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Abstract

Open MPIis a project recently initiated to provide a fault-tolerant, multi-network capable, and production-
quality implementation of MPI-2 [20] interface based on experiences gained from FT-MPI [8], LA-MPI [10],
LAM/MPI [28], and MVAPICH [23] projects. Its initial communication architecture is layered on top of
TCP/IP. In this paper, we have designed and implemented Open MPI point-to-point layer on top of a high-
end interconnect, Quadrics/Elan4[26]. Design challenges related to dynamic process/connection manage-
ment, utilizing Quadrics RDMA capabilities and supporting asynchronous communication progression are
overcome with salient strategies to utilize Quadrics Queued-based Direct Memory Access (QDMA) and Re-
mote Direct Memory Access (RDMA) operations, along with the chained event mechanism. Experimental
results indicate that the resulting point-to-point transport layer implementation is able to achieve compara-
ble performance to Quadrics native QDMA operations, from which it is derived. While not taking advan-
tages of Quadrics/Elan4 [26, 2] NIC-based tag matching due to its design requirements, this point-to-point
transport layer provides a high performance implementation of MPI-2 [20] compliant message passing over
Quadrics/Elan4.

1. Introduction

Parallel computing architecture has recently evolved intosystems with thousands of processors. Grid
and meta-computing has pushed this trend further into geographically distributed clusters. These frontiers
of development have led to a less integrated computing environment with dramatically different challenges
and requirements which include not only the traditional crave for low latency and high bandwidth but also
the need for fault-tolerant message passing, scalable I/O support, resource provisioning, run-time process
control and fault-tolerance.

Open MPI [9] is a recent project initiated not only as a research forum to address these new challenges
comprehensively, but also as a development effort to produce an all-new, production-quality MPI-2 [20]
implementation. In order to efficiently support a wide rangeof parallel platforms, besides presenting an
MPI [19] interface, Open MPI has designed its communicationarchitecture as two separate abstraction
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layers: a device-neutral message management layer and network-specific transport layer. The latter is re-
ferred to as point-to-point transport layer (PTL) and the former as point-to-point management layer (PML).
Currently, PML is co-developed with a PTL implementation ontop of TCP/IP [31]. Recent work has demon-
strated that PML is able to satisfactorily aggregate bandwidth across multiple network interfaces using this
TCP/IP based communication protocol. Although most interconnects have its IP emulation support, net-
work access through TCP/IP incurs significant operating system overhead and also multiple data copies.
This prevents Open MPI from taking advantage of the maximum performance advantage of the underlying
network. It would be better to take advantage of communication protocols over high-end interconnects to
expose their maximum hardware capabilities. However, there will be semantics difference and mismatches
from higher layers of Open MPI communication architecture,namely PML, as well as in between TCP/IP
and a communication protocol of high-end interconnects. These likely presents challenges to a high perfor-
mance design of Open MPI communication support over a particular network. Therefore, it is necessary to
have an in-depth examination the particular requirements of Open MPI [9, 31] PTL interface and the specific
constraints of any new interconnect.

This paper takes on these challenges and proposes a new design of Open MPI [9] point-to-point trans-
port support over Quadrics/Elan4 [26, 2]. First, we start with characterizing communication requirements
imposed from Open MPI design objectives, including processinitiation, integrating RDMA capabilities of
different networks and asynchronous process support. Thenwe describe the motivation and objectives of the
PTL implementation over Quadrics/Elan4. Salient strategies are proposed to overcome these challenges by
taking advantages of Quadrics Queued-based Direct Memory Access (QDMA) and Remote Direct Memory
Access (RDMA) operations, as well as its chained event mechanism. Experimental results indicate that the
implemented point-to-point transport layer achieve comparable performance to Quadrics native QDMA in-
terface, from which it is derived. Even though this design isnot taking advantages of Quadrics/Elan4 [26, 2]
NIC-based tag matching due to the design constraints from Open MPI requirements, this point-to-point
transport layer provides a high performance implementation of MPI-2 [20] compliant message passing over
Quadrics/Elan4, achieving a performance slight lower but comparable to that of MPICH-QsNetII [26].

The rest of the paper is presented as follows. In the next section, we describe in detail the com-
munication architecture of Open MPI [9] and its requirements to the point-to-point [31] transport layer.
Section 3 describes the motivation and objectives of this work. The design of a transport protocol over
Quadrics/Elan4 [26, 2] is discussed in section 4. Section 5 provides the implementation. Section 6 provides
performance results. Section 7 provides a brief review of related works. Section 8 concludes the paper.

2. Overview of Open MPI Communication Architecture

The Open MPI’s component-based architecture [29] is designed to provide services separating critical
features into individual components, each with its own functional responsibilities and interfaces. In this
section, we provide a brief overview of the components relevant to Open MPI communication architecture.
For the convenience of discussion, we present the layering of the related components based on the commu-
nication flow path. This can be slightly different from the layering presented in other literatures [9, 31, 29],
where the emphasis is given to how the components are relatedfrom the perspective of software engineering.

2.1. Open MPI Communication Stack

The basic Open MPI [29] communication architecture is mapped onto two distinct components: Point-to-
point Management Layer (PML) and Point-to-point TransportLayer (PTL). As shown in Fig. 2.1, MPI [19]
point-to-point communication is layered directly on top ofthe PML interface, which provides the generic
functionalities of message management, such as handling application requests from MPI [19], fragmenting



and scheduling messages across available PTL modules, reassembling messages at the receiver side and
monitoring the progress of requests. Currently, collective communication is provided as a separated compo-
nent on top of point-to-point communication. Further research will exploit the benefits of hardware-based
collective support [33, 17]. At the lower layer, the PTL component is responsible for managing network
communication and connection status, delivering packets over a specific network interface, and updating the
PML layer about packet progression.
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2.2. PTL Interface and Communication Flow Path

The PTL layer provides two abstractions: the PTL component and the PTL module [29]. A PTL com-
ponent encapsulates the functionality of a particular network transport that can be dynamically loaded at
run-time; a PTL module represents an ”instance” of a communication endpoint, typically one per network
interface card. In order to join and disjoin from the pool of available PTLs, a PTL has to go through five
major stages of actions: opening, initializing, communicating, finalizing and closing. These stages of PTL
utilization is discussed as follows.

Joining the Communication Stack– A PTL component goes through the first two stages, opening and
initializing, to join the communication stack. During the opening phase, the PTL component and all its
associated dependencies are opened and mapped into the process virtual space. When the dependency and
sanity checking completes successfully, this component isentered as one of the available PTL component
that could be initialized for communication. Then a processinitializes the network device, prepares memory
and computing (e.g., additional threads) resources in the form of PTL modules (one per network interface
card). These PTL modules are then inserted in the communication stack as available PTL modules. When
these procedures successfully completes, the activation of this PTL component is triggered through a com-
ponent control function.

Inside the Communication Stack– PML schedules messages across a new network when the PTL
component has activated its PTL modules. Fig. 2.1 shows a flowchart of how messages are scheduled across
multiple networks. When the PML layer receives a request, itfirst schedules arendezvous packet to one
PTL based on a chosen scheduling heuristic. Thisrendezvous packet is then sent to the receiver side using
ptl send() interface. When this packet is detected by one of the PTLs at the receiver side, the receiving
PTL request the PML layer to match this packet to the preposted receive requests. If a match is made with
a preposted receive request, PML in turn callsptl matched() interface to return an acknowledgment to
the initiating PTL. Any data inlined with the first packet arecopied into the application receiver buffer, and



the progress of this amount of data isupdated at the PML layer through ptlrecv progress(). When the
acknowledgment arrives the sender side, the initiating PTLupdates the PML layer about the data transmitted
inside the first packet through aptl send progress() interface. Another scheduling heuristic is then
invoked to schedule the rest of the message across availablePTLs. The progress of the data transmission are
updated accordingly, and this eventually leads to the completion of requests on both sides.

Disjoining from the Communication Stack – There are also two stages to disjoin a PTL from the
communication stack: finalizing and closing. During the finalizing stage, a PTL first finalizes its pending
communication with other peer processes, then releases allthe associated memory and computing resources.
Also in the closing phase, a PTL component makes sure that allthe exposed PTL modules are finalized, and
that the component-associated memory and threading resources are freed.

3. Objectives

Open MPI [9] has its first PTL implementation on top of the TCP/IP. Many of the strength and advantages
have been described in the earlier literatures [9, 31, 29]. In order to correctly project the objectives, it is
necessary to discuss design requirements for a PTL implementation. Three of Open MPI’s main objectives
have impacts on the PTL layer, including fault tolerance, concurrent multi-network communication and
asynchronous communication progress.

PTL Requirements for Fault Tolerance: Open MPI [9] targets at both process fault tolerance and end-
to-end reliable message delivery [10]. While the latter requires PTL to be able to keep track of the
progressing of individual message/packet, the former requires PTL to be prepared for itself and/or
others to dynamically joining and disjoining the communication stack, checkpoint/restart, and etc.
This means that PTL has to handle not only the dynamics statusof local network interface, but also
the dynamic connections with other PTLs.

PTL Requirements for Concurrency Communication over Multiple Network: Open MPI [9] has its mes-
sages scheduled across multiple PTLs from the PML layer. However, each network can have dramat-
ically different semantics and memory requirements for thetransmission of the same message. In this
regard, while the PML layer needs to abstract and encapsulate the difference between different PTLs
to integrate them together for the delivery of a single message, each PTL also needs to map the PML
function interface onto its existing transmission semantics. The challenges in this respect to the PTL
design over Quadrics/Elan4 will be discussed in Section 4.

PTL Requirements for Dual-Mode Communication Progress: Open MPI provides two different modes
to monitor and progress communication across different network devices: non-blocking polling and
thread-based blocking. Non-blocking polling checks the incoming and outgoing traffic of each net-
work device, which can be performed by a MPI process that consists only a single thread. In contrast,
additional threads are employed in the thread-based blocking mode to block and wait on the status
change of pending messages. A PTL component needs to supportthread-based blocking mode with
minimum amount of memory resources and number of threads.

3.1. Overview of Quadrics/Elan4

Quadrics network [26, 25] has recently released its second generation network, QsNetII [2]. This new
release provides very low latency, high bandwidth communication with its two building blocks: a pro-
grammable Elan-4 network interface card and the Elite-4 switch, which are interconnected in a fat-tree



topology. Quadrics provides its libraries,libelan andlibelan4, on top of its Elan4 network [26].
Within these default Quadrics programming libraries, a parallel job first acquires a job-wise capability.
Then each process is allocated a virtual process ID (VPID), together they form a static pool of processes,
i.e., the process membership and connections among them cannot change. Interprocess communication
is supported by two deferent models: Queue-based model (QDMA) and Remote Directed Message Ac-
cess (RDMA) model. QDMA allows processes to post messages (up to 2KB) to a remote queue of other
processes; RDMA enables processes to write messages directly into remote memory exposed by other pro-
cesses.libelan also provides a very usefulchained event mechanism, which allows one operation to be
triggered upon the completion of another. This can be utilized to support fast and asynchronous progress
of two back-to-back operations. Similar mechanisms over Quadrics/Elan3 have been utilized in [32, 1] for
efficient, reliable communication support.

3.2. Objectives of PTL Implementation Over Quadrics/Elan4

While Quadrics libraries presents parallel communicationover a static pool of processes, Open MPI [9,
31] targets MPI-2 [20] dynamic process management [11] and process checkpoint/restart. The PTL imple-
mentation over Quadrics needs to support dynamic joining ofPTL modules over Quadrics network. To the
best of the authors’ knowledge, this is not available to any existing MPI implementation over Quadrics either
because the MPI implementation does not support MPI-2 dynamic process management [5], or because the
underlying communication is based on libelan’s staticallyconnected processes [26]. In addition, Open MPI
targets for concurrent message passing over multiple networks. But the communication/memory semantics
can be dramatically different from network to network, e.g., some network are RDMA capable, while others
require memory registration before message transmission can take place. Quadrics/Elan4 is RDMA capable
and large message (> 2KB) communication has to utilize its RDMA capabilities. A high performance PTL
implementation needs to take advantage of these RDMA capabilities. Moreover, the notification of message
completion is provided through a different event mechanism, which does not support a poll/select-like [30]
mechanism as available in TCP/IP. Thus it is no longer possible for a process to block on any completion of
multiple pending messages. This presents another challenge to the support of asynchronous communication
progress of multiple pending messages. Taken together, to cope with all the above challenges and provide a
high performance implementation over Quadrics/Elan4, this work has the following objectives:

1. Supporting dynamic joining of PTL modules over Quadrics

2. Integrating Quadrics RDMA capabilities into the point-to-point transport layer

3. Providing asynchronous communication progress while minimizing the performance impacts over
Quadrics

4. Design of Open MPI Communication Support over Quadrics

In this section, we describe the design of Open MPI [9] communication support over Quadrics [26]. We
have proposed strategies to overcome challenges imposed from Open MPI requirements. The rest of the
section describes our strategies in these aspects: a) Communication initiation and finalization, b) Integrating
RDMA capabilities and c) Asynchronous communication progress.

4.1. Communication Initiation and Finalization

As described in Section 3.1, the static pool of processes andstatic connection between them do not
match MPI-2 [20] dynamic process management [11] specifications, in which new processes are allowed



to be spawned from and join the existing pool of communicating processes. Open MPI further requires
processes to be able to checkpoint/restart and migrate to a remote node on-demand or in case of faults. This
dynamic process model implies that the default static coupling of Quadrics virtual process ID (VPID) and
the rank of a MPI process is no longer possible [26]. This is because VPID is a system related identifier
which related to the hardware capability and the context on aspecific node, while the process rank is a
feature of a MPI communicator/universe that cannot change even if processes migrate. In addition, the
global shared virtual address space over Quadrics is no longer possible because it is not guaranteed that
processes are synchronized in their memory allocation whenprocesses initiate the network and join the
parallel communication at arbitrary times.

We propose to handle these challenges with the following strategies. First, we decouple the static coupling
of MPI rank and Quadrics VPID in a process, leaving MPI rank for the identification of MPI processes and
VPID for Quadrics network addressing. Second, we break the complete dependence on global virtual ad-
dress space for communication. For the processes that initially join parallel communication synchronously,
a global virtual address space is made available. Processesthat join (or rejoin) later will not be able to
utilize this global address space. As a result of this, theseprocesses may not be able to take advantage of
the the benefits of hardware broadcast support because it requires the availability of global virtual address
space. This does not preclude the possibility for a new global address space to be re-generated from the
available address space. This is to be investigated as one offurther research topics in Open MPI [9]. Open
MPI Run-Time Environment (RTE) can help the newly created processes to establish connections with the
existing processes. An existing connection can go through its finalization stage only when the involving
processes has completed all the pending messages synchronously. This is to avoid running an unpleasant
scenario in which a leftover DMA descriptor might regenerate its traffic indefinitely.
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4.2. Integrating Quadrics RDMA Capabilities

In two of the basic Quadrics interprocess communication models, QDMA can only transmit messages
up to 2KB. The other model, RDMA read/write, can support transmission of arbitrary messages over
Quadrics network. Additional support needs to be provided for integrating Quadrics RDMA capabilities
into Open MPI communication architecture. There is anotherconstraint over Quadrics to use these capa-
bilities. Quadrics RDMA descriptors require the source anddestination virtual host memory addresses to
be transformed and presented in a different format (E4Addr) for the network interface card to carry out



RDMA operations. A specially designed Memory Management Unit (MMU) in the Elan4 network interface
performs address translation from E4Addr to physical memory. When needed, the host physical memory
can be trapped back by Quadrics system software.

In order to take advantage of these RDMA capabilities, we modify both the memory addressing format
and the communication semantics. To support concurrent addressing over Elan4 and other interconnects, a
memory descriptor is expanded to include an E4Addr. This is only a preliminary solution for concurrent
message passing over TCP and Quadrics because they both do not require memory pre-registration before
communication. Over other interconnects, e.g., InfiniBand[14] and Myrinet [3], the memory range of a
message need to be registered with the network interface before the communication can take place. As a
part of the further research, we are experimenting with a more informative memory descriptor to support
higher concurrency over different interconnects. Second,we propose two schemes to take advantage of
RDMA read and write, respectively. As shown in Fig. 3, in the first scheme, all the send operations after the
first rendezvous fragment are all replaced with RDMA write operations. At theend of these operations, a
control fragment, typed as FIN, is sent to the receiver for the completion notification of the full message. In
the second scheme, shown in Fig. 4, when therendezvous packet arrives at the receiver, instead of returning
an acknowledgment to the sender, the receiver initiates RDMA read operations to get the data. When these
RDMA read operations complete, a different control message, typed as FINACK, is sent to the sender, both
for acknowledging the arrival of the earlier rendezvous fragment and notifying the completion of the whole
message. Furthermore, for performance optimization, the transmission of the last control message are be
chained to the last RDMA operation using the chained event mechanism. It is automatically triggered when
the last RDMA operation is done.
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4.3. Asynchronous Communication Progress

One of Open MPI’s requirements to the transport layer is asynchronous communication progress, in
which it employs additional threads to monitor and progresspending messages, currently available over
Solaris and Linux. For the PTL implementation over TCP/IP, because one thread can block and wait on the
progress of multiple socket-based file descriptors, it is possible to monitor the progress of all networking
traffic with only a single thread per TCP PTL module. However,this is not possible for RDMA descriptors
over Quadrics, because the blocking mode of the RDMA descriptor’s completion is supported through
separated events at different memory locations. This is shown in Fig 5a. A single thread can only block and
wait on the host event of a single RDMA descriptor. It is not practically possible to have one thread to block
on each of all outstanding DMA descriptors.

Quadrics provides an event mechanism that can be utilized todetect combined completion notification
of multiple outstanding RDMA operations. As shown in Fig 5b,one event can be created with a count to
wait on the completion of multiple outstanding RDMA operation. This count is decremented by 1 when a
RDMA descriptor completes. In the end, an interrupt will be generated to the host process that is blocked
on this event. This mechanism requires a predefined count. That many RDMA descriptors have to be
completed before an interrupt can be triggered. With a countbigger than 1, it cannot wake up a blocking
process at the individual completion of all outstanding RDMA operations. With a count of 1, the completion
of the first one or the first few RDMA operations can be detected. But there is no available mechanism
over Quadrics to atomically reset the event count back to 1 and block the process again for other RDMA
operations to complete. This is because at the same time the other outstanding RDMA operations are
potentially modifying the same event count when their messages are completed from the network, resulting
in a race condition. The progressing thread may fail to detect the completion of some RDMA descriptors
and progress the communication any further. This is shown inFig 5c and 5d.

Quadrics QDMA [26] allows a process to check incoming QDMA messages posted by any process into
its receive queue. We propose to take advantages of both QDMAshared completion queue and the chained
DMA mechanism in order to detect multiple outstanding RDMA operations. At the PTL initialization time,
a receive queue is pre-created as the shared completion queue, shown on the right side of Fig. 6. When
setting up RDMA descriptors, a small message QDMA operationis chained to every RDMA operation.
When the RDMA operation completes, the associated chained QDMA will generate a small message to
the receive queue. As each of these small messages being posted into one of the queue slots, QDMA will
generate an event to the host side for notification. Thus withthis shared completion queue, a single thread
can be introduced to block and wait on the host event for the completion of many RDMA operations. This
strategy of a shared completion queue is shown in Fig. 6. In terms of functionality, the newly created queue is



the same as the pre-created receive queue for the incoming message. Separating the completion notification
of local DMA descriptors with the arrival of incoming receive message can make the message handling
logic more straightforward, however it requires the additional resources need to maintain the queue. Worse
yet, it requires two progressing threads for supporting theasynchronous communication progress. We have
provided support to both one queue-based and two-queue-based asynchronous communication progress.

5. Implementation

By taking advantages of Quadrics QDMA and RDMA (read and write) [26] operations, and Quadrics
chained event mechanism [26], we have implemented our design of the point-to-point transport layer over
Quadrics/Elan4,PTL/Elan4. Processes are allowed to join the Quadrics Network dynamically and individ-
ually by claiming an available context in a system-wide Elan4 capability [26, 4]. Currently, synchronization
and connection setup is done collectively duringMPI Init() at the run time through the help of other
components. To speed up fast transmission of small packets,send buffers (each of 2KB) are preallocated for
sending purposes in PTL/Elan4. Accordingly, for receivingshort packets, a host-side receive queue is also
created with a number of receiver buffers of the same size (often referred to as QSLOTS in Quadrics [26]).
Longer packets are delivered either RDMA read or RDMA write capabilities with the help of additional
QDMAs for completion notification. Thread-based asynchronous progression is provided by applying addi-
tional threads to wait on the pending DMA operations.

6. Performance Evaluation

In this section, we describe the performance evaluation of our implementation of the point-to-point trans-
port layer over Quadrics/Elan4. The experiments were conducted on a cluster of eight SuperMicro SUPER
X5DL8-GG nodes: each with dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache, PCI-X 64-bit 133
MHz bus, 533MHz Front Side Bus (FSB) and a total of 1GB PC2100 DDR-SDRAM physical memory. All
eight nodes are connected to a QsNetII network [26, 2], with a dimension one quaternary fat-tree [7] QS-8A
switch and eight Elan4 QM-500 cards.

We have first performed experiments to evaluate all of our design strategies. Then we have studied the
layering overhead of Open MPI communication stacks and alsoprovided the overall performance of our
design on top of Quadrics/Elan4, comparing to MPICH-QsNetII [26]. Since the strategies are specific for
the point-to-point message transport over Quadrics only, in all of our experiments we have activated only
the PTLs over Quadrics/Elan4 unless otherwise specified. The first 100 iterations are used to warm up the
network and nodes in our experiments whenever applicable.

6.1. Performance Analysis of Basic RDMA Read and Write

The PML layer schedules the first packet to a PTL module based on the exposed fragment length from
that PTL module [9]. In the case of long messages, this packetserves as arendezvous message with an
inlined packet of data. This strategy is beneficial to the PTLdesign over TCP protocol, because the cost
to initiate send/receive operations through the operatingsystem is rather high comparing to the networking
cost. However, with RDMA capable networks, this strategy would incur an unnecessary memory copying
overhead for the first packet while the network interface candirectly place the data into destination memory.
We have provided an optimization to transmit therendezvous messages without inlined data.

Note that Open MPI provides a datatype component to perform efficient packing and unpacking of so-
phisticated datatypes. However, it introduces some overhead because a complex copy engine is initiated
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Fig. 7. Performance Analysis of Basic RDMA Read and Write
with each request. For better understanding of the performance strength of PTL/Elan4 module, we have
intentionally replaced this copy engine with a genericmemcpy() call.

In Fig. 7, we have provided both the performance of RDMA read and write with or without utilizing this
datatype component, and the performance with or without inlined data. This evaluation focuses on messages
up to 4KB. With the threshold of sending rendezvous messagesbeing 1984 bytes, this allows us to look at
both the small and long message transfer. As shown in Fig. 7(a), the data type component does introduce
an overhead about 0.4µsec compared to the basic support without the datatype component. As also shown
in Fig. 7(b), RDMA read is able to delivered better performance compared to RDMA write. This is to be
expected because the RDMA read-based scheme essentially saves a control packet compared to RDMA
write-based scheme. When using the optimization to transmit the rendezvous packet without inlined data,
the performance is improved for all message sizes with both RDMA Read and RDMA write.

6.2. Performance Analysis with Chained DMA and Shared Completion Queue
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In the design of PTL/Elan4, we have utilized Chained DMA mechanism in two scenarios, one to support
RDMA read and RDMA write for fast completion notification, the other to support the shared completion
notification of RDMA operations with the help of QDMA. Using RDMA read, we have measured the perfor-
mance with these two strategies As shows in Fig. 8, using the chained DMA for fast completion notification



does provide marginal improvements for the transmission oflong messages. The benefits is small because
the total communication time for messages≥ 2KB is rather high comparing the possible benefits, i.e.,
automatically triggering the next DMA without across I/O Bus traffic. PCI-X bus and fast CPU processor
(3GHz) used in the experiments also reduces the possible benefits of chained DMA. However, using chained
DMA does reduce the host CPU utilization for handling more traffic.

On the other hand, the shared completion queue support does bring performance impacts, with either a
combined receive queue,One-Queue, or a separate queue (Two-Queue) for the completion of local DMA
descriptors. This is to be expected because an additional QDMA operation needs to be triggered to the
completion queue from a completed DMA operation. Combiningshared completion queue with the existing
recv queue for incoming remote messages does not provide noticeable performance improvement. This is
because using polling-based approach, the cost of checkingtwo eight-byte host-events is about the same
as that of checking one. However, the one-queue strategy saves the additional resources needed for another
queue and it can also save an additional thread when used to support asynchronous communication progress.

6.3. Analysis of Communication Cost in Different Layers

We have performed an analysis of the Open MPI communication stacks. During a ping-pong test, we
take the timing from a) when PTL/Elan4 has received a packet from the network and is delivering it to the
PML layer for matching, to b) when the next packet is arrivingat PTL/Elan4, as the communication time
above the PTL layer. An average of that across 5000 iterations is taken as a measurement of the average
cost in the PML layer and above,PML Layer Cost. Subtracting that from the overall performance is the
latency as seen at the PTL/Elan4 layer,PTL Latency, which also includes the communication time across
the network. This measurement is possible because of the special features of ping-pong micro-benchmarks.
A message, like a rotating token, can only be held by one layerat any time. So, on one hand, the PTL layer
is not involved in any other work after it handles the packet to PML for matching and before it is called to
send a packet, on the other hand, the PML layer is not involvedin the communication after it triggers a send
operation to PTL and before it receives another packet from PTL. Note although both PTL and PML can
detect the completion of local send operations, this cost isnot counted into eitherPML Layer Cost or the
total time because it is not in the critical path of ping-pongcommunication.

At the same time, we also measure the performance of the native performance Quadrics QDMA,QDMA
Latency. Note our implementation is based on Quadrics QDMA model. Also note that the Open MPI
communication layer introduces an 64-byte header for matching purpose. A comparison is done with the
PTL communication time of aN-byte message with the communication time of a64+N-byte message using
native Quadrics QDMA operations. As shown in Table. 1, the PML layer and above has a communication
cost of 0.5µsec, while PTL/Elan4 delivers the message with a performance comparable to native Quadrics
QDMA.

6.4. Performance Analysis of Thread-Based Asynchronous Progress

Table 1. Performance Analysis of Thread-Based Asynchronou s Progress (in µsec)
Mesg Length Basic Interrupt One Thread Two Threads
RDMA-Read 4B 3.87 14.70 22.76 27.50
RDMA-Read 4KB 15.25 27.16 32.80 47.72

The shared completion queue is introduced to support thread-based asynchronous progress. We have per-
formed an analysis of this asynchronous progress support using RDMA read in PTL/Elan4. Fig. 1 shows the



performance with four different methods of checking completion. Basic progress,Interrupt-based progress,
One-Thread-based asynchronous progress, andTwo-Thread-based asynchronous progress. Note that the
interrupt-based progress is not really a workable strategyunder real communication scenarios because the
MPI process cannot block within a particular PTL. It is explored here just to find out the cost of interrupt-
based communication progress. One-thread and Two-Thread-based progress utilize a combined completion
queue or a separated completion queue, respectively. The performance results indicate that one-thread-based
asynchronous communication process is more efficient as it reduces the contention on CPU and memory re-
sources. The total threading overhead is around18us. About 1us due to the chained DMA support as
discussed in SectionSubSec:, and10us due to the interrupt. Total around9us is attributed to the thread-
ing overhead. Note that, when doing these experiments, we have left both interrupt affinity and processor
affinity of the operating system at their default.

6.5. Overall Performance of Open MPI over Quadrics/Elan4
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Fig. 10. Performance Comparisons of Open MPI over Quadrics/ Elan4 and MPICH-QsNet II

Fig. 10 shows the overall latency and bandwidth performanceof Open MPI over Quadrics/Elan4 with the
best options as described above, such as using chained DMA for completion notification, using polling-based
progress without shared completion queue, and usingrendezvous packets without inlined data. The compar-
ison is made to the default MPI implementation MPICH-QsNetII . As shown in Fig. 10, our implementation
has a latency performance comparable to that of MPICH-QsNetII , except in the range of small messages.
This is due to the following reasons: a) MPICH-QsNetII transmits a shorter-header, 32-bytes, compared to
the 64-bytes in Open MPI, b) MPICH-QsNetII is built on top of Quadrics T-port interface, which does tag



matching in the NIC. In terms of bandwidth, our implementation performs particularly worse in the middle
range of messages. This is because the Tport support of MPICH-QsNetII does efficient pipelining of mes-
sages. Note our implementation starts from different design requirements to co-exist with PTL models of
other networks and to be MPI-2 [20] compliant. For example, we are not doing NIC-based tag matching
as MPICH-QsNetII does in its underlying Tport [26] interface because currently we intend to have shared
request queues for managing traffic from different networksand allow them to be able to crosstalk.

7. Related Work

MPI [19] has been thede facto messaging passing standard. MPI-2 [20, 13] extends MPI-1 with one-sided
communication, dynamic process management, parallel I/O and language bindings.

Numerous implementations have been provided over different networks, including high-end RDMA ca-
pable iterconnects. These include MPICH-GM [22] for Myrinet, MVAPICH [23] and MVAPICH2 [18] for
InfiniBand, MPICH-QsNet [26, 2] for Quadrics elan3 and elan4networks [26], and MPI-Sun [27] for Sun
Fire links. Among them, [22, 26, 23] are able to take advantages of RDMA capabilities of their underly-
ing networks. [27] primarily relies on Programmed IO (PIO) for message passing. MPICH-NCSA [24]
and LA-MPI [10] support message passing over multiple networks. However, a single message cannot be
scheduled across multiple networks. Different semantics in addressing remote memory over different net-
works are also not addressed. LAM/MPI [28] supports part of MPI-2 interfaces, for example, dynamic
process management. MVAPICH2 [18] is an implementation RDMA channel for MPICH2 [21] ADI3 [12]
interface. It supports both active and passive one-sided communication [15, 16]. MPICH-QsNet [26] and
LA-MPI [10] provide MPI implementation over Quadrics network, but they do not support dynamic process
management or process checkpoint/restart. Change of the membership and connections among MPI pro-
cesses usually aborts the parallel job. Open MPI [29, 9, 31] is initiated as a new MPI-2 implementation that
support fault tolerant and concurrent message passing overmultiple networks. This work provides a design
and implementation of high performance communication of Open MPI over Quadrics/Elan4.

8. Conclusions

In this paper, we have presented the design and implementation of of Open MPI [9, 31] point-to-point
tranport layer (PTL) over Quadrics/Elan4 [26, 2]. To match the fault tolerant process management design
goals of Open MPI, we have provided a PTL initiation to allow processes to join and disjoin from the
Quadircs network communication at any time. Our design has also integrated Quadrics RDMA capabilities
into the communication model of Open MPI [9, 31]. Thread-based Asynchronous communication progress
are supported with a strategy utilizing Quadrics chained event mechanism and QDMA.

Our evaluation has shown that the implemented point-to-point transport layer achieves comparable per-
formance to Quadrics native QDMA interface, from which it isderived. In addition, this design of point-
to-point transport over Quadrics achieves a performance slight lower but comparable to that of MPICH-
QsNetII [26], though it does not take advantage of NIC-based tag matching as MPICH-QsNetII . Further-
more, this design and implementation provides a high performance, MPI-2 [20] compliant message passing
over Quadrics/Elan4.

In future, we intend to study the effectiveness of performance improvement with Open MPI’s aggre-
gated communication over network interfaces, including both multi-rail communication over Quadrics [6]
and concurrent communication over multiple interconnects. We also intend to study fault tolerant process
management, reliability of message delivery over multipleinterconnects.
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