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Abstract 
This paper describes a shadow and soft shadow algorithm for 
mixed polygonal and volumetric data. The polygons are first 
rendered using scanline rasterization and the depth information is 
retrieved. Volume rendering using splatting is then used to render 
the volumes. Polygons are composited with volumes during the 
volume rendering in depth-sorted order slice by slice. We 
implement shadow and soft shadow algorithms, combining 
volumes and polygons using sheet-based splatting. This shadow 
algorithm applies to all combinations of volumes and polygons, 
without any restriction on the geometric positioning and overlap 
of the volumes and polygons. This paper also discusses how to 
implement multiple scattering for high-albedo participating media 
during the shadow generation using sheet-based splatting. We use 
a convolution technique to model the multiple forward and back 
scattering and show results for clouds, a high-albedo participating 
medium. Our algorithm constitutes a complete system for shadow 
generation. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation - Display Algorithms; I.3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism  
- Color, shading, shadowing and texture.  

Keywords:  visualization, shadows, soft shadows, multiple 
scattering, illumination. 

1. INTRODUCTION 
Volume rendering is the display of datasets sampled in three 
dimensions. Splatting is one volume rendering algorithm, which 
can create high-quality images, and render efficiently in the case 
of a sparse dataset. The basic principles of a splatting algorithm 
are: (1) represent the volume as an array of overlapping basis 
functions with amplitudes scaled by the voxel values; (2) project 
these basis functions to the screen to achieve an approximation of 
the volume integral [4]. A major advantage of splatting is that 
only relevant voxels are projected and rasterized. This can 
tremendously reduce the volume data that needs to be processed 
and stored. 
    A shadow is a region of relative darkness within an illuminated 
region caused by an object totally or partially occluding the light. 
Shadows are essential to realistic images. Earlier implementations 
of shadows focused on hard shadows, in which a value of 0 or 1 is 
multiplied with the light intensity. In volume rendering, as the 
light traverses the volume, the light intensity is continuously 

attenuated by the volumetric densities. We have proposed a 
shadow algorithm that properly determines this light attenuation 
and generate shadows from volumetric datasets using splatting 
[35].  
    Soft shadows include an umbra region, areas for which no part 
of the extended light source is visible, and a penumbra region, 
areas in which part of the extended light source is visible and part 
is hidden or occluded. The generation of soft shadows is a 
difficult topic in computer graphics. It requires integrating the 
contributions of extended light sources on the illumination of 
objects. We have proposed a soft shadow algorithm with a 
convolution technique using sheet-based splatting [36].  
    Some visualization applications require the volumetric and 
geometrical objects to appear together in a single image. For 
example, some geometrically defined objects are surrounded by 
clouds, smoke, fog, or other gaseous phenomena. The above 
shadow and soft shadow algorithm generates shadows for 
volumetric datasets only. In this paper, we will extend our shadow 
and soft shadow algorithm to deal with a scene including both 
volumetric datasets and polygonal geometries.  
    For the high-albedo participating media, such as clouds, 
multiple scattering cannot be ignored. Here, we implement 
multiple scattering using a splatting paradigm and incorporate the 
multiple scattering into our shadow algorithm. 
    In the following section, background and previous work are 
reviewed and motivation for this work is given. Section 3 
discusses multiple scattering for high-albedo participating media. 
Section 4 describes our shadow algorithm for mixed polygonal 
and volumetric data, while Section 5 describes the soft shadow 
algorithm for a scene including both volumes and polygons. 
Conclusions and future work are given in Section 6. 
 

2. PREVIOUS WORK 

2.1 Splatting 
In splatting, each voxel is represented by a 3D kernel weighted by 
the voxel value. The 3D kernels are integrated into a generic 2D 
footprint along the traversing ray from the eye. This footprint can 
be efficiently mapped onto the image plane and the final image is 
obtained by the collection of all projected footprints, weighted by 
the voxel values. This splatting approach is fast, but it suffers 
from color bleeding and popping artifacts due to incorrect volume 
integration. 
    Mueller et al. [23] eliminates this popping drawback by 
aligning the sheets to be parallel to the image plane. This splatting 
method is called image-aligned sheet-based splatting. All the 
voxel kernels that overlap a slab are clipped to the slab and 
summed into a sheet buffer. The sheet buffers are composited 
front-to-back to form the final image. While this significantly 
improves image quality, it requires much more compositing and 
several footprint sections per voxel to be scan-converted. 
Splatting using post classification was proposed by Mueller et al. 
[21] to generate images with crisp edges and well-preserved 
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surface details. In this paper, we use the post-classification to 
keep track of the per-pixel contribution to the light attenuation and 
generate per-pixel shadows. 

2.2 Shadow Algorithms 
Earlier implementations of shadows focused on hard shadows, in 
which a value of 0 or 1 is multiplied with the light intensity. The 
shadow volume algorithm by Crow [5] introduces the concept of 
shadow volumes. A 2-pass hidden surface algorithm is proposed 
by Nishita and Nakamae [24] and Atherton et al. [1]. Williams 
[33] uses a z-buffer depth-map algorithm to generate shadows.  
    These shadow algorithms can only determine if an object point 
is in shadow or not, resulting in only binary values for the light 
intensity. These algorithms are not suitable for volume rendering. 
In volume rendering, as the light traverses the volume, the light 
intensity is continuously scattered and attenuated by the 
volumetric densities. Ray tracing offers the flexibility to deal with 
the attenuation of the light intensity and has been used to generate 
shadows for both surface representations [32] and volumetric 
datasets [6,10]. However, the volumetric shadows using ray 
tracing are very costly computationally [19].  
    For splatting, Nulkar and Mueller have implemented an 
algorithm to add shadows to volumetric scenes using splatting 
[26]. They use a two-stage splatting approach. In the first-stage, 
splatting is used to construct a three-dimensional light volume; the 
second stage is formed by the usual rendering pipeline. Since the 
algorithm needs a 3D buffer to store the light volume, it has the 
problem of high storage and memory cost. Also, accurate shadows 
are difficult to implement using this method, due to the limited 
resolution of the light volume. We investigate a new algorithm to 
implement shadows using splatting that requires only a 2D buffer 
for each light source [35,36]. Kniss et al. [12] also utilize an off 
screen buffer to accumulate the light attenuation in their volume 
rendering using 3D texture slicing. In this paper, we will extend 
our shadow algorithm to generate shadows for a scene including 
both volumetric datasets and polygons.  

2.3 Multiple Scattering 
For low albedo participating media, the scattering is unimportant 
compared to the light attenuation. So, the two-pass algorithm 
proposed by Kajiya and Von Herzen [10] is used to calculate the 
illumination. The first pass computes the light intensity reaching 
each voxel, and in the second pass, the light is reflected or 
scattered to the viewpoint. This two-pass method is a single 
scattering model and it is only valid for low albedo media. 
Multiple scattering is important for realistic rendering of high 
albedo participating media, for example, clouds. Multiple 
scattering must account for scattering in all directions. It is more 
physically accurate, but much more complicated and expensive to 
evaluate.  Max [17] gives an excellent survey of optical models, 
including multiple scattering. 
    The calculation of multiple scattering can be divided into four 
methods [17]: the zonal method, the Monte Carlo method, the P-N 
method and the discrete ordinates method. In the zonal method 
[28], the volume is divided into a number of finite elements which 
are assumed to have constant radiosity. This method is valid only 
for isotropic scattering. In the Monte Carlo method [29], a random 
collection of photons or flux packets are traced through the 
volume, undergoing random scattering and absorption. The 
resulting images tend to appear noisy and/or take a long time to 
compute. The P-N method [2,10] uses spherical harmonics to 
expand the light intensity at each point as a function of direction. 
The discrete ordinates method uses a collection of M discrete 
directions, chosen to give optimal Gaussian quadrature in the 
integrals over a solid angle. Lathrop [14] points out that this 

process produces ray effects and presents modifications to avoid 
these ray effects. Max [18] describes an approximation to the 
discrete ordinates method, which reduces the ray effects by 
shooting radiosity into the whole solid angle bin, instead of in a 
discrete representative direction.  
    Recently, some research on approximate methods to multiple 
scattering has been examined to achieve real-time rendering. 
Harris and Lastra [7] provide a cloud shading algorithm that 
approximates multiple forward scattering along the light direction. 
They use impostors to accelerate cloud rendering. Kniss et al. [13] 
use an empirical volume shading model and add a blurred indirect 
light contribution at each sample. They approximate the diffusion 
by convolving several random sampling points and use graphics 
hardware to do the volume rendering. Our motivation is to 
implement multiple scattering using splatting and add multiple 
scattering to our shadow algorithm so that we can deal with high 
albedo participating media, like clouds.  

2.4 Rendering both Volumes and 
Polygons 
Since some visualization applications require volumetric and 
geometrical objects to appear together in a single image, a volume 
rendering technique which incorporates objects described by 
surface geometries is necessary to render both surface geometries 
and volume modeled objects.  
    The most common solution is to convert polygonal and 
volumetric data into a common representation: either construct 
surface polygons from volume data [16] or change polygon data 
to volume data using 3D scan-conversion [11]. This conversion 
introduces artifacts and is generally expensive and inefficient. An 
alternative approach is to directly render both data types. Levoy 
has developed a hybrid ray tracer for rendering polygon and 
volume data [15]. Rays are simultaneously cast through a set of 
polygons and a volume data array, samples of each are drawn at 
equally spaced intervals along the rays, and the resulting colors 
and opacities are composed together in depth-sorted order. In 
Levoy’s method, both volume and polygon objects are rendered 
using ray tracing. Ebert and Parent use another method which 
combines volume rendering and scanline a-buffer techniques [6]. 
The scanline a-buffer technique is used to render objects 
described by surface geometries, while volume modeled objects 
are volume rendered. The algorithm first creates the a-buffer for a 
scanline, which contains a list of all the fragments of polygons for 
each pixel that partially or fully cover that pixel. Based on the 
scanline-rendered a-buffer fragments, the volume-modeled objects 
are broken into sections and combined with the surface-defined a-
buffer fragments. In their paper, the volumes are defined by 
procedural functions to model the gaseous phenomena. From a 
review of the literature, splatting has not been extended to render 
both volumes and polygons. The motivations of our work include 
extending the sheet-based splatting algorithm to incorporate 
polygon modeled objects and generating shadows and soft 
shadows for scenes with both volumes and polygons. 
 

3. MULTIPLE SCATTERING  
Our shadow algorithm models the light attenuation as light 
traverses the volume. It has generated realistic shadows for low 
albedo participating media. However, in order to simulate light 
transport for participating media with high albedo, multiple 
scattering cannot be ignored. In this section, we will explain how 
we implement multiple scattering using splatting and incorporate 
it with our shadow algorithm by displaying clouds, a high albedo 
participating medium. The clouds are modeled as a collection of 
ellipsoids, and Perlin’s fractal function [27] is used to disturb the 



density distribution. Figure 1 shows the clouds with the light 
emanating behind it. The clouds look unnaturally dark, because 
only light attenuation is modeled.   

3.1 Implementation of Multiple Scattering 
Considering multiple scattering, the light intensity at a point P is 
the sum of the direct light from the light source that is not 
absorbed by intervening particles and the light scattered to P from 
other particles. The calculation of multiple scattering requires 
accounting for scattering in all directions. Therefore, ),( ωPI , 
the intensity at each point P in each light flow direction ω , can 
be expressed as: 
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where 0 )(ωI is the original light intensity in direction ω , τ is 
the extinction coefficient of the participating media, D is the depth 
of P in the media along the light direction, and 
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represents the light from all directions  scattered into direction 
ω  at the point P. If we denote ωsP −  as x, then '  
is the bi-directional scattering distribution function (BSDF), and 
determines the percentage of light incident on x from direction 

that is scattered in direction 
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τ  is the extinction coefficient of the media at x, 
and is the phase function. ),( 'ωωp
    A full multiple scattering algorithm must compute this quantity 
for all light flow directions. This would be very expensive and 
impractical with sheet-based splatting. Nishita et al. [25] take 
advantage of the strong forward scattering characteristics of 
clouds and limit the sampled light flow directions to sub-spaces of 
high contribution. Harris et al. [7] further approximate multiple 
forward scattering only in the light direction and get good cloud 
images. In this paper, we model both multiple forward scattering 
and back scattering and we approximate the multiple scattering 
along the light direction based on the strong forward scattering 
characteristics of clouds. Now we can approximate the integration 
of (2) over a solid angle γ  around the light direction.  Here, '  is 
within the solid angle 

ω
γ  along the light direction l. In sheet-based 

splatting, we can calculate the integration sheet by sheet. We then 
get the following formulas: 
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    The above k represents the forward scattering and k is for 
the back scattering. 
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Aγ  and Bγ  are the solid angles for the 

forward scattering and the back scattering respectively. 
A
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are directions within l Aγ  and Bγ . k means the values are 

from the sheet k.  
    Since the distribution of is encoded within a sheet, the 
above formulas for f

k and k can be calculated using a 
convolution over the light intensity . The convolution 
kernel can be selected to account for the coefficient 
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Figure 3: A schematic of light transport (a: forward scattering; b:
forward scattering and back scattering) 
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convolution calculation is easy to implement in sheet-based 
splatting. This shows that multiple scattering can be modeled as 
light diffusion along the light direction. Kniss et al. [13] also use 
convolution technique to model the light diffusion, but they just 
use an empirical volume shading model without theoretical 
derivation and they only model multiple forward scattering.  
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    If only multiple forward scattering is considered, we can get the 
recurrence relation: 
    

                              (5) − ,1I k

where, 1−k  is the transparency of sheet k-1. The 
recurrence relation says the light incident on sheet k is equal to the 
intensity scattered to sheet k from the sheet k-1 plus the direct 
light transmitted to the sheet k. Here,  is calculated using a 
convolution operation based on (3).  
    For multiple forward scattering, we just need to keep the 
intensity of the previous sheet, then calculate the multiple forward 
scattering 1−k using convolution over 1−k and add it to k . 
Figure 2 shows the clouds with multiple forward scattering only. 
The clouds look brighter than the clouds in Figure 1 without 
multiple scattering. 

I

    From the physical viewpoint, when the light is scattered 
forward, some light will scatter backwards. In Figure 3a, P1 
receives energy from P2 by forward scattering, while in Figure 3b, 
P1 also gets energy from P3 by back scattering. In order to 
implement back scattering, we keep the light intensity of the 
sheets which contribute to the current sheet k. The light intensity 
stored is the sum of the direct light plus the multiple forward 
scattering. And the back scattering is calculated using a 
convolution operation based on (4). Once a sheet obtains new 
energy from back scattering, it will add this to the stored light 
intensity, and then bounce back energy to its upper sheet. This 
process continues until the sheet k to be illuminated is reached. 
After the illumination, the total energy at the sheet k is scattered 
forward to sheet k+1.  
    If we add back scattering to the clouds in Figure 2, we get the 
clouds in Figure 4. As energy bounces around, the edges are 
brighter, as is the interior region of the clouds. 



    

 
Figure 1:  Clouds without multiple scattering 

 

 
Figure 2: Clouds with multiple forward scattering only 

 

 
Figure 4: Clouds with both multiple forward scattering and
multiple back scattering 

4. SHADOW ALGORITHM COMBINING 
VOLUMES AND POLYGONS 
Our previous work developed a shadow algorithm for volumetric 
data using sheet-based splatting [35]. In this paper, we will extend 
the shadow algorithm to generate shadows for both volume and 
polygon data. We assume the polygons are opaque in this section 
to describe the shadow algorithm.  

4.1 Shadow Algorithm 
Our shadow algorithm for mixed polygonal and volumetric data 
has two stages. First, the polygons are rendered with respect to 
both the viewer and the light source, and the polygons are stored. 
At the second stage, sheet-based splatting is used to render the 
volumes, and any relevant polygon information is composited into 
the scene slice by slice. The depth information from the rendering 
of opaque polygons is combined with the shadow buffer which 
stores the accumulated light attenuation to determine the shadow 
value. Illumination of both polygons and volumes is thus 
calculated during this second stage. Next we will explain our 
algorithm in detail. 

    We use a multi-pass algorithm. Our first pass is to render the 
polygons. Since our purpose is to generate shadows, the polygons 
are scanline rasterized with respect to the viewer and the light 
source. At this stage, the light attenuation is not determined for 
the polygons, so no illumination is calculated and the intermediate 
rendering results are stored for final rendering. For the image 
generation, we store the object color, the normal and the z value 
with respect to the viewer into three buffers aligned with the 
viewer. For the shadow generation, we save the z value with 
respect to the light into a z-buffer aligned with the light source. 
    The second stage is to render the volumes and composite the 
polygon information slice by slice. Similar to the shadow 
algorithm for volumes only [35], we use the non-image-aligned 
sheet-based splatting (as shown in Figure 5). The volume is sliced 
along the half-way vector between the eye vector and the light 
vector. The image buffer is aligned with the eye, and the shadow 
buffer is aligned with the light source.  
    Polygons in a volumetric scene can be surrounded by 
transparent air, or inside a semi-transparent volumetric 
participating media. If there are several volumetric datasets in a 
scene, we treat them as a single large volume. The positioning 
relationship between the polygons and the non-empty volume is 
shown in Figure 6, with respect to the slicing direction.  
    The polygons at different regions are processed in different 
ways. The polygons in region 1 are rendered in one step using the 
information stored in the buffers, and whether a point is in 
shadow or not is determined by the z value stored in the z-buffer 
with respect to the light. Actually, the z-buffer shadow algorithm 
is used for region 1. After rendering the polygons in this region, 
the shadow of the polygons in front of the volume is calculated 
for the first volumetric slice.  
    For region 2, whether there are polygons in the current slab is 
determined by the depth information of the polygon z-buffer with 
respect to the viewer. If there are polygons at the current slab (as 
shown in Figure 7), for those pixels corresponding to the 
polygons, the footprint evaluation will be calculated in the shaded 
region in Figure 7. This is defined by the starting edge of the slab 
and the polygon boundary. This footprint contribution is then 
composited to the frame buffer with respect to the eye. Next, the 
contribution of the polygons in this slab is composited into the 
frame buffer with the opacity set to 1.0. Similarly, the 
contribution of the footprints and the polygons on the light 
attenuation are composited to the shadow buffer with respect to 
the light source. In the region 2, the shadow value of a pixel on 
the sheet image buffer is determined by a corresponding pixel on 
the accumulated shadow buffer, as discussed in our shadow 
algorithm [35].  
    The polygons in region 3 are similar to the polygons in region 
1, but are different in how they are shadowed. We cannot just use 
the shadow z-buffer to determine the shadow values for the 
polygons in region 3, since we need to consider the shadows cast 
by the volume in region 2. So, we use both the accumulated 
shadow buffer and the z-buffer to determine the shadow values for 
the polygons in this region. The opacity from the z-buffer is set to 
1 or 0 depending on whether there is a polygon occluder. We then 
take the maximum opacity value as the shadow value for the 
pixels corresponding to the polygons in region 3.  
    The above shadow algorithm for both the volumes and 
polygons using sheet-based splatting applies to all the possible 
configurations of volumes and polygons, without any restriction 
on the geometric positioning and overlap of the volumes and 
polygons. For special cases, pure volumes are rendered in region 
2, and pure polygons are rendered in either region 1 or region 3. 
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Figure 5: Non-image-aligned sheet-based splatting 
   The region division aids in the efficiency of the algorithm. The 
olygons within only air can use a sheet skipping technique and 
re rendered fast. We summarize the three regions in table 1. 

Table 1: Shadow determination for three regions 
 

Region 1 Region 2 Region 3 
 

Shadow z-buffer 
Shadow z-buffer 

+ 
Volume slices 

Projective shadows 
+ 

Shadow z-buffer 

The shadow algorithm combining volumes and polygons using 
platting is demonstrated with the following pseudocode. 

 
1. Rasterize the polygons wrt the eye and store the color, normal 

and depth; 
2. Rasterize the polygons wrt the light source and store the depth; 
3. Transform each voxel to the coordinate system having the half 

way vector as the z-axis; 
4. Bucket sort voxels according to the transformed z-values; 
5. Initialize opacity map to zero; 
6. Initialize the shadow buffer to zero; 
7. Render the polygons in region 1; 
8. Add the shadows caused by polygons in region 1 to the shadow 

buffer; 
9. For each sheet in front-to-back order 
10.     Initialize image sheet buffer; 
11.     Initialize shadow sheet buffer; 
12.     For each footprint 
13. Rasterize and add the footprint to the current image sheet 

buffer; 
14. Rasterize and add the footprint to the current shadow 

sheet buffer; 
15. End for; 
16. Calculate the gradient for each pixel using central 

differences; 
17. Classify each pixel in the current image sheet buffer; 
18. Map each pixel to the shadow buffer and get its opacity; 
19. Calculate the illumination to obtain the final color; 
20. Composite the current image sheet buffer to the frame 

buffer; 
21. Classify each pixel on current shadow sheet buffer and 

composite it to the accumulated shadow buffer; 
22. Calculate the illumination for polygon pixels in current sheet 

and composite it to the frame buffer; 
23. Composite the polygon contribution in the current sheet to 

the accumulated shadow buffer; 
24. End for; 
25. Render the rest part of polygons in region 3; 
Region 1 Region 3Region 2
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volume

polygons polygons

Slicing direction 

front back 

Figure 6: Position relationship between polygons and volume
with respect to the slicing direction 
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Figure 7: Region of footprint evaluation 
4.2 Shadow Results  
Using the above shadow algorithm, we have implemented 
shadows for scenes including both volumes and polygons.  
    Figure 8 shows the shadows cast from three mushrooms. The 
mushrooms are polygons and the bottom plate is represented as 
volumetric data. Figure 9 shows a scene in which a dart is thrown 
at some rings. The dart is a polygon model, and the rings and the 
plate are volumetric data.  
    In Figure 10, some mushrooms are under the volumetric Bonsai 
tree. The mushrooms cast shadows on the bottom plate and three 
mushrooms are in the shadows of the Bonsai tree.    
    Figure 11 and Figure 12 are two scenes in which polygons are 
inside semi-transparent volumetric data. Figure 11 shows a scene 
of a polygon teapot inside volumetric translucent media. We can 
see the shadows cast by the teapot on itself and through the 
translucent media. Figure 12 is an example of back-to-front 
rendering: light comes into the room from the back. A polygon-
defined desk resides in the smoky room. The smoke is modeled 
using Perlin’s turbulence function [27]. 
    Our shadow algorithm combining volumes and polygons also 
works for high-albedo media. In Figure 13, a polygonal airplane 
flies above clouds. The clouds are modeled with light attenuation 
and multiple scattering. 
 

5. SOFT SHADOW ALGORITHM COM-
BINING VOLUMES AND POLYGONS 
The generation of soft shadows requires integrating the 
contributions of extended light sources on the illumination of 
objects. We propose a soft shadow algorithm for volumetric data 



using sheet-based splatting in [36]. Our soft shadow algorithm is 
an analytic algorithm using convolution techniques. If the light 
source is parallel to the slices, then we can calculate the width of 
the penumbra region, and generate the soft shadows by 
convolving the shadows with respect to the center of the extended 
light source, which is generated using the shadow algorithm 
discussed in Section 4. In the soft shadow algorithm using sheet-
based splatting, the volume is still sliced along the half-way 
vector between the eye vector and the light vector (as shown in 

Figure 14). The image plane is aligned with the eye. Due to the 
requirement of our soft shadow algorithm, a virtual light source 
parallel to the slices is constructed and the shadow buffer is 
parallel to the slices (as shown in Figure 14).  

 
Figure 11: A scene of a teapot inside a translucent cube 
 

 
Figure 12: A scene of a desk inside a smoky room 
 

 
Figure 13: An airplane flying above the clouds 

 
Figure 8: Shadows of mushrooms 
 

 
Figure 9: Shadows of rings and a dart 
 

 
Figure 10: Bonsai tree and mushrooms 

     When there are polygons in the scene, we will render the 
polygons slice by slice in the same way as the volume, no matter 
where the polygons are (as shown in Figure 15). So, we treat both 
the volumes and the polygons as a whole volume, although the 
polygons are rendered first and their information is stored.  
    Similar to the shadow algorithm in Section 4, there are two 
stages for the soft shadow algorithm.  The first stage is to render 
the polygons with respect to the viewer and the light source 
respectively, and store the information of the polygons. At the 
second stage, splatting is used to render the volumes, composite 
the polygon information and generate soft shadows slice by slice. 
The first stage is exactly same as the shadow algorithm in Section 



4. However, there are some differences in the second stage 
between the shadow algorithm in Section 4 and the soft shadow 
algorithm in this section. 
    The shadow buffer is now parallel to the slices as required by 
our soft shadow algorithm. So, the z-buffer for polygons obtained 
in stage 1 should be mapped to a new z-buffer parallel to the 
slices for easy use in stage 2.  
    In order to generate soft shadows for polygons, the polygons 
are not rendered in one step as in Section 4. Instead, they are 
rendered slice by slice, regardless as to whether they are inside the 
volumetric material or not. Therefore, the range of the volume to 
be rendered slice by slice is determined by both volumes and 
polygons.  
    At each slice, the part of the polygons belonging to the current 
slab is used to update the shadow buffer.  Then the shadow buffer 
is convolved to prepare for the next slice. Since the shadow 
information of the polygons is stored in a z-buffer, we can 
imagine the contribution of the polygons is the boundary of solid 
objects. The penumbra-looking region is not the real penumbra 
region. The reason is that the contribution of the polygons on the 
shadow buffer is the boundary of the regions, not the solid region. 
The solution is to fill the regions defined by the boundary. Since 
we only keep the z-buffer, our approximate method is to estimate 
the thickness for the z-buffer. We use a thickness that is 
proportional to the reciprocal of the gradient of the z depth. In this 
way, we get realistic, solid-looking soft shadows, where the 
silhouettes imply a carved surface with respect to the light. 

    We have generated some soft shadows for scenes with both 
volumes and polygons, using the above soft shadow algorithm. 
Figure 16 is the soft shadows of the mushrooms. Compared with 
the hard shadows in Figure 8, the soft shadows have penumbra 
regions. Figure 17 shows the soft shadows of the volumetric rings 
and the polygon-modeled dart. Figure 18 shows the soft shadows 
of the Bonsai tree dataset and the mushrooms. These soft shadows 
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Figure 14: Non-image-aligned sheet-based splatting for soft
shadows 
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Figure 15: The whole region rendered slice by slice 

 
Figure 16: Soft shadows of mushrooms 

 

 
Figure 17: Soft shadows of rings and a dart 

 

 
Figure 18: Soft shadows of Bonsai tree and mushrooms 



look more realistic than the hard shadows in Figure 9 and Figure 
10.  
 

6. CONCLUSIONS 
    In this paper, we first describe how to implement multiple 
scattering using sheet-based splatting and incorporate multiple 
scattering with our light attenuation model. We use a convolution 
technique to approximate the multiple forward scattering and back 
scattering for clouds, a high albedo participating medium.  
     Based on our shadow and soft shadow algorithm for 
volumetric data [35,36], this paper extends the algorithm to 
generate shadows and soft shadows for scenes including both 
volumes and polygons. The polygons are first rendered using 
scanline rasterization with respect to both the eye and the light 
source, and the depth information is retrieved. Splatting is then 
used to render the volumes. During the volume rendering, 
polygons are composited into the volumes slice by slice in the 
depth-sorted order. We have implemented shadow algorithm and 
soft shadow algorithm combining volumes and polygons. This 
shadow algorithm applies to all combinations of volumes and 
polygons, without any restriction on the geometric positioning and 
overlap of the volumes and polygons.  
    In this paper, we explain the shadow algorithm and soft shadow 
algorithm with the assumption of opaque polygons. Our future 
work is to extend the algorithm to deal with translucent polygons.  
    Now our shadow algorithm can generate shadows or soft 
shadows for point lights, parallel lights, projective textured lights 
and extended light sources [35,36]. Also, our algorithm can deal 
with both volumes (including volumetric datasets and 
hypertextured objects) and polygons, and combine multiple 
scattering and light attenuation model. Our shadow algorithm is a 
complete system for shadow generation. 
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