
model and properties of the lattice systems. We demonstrate
the capabilities of our approach by deploying it on very large
datasets (≥ 4GB). We were able to find a very small num-
ber of unique defect classes from these large datasets. These
unique classes capture the defect transitions very well.
We are currently working on solving the correspondence
problem in the context of multiple defects. This will enable
us to build an automated system to capture important events
such as defect disintegration and defect amalgamation. An-
other future goal is to understand the interactions among de-
fects in a simulation. Towards this goal, we plan to model the
movement of defect as trajectories, tagged by defect class
labels, and analyze these trajectories. We also plan to ap-
ply other data mining techniques including frequent itemset
mining and spatial patterns mining to gain more insight in
the actual defect evolution process.

References

[1] C. Borgelt and M. Berthold. Mining Molecular fragments:
Finding relevant substructures of molecules. In ICDM, 2002.

[2] S.J. Clark and G.J. Ackland. Ab initio calculation of the self
interstitial in silicon. Physical Review Letters vol. 56, 1997.

[3] A. S. Clarke and H. Jnsson. Structural changes accompany-
ing densification of random hard-sphere packings. Physical
Review E vol.47, pages 3975–3984, 1993.

Figure 10: Capturing the movement of defect

[4] D. A. Richie, Jeongnim Kim, and John W. Wilkins. Real-time
multiresolution analysis for accelerated molecular dynamics
simulations. In American Physical Society March Meeting,
2001.

[5] K. Eric Drexler. Nanosystems: molecular machinery, manu-
facturing, and computation. Wiley Publishers, 1992.

[6] L. Spencer G. Hulten and P. Domingos. Mining time-
changing data streams. In Knowledge and Data Discovery
(SIGKDD), 2001.

[7] J.M. Galvez and M. Canton. Normalization and shape recog-
nition of three-dimensional objects by 3d moments. PR,
26:667–681, 1993.

[8] H. Jnsson and H. C. Andersen. Icosahedral ordering in the
lennard-jones liquid and glass. Physical Review Letters vol.
60, pages 2295–2298, 1988.

[9] Charles Kittel. Introduction to Solid State Physics. John
Wiley and Sons, 1971.

[10] L. Dehapse, H. Toivonen and R. King. Finding Frequent sub-
structures in chemical compounds. In Knowledge Discovery
and Data Mining, 1998.

[11] M. Jiang, T.-S. Choy, S. Mehta, M. Coatney, S. Barr, K. Haz-
zard, D. Richie, S. Parthasarathy, R. Machiraju, D. Thomp-
son, J. Wilkins, and B. Gatlin. Feature Mining Algorithms
for Scientific Data . In SIAM, 2003.

[12] Sameep Mehta, Kaden Hazzard, Raghu Machiraju, Srinivasan
Parthasarathy, and John Wilkins. Detection and visualization
of anamolous strcutures in molecular dynamics simulation
data. In IEEE Conference on Visualization, 2004.

[13] M.hu. Visual Pattern Recognition by Moment Invariants. In
IRE Trans Information Theory, pages 179–187.

[14] R. Machiraju, S. Parthasarathy, J. Wilkins, D. Thompson, B.
Gatlin, D. Richie, T. Choy, M. Jiang, S. Mehta, M. Coatney,
and S. Barr. Mining of Complex Evolutionary Phenomena,
Next Generation Data Mining. In NGDM, 2003.

[15] R. Nussinov and H. Wolfson. Efficient Detection of three di-
mensional Structural Motifs in Biological Macromolecules by
Computer Vision Techniques. In Proceedings of the National
Academy of Sciences of the United States of America, vol-
ume 88, Dec 1, 1991.

[16] S. Djoko, D. Cook and L. Holder. Analyzing the benefits of
domain knowledge in substructure discovery. In Knowledge
Discovery and Data Mining, 1995.

[17] S. Parthasarathy and M. Coatney. Efficient Discovery of
Common Substructures in Macromolecules . In ICDM, 2002.

[18] R. Veltkamp and M. Hagedoorn. State-of-the-art in shape
matching. Technical Report UU-CS-1999-27, Utrecht Uni-
versity, the Netherlands, 1999.

[19] R.J. Needs W.K. Leung and G. Rajagopal. Calculation of
silicon self interstitial defects. Physical Review Letters vol.
83, 1999.

[20] X. Wang, J. Wang, D. Shasha, B. Shapiro, S. Dikshitulu, I.
Rigoutsos and K. Zhang. Automated discovery of active mo-
tifs in three dimensional molecules. In Knowledge Discovery
and Data Mining, 1997.

[21] Y. Lamdan and H. Wolfson. Geometric Hashing : a general
and efficient model-based recognition scheme. In Proceed-
ings of the second ICCV, pages 238–289, 1988.

[22] C. Zhang and T. Chen. Efficient Feature Extraction for 2D/3D
Objects in mesh representation. In ICIP, 2001.

