
A Hypergraph Partitioning Based Approach for
Scheduling of Tasks with Batch-shared I/O∗

Gaurav Khanna†, Nagavijayalakshmi Vydyanathan†, Tahsin Kurc‡,
Umit Catalyurek‡, Pete Wyckoff+, Joel Saltz‡, P. Sadayappan†

† Department of Computer Science and Engineering
‡ Department of Biomedical Informatics

The Ohio State University
+ Ohio Supercomputer Center

Abstract

Data analysis applications are increasingly becoming a key part of data-driven science and
application systems. In this paper, we examine strategies for scheduling of multiple data anal-
ysis tasks with batch-shared I/O behavior (i.e., tasks access overlapping sets of files stored in
a storage system). We propose a novel, hypergraph partitioning based strategy. This strategy
formulates the sharing of files among tasks as a hypergraph to minimize the I/O overheads due
to transferring of the same set of files multiple times and employs a dynamic scheme for file
transfers to reduce end-point contention on the storage system. We experimentally evaluate
the proposed approach using application emulators from two application domains; analysis of
remotely-sensed data and biomedical imaging.

1 Introduction

The development of new technologies in several areas is making it more feasible to take a data-
driven approach to address complex problems in science and engineering. First of all, our ability to
collect data has increased tremendously with the help of advanced sensors that can rapidly capture
data at high-resolutions and Grid technologies that enable simulation of complex numerical mod-
els. Moreover, inexpensive platforms for large scale, disk-based storage are becoming increasingly
available. It is currently possible to implement disk-based storage systems with 100+ TB storage
space. An example is the Ohio Supercomputer Center, which currently has a 500TB disk-based
storage system. We anticipate that in the not-too-distant future, supercomputing centers will not
only provide computational resources, but also serve as high-end data centers for scientific and
engineering applications.

∗This research was supported in part by the National Science Foundation under Grants #CCF-0342615, #ACI-
9619020 (UC Subcontract #10152408), #EIA-0121177, #ACI-0203846, #ACI-0130437, #ANI-0330612, #ACI-
9982087, Lawrence Livermore National Laboratory under Grant #B517095 (UC Subcontract #10184497), NIH NIBIB
BISTI #P20EB000591, Ohio Board of Regents BRTTC #BRTT02-0003.

1



Several research groups have targeted applications that generate, collect, and reference large
datasets in biomedicine [4, 52, 38]. An increasing number of research projects also are developing
techniques and tools for data-driven science in application areas ranging from dynamic numerical
modeling to data assimilation in measured data to design optimization [17, 22, 21, 48, 45]. The
ultimate goal in collecting large volumes of data is to gain a better understanding of the problem
under study and to more efficiently refine the search space for solutions. Hence,data analysis
applicationsare a key part of data-driven science and application systems. In the context of data-
driven science, a data analysis application can be defined as one that accesses and processes a
subset of a dataset. Most scientific datasets are stored in files. A request for the region of interest
specifies a subset of data files and/or segments in data files – either as part of the input parameters
or after an index lookup, which finds the files and file segments that can address the request. The
data of interest is then processed and transformed into a data product, which is more suitable for
examination by the scientist.

Several approaches have been proposed to achieve high data rates in data intensive applica-
tions through parallel I/O, caching, etc. [3, 16, 7, 30, 40, 55, 37, 42, 47, 49, 55, 53]. Shen and
Choudhary [49], for example, present a Multi-Storage I/O System (MS-I/O) that manages various
distributed storage resources in the system and provides high performance storage access schemes.
MS-I/O employs many state-of-the-art I/O optimizations such as collective I/O, asynchronous I/O
and a number of new techniques such as data location, data replication, subfile, superfile and data
access history. Scheduling is another optimization approach that can improve performance, when
multiple tasks are submitted to the system.

In this paper we address the problem of scheduling a batch of data analysis tasks submitted to a
server cluster so that the total execution time of the batch is minimized. The need to handle batches
of such jobs can arise in several situations. In a server accessed by many clients concurrently, there
may be multiple jobs waiting in the job queue for execution, because of limited resources on the
server. A client may submit multiple jobs in a batch to potentially analyze subsets of a dataset with
different input parameters. For example, applications that search a parameter space to optimize
one or more objective functions may submit multiple jobs, each with different parameter values,
against a group of datasets. Traditional job scheduling techniques are designed to address the
requirements of batches consisting of compute intensive jobs. As more data driven applications
become candidates for consuming storage and compute resources, scheduling of data analysis jobs
will have an increasing importance.

Thain et.al. [54] characterize types of I/O sharing in data intensive application batches;pipeline-
shared, in which files are shared in write-then-read fashion in a single pipeline of data processing
jobs, andbatch-shared, in which files are shared across tasks in different pipelines. Batch-shared
I/O can be attributed to several factors. If jobs are submitted by clients working in the same ap-
plication domain, there may be a number of overlapping regions of interest, or ”hot spots”, as
scientists in the same domain are likely to have similar interests. Sharing of I/O also depends on
how data is distributed across data files in the system. Requests by two jobs may not overlap in the
underlying attribute space of the dataset, but data elements required to serve those requests might
have been stored in the same set of files.

In earlier work [51, 59] we examined algorithms for scheduling pipelines of data processing
with pipeline-sharedI/O behavior. This paper focuses on scheduling of tasks withbatch-sharedI/O
behavior. We propose a novel, hypergraph based approach. Hypergraphs have attracted much at-

2



tention for modeling the computational structure of many parallel applications [9, 10, 13, 23]. The
main advantages of the hypergraph model are that a hypergraph can model asymmetric dependen-
cies and the cut metric is well suited for minimizing the total volume of communication [10, 23].
The approach proposed in this paper formulates the sharing of files (batch-shared I/O) among tasks
as a hypergraph and employs a two-stage strategy for scheduling of tasks and file transfers. In the
first stage, tasks are partitioned into groups via hypergraph partitioning. Each group is mapped to a
compute processor in the system. In the second stage, a dynamic strategy is applied to order tasks
in each group for execution and to transfer files from storage system to compute nodes for task
execution. We experimentally evaluate the proposed approach using application emulators from
two application domains; analysis of remotely-sensed data and biomedical imaging.

2 Related Work

Most of classic work on scheduling for parallel machines is derived from Sarkar [46], and later
work such as Yang and Gerasoulis [61]. The goal on distributed memory parallel machines is
to trade-off parallelism with communication. Most techniques for scheduling are either based on
clustering [18], list-scheduling [32], or combination of both. Several techniques have also been
developed for scheduling in heterogeneous computing systems [18, 56, 60, 36, 6, 25]. Some of
these techniques deal with a single application structured as a DAG, while others apply to globally
scheduling many independent tasks. In our work we target data intensive jobs.

Relatively little research so far has addressed the scheduling of data intensive jobs. In [43],
a decoupled approach to scheduling of computations and data for data-intensive applications was
proposed, and evaluated using a simulation testbed. However, a simple first-come first-served
scheduling strategy was used in that study. Another study that explicitly modeled the cost of data
movement in job scheduling was for parameter sweep applications [8]. A parameter sweep appli-
cation consists of a set of independent jobs that should be scheduled to the resources in the environ-
ment. The authors modify several heuristics that were designed for compute intensive applications
on parallel machines [24, 35] for parameter sweep applications in a Grid environment. The modi-
fied heuristics take into account data transfer times and affinity of tasks to machines. Our approach
and target platform are different. We look at scheduling on coupled storage and compute clusters
and propose a hypergraph based approach to model batch-shared I/O. Spencer et.al. [51] devel-
oped two algorithms for scheduling multiple pipelined operations in heterogeneous environments.
However, that work targets applications that exchanged data buffers via TCP/IP and memory copy
operations.

Multi-query workloads also arise in the context of database applications [15, 44, 12, 62]. The
work of Mehta et al. [39] is one of the first to address the problem of scheduling queries in a parallel
database by considering batches of queries. The authors target sharing data structures for joins and
selects, and the goal of their scheduling algorithms is to find the global schedule for all queries
that minimizes the total execution time of a given batch. In [2], Andrade et.al. propose a dynamic
scheduling model for multi-query workloads in data analysis applications. The goal is to maximize
data and computation reuse and concurrent execution on SMP nodes through semantic caching
and ordering of queries. The model is based on a priority queue implementation using a directed
graph and a strategy for ranking queries. The directed graph is used to express commonalities
and dependencies among queries in a query batch. We too aim to minimize I/O, networking, and
computation overheads by taking into account overlaps among tasks, like the previous work in

3



multi-query scheduling. However, previous strategies mainly target efficient reuse of results from
previously executed queries.

Chang et.al. [13] examine optimization methods for executing data aggregation operations on
disk-resident datasets on distributed-memory machines with local disk farm. Drawing from the
computational hypergraphmodel proposed in [9, 10] for decomposition of sparse matrices in par-
allel matrix-vector multiplication operations, the authors propose a hypergraph based algorithm
for partitioning of workload among processors and for scheduling of processing. The algorithms
model retrieval, communication, and processing requirements of parallel aggregation as a weighted
hypergraph. An execution plan is generated by computing a multi-way partitioning of the hyper-
graph. Our approach is targeted towards scheduling of multiple tasks, rather than efficient parallel
execution of a single task.

Jain et.al. [26] model scheduling of I/O operations (with certain assumptions) as a bipartite
graph with two separate sets of nodes namely, disks and processors. The algorithm proceeds by
coloring such a graph where k instances of a single color in the graph represent k simultaneous
I/O operations. The goal is to color the graph with minimum number of colors so as to minimize
the length of the schedule. Our main difference is we consider grouping and mapping of tasks to
compute nodes in tandem with ordering of tasks and scheduling of remote I/O operations for file
transfers.

3 Applications and Problem Definition

In this section, we present a brief overview of two applications from the application domains we
used to evaluate the scheduling strategies and the definition of the problem we are targeting to
address in this paper.

3.1 Applications

Satellite data processing.Remotely sensed data is an invaluable source of information for earth
scientists studying Earth’s atmosphere, land, and sea properties and conditions. This kind of data
is either continuously acquired or captured on-demand via sensors attached to satellites orbiting
the earth. In most remote sensing applications, a data element acquired by a sensor reading is
associated with a location on earth, the time of recording, and the type of sensor. Datasets of re-
motely sensed data can be organized into multiple files in various ways. A common characteristic
of different file organizations is that each file contains a subset of data elements acquired within
a time period and a region of the earth surface. For instance, a dataset in the form of a snapshot
of the surface captured by a Landsat thematic mapper satellite consists ofN files (usually 4 or 5
files), with each file corresponding to a specific sensor on the satellite and storing data captured
by the sensor within the time period and surface region specified by the ground control. A typical
query [1, 14, 34, 50] involves processing of the data within a time period and region, and generating
one or more composite images of the area under study. That is, a data analysis task can request a
subset of the data, which is defined by a spatio-temporal window. Such a request results in retrieval
of files (or segments of files), the spatio-temporal bounding box of which intersects the query win-
dow. The spatio-temporal bounding box of a file is defined by the maximum and minimum spatial
coordinates and recording times of all of the sensor readings stored in that file. The composite
image is generated by processing the sensor readings and combining the sensor values that map to

4



the same output image pixels [57]. When multiple scientists access these datasets, there will likely
be overlaps among the set of files requested because of ”hot spots” such as a particular region or
time period that scientists may want to study.

Biomedical Image Analysis. Biomedical imaging is a powerful method for disease (e.g., can-
cer) diagnosis and for monitoring therapy. Imaging studies such as Dynamic Contrast Enhanced
MRI [28, 29, 41] capture time-dependent sequences of 2D and 3D images. In DCE-MRI, after
an extracellular contrast agent is injected in the subject, a sequence of images are obtained over
some period of time. The time-dependent signal changes acquired in these images are quantified
by a pharmacokinetic model to map out the differences between tissues. State-of-the-art research
studies in DCE-MRI make use of large datasets, which consist of time dependent, multidimen-
sional collections of data from multiple imaging sessions. Although single images are relatively
small (2D images consists of1282 to 5122 pixels, 3D volumes of 64 to 512 2D images), a single
study carried out on a patient can result in an ensemble of hundreds of 3D image datasets. A study
that involves time dependent studies from different patients can involve thousands of images. Sys-
tematic development and assessment of image analysis techniques requires an ability to efficiently
invoke candidate image quantification methods on large collections of image data. A researcher
may apply several different image analysis methods on data from multiple different studies to as-
sess ability to predict outcome or effectiveness of a treatment across patient groups. Such a study
would be likely to involve image datasets containing thousands of 2D and 3D images and multiple
image analysis jobs with different input parameters.

3.2 Problem Definition

In scientific and engineering applications, a dataset is stored as a set ofdata files, each consisting of
a disjoint subset of data items. Data files are declustered across storage units (or file systems) using
a declustering algorithm, in order to better utilize the aggregate storage space and I/O bandwidth.

In this paper, we target configurations consisting of coupled compute and storage platforms.
Datasets are stored on a pool of storage nodes (storage cluster). Storage nodes are connected to a
pool of compute nodes (compute cluster) over a local area network or switch. Each compute node
has one or more local disks and can request files from any of the storage nodes. Such configura-
tions are likely to be common in institutions as well as supercomputer centers, since compute and
storage clusters are designed with different goals in mind. A compute cluster will have high-end
processors with high-speed networking among them. On the other hand, a storage cluster may
forgo computing power in favor of large storage space.

A batch consists of independent sequential tasks (data analysis programs). Each task requests
a subset of files in the environment and can be executed on any of the nodes in the compute cluster.
Data files required by a task should be staged from the storage cluster to the compute cluster for
the task to execute correctly. A data file is the unit of I/O transfer from the storage cluster to
the compute cluster. If a file is required for processing by one or more tasks, it may be retrieved
multiple times as a whole and transferred to the respective compute nodes.

Our objective is, given a batch of tasks and a set of files required by these tasks, to schedule
the tasks in an efficient manner so as to minimize the batch execution time. Figure 1 depicts an
illustration of this problem. Each task in the batch is represented by a compute weight, list of input
files, and their file sizes. The tasks in the batch may share a number of files.

5



Figure 1: Scheduling problem.

4 Task Scheduling Strategies

In this paper, we examine the MinMin, MaxMin, Sufferage, which are originally proposed for
scheduling independent computational tasks to compute resources [24, 35], along with Shortest
Job First heuristics and our proposed algorithm to determine task-compute node assignments. As
in [8], we modify the MinMin, MaxMin, and Sufferage to take into account 1) the time it takes to
transfer input and output files to and from compute nodes in the environment and 2) files that have
already been staged to a compute node in estimating the minimum completion time of a task.

4.1 Shortest Job First, MinMin, MaxMin, and Sufferage

Shortest Job First (SJF).Tasks are ordered for execution based on their expected execution times.
The execution time of a taskti is calculated as the sum of the time it takes to transfer files needed
for ti and the execution time for processing the files. In the SJF strategy, the shorter the execution
time of a task is, the earlier the task is executed.

MinMin. Given a set of tasks that have not yet been scheduled, this strategy computes the min-
imum expected completion time of each task on each node in the system. When computing the
completion time for a task on a node, it takes into account, the files, required by the task, that is
already transferred to that node by tasks previously executed on that node. Among the unscheduled
tasks in the batch, MinMin chooses the task that can complete the earliest and assigns it to the node
that can execute that task fastest.

MaxMin. As in MinMin, the MaxMin strategy computes the estimated minimum completion time
(MCT) of a task on each node in the system. Among the unscheduled tasks, it chooses the task
with the maximum MCT.

Sufferage.The Sufferage strategy looks at how much a task will suffer if it is not assigned to the

6



host that will run the task fastest. The underlying idea is that a host should execute the task that
will suffer the most if the task is not assigned to that host. The sufferage of a task is computed
as the difference between the task’s best MCT and its second best MCT. Among the unscheduled
tasks, Sufferage chooses the task with highest sufferage and assigns it to the node that will achieve
the best MCT for the task.

In these schemes, once a task is mapped to a compute node, files required for the task are
staged from the storage system to the compute node independent of staging of files for tasks that
are concurrently mapped to other compute nodes.

4.2 A Hypergraph-based Approach

We propose a two-stage scheduling algorithm. In the first stage, we partition and map the tasks to
the compute nodes. In the second stage, ordering of the tasks in each compute node is determined.
Here, we will describe these stages in more detail. We first present a brief overview of hypergraph
partitioning.

4.2.1 Hypergraph Partitioning

A hypergraphH = (V ,N ) is defined as a set of verticesV and a set of nets (hyper-edges)N
among those vertices. Every netnj ∈ N is a subset of vertices, i.e.,nj ⊆ V . The size of a
net nj is equal to the number of vertices it has, i.e.,sj = |nj|. Weights (wi ) and costs (cj )
can be assigned to the vertices (vi ∈ V ) and edges (nj ∈ N ) of the hypergraph, respectively.
P={V1, V2, . . . , VP} is aP-way partition of H if 1) each part is a nonempty subset ofV , 2) parts
are pairwise disjoint and 3) union ofP parts is equal toV . A partition is said to be balanced if
Wp ≤ Wavg(1 + ε) for 1 ≤ p ≤ P , whereWp =

∑
vi∈Vp

wi is the sum of the vertex weights
of part Vp , Wavg = (

∑
vi∈V wi)/P denotes the weight of each part under the perfect load balance

condition, andε represents the predetermined maximum imbalance ratio allowed.
In a partitionP of H , a net that has at least one vertex in a part is said toconnect that part.

Connectivity λj of a netnj denotes the number of parts connected bynj . A net nj is said to be
cut if it connects more than one part (i.e.λj > 1). The cut nets are also referred to here asexternal
nets and is denoted asNE . There are variouscutsize definitions for representing the costχ(P) of
a partitionP [33]. The relevant,connectivity-1 , definition is:

χ(Π) =
∑

nj∈NE

cj(λj − 1). (1)

In (1), each cut netnj contributescj(λj−1) to the cutsize. Hence, the hypergraph partitioning
problem [33] can be defined as the task of dividing a hypergraph into two or more parts such that
the cutsize is minimized, while a given balance criterion among the part weights is maintained.
Algorithms based on themulti-levelparadigm, such as hMETIS [27] and PaToH [10], have been
shown to compute good partitions quickly for this NP-hard problem [20, 33].

4.2.2 Hypergraph Formulation for Partitioning and Mapping of Tasks

If two tasks that share a lot of files are executed concurrently on two different processors, it will
result in transfer of the same files multiple times from the storage cluster to the compute cluster.

7



(a) (b)

Figure 2: a) A sample batch of tasks with their file dependencies, b) Hypergraph representation of
the batch of the tasks displayed in (a).

On the other hand, if the tasks are scheduled to the same compute node in order to minimize
file transfer times, load imbalance may be incurred with some computational nodes having more
task load than others. Our goal is to partition tasks into groups such that the amount of data
transfer between the storage cluster and the compute cluster is minimized while load balance across
compute nodes is maintained. When scheduling a task, the MinMin, MaxMin, and Sufferage
strategies consider the affinity of a task to compute nodes based on files that have already been
transferred to the compute nodes for other tasks. This implements a simple way to minimize the
number of times the same file is transferred from storage cluster. However, these approaches only
consider sharing of files between the task to be scheduled and the tasks that have already been
scheduled and executed.

We propose a hypergraph formulation to model sharing of files among tasks and a hypergraph
partitioning based approach to compute a partitioning and mapping of tasks to compute nodes. Our
hypergraph model represents each taskti by a vertexvi in the hypergraph. Each hyper-edgenj

represents a filefj and connects the vertices (tasks) that require this file as input. This hypergraph
is partitioned intoP groups, whereP is the number of compute nodes, and each group is mapped
to a compute node. The partitioning is done so that the compute and I/O weight of the clusters are
balanced and the cost of transferring shared files across clusters is minimized. Figure 2 illustrates
a sample batch of tasks and a partitioning of the hypergraph representation of them.

The weightwi of a vertexvi is equal to the estimated execution time of the corresponding task.
As in the SJF, MinMin, and Sufferage strategies, the estimated execution time of a task is calculated
as the sum of I/O overhead (the transfer time of files from storage nodes plus the I/O time to read
files from local disk) and the computation cost of the task. However, in the previous strategies, a
task’s estimated execution time is dynamically updated, as files are staged to compute nodes for
other tasks. That is when a task is considered for execution, its execution time is estimated by
taking into account the set of files that have already been transferred to the compute cluster and
their distribution across compute nodes. Similarly, the weight of a vertex in the hypergraph will
depend on which group the corresponding task is assigned and the order in which the tasks in

8



that group are executed. Our current hypergraph partitioning strategy assumes static edge costs
and vertex weights. Moreover, the hypergraph based strategy globally partitions all the tasks in a
given batch into groups before any order for task execution is determined for a group. In order to
alleviate these issues and provide a better estimate of the execution time of a task, we compute the
weight of a vertex as follows.

Let the set of files a taskti needs beFi and the number of compute nodes in the system beP .
The cost of transferring filefj , Transferj , for taskti is equal to

Transferj(one byte) =
Probfirst task

RemoteBW
+

(1− Probfirst task) ∗
(1− Probmapped to the same node)

RemoteBW
(2)

Here,RemoteBW is the I/O bandwidth between a storage node and a compute node,Probfirst task

is the probability that taskti will be the first task to execute in its group that requiresfj , and
Probmapped to the same node is the probability thatti executes on a node, to which filefj has al-
ready been transferred. In our current implementation, we assume uniform probability distribution.
Hence, we have usedProbfirst task = 1

sj
andProbmapped to the same node = 1

P
. Recall thatsj is

the size of the hyper-edgenj that represents filefj . Hence it also denotes the number of tasks that
shares the filefj . With the assumption that computation time is linear with the size of the input
files, the estimated execution time of taskti is computed as

TimeExecutioni =
∑

fj∈Fi

filesize(fj)× (Transferj +
1

LocalBW
+ Computebyte) (3)

whereLocalBW is the I/O bandwidth from local disk on a compute node. By assigning the files
sizes as hyper-edge costs, the proposed method reduces the task mapping problem to theP -way
hypergraph partitioning problem according to the cutsize definition given in (1). Each and every
file needed by a task in the batch will be transfered to the compute system at least once. By using
connectivity-1 metric as our cost function, extra transfers of the files due to task assignment is
minimized. More specifically, if the tasks that share the filefj is assigned toλj compute nodes,
file fj needs to transferedλj − 1 more times after its first transfer. By using expected execution
times as vertex weights, the algorithm aims to balance computational load across the compute
nodes.

4.2.3 Ordering of Tasks in a Group and Transfer of Files

Once the tasks are partitioned into groups, the second phase of the scheduling algorithm is to order
tasks in each group and schedule transfer of files from storage cluster to compute cluster. By
minimizing the cutsize, the hypergraph based grouping of tasks will reduce the number of times
the same file is retrieved. However, hypergraph partitioning alone will not be sufficient to minimize
the I/O overhead. Our current hypergraph model accounts for sharing of files among tasks, but it
does not take into accountend-pointcontention on storage nodes explicitly. Even two tasks that do
not share files may have their input files stored on the same set of nodes. Thus, ordering of tasks

9



in each group and transfer of files should be done in a way to minimize end-point contention on
the storage cluster. We employ a strategy in which tasks within a group are scheduled based on
their earliest completion time. The earliest completion time of a task is computed iteratively and
dynamically based on the availability of resources.

The algorithm maintains aGantt chartfor storage nodes. When a task in a group is scheduled
for execution, time slots are reserved on storage nodes for file transfers required for this task. These
time slots for a task are marked on the Gantt chart. In calculating the duration of time slots and
marking them on the Gantt chart, we assume that a compute node and a storage node can take part
in at most one file transfer at a time. That is, multiple requests to the same storage node is serialized
and the compute node can receive a file after it has finished storing the previously received file on
local disk.

The earliest completion time of a taskti is estimated as the sum of time to stage its input files
Fi and its execution time. The staging time is the time spent to make the input files ready in the
compute node. If all of the input files are already in the compute node, the staging time will be
zero. Otherwise, it will be the amount of time spent to transfer the last input file from the storage
node. The transfer completion time for each filefj ∈ Fi (TCTj ) is estimated as the sum of the
earliest time a transfer can start (first available slot in the Gantt chart after the time that the compute
node becomes available) and the actual transfer time (size offj divided by the storage bandwidth;
computed as the minimum of remote disk bandwidth and network bandwidth). The filefj with
the minimumTCTj is picked and tentatively scheduled for transfer.TCT s of the rest of the input
files are recomputed and the next file with the minimumTCT is picked and tentatively scheduled.
This process is repeated until all of the input files are scheduled.TCT of the last file scheduled
actually gives the staging time. Then the earliest estimated completion time forti is computed as
the sum of 1) the completion time of file transfers from storage nodes, 2) I/O time to read the files
on local disk, and 3) CPU time to process the files. The scheduling algorithm determines the task
with the least completion time in each group, and the taskti with the lowestearliest completion
timeout of these is scheduled first. Onceti is scheduled, out of the other task groups (excluding
the one containingti ), the task with the minimum earliest completion time (taking into account
the current reservations) is now picked and scheduled. When a running task completes, the task
with earliest completion time from that group is scheduled.

Figure 3 illustrates the execution of the ordering algorithm on the batch of tasks shown in
Figure 2. In this figure transfer of each file takes 1 unit of time, and processing of a file takes
0.5 units. Since task 4 depends on two files, its earliest completion time is 3. Hence it has been
scheduled first and 1 unit of time on storage node 1 and 1 unit of time on storage node 3 have been
reserved. Since a task has been scheduled from group 2, next the task with the earliest completion
time from group 1 is scheduled. Since all of the tasks in the group depends on 3 files, and they can
be scheduled to transfer all of the files in 3 units, we pick one of them, say task 1. The algorithm
continues by reserving the transfer of files for task 1, and another task from group 2 is picked.

5 Experimental Results
We experimentally evaluated the scheduling algorithms using two application classes, satellite
data processing and biomedical image analysis, described in Section 3. We employed applica-
tion emulators [58] to generate various application scenarios. An application emulator provides a

10



Figure 3: An illustration of the execution of the ordering algorithm on the batch of tasks shown in
Figure 2.

parameterized model of an application class; adjusting the parameter values makes it possible to
generate different application scenarios within the application class in a controlled way. We used
the PaToH toolkit [10, 11] to obtain good quality partitionings of the hypergraphs generated for the
workloads in the experiments. In our experiments, we observed that the hypergraph partitioning
overhead is minimal compared to the execution time of a batch.

5.1 Hardware Configuration, Application Emulators, and Workloads

The experiments were carried out on two systems. The first system is a cluster of Pentium III 933
MHz nodes (OSUMED). Each node of this cluster has 300GB disk space and 512MB of memory.
The nodes are connected through a Switched FastEthernet. In the experiments, a subset of the
nodes were designated as storage nodes, to emulate a storage cluster coupled to a compute cluster
over a network. The second system (OSC) is a coupled compute and storage cluster system at
the Ohio Supercomputer Center. The compute cluster consists of dual-processor nodes equipped
with 2.4 GHz Intel P4 Xeon processors and 4 GB of memory, 62 GB of local scratch space,
interconnected by an 8 Gbps Infiniband Switch. The compute cluster is connected to the storage
system over another Infiniband Switch. The storage system consists of networked nodes, each of
which is connected to an array of IBM FASTt600s over a Fiber Channel Switch [5]. Each node has
a local file system that resides on FASTt600 storage units. For each of the workloads and hardware
systems, we measured throughput (in terms of MBytes processed per second) for a batch and the
amount of data transferred from storage nodes to compute nodes.

For the satellite data processing application, we used the emulator developed in [58, 31].
This emulator generates synthetic datasets that have similar characteristics to those obtained from
AVHRR sensors on NOAA-7 series satellites [14]. The application (TITAN ) operates on data
blocks (chunks) that are formed by grouping subsets of sensor readings that are close to each other
in spatial and temporal dimensions. On a parallel machine, the chunks are distributed across stor-
age nodes to achieve I/O parallelism. The emulator allows the user to generate datasets of varying

11



sizes (corresponding to different numbers of days of sensor readings), the amount of data acquired
per reading, and grouping of data blocks into files (one or multiple blocks can be stored in a data
file). In our emulation, we assigned one data chunk per file. A data analysis task specifies the
data of interest via a spatio-temporal window. For such a request, a list of data chunks, whose
spatio-temporal bounding boxes intersect the request window, is generated. These blocks (files in
our case) are retrieved from the storage system and processed by the data analysis task.

For the image analysis application, we implemented a program to emulate studies that involve
analyses on images obtained from MRI and CT scans (captured on multiple days as follow-up
studies). A dataset generated by the emulator is a series of 2D images obtained for a patient and
is associated with metadata describing patient and study related information (in our case, we used
patient id and study id as the metadata). Each image in a dataset is associated with an imaging
modality and the date of image acquisition. The emulator allows creation of collections of such
datasets, hence forming a database of images from multiple patients. Each image is stored in a
separate file. A data analysis program can select a subset of images based on a set of patient ids
and study ids, image modality, and a date range.

We evaluated the system for three different types of workloads;high overlap, medium over-
lap, andlow overlap, each of which represents different amounts of file sharing among tasks in a
batch. To generate a high overlap workload for the satellite data processing application, the emu-
lator shifted the request window by 15% in all dimensions. This resulted in a 85% overlap, on the
average, in terms of files requested by different tasks in the batch. Similarly, we generated medium
and low overlap workloads with 40% and 10% overlap, respectively. For the image analysis appli-
cation, different degrees of overlap is achieved by varying the values of patient and time attributes
across requests by different tasks. We generated workloads with 85%, 40%, and 0% overlap for
high, medium, and low overlap cases.

5.2 Performance Results

For the experiments, we generated 35 days worth of data, about 162 GB, for the satellite data
processing application. The data was distributed across 4 storage nodes on each hardware config-
uration using a Hilbert-curve based declustering method [19]. Each file in the dataset was 4.5 MB.
The number of tasks in a batch was equal to 200. In the high overlap case, each task accessed on
an average 25 files. In the medium and low overlap cases, each task accessed on an average 10
files. For the image analysis application, the dataset generated by the emulator corresponded to a
dataset of 200 patients and images acquired over several days from MRI and CT scans. The sizes
of images were 1 MB and 16 MB for MRI and CT scans, respectively. The overall size of the
dataset was about 68GB. Each batch comprised of 200 tasks, and each task accessed 5 MRI scans
and 5 CT scans on average in the high, medium, and low overlap cases. Images for each patient
were distributed among 4 storage nodes in a round robin fashion.

The two application classes have a wide range of operations that can be applied on data and
that can have different computational requirements. In this paper we target data intensive applica-
tions, where I/O and communication overheads are comparable to that of computation. In order to
create data intensive workloads and to emulate configurations where communication and remote
I/O costs are relatively expensive, we chose the processing time for each task to be 0.001 seconds
per Megabyte of data.

Figures 4 and 5 show the relative performance of the various scheduling schemes on work-

12



(a) (b)

Figure 4: Throughput achieved by different algorithms on the (a) OSUMED cluster and (b) OSC
cluster, for the satellite data processing application.

(a) (b)

Figure 5: Throughput achieved by different algorithms on the (a) OSUMED cluster and (b) OSC
cluster, for the biomedical image analysis application.

loads with different degrees of shared I/O among tasks. These experiments were conducted using
4 compute nodes and 4 storage nodes on both OSUMED and OSC systems. As is seen from the
figures, the hypergraph based strategy performs better than the other algorithms for all cases. This
is because the hypergraph algorithm is able to cluster tasks that share files together, thereby reduc-
ing the number of times the same file is transferred from the remote storage system. In addition,
while minimizing the networking and I/O overheads, the hypergraph algorithm maintains compu-
tational load balance across the nodes. The gain due to hypergraph partitioning is maximum for
the high overlap workload and reduces as the degree of overlap decreases, as expected. Among
MinMin, MaxMin, SJF, and Sufferage, the Sufferage strategy performs slightly worse than other
strategies. However, on average, MinMin, MaxMin, SJF, and Sufferage achieve more or less the
same throughput irrespective of the type of workload.

The amount of data that is transferred from remote storage nodes to compute nodes is displayed
in Figure 6. These experiments were carried out on the OSUMED cluster with 4 nodes as compute
nodes and 4 nodes designated as storage nodes. The numbers in these graphs were computed as
the sum of sizes of files transferred from remote storage nodes for all the tasks in the batch. Note
that a file may be accessed multiple times from the storage cluster, if tasks that require the file are

13



(a) (b)

Figure 6: The amount of data remotely accessed for different algorithms for (a) the satellite data
processing application and (b) the biomedical image analysis application.

(a) (b)

Figure 7: The performance of the scheduling strategies in the medium overlap case in the satellite
data processing application as the number of compute nodes is varied on the OSC system. The
number of storage nodes is equal to 4. (a) Batch execution time. (b) The number of files accessed
remotely from the storage cluster.

mapped to nodes that do not have that file locally. Each such transfer is counted in calculating the
amount of data transferred. We see from the figure that for both applications, the hypergraph-based
strategy reduces the volume of data remotely accessed. Thus, we can expect that the performance
gain obtained by the hypergraph based strategy over the other strategies will be bigger on systems
with high remote I/O costs.

Figure 7 shows how the performance of the various schemes changes as the number of compute
nodes is varied on the OSC system. In this experiment, the workload for the medium-overlap
case in the satellite data processing application was used. The number of storage nodes was set
to 4. As is seen from the figure, the hypergraph strategy achieves better performance than the
other strategies in all configurations. An increase in the number of compute nodes allows for
more computational parallelism. However, it also is likely to increase end-point contention on the
storage nodes. Compared to the other strategies, the hypergraph strategy achieves better speedup
in batch execution time when the number of compute nodes is increased, since it reduces end-point
contention by reducing both the volume of data remotely accessed and contention on storage nodes

14



Figure 8: Contribution of different stages of the proposed scheduling strategy to throughput (in
MBytes processed per second). The experiments were done on the OSC system with 4 compute
and 4 storage nodes for the high overlap case in both applications. TITAN in the graph refers to
the satellite data processing application.

via ordering tasks in a group and scheduling of file transfers dynamically. We observe that the
volume of data transferred from the storage cluster increases with increasing number of compute
nodes. This is expected since tasks will be distributed across more nodes when the number of
compute nodes is increased. This will increase the probability that two tasks that share files will
be mapped to different processors for execution and, as a result, the number of times a file is
staged from the storage cluster to the compute cluster will increase. As is seen from the figure, the
increase in the number of files transferred from storage nodes is less with the hypergraph strategy
than that in the other strategies, when the number of compute nodes is increased. This is a result of
the fact that sharing of files is explicitly modeled and taken into account in the hypergraph strategy
for grouping and mapping of tasks to compute nodes.

Figure 8 quantifies the contribution of each stage of the hypergraph partitioning algorithm.
Option Aapplies only the first stage (i.e., hypergraph partitioning of tasks; Section 4.2.2), but no
dynamic scheduling of file transfers is done. That is, when a task is mapped to a processor, files
for that task is transferred without taking into account storage node loads.Option Bapplies only
the second stage of the algorithm (Section 4.2.3) without hypergraph partitioning of tasks. The
ordering of tasks is applied to the entire batch and tasks are mapped to idle processors.Combined
is the hypergraph based scheduling strategy applying both stages. We observe that Option A does
not perform as well as Option B and the combined approach. This is because, minimizing the
edge-cut weight may not ensure that there is no file system contention (as different files can map
to the same file system or storage node). Option B improves the performance compared to Op-
tion A in the satellite data processing application, but the performance improvement in the image
analysis application is small. The best performance is obtained by the combined approach. The
improvement in using the combined approach over Option B is more in the case of image analy-
sis workload than the satellite data processing workload, since the image analysis files are larger
(16 MB) in comparison to titan files (4.5 MB). In that case, the grouping and mapping of tasks to
compute nodes taking into account sharing of files is more beneficial. A result of our experiments
is that both grouping and mapping of tasks to compute nodes and ordering of tasks and scheduling
of file transfers should be considered in tandem to obtain the best performance.

Figure 9 displays the relative performance of the various scheduling schemes on a workload

15



Figure 9: The satellite data processing application with large (100MB) files.

with high overlap of files among tasks in the satellite data processing application. In this experi-
ment, the sizes of the files were scaled from 4.5MB per file to 100MB per file. The experiments
were carried out on the OSC system with 4 compute nodes and 4 storage nodes. A comparison of
this figure with Figure 4(b) reveals a lower throughput. This is because the increase in the file size
reduces the effects of file system cache on the compute nodes, and the cost of local I/O becomes
increasingly more pronounced in the execution time. For the same reason, even though the hy-
pergraph strategy still performs better than the others, its performance improvement is less in this
case.

6 Conclusion and Future Work

We presented and experimentally evaluated a new, hypergraph based strategy for scheduling a
batch of tasks with batch shared I/O behaviour on systems with coupled storage and compute clus-
ters. The proposed scheme aims to minimize the volume of remote data transfers and contention
on storage nodes, while maintaining a balanced distribution of computational load across compute
nodes. The salient features of this algorithm are that 1) it formulates the sharing of files among
tasks as a hypergraph and uses hypergraph partitioning to map tasks to processors and 2) employs
a dynamic task ordering and file transfer scheme to efficiently stage files from storage nodes to
compute nodes. Our experimental results shows that our strategy achieves better performance
compared to Shortest Job First, MinMin, MaxMin, and Sufferage strategies.

We plan to extend our work in several ways. One of the issues not addressed in our current
approach is that we do not take into account how many files will be transfered to each group
explicitly, which may lead to imbalanced transfer time and also imbalanced consumption of storage
space on compute nodes. A possible approach to address this is to add another balance constraint to
hypergraph partitioning, balancing of the hyperedges. We will investigate how we can incorporate
this new balancing requirement to the current version of the hypergraph toolkit (PaToH) we are
using and evaluate its performance. Another extension will be to incorporate dynamic updates to
the hypergraph model (as new tasks arrive in the system), while taking into account the mapping
of tasks that are executing and the mapping of files already staged from storage nodes to compute
nodes. We also plan to investigate the efficiency of our strategy when applied in combination with
different pre-fetching and data caching and cache replacement policies.

16



References

[1] A. Acharya, M. Uysal, R. Bennett, A. Mendelson, M. Beynon, J. Hollingsworth, J. Saltz, and A. Suss-
man. Tuning the performance of I/O-intensive parallel applications. InProceedings of the Fourth ACM
Workshop on I/O in Parallel and Distributed Systems, May 1996.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Scheduling multiple data visualization query workloads
on a shared memory machine. InProceedings of the 2002 IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2002), Fort Lauderdale, FL, April 2002.

[3] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz. Jovian: A framework for optimizing parallel
I/O. In Proceedings of the 1994 Scalable Parallel Libraries Conference, pages 10–20. IEEE Computer
Society Press, Oct. 1994.

[4] Biomedical Informatics Research Network (BIRN). http://www.nbirn.net.

[5] S. Bokhari, B. Rutt, P. Wyckoff, and P. Buerger. An evaluation of the osc fastt600 turbo storage
pool. Technical Report OSUBMITR 2004n02, The Ohio State University, Department of Biomedical
Informatics, Sep 2004.

[6] T. D. Braun, H. J. Siegel, N. Beck, L. L. B̈olöni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison study of static mapping heuristics
for a class of meta- tasks on heterogeneous computing systems.Journal of Parallel and Distributed
Computing, 61:810–837, 2001.

[7] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS: A parallel file system for Linux clusters.
In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327, Oct. 2000.

[8] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS parameter sweep template: User-
level middleware for the grid. InProceedings of the 2000 ACM/IEEE SC00 Conference, pages 75–76,
2000.

[9] U. V. Çatalÿurek and C. Aykanat. Decomposing irregularly sparse matrices for parallel matrix-vector
multiplications. InProceedings of 3rd International Symposium on Solving Irregularly Structured
Problems in Parallel, Irregular’96, volume 1117 ofLecture Notes in Computer Science, pages 75–86.
Springer-Verlag, 1996.

[10] U. V. Çatalÿurek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-
matrix vector multiplication.IEEE Transactions on Parallel and Distributed Systems, 10(7):673–693,
1999.

[11] U. V. Çatalÿurek and C. Aykanat.PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0.
Bilkent University, Department of Computer Engineering, Ankara, 06533 Turkey. PaToH is available
at http://bmi.osu.edu/∼umit/software.htm, 1999.

[12] U. S. Chakravarthy and J. Minker. Multiple query processing in deductive databases using query
graphs. InProceedings of the 12th International Conference on Very Large Data Bases Conference
(VLDB 1986), pages 384–391, 1986.

[13] C. Chang, T. Kurc, A. Sussman, U. Catalyurek, and J. Saltz. A hypergraph-based workload partitioning
strategy for parallel data aggregation. InProceedings of the Eleventh SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, Mar. 2001.

17



[14] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz. Titan: A high performance
remote-sensing database. InProceedings of the 1997 International Conference on Data Engineering,
pages 375–384. IEEE Computer Society Press, Apr. 1997.

[15] F.-C. F. Chen and M. H. Dunham. Common subexpression processing in multiple-query processing.
IEEE Transactions on Knowledge and Data Engineering, 10(3):493–499, 1998.

[16] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system.ACM Transactions on Computer
Systems, 14(3):225–264, Aug. 1996.

[17] Earth Systems Grid (ESG). http://www.earthsystemgrid.org.

[18] M. M. Eshaghian and Y. C. Wu. Mapping heterogeneous task graphs ontp heterogeneous system
graphs. pages 147–160. IEEE Computer Society Press, 1997.

[19] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval. Inthe 8th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, Philadelphia, PA, Mar. 1989.

[20] M. Garey and D. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979.

[21] GEON: Cyberinfrastructure for the Geosciences. http://www.geongrid.org.

[22] Grid Physics Network (GriPhyN). http://www.griphyn.org.

[23] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.Parallel Comput-
ing, 26:1519–1534, 2000.

[24] O. Ibarra and C. Kim. Heuristic algorithms for scheduling independent tasks on nonindentical proces-
sors.Journal of the ACM, 24(2):280–289, Apr 1977.

[25] M. Iverson and F. Ozguner. Dynamic, competitive scheduling of multiple dags in a distributed hetero-
geneous environment. IEEE Computer Society Press, 1998.

[26] R. Jain, K. Somalwar, J. Werth, and J. Browne. Heuristics for scheduling i/o operations.IEEE Trans-
actions on Parallel and Distributed Systems, 8(3):310–320, Mar 1997.

[27] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning: Applications
in VLSI domain. In34th Design Automation Conference, Anaheim, CA, June 1997.

[28] M. V. Knopp, F. Giesel, H. Marcos, H. von Tengg-Kobligk, and P. Choyke. Dynamic contrast-enhanced
magnetic resonance imaging in oncology.Topics in Magnetic Resonance Imaging, 12(2):301–308,
2001.

[29] M. V. Knopp, E. Weiss, H. Sinn, J. Mattern, H. Junkermann, J. Radeleff, A. Magener, G. Brix, S. De-
lorme, I. Zuna, and G. van Kaick. Pathophysiologic basis of contrast enhancement in breast tumors.
Journal of Magnetic Resonance Imaging, 10:260–266, 1999.

[30] D. Kotz. Disk-directed I/O for MIMD multiprocessors. InProceedings of the 1994 Symposium on
Operating Systems Design and Implementation, pages 61–74. ACM Press, Nov. 1994.

[31] T. M. Kurc, A. Sussman, and J. Saltz. Coupling multiple simulations via a high performance cus-
tomizable database system. InProceedings of the Ninth SIAM Conference on Parallel Processing for
Scientific Computing. SIAM, Mar. 1999.

18



[32] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs.ACM
Computing Surveys, 31(4):406–471, Dec. 1999.

[33] T. Lengauer.Combinatorial Algorithms for Integrated Circuit Layout. Willey–Teubner, Chichester,
U.K., 199.

[34] S. Liang, L. Davis, J. Townshend, R. Chellappa, R. Dubayah, S. Goward, J. JaJa, S. Krishnamachari,
N. Roussopoulos, J. Saltz, H. Samet, T. Shock, and M. Srinivasan. Land cover dynamics investigation
using parallel computers. InProceedings of the 1995 International Geoscience and Remote Sensing
Symposium, Quantitative Remote Sensing for Science and Applications., pages 332–4, July 1995.

[35] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund. Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems. InHeterogeneous
Computing Workshop (HCW’99), pages 30–, Apr. 1999.

[36] M. Maheswaran and H. J. Siegel. A dynamic matching and scheduling algorithm for heterogeneous
computing systems. IEEE Computer Society Press, 1998.

[37] J. M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann Publishers, 2000.

[38] MEDIGRID. http://creatis-www.insa-lyon.fr/MEDIGRID/home.html.

[39] M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling in parallel database systems. InProceed-
ings of the 9th International Conference on Data Engineering (ICDE 1993), Vienna, Austria, 1993.

[40] N. Nieuwejaar and D. Kotz. The Galley parallel file system. InProceedings of the 1996 International
Conference on Supercomputing, pages 374–381. ACM Press, May 1996.

[41] A. R. Padhani. Dynamic contrast-enhanced MRI in clinical oncology: Current status and future direc-
tions. Journal of Magnetic Resonance Imaging, 16:407–422, 2002.

[42] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-IO/GPFS, an optimized implemen-
tation of MPI-IO on top of GPFS. InProceedings of the 2001 ACM/IEEE SC01 Conference. ACM
Press, Nov. 2001.

[43] K. Ranganathan and I. Foster. Decoupling computation and data scheduling in distributed data-
intensive applications. InProceedings of the Eleventh IEEE Symposium on High Performance Dis-
tributed Computing (HPDC), Edinburgh,Scotland, July 2002.

[44] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query
optimization. InProceedings of the 2000 ACM International Conference on Management of Data
(SIGMOD 2000), pages 249–260, 2000.

[45] J. Saltz and et.al. Driving scientific applications by data in distributed environments. InDynamic Data
Driven Application Systems Workshop, held jointly with ICCS 2003, Melbourne, Australia, June 2003.

[46] V. Sarkar. Determining average program execution times and their variance. InProceedings of the
ACM SIGPLAN ’89 Conference on Programming Language Design and Implementation, pages 298–
312. ACM Press, June 1989.

[47] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda.
In Proceedings Supercomputing ’95. IEEE Computer Society Press, Dec. 1995.

19



[48] SEEK: Science Environment for Ecological Knowledge. http://seek.ecoinformatics.org.

[49] X. Shen and A. Choudhary. A distributed multi-storage i/o system for high performance data intensive
computing. InInternational Symposium on Cluster Computing and the Grid (CCGrid 2002), May
2002.

[50] C. T. Shock, C. Chang, B. Moon, A. Acharya, L. Davis, J. Saltz, and A. Sussman. The design and
evaluation of a high-performance earth science database.Parallel Computing, 24(1):65–90, Jan. 1998.

[51] M. Spencer, R. Ferreira, M. Beynon, T. Kurc, U. Catalyurek, A. Sussman, and J. Saltz. Executing
multiple pipelined data analysis operations in the Grid. InProceedings of the 2002 ACM/IEEE SC02
Conference. ACM Press, Nov. 2002.

[52] Shared Pathology Informatics Network (SPIN). http://www.sharedpath.org.

[53] H. Tang and T. Yang. An efficient data location protocol for self.organizing storage clusters. In
ACM/IEEE SC2003, Phoenix, AZ, November 2003.

[54] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Pipeline and batch sharing
in grid workloads. InProceedings of High-Performance Distributed Computing (HPDC-12), pages
152–161, Seattle, Washington, June 2003.

[55] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Optimized I/O for
parallel applications.IEEE Computer, 29(6):70–78, June 1996.

[56] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous processors. In
Proceedings of the 8th Heterogeneous Computing Workshop, pages 3–14, San Juan, Puerto Rico, Apr.
1999. IEEE Computer Society Press.

[57] The USGS General Cartographic Transformation Package, version 2.0.2.ftp://mapping.usgs.gov/
pub/software/currentsoftware/gctp/, 1997.

[58] M. Uysal, T. M. Kurc, A. Sussman, and J. Saltz. A performance prediction framework for data intensive
applications on large scale parallel machines. InProceedings of the Fourth Workshop on Languages,
Compilers and Run-time Systems for Scalable Computers, number 1511 in Lecture Notes in Computer
Science, pages 243–258. Springer-Verlag, May 1998.

[59] N. Vydyanathan, G. Khanna, T. Kurc, U. Catalyurek, P. Wyckoff, J. Saltz, and P. Sadayappan. Use
of pvfs for efficient execution of jobs with pipeline-shared i/o. InProceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (Grid 2004), 2004. to appear.

[60] J. B. Weissman and X. Zhao. Run-time support for scheduling parallel applications in heterogeneous
nows. August 1997.

[61] S. Yang, D. Gannon, S. Srinivas, and F. Bodin. High Performance Fortran interface to the Parallel
C++. In Proceedings of the Scalable High Performance Computing Conference (SHPCC-94), pages
301–308. IEEE Computer Society Press, May 1994.

[62] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. Simultaneous optimization and evalua-
tion of multiple dimensional queries. InProceedings of the 1998 ACM International Conference on
Management of Data (SIGMOD 1998), pages 271–282, Seattle, WA, 1998.

20


