Design and Implementation of Open MPI over QsNet/Elan4

Weikuan Yu Tim S. Woodall Dhabaleswar K. Panda Rich L. Graham

Technical Report
OSU-CISRC-10/04-TR54

Design and Implementation of Open MPI over Quadrics/Elan4

Weikuan Yd Tim S. Woodall Rich L. Graharh Dhabaleswar K. Pandla

Network-Based Computing Lab Advanced Computing Laboratdry
Dept. of Computer Sci. & Engineering Computer & Computafsmn Division
The Ohio State University Los Alamos National Laboratory
{yuw,panda@cse.ohio-state.edu {twoodall,rigraham@Ianl.gov

Abstract

Open MPlisaproject recently initiated to provide a fault-tolerant, multi-network capable, and production-
quality implementation of MPI-2[20] interface based on experiences gained fromFT-MPI [8], LA-MPI [10],
LAM/MPI [28], and MVAPICH [23] projects. Its initial communication architecture is layered on top of
TCP/IP. In this paper, we have designed and implemented Open MPI point-to-point layer on top of a high-
end interconnect, Quadrics/Elan4|26]. Design challenges related to dynamic process/connection manage-
ment, utiliziing Quadrics RDMA capabilities and supporting asynchronous communication progression are
overcome with salient strategies to utilize Quadrics Queued-based Direct Memory Access (QDMA) and Re-
mote Direct Memory Access (RDMA) operations, along with the chained event mechanism. Experimental
results indicate that the resulting point-to-point transport layer implementation is able to achieve compara-
ble performance to Quadrics native QDMA operations, from which it is derived. While not taking advan-
tages of Quadrics/Eland [26, 2] NIC-based tag matching due to its design requirements, this point-to-point
transport layer provides a high performance implementation of MPI-2[20] compliant message passing over
Quadrics/Elan4.

1. Introduction

Parallel computing architecture has recently evolved systems with thousands of processors. Grid
and meta-computing has pushed this trend further into gebigally distributed clusters. These frontiers
of development have led to a less integrated computing @mvient with dramatically different challenges
and requirements which include not only the traditionalerfor low latency and high bandwidth but also
the need for fault-tolerant message passing, scalableupPast, resource provisioning, run-time process
control and fault-tolerance.

Open MPI [9] is a recent project initiated not only as a regedorum to address these new challenges
comprehensively, but also as a development effort to pmdaurcall-new, production-quality MPI-2 [20]
implementation. In order to efficiently support a wide ramgearallel platforms, besides presenting an
MPI [19] interface, Open MPI has designed its communicatiochitecture as two separate abstraction

*This research is supported by a grant from Los Alamos Naltiogiaoratory. Los Alamos National Laboratory is operated by
the University of California for the National Nuclear SeityrAdministration of the United States Department of Eryenpder
contract W-7405-ENG-36.

layers: a device-neutral message management layer andrketpecific transport layer. The latter is re-

ferred to as point-to-point transport layer (PTL) and therfer as point-to-point management layer (PML).
Currently, PML is co-developed with a PTL implementationtopof TCP/IP [31]. Recent work has demon-

strated that PML is able to satisfactorily aggregate badthwacross multiple network interfaces using this
TCP/IP based communication protocol. Although most idenects have its IP emulation support, net-
work access through TCP/IP incurs significant operatingesysoverhead and also multiple data copies.
This prevents Open MPI from taking advantage of the maximenfopmance advantage of the underlying
network. It would be better to take advantage of commuracagirotocols over high-end interconnects to
expose their maximum hardware capabilities. Howevergthell be semantics difference and mismatches
from higher layers of Open MPI communication architectur@nely PML, as well as in between TCP/IP

and a communication protocol of high-end interconnect&s€Hikely presents challenges to a high perfor-
mance design of Open MPI communication support over a pdatiometwork. Therefore, it is necessary to

have an in-depth examination the particular requiremei@pen MP1[9, 31] PTL interface and the specific

constraints of any new interconnect.

This paper takes on these challenges and proposes a new désdpen MPI [9] point-to-point trans-
port support over Quadrics/Elan4 [26, 2]. First, we stathveharacterizing communication requirements
imposed from Open MPI design objectives, including prodgetigation, integrating RDMA capabilities of
different networks and asynchronous process support. Whatescribe the motivation and objectives of the
PTL implementation over Quadrics/Elan4. Salient straegire proposed to overcome these challenges by
taking advantages of Quadrics Queued-based Direct Memorgss (QDMA) and Remote Direct Memory
Access (RDMA) operations, as well as its chained event nréshra Experimental results indicate that the
implemented point-to-point transport layer achieve comraple performance to Quadrics native QDMA in-
terface, from which it is derived. Even though this designdstaking advantages of Quadrics/Elan4 [26, 2]
NIC-based tag matching due to the design constraints fromnQ@WPI requirements, this point-to-point
transport layer provides a high performance implememaifdPI-2 [20] compliant message passing over
Quadrics/Elan4, achieving a performance slight lower butgarable to that of MPICH-QsNét[26].

The rest of the paper is presented as follows. In the nexiosecive describe in detail the com-
munication architecture of Open MPI [9] and its requirersettt the point-to-point [31] transport layer.
Section 3 describes the motivation and objectives of thiskwd he design of a transport protocol over
Quadrics/Elan4 [26, 2] is discussed in section 4. Sectiorogiges the implementation. Section 6 provides
performance results. Section 7 provides a brief review lated works. Section 8 concludes the paper.

2. Overview of Open MPI Communication Architecture

The Open MPI's component-based architecture [29] is design provide services separating critical
features into individual components, each with its own fiomal responsibilities and interfaces. In this
section, we provide a brief overview of the components geleto Open MPI communication architecture.
For the convenience of discussion, we present the layefittteaelated components based on the commu-
nication flow path. This can be slightly different from thgéaing presented in other literatures [9, 31, 29],
where the emphasis is given to how the components are réfatadhe perspective of software engineering.

2.1. Open MPI Communication Stack

The basic Open MPI[29] communication architecture is mdmpeo two distinct components: Point-to-
point Management Layer (PML) and Point-to-point Transperter (PTL). As shown in Fig. 2.1, MPI [19]
point-to-point communication is layered directly on toptieé PML interface, which provides the generic
functionalities of message management, such as handlpigaton requests from MPI [19], fragmenting

and scheduling messages across available PTL modulesenglaling messages at the receiver side and
monitoring the progress of requests. Currently, collectiemmunication is provided as a separated compo-
nent on top of point-to-point communication. Further reskawill exploit the benefits of hardware-based
collective support [33, 17]. At the lower layer, the PTL campnt is responsible for managing network
communication and connection status, delivering packegs aspecific network interface, and updating the
PML layer about packet progression.

PML PTL PTL PML
—Schedule
Collective || psini—to—Point ‘M@-@:& ------ -
atched—)
| Handshaking Ackl=T e Handshaking
A/“—-Und.a}?,,
PML Updatel 7
“Schedule
Base | ™ PTL-TCP | | PTL-Elan4 UpdateFSend
- Update[- end 7Updg§§ »»»»»» -
_TCP/IP _Elan4 cOmpletef’""M “lpdae
Ethernet QsNet -Complete
Fig. 1. Open MPI Communication Archi- Fig. 2. Open MPI Point-to-Point Communication Flow
tecture Path

2.2. PTL Interface and Communication Flow Path

The PTL layer provides two abstractions: the PTL componadtthe PTL module [29]. A PTL com-
ponent encapsulates the functionality of a particular ndtwransport that can be dynamically loaded at
run-time; a PTL module represents an "instance” of a compatiun endpoint, typically one per network
interface card. In order to join and disjoin from the pool wéidable PTLs, a PTL has to go through five
major stages of actions: opening, initializing, commutiigg finalizing and closing. These stages of PTL
utilization is discussed as follows.

Joining the Communication Stack— A PTL component goes through the first two stages, openidg an
initializing, to join the communication stack. During theeming phase, the PTL component and all its
associated dependencies are opened and mapped into teeguirtual space. When the dependency and
sanity checking completes successfully, this componeanhiered as one of the available PTL component
that could be initialized for communication. Then a prodagmlizes the network device, prepares memory
and computing (e.g., additional threads) resources indira bf PTL modules (one per network interface
card). These PTL modules are then inserted in the commioricstiack as available PTL modules. When
these procedures successfully completes, the activatithisoPTL component is triggered through a com-
ponent control function.

Inside the Communication Stack— PML schedules messages across a new network when the PTL
component has activated its PTL modules. Fig. 2.1 shows acthant of how messages are scheduled across
multiple networks. When the PML layer receives a requedtrst schedules aendezvous packet to one
PTL based on a chosen scheduling heuristic. Téndezvous packet is then sent to the receiver side using
ptl _send() interface. When this packet is detected by one of the PTLiseatdceiver side, the receiving
PTL request the PML layer to match this packet to the prepdasteeive requests. If a match is made with
a preposted receive request, PML in turn cplis _mat ched() interface to return an acknowledgment to
the initiating PTL. Any data inlined with the first packet arapied into the application receiver buffer, and

the progress of this amount of dataupdat ed at the PML layer through ptlecv_progress(). When the
acknowledgment arrives the sender side, the initiating ®3dates the PML layer about the data transmitted
inside the first packet throughp | _send_pr ogr ess() interface. Another scheduling heuristic is then
invoked to schedule the rest of the message across avafldhie The progress of the data transmission are
updated accordingly, and this eventually leads to the cetigpl of requests on both sides.

Disjoining from the Communication Stack — There are also two stages to disjoin a PTL from the
communication stack: finalizing and closing. During the ffiriag stage, a PTL first finalizes its pending
communication with other peer processes, then releastheabksociated memory and computing resources.
Also in the closing phase, a PTL component makes sure thitieedixposed PTL modules are finalized, and
that the component-associated memory and threading m=soare freed.

3. Objectives

Open MPI [9] has its first PTL implementation on top of the TIPPKMany of the strength and advantages
have been described in the earlier literatures [9, 31, 29Jortler to correctly project the objectives, it is
necessary to discuss design requirements for a PTL implati@m Three of Open MPI's main objectives
have impacts on the PTL layer, including fault tolerancenctmrent multi-network communication and
asynchronous communication progress.

PTL Requirements for Fault Tolerance: Open MPI [9] targets at both process fault tolerance and end-
to-end reliable message delivery [10]. While the latteurezs PTL to be able to keep track of the
progressing of individual message/packet, the formeriregPTL to be prepared for itself and/or
others to dynamically joining and disjoining the commutima stack, checkpoint/restart, and etc.
This means that PTL has to handle not only the dynamics stditiesal network interface, but also
the dynamic connections with other PTLs.

PTL Requirements for Concurrency Communication over Multiple Network: Open MPI[9] has its mes-
sages scheduled across multiple PTLs from the PML layer.ddew each network can have dramat-
ically different semantics and memory requirements fottaesmission of the same message. In this
regard, while the PML layer needs to abstract and encapstilatdifference between different PTLs
to integrate them together for the delivery of a single mgssaach PTL also needs to map the PML
function interface onto its existing transmission sentantil he challenges in this respect to the PTL
design over Quadrics/Elan4 will be discussed in Section 4.

PTL Requirements for Dual-Mode Communication Progress: Open MPI provides two different modes
to monitor and progress communication across differentordt devices: non-blocking polling and
thread-based blocking. Non-blocking polling checks tlmming and outgoing traffic of each net-
work device, which can be performed by a MPI process thatistsnsnly a single thread. In contrast,
additional threads are employed in the thread-based igakiode to block and wait on the status
change of pending messages. A PTL component needs to stppatl-based blocking mode with
minimum amount of memory resources and number of threads.

3.1. Overview of Quadrics/Elan4
Quadrics network [26, 25] has recently released its seceneérgtion network, QsN¥t[2]. This new

release provides very low latency, high bandwidth commatioa with its two building blocks: a pro-
grammable Elan-4 network interface card and the Elite-4ckwiwhich are interconnected in a fat-tree

topology. Quadrics provides its librarielsi bel an andl i bel an4, on top of its Elan4 network [26].
Within these default Quadrics programming libraries, aafyalr job first acquires a job-wise capability.
Then each process is allocated a virtual process ID (VPggther they form a static pool of processes,
i.e., the process membership and connections among themotcalnange. Interprocess communication
is supported by two deferent models: Queue-based model (®Ddvid Remote Directed Message Ac-
cess (RDMA) model. QDMA allows processes to post message$o(@KB) to a remote queue of other
processes; RDMA enables processes to write messagedydintotremote memory exposed by other pro-
cessesl i bel an also provides a very usefghained event mechanism, which allows one operation to be
triggered upon the completion of another. This can be atllito support fast and asynchronous progress
of two back-to-back operations. Similar mechanisms oveadpius/Elan3 have been utilized in [32, 1] for
efficient, reliable communication support.

3.2. Objectives of PTL Implementation Over Quadrics/Elan4

While Quadrics libraries presents parallel communicatiger a static pool of processes, Open MPI [9,
31] targets MPI-2 [20] dynamic process management [11] aodgss checkpoint/restart. The PTL imple-
mentation over Quadrics needs to support dynamic joiningTaf modules over Quadrics network. To the
best of the authors’ knowledge, this is not available to adstimg MPI implementation over Quadrics either
because the MPI implementation does not support MPI-2 dimprocess management [5], or because the
underlying communication is based on libelan’s staticatipnected processes [26]. In addition, Open MPI
targets for concurrent message passing over multiple mesnv8ut the communication/memory semantics
can be dramatically different from network to network, espme network are RDMA capable, while others
require memory registration before message transmissiotiake place. Quadrics/Elan4 is RDMA capable
and large message-(2KB) communication has to utilize its RDMA capabilities. Agh performance PTL
implementation needs to take advantage of these RDMA ciitfebi Moreover, the notification of message
completion is provided through a different event mechanisirich does not support a poll/select-like [30]
mechanism as available in TCP/IP. Thus it is no longer ptes§iib a process to block on any completion of
multiple pending messages. This presents another chalterthe support of asynchronous communication
progress of multiple pending messages. Taken togetheopi® with all the above challenges and provide a
high performance implementation over Quadrics/Elan4, wuork has the following objectives:

1. Supporting dynamic joining of PTL modules over Quadrics
2. Integrating Quadrics RDMA capabilities into the poiotgoint transport layer

3. Providing asynchronous communication progress whileimrizing the performance impacts over
Quadrics

4. Design of Open MPI Communication Support over Quadrics

In this section, we describe the design of Open MPI [9] comication support over Quadrics [26]. We
have proposed strategies to overcome challenges impoased@pen MPI requirements. The rest of the
section describes our strategies in these aspects: a) Coicatian initiation and finalization, b) Integrating
RDMA capabilities and c) Asynchronous communication pesgt

4.1. Communication Initiation and Finalization

As described in Section 3.1, the static pool of processesstatit connection between them do not
match MPI-2 [20] dynamic process management [11] spediicst in which new processes are allowed

to be spawned from and join the existing pool of communigapnocesses. Open MPI further requires
processes to be able to checkpoint/restart and migratecstmate node on-demand or in case of faults. This
dynamic process model implies that the default static gogpf Quadrics virtual process ID (VPID) and
the rank of a MPI process is no longer possible [26]. This isaliee VPID is a system related identifier
which related to the hardware capability and the context epexific node, while the process rank is a
feature of a MPI communicator/universe that cannot chanvge & processes migrate. In addition, the
global shared virtual address space over Quadrics is neetgogssible because it is not guaranteed that
processes are synchronized in their memory allocation vgnecesses initiate the network and join the
parallel communication at arbitrary times.

We propose to handle these challenges with the followiragesgies. First, we decouple the static coupling
of MPI rank and Quadrics VPID in a process, leaving MPI ranklfi@ identification of MPI processes and
VPID for Quadrics network addressing. Second, we break dheptete dependence on global virtual ad-
dress space for communication. For the processes thailinjin parallel communication synchronously,
a global virtual address space is made available. Proc#saefin (or rejoin) later will not be able to
utilize this global address space. As a result of this, tipeeeesses may not be able to take advantage of
the the benefits of hardware broadcast support becauseauiteedhe availability of global virtual address
space. This does not preclude the possibility for a new ¢labldress space to be re-generated from the
available address space. This is to be investigated as dnettuér research topics in Open MPI [9]. Open
MPI Run-Time Environment (RTE) can help the newly createatpsses to establish connections with the
existing processes. An existing connection can go throtgfinalization stage only when the involving
processes has completed all the pending messages synasisondhis is to avoid running an unpleasant
scenario in which a leftover DMA descriptor might regenerig traffic indefinitely.

PML PTL PTL PML PML PTL PTL PML
~Schedule —Schedule
77 Rendezvous o\ T = [Rendezvous
~Match —Match
~~~~~~~ | e
Matched- Matched-
Ack+= PR
/ ~Update .----~~TUpdate
""""" 1N PR T
Update P L
— e
—Shedule .~ . RDMA Read
""" >l RDMA Write SRR
\\*‘\\;“‘<s
—FRDMA Write R
LFIN e Ak [
L ] I ‘Updater* FIN_ACK [ JRdate
Completef™" ToPeRE Complete™ L Complete

“-Complete

Fig. 3. Design PTL Interface with RDMA Write Fig. 4. Design PTL Interface with RDMA Read
Capability Capability

4.2. Integrating Quadrics RDMA Capabilities

In two of the basic Quadrics interprocess communication efspd)DMA can only transmit messages
up to 2KB. The other model, RDMA read/write, can support $raission of arbitrary messages over
Quadrics network. Additional support needs to be providediritegrating Quadrics RDMA capabilities
into Open MPI communication architecture. There is anotoerstraint over Quadrics to use these capa-
bilities. Quadrics RDMA descriptors require the source dasdtination virtual host memory addresses to
be transformed and presented in a different formatA&dr) for the network interface card to carry out



RDMA operations. A specially designed Memory Managemerit (MiMU) in the Elan4 network interface
performs address translation from Bdldr to physical memory. When needed, the host physical nmgmo
can be trapped back by Quadrics system software.

In order to take advantage of these RDMA capabilities, weifpdmbth the memory addressing format
and the communication semantics. To support concurrenmeasiclg over Elan4 and other interconnects, a
memory descriptor is expanded to include anAdtr. This is only a preliminary solution for concurrent
message passing over TCP and Quadrics because they both mgumoe memory pre-registration before
communication. Over other interconnects, e.g., InfiniBfid] and Myrinet [3], the memory range of a
message need to be registered with the network interfaceebttie communication can take place. As a
part of the further research, we are experimenting with aenimiormative memory descriptor to support
higher concurrency over different interconnects. Secevel propose two schemes to take advantage of
RDMA read and write, respectively. As shown in Fig. 3, in thistfscheme, all the send operations after the
first rendezvous fragment are all replaced with RDMA write operations. At #hel of these operations, a
control fragment, typed as FIN, is sent to the receiver ferabmpletion notification of the full message. In
the second scheme, shown in Fig. 4, whenrtmelezvous packet arrives at the receiver, instead of returning
an acknowledgment to the sender, the receiver initiates RP&Ad operations to get the data. When these
RDMA read operations complete, a different control messigped as FINACK, is sent to the sender, both
for acknowledging the arrival of the earlier rendezvougfinent and notifying the completion of the whole
message. Furthermore, for performance optimization, rénesinission of the last control message are be
chained to the last RDMA operation using the chained everhard@sm. It is automatically triggered when
the last RDMA operation is done.

host_event

O OO )
elan_event
RDMA
Message

(a) Separated Events (b) Event with Count N

host_event

letCount=1
elan_event Count =0 Reset
RDMA }
Message

(c) A Count 1 Event Fired (d) Racing condition

Fig. 5. Quadrics Chained Event mechanism and Possible Race C  ondition in Supporting Shared Completion
Notification



Queue Slots Queue Ever

LT ]
Message A
RDMA }]

chain_event o

elan_event

QDMA []

Fig. 6. Support Shared Completion Notification with QDMA and Chained Event Mechanisms
4.3. Asynchronous Communication Progress

One of Open MPI’s requirements to the transport layer is @symous communication progress, in
which it employs additional threads to monitor and prognessding messages, currently available over
Solaris and Linux. For the PTL implementation over TCP/dduse one thread can block and wait on the
progress of multiple socket-based file descriptors, it issgge to monitor the progress of all networking
traffic with only a single thread per TCP PTL module. Howetis is not possible for RDMA descriptors
over Quadrics, because the blocking mode of the RDMA dascispcompletion is supported through
separated events at different memory locations. This i&/shio Fig 5a. A single thread can only block and
wait on the host event of a single RDMA descriptor. Itis n@qtically possible to have one thread to block
on each of all outstanding DMA descriptors.

Quadrics provides an event mechanism that can be utilizelétect combined completion notification
of multiple outstanding RDMA operations. As shown in Fig Bbg event can be created with a count to
wait on the completion of multiple outstanding RDMA opeurati This count is decremented by 1 when a
RDMA descriptor completes. In the end, an interrupt will lngrated to the host process that is blocked
on this event. This mechanism requires a predefined counat miany RDMA descriptors have to be
completed before an interrupt can be triggered. With a cbigger than 1, it cannot wake up a blocking
process at the individual completion of all outstanding R®&perations. With a count of 1, the completion
of the first one or the first few RDMA operations can be detect®dt there is no available mechanism
over Quadrics to atomically reset the event count back todlbéock the process again for other RDMA
operations to complete. This is because at the same timethlee outstanding RDMA operations are
potentially modifying the same event count when their mgssare completed from the network, resulting
in a race condition. The progressing thread may fail to deteccompletion of some RDMA descriptors
and progress the communication any further. This is showigrbc and 5d.

Quadrics QDMA [26] allows a process to check incoming QDMAssages posted by any process into
its receive queue. We propose to take advantages of both QEldred completion queue and the chained
DMA mechanism in order to detect multiple outstanding RDMgemtions. At the PTL initialization time,

a receive queue is pre-created as the shared completior,gsieown on the right side of Fig. 6. When
setting up RDMA descriptors, a small message QDMA operasorhained to every RDMA operation.
When the RDMA operation completes, the associated chairl@slQwill generate a small message to
the receive queue. As each of these small messages beirgl ot one of the queue slots, QDMA will
generate an event to the host side for notification. Thus thithshared completion queue, a single thread
can be introduced to block and wait on the host event for tinepbetion of many RDMA operations. This
strategy of a shared completion queue is shown in Fig. 6 ringef functionality, the newly created queue is



the same as the pre-created receive queue for the incomisgpge Separating the completion notification
of local DMA descriptors with the arrival of incoming receivnessage can make the message handling
logic more straightforward, however it requires the addiél resources need to maintain the queue. Worse
yet, it requires two progressing threads for supportingahchronous communication progress. We have
provided support to both one queue-based and two-quewstaaynchronous communication progress.

5. Implementation

By taking advantages of Quadrics QDMA and RDMA (read andeyii26] operations, and Quadrics
chained event mechanism [26], we have implemented our mi@sithe point-to-point transport layer over
Quadrics/Elan4PTL/Eland. Processes are allowed to join the Quadrics Network dyrediyiand individ-
ually by claiming an available context in a system-wide Blaapability [26, 4]. Currently, synchronization
and connection setup is done collectively durigl _I ni t () at the run time through the help of other
components. To speed up fast transmission of small padegid, buffers (each of 2KB) are preallocated for
sending purposes in PTL/Elan4. Accordingly, for receivatngrt packets, a host-side receive queue is also
created with a number of receiver buffers of the same sizer{okferred to as QSLOTS in Quadrics [26]).
Longer packets are delivered either RDMA read or RDMA wriggabilities with the help of additional
QDMAs for completion notification. Thread-based asyncbreprogression is provided by applying addi-
tional threads to wait on the pending DMA operations.

6. Performance Evaluation

In this section, we describe the performance evaluatiompfroplementation of the point-to-point trans-
port layer over Quadrics/Elan4. The experiments were cotieduon a cluster of eight SuperMicro SUPER
X5DL8-GG nodes: each with dual Intel Xeon 3.0 GHz processbt® KB L2 cache, PCI-X 64-bit 133
MHz bus, 533MHz Front Side Bus (FSB) and a total of 1GB PC21DRESDRAM physical memory. All
eight nodes are connected to a QsNeetwork [26, 2], with a dimension one quaternary fat-trdeJ3-8A
switch and eight Elan4 QM-500 cards.

We have first performed experiments to evaluate all of ouigdestrategies. Then we have studied the
layering overhead of Open MPI communication stacks and @isvided the overall performance of our
design on top of Quadrics/Elan4, comparing to MPICH-Q$NE6]. Since the strategies are specific for
the point-to-point message transport over Quadrics onlglliof our experiments we have activated only
the PTLs over Quadrics/Elan4 unless otherwise specified.fif$t 100 iterations are used to warm up the
network and nodes in our experiments whenever applicable.

6.1. Performance Analysis of Basic RDMA Read and Write

The PML layer schedules the first packet to a PTL module basdteexposed fragment length from
that PTL module [9]. In the case of long messages, this pass®es as aendezvous message with an
inlined packet of data. This strategy is beneficial to the RIi€kign over TCP protocol, because the cost
to initiate send/receive operations through the operatysem is rather high comparing to the networking
cost. However, with RDMA capable networks, this strategyildancur an unnecessary memory copying
overhead for the first packet while the network interfacedieectly place the data into destination memory.
We have provided an optimization to transmit teadezvous messages without inlined data.

Note that Open MPI provides a datatype component to perfdfisiemt packing and unpacking of so-
phisticated datatypes. However, it introduces some oeeflioecause a complex copy engine is initiated



6
' RDMA-Read —— RDMA-Read —+— ' ]
Read-Nolnline ---x--- 16 L Read-Nolnling ---x--- o
55 | Read-DTP ---%--- 1 Read-DTP ------ .
RDMA-Write & A RDMA-Write &~ o T
Write-Nolnline —--m- Write-Nolnline —--m-—
— 5 Write-DTP ---&-- | —~ 13 Write-DTP ---o-- i
(%] o~ 2]
2 , g
> >
[} o
j c
2 g 10 i
© ©
- -
7 .
3 1 1 1 1 1 1 1 1 4 1 1
0 2 4 8 16 32 64 128 256 512 512 1K 2K 4K
Message Size (bytes) Message Size (bytes)
(a) Very Small Message (b) Small Message

Fig. 7. Performance Analysis of Basic RDMA Read and Write
with each request. For better understanding of the perfeceatrength of PTL/Elan4 module, we have
intentionally replaced this copy engine with a genemarcpy () call.

In Fig. 7, we have provided both the performance of RDMA redarite with or without utilizing this
datatype component, and the performance with or withourtedldata. This evaluation focuses on messages
up to 4KB. With the threshold of sending rendezvous messhgieg) 1984 bytes, this allows us to look at
both the small and long message transfer. As shown in Fi{, th@ data type component does introduce
an overhead about Qu4ec compared to the basic support without the datatype coampoAs also shown
in Fig. 7(b), RDMA read is able to delivered better performamwompared to RDMA write. This is to be
expected because the RDMA read-based scheme essentiadly daontrol packet compared to RDMA
write-based scheme. When using the optimization to trangmarendezvous packet without inlined data,
the performance is improved for all message sizes with b&MR Read and RDMA write.

6.2. Performance Analysis with Chained DMA and Shared Compdtion Queue

32 T T T T T T T T T T T T T 7 8 T T T T T T T T T T
RDMA-Read —+— QDMA latency —+——
Read-NoChain ---%--- o PTL Latency ---x---
One-Queue ---*--- PML Layer Cost ---*---
oa L Two-Queue B lya 6 | a
0 0
2 2
> >
[S] - [S]
j j
[} [}
© ©
- -
- 2 - -
. . M
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 2 4 8 16 32 64 1282565121K 2K 4K 8K 16K 0 2 4 8 16 32 64 128 256 512 10241984
Message Size (bytes) Message Size (bytes)
Fig. 8. Performance Analysis with Chained DMA Fig. 9. Analysis of Communication Overhead in
and Shared Completion Queue Different Layers

In the design of PTL/Elan4, we have utilized Chained DMA neethm in two scenarios, one to support
RDMA read and RDMA write for fast completion notification etlother to support the shared completion
notification of RDMA operations with the help of QDMA. Usind®1A read, we have measured the perfor-
mance with these two strategies As shows in Fig. 8, usingttamed DMA for fast completion notification



does provide marginal improvements for the transmissider@j messages. The benefits is small because
the total communication time for messages2K B is rather high comparing the possible benefits, i.e.,
automatically triggering the next DMA without across I/OBuwaffic. PCI-X bus and fast CPU processor
(3GHz) used in the experiments also reduces the possibéditseof chained DMA. However, using chained
DMA does reduce the host CPU utilization for handling moadfit.

On the other hand, the shared completion queue support diogsgerformance impacts, with either a
combined receive queu@ne-Queue, or a separate queugwo-Queue) for the completion of local DMA
descriptors. This is to be expected because an additionM&QDperation needs to be triggered to the
completion queue from a completed DMA operation. Combirsihgred completion queue with the existing
recv queue for incoming remote messages does not proviteable performance improvement. This is
because using polling-based approach, the cost of chetkimgight-byte host-events is about the same
as that of checking one. However, the one-queue strate@g $he additional resources needed for another
gueue and it can also save an additional thread when usegdgorsasynchronous communication progress.

6.3. Analysis of Communication Cost in Different Layers

We have performed an analysis of the Open MPI communicatixks. During a ping-pong test, we
take the timing from a) when PTL/Elan4 has received a packet the network and is delivering it to the
PML layer for matching, to b) when the next packet is arrivaig°TL/Elan4, as the communication time
above the PTL layer. An average of that across 5000 itemi®taken as a measurement of the average
cost in the PML layer and abov@ML Layer Cost. Subtracting that from the overall performance is the
latency as seen at the PTL/Elan4 layefL Latency, which also includes the communication time across
the network. This measurement is possible because of tlo@asfeEatures of ping-pong micro-benchmarks.
A message, like a rotating token, can only be held by one latyany time. So, on one hand, the PTL layer
is not involved in any other work after it handles the packePML for matching and before it is called to
send a packet, on the other hand, the PML layer is not invdlvélie communication after it triggers a send
operation to PTL and before it receives another packet frain. Rote although both PTL and PML can
detect the completion of local send operations, this cosbisounted into eithePML Layer Cost or the
total time because it is not in the critical path of ping-p@agnmunication.

At the same time, we also measure the performance of theenagiformance Quadrics QDMADMA
Latency. Note our implementation is based on Quadrics QDMA modelsoAlote that the Open MPI
communication layer introduces an 64-byte header for nragchurpose. A comparison is done with the
PTL communication time of A-byte message with the communication time &#a+N-byte message using
native Quadrics QDMA operations. As shown in Table. 1, the Ré§er and above has a communication
cost of 0.5:sec, while PTL/Elan4 delivers the message with a performaomparable to native Quadrics
QDMA.

6.4. Performance Analysis of Thread-Based Asynchronous Bgress

Table 1. Performance Analysis of Thread-Based Asynchronou s Progress (in  psec)

Mesg Length Basic | Interrupt| One Thread Two Threads
RDMA-Read 4B || 3.87 | 14.70 22.76 27.50
RDMA-Read 4KB || 15.25| 27.16 32.80 47.72

The shared completion queue is introduced to support tHvaadd asynchronous progress. We have per-
formed an analysis of this asynchronous progress suppog BOMA read in PTL/Elan4. Fig. 1 shows the



performance with four different methods of checking cortipte Basic progress|nterrupt-based progress,
One-Thread-based asynchronous progress, dmw-Thread-based asynchronous progress. Note that the
interrupt-based progress is not really a workable strategler real communication scenarios because the
MPI process cannot block within a particular PTL. It is exphb here just to find out the cost of interrupt-
based communication progress. One-thread and Two-THrased progress utilize a combined completion
gueue or a separated completion queue, respectively. Tfegmpance results indicate that one-thread-based
asynchronous communication process is more efficient adutoes the contention on CPU and memory re-
sources. The total threading overhead is arol®wls. About 1us due to the chained DMA support as
discussed in SectionSubSec:, drid:s due to the interrupt. Total arourttlss is attributed to the thread-
ing overhead. Note that, when doing these experiments, we & both interrupt affinity and processor
affinity of the operating system at their default.

6.5. Overall Performance of Open MPI over Quadrics/Elan4

T T T T T T T T T 1200 T T T T T T T 3]
MPICH-QsNet-Il —+— MPICH-QsNet-Il ——
PTL/Elan4-RDMA-Read ---*--- PTL/Elan4-RDMA-Read ---*---
PTL/Elan4-RDMA-Write ------ 1000 - PTL/Elan4-RDMA-Write ---*--- —
6 - -
— —~ 800 [ 1
(%) [}
= 2
> >
g g 600 [ 4
Q Q
g g
400 B
200 —
O 1 1 1 1 1 1 1 1 1 1 O =2 X  — — 1 1 1 1
0 1 2 4 8 16 32 64 128 256 512 1024 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (bytes) Message Size (bytes)
(a) Small Message Latency (b) Large Message Latency
450 T T T T T T T T | 1200 T T T T T T T
MPICH-QsNet-Il —+— MPICH-QsNet-Il —+—
PTL/Elan4-RDMA-Read ---x--- PTL/Elan4-RDMA-Read ---x---
PTL/Elan4-RDMA-Write ------ PTL/Elan4-RDMA-Write ---%---
360 1000 —
o o
Q Q
2 2
[as)] - 2]
s 270 s 800
c <
ket b,
2 180 2 600
he] k] /'
3 g X
m m %
90 400 /- s
0 sk Sk e = =% 1 1 1 1 200 1 1 1 1 1 1 1 1
0 1 2 4 8 16 32 64 128 256 5121024 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (bytes) Message Size (bytes)
(c) Small Message Bandwidth (d) Large Message Bandwidth

Fig. 10. Performance Comparisons of Open MPI over Quadrics/  Elan4 and MPICH-QsNet I

Fig. 10 shows the overall latency and bandwidth performarfi€@pen MPI over Quadrics/Elan4 with the
best options as described above, such as using chained DidArfletion notification, using polling-based
progress without shared completion queue, and usimggzvous packets without inlined data. The compar-
ison is made to the default MPI implementation MPICH-Q<NeAs shown in Fig. 10, our implementation
has a latency performance comparable to that of MPICH-QéNexcept in the range of small messages.
This is due to the following reasons: a) MPICH-QsNdtansmits a shorter-header, 32-bytes, compared to
the 64-bytes in Open MPI, b) MPICH-QsNéis built on top of Quadrics T-port interface, which does tag



matching in the NIC. In terms of bandwidth, our implemermtatperforms particularly worse in the middle
range of messages. This is because the Tport support of MEIENEE! does efficient pipelining of mes-
sages. Note our implementation starts from different desgguirements to co-exist with PTL models of
other networks and to be MPI-2 [20] compliant. For example,are not doing NIC-based tag matching
as MPICH-QsNeét does in its underlying Tport [26] interface because culyene intend to have shared
request queues for managing traffic from different netwairks allow them to be able to crosstalk.

7. Related Work

MPI[19] has been thde facto messaging passing standard. MPI-2 [20, 13] extends MP Klamie-sided
communication, dynamic process management, parallelnfanguage bindings.

Numerous implementations have been provided over diffaretworks, including high-end RDMA ca-
pable iterconnects. These include MPICH-GM [22] for MytindVAPICH [23] and MVAPICH2 [18] for
InfiniBand, MPICH-QsNet [26, 2] for Quadrics elan3 and elardworks [26], and MPI-Sun [27] for Sun
Fire links. Among them, [22, 26, 23] are able to take adveasgagf RDMA capabilities of their underly-
ing networks. [27] primarily relies on Programmed 10 (P1@) fnessage passing. MPICH-NCSA [24]
and LA-MPI [10] support message passing over multiple nataitoHowever, a single message cannot be
scheduled across multiple networks. Different semanticdidressing remote memory over different net-
works are also not addressed. LAM/MPI [28] supports part &I844 interfaces, for example, dynamic
process management. MVAPICH2 [18] is an implementation RDdflannel for MPICH2 [21] ADI3 [12]
interface. It supports both active and passive one-sidethumication [15, 16]. MPICH-QsNet [26] and
LA-MPI[10] provide MPI implementation over Quadrics netkpbut they do not support dynamic process
management or process checkpoint/restart. Change of theership and connections among MPI pro-
cesses usually aborts the parallel job. Open MPI [29, 9,Sitjfiated as a new MPI-2 implementation that
support fault tolerant and concurrent message passingiawiple networks. This work provides a design
and implementation of high performance communication oéi©kIPI over Quadrics/Elan4.

8. Conclusions

In this paper, we have presented the design and implemamtatiof Open MPI [9, 31] point-to-point
tranport layer (PTL) over Quadrics/Elan4 [26, 2]. To matich fault tolerant process management design
goals of Open MPI, we have provided a PTL initiation to allovegesses to join and disjoin from the
Quadircs network communication at any time. Our design tssiategrated Quadrics RDMA capabilities
into the communication model of Open MPI [9, 31]. Threaddab&synchronous communication progress
are supported with a strategy utilizing Quadrics chaineshemechanism and QDMA.

Our evaluation has shown that the implemented point-toigoansport layer achieves comparable per-
formance to Quadrics native QDMA interface, from which iderived. In addition, this design of point-
to-point transport over Quadrics achieves a performarigatdbwer but comparable to that of MPICH-
QsNet! [26], though it does not take advantage of NIC-based taghirajcas MPICH-QsNét. Further-
more, this design and implementation provides a high perdmice, MPI-2 [20] compliant message passing
over Quadrics/Elan4.

In future, we intend to study the effectiveness of perforoearmprovement with Open MPI's aggre-
gated communication over network interfaces, includinthboulti-rail communication over Quadrics [6]
and concurrent communication over multiple interconnet¥e also intend to study fault tolerant process
management, reliability of message delivery over multipterconnects.



Acknowledgment

We would like to thank the entire Open MPI team for bringing @pen MPI project avaible as a research
platform. In particular, we would like to thank Dr. Jeffer8guyres from Indiana Univeristy and Dr. George
Bosilca from The University of Tennessee at Knoxville fogithvaluable dicussion.

Additional Information — Additional information related to Open MPI and this resbazan be found
on the following website: http://www.open-mpi.org/.

References

[1] R.T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. Rger, M. W. Sukalski, and M. A. Taylor. Network
Fault Tolerance in LA-MPI. IrProceedings of EuroPVM/MPI ' 03, September 2003.

[2] J. Beecroft, D. Addison, F. Petrini, and M. McLaren. Q$MNeAn Interconnect for Supercomputing Applica-
tions. Inthe Proceedings of Hot Chips’ 03, Stanford, CA, August 2003.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, CSkitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area NetworlEEE Micro, 15(1):29-36, 1995.

[4] R. Brightwell, D. Dourfler, and K. D. Underwood. A Compseon of 4X InfiniBand and Quadrics Elan-4 Tech-
nology. InProceedings of Cluster Computing, ' 04, San Diego, California, September 2004.

[5] R. Brightwell and L. Shuler. Design and Implementatidi?l on PUMA Portals. pages 18-25, 1996.

[6] S. Coll, E. Frachtenberg, F. Petrini, A. Hoisie, and L.r@ts. Using Multirail Networks in High-Performance
Clusters. INEEE Cluster 2001, Newport Beach, CA, October 2001.

[7] J.Duato, S. Yalamanchili, and L. Ninterconnection Networks: An Engineering Approach. The IEEE Computer
Society Press, 1997.

[8] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,Bakovski, and J. J. Dongarra. Fault Tolerant
Communication Library and Applications for High Perofrngan InLos Alamos Computer Science Institute
Symposium, Santa Fee, NM, October 27-29 2003.

[9] E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J. D.dquges, V. Sahay, P. Kambadur, B. Barrett, A. Lums-
daine, R. Castain, D. Daniel, R. Graham, and T. Woodall. Q@fh Goals, Concept, and Design of a Next
Generation MPI Implementation. Proceedings, 11th European PVM/MPI Users Group Meeting, 2004.

[10] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. GnMch, C. E. Rasmussen, L. D. Risinger, and M. W.
Sukalksi. A Network-Failure-Tolerant Message-Passingt&y for Terascale Clustensiternational Journal of
Parallel Programming, 31(4), August 2003.

[11] W. Gropp and E. Lusk. Dynamic process management in ahddfing. InProceedings of Seventh IEEE
Symposiumon Parallel and Distributed Processing, pages 530-533, October 1995.

[12] W. Gropp, E. Lusk, D. Ashton, R. Ross, R. Thakur, and Borlen. Mpich abstract device interface version 3.4
reference manual draft. Technical report, Argonne Natidahoratory, Mathematics and Computer Science
Division, May 2003. Draft.

[13] W. Gropp, E. Lusk, and R. ThakutJsing MPI-2: Advanced Features of the Message-Passing Interface. MIT
Press, Cambridge, MA, 1999.

[14] Infiniband Trade Association. http://www.infinibaadbrg.

[15] W. Jiang, J. Liu, H. Jin, D. K. Panda, W. Gropp, and R. TuralHigh Performance MPI-2 One-Sided Commu-
nication over InfiniBand. INEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid
04), Chicago, IL, April 2004.

[16] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, D. Buntinas, Fhakur, and W. Gropp. Efficient Implementation
of MPI-2 Passive One-Sided Communication on InfiniBand @iss InProceedings of EuroPVM/MPI ’ 04,
Budapest, Hungary, September 2004.

[17] Jiuxing Liu and Amith Mamidala and Dhabaleswar K. Pan#fast and Scalable Collective Operations using
Remote Memory Operations on VIA-Based Clusters.iril Parallel and Distributed Processing Symposium
(IPDPS’03), April 2004.

[18] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D.r8imas, W. Gropp, and B. Toonen. Design and Im-
plementation of MPICH2 over InfiniBand with RDMA Support.Pnoceedings of Int’| Parallel and Distributed
Processing Symposium (IPDPS’04), April 2004.



[19] Message Passing Interface ForudPl: A Message-Passing Interface Sandard, Mar 1994.

[20] Message Passing Interface ForudPl-2: Extensions to the Message-Passing Interface, Jul 1997.

[21] Mpich2, argonne. http://www-unix.mcs.anl.gov/mpgich2/.

[22] Myricom. Myrinet Software and Customer Support. hitgww.myri.com/scs/GM/doc/, 2003.

[23] Network-Based Computing Laboratory. MVAPICH: MPI fodnfiniBand on VAPl Layer.
htt p:// now ab. ci s. ohi o- st at e. edu/ proj ects/ npi -i ba/index. htm .

[24] S. Pakin and A. Pant. VMI 2.0: A Dynamically Reconfigukeablessaging Layer for Availability, Usability, and
Management. IfProceedings of The 8th I nternational Symposium on High Performance Computer Architecture
(HPCA-8), Cambridge, MA, February 2002.

[25] F. Petrini, W.-C. Feng, A. Hoisie, S. Coll, and E. Framttterg. The Quadrics Network: High Performance
Clustering Technology.EEE Micro, 22(1):46-57, January-February 2002.

[26] Quadrics Supercomputers World, Ltd. Quadrics Docuaigon Collection. http://www.quadrics.com/
onlinedocs/Linux/html/index.html.

[27] S. J. Sistare and C. J. Jackson. Ultra-High Perform&mamunication with MPI and the Sun Fire Link
Interconnect. IrProceedings of the Supercomputing, 2002.

[28] J. Squyres and A. Lumsdaine. A Component ArchitectoreLfAM/MPI. In Proceedings, 10th European
PVM/MPI Users Group Meeting, number 2840 in Lecture Notes in Computer Science, Venialy, September
/ October 2003. Springer-Verlag.

[29] J. M. Squyres and A. Lumsdaine. The Component Architectf Open MPI: Enabling Third-Party Collective
Algorithms. InProceedings, 18th ACM International Conference on Supercomputing, Workshop on Component
Models and Systems for Grid Applications, St. Malo, France, July 2004.

[30] W. R. StevensUNIX Network Programming, Networking APIs. Sockets and XTI. Prentice—Hall, Inc. , Upper
Saddle River, New Jersey 07458, second edition, 1998.

[31] T. Woodall, R. Graham, R. Castain, D. Daniel, M. Sukdi Fagg, E. Garbriel, G. Bosilica, T. Angskun, J. J.
Dongarra, J. Squyres, V. Sahay, P. Kambadur, B. BarrettAahdimsdaine. Open MPI's TEG Point-to-Point
Communications Methodology : Comparison to Existing Impéatations. InProceedings, 11th European
PVM/MPI Users' Group Meeting, 2004.

[32] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda. Effitiend Scalable Barrier over Quadrics and Myrinet
with a New NIC-Based Collective Message Passing Protoodlvorkshop on Communication Architecture for
Clusters, in Conjunction with International Parallel and Distributed Processing Symposium’ 04, April 2004.

[33] W. Yu, S. Sur, D. K. Panda, R. T. Aulwes, and R. L. GrahanghPerformance Broadcast Supportin LA-MPI
over Quadrics. Ih.os Alamos Computer Science I nstitute Symposium, October 2003.



