
Light Propagation for Mixed Polygonal

and Volumetric Data Using Splatting

Caixia Zhang, Roger Crawfis
Department of Computer and Information Science

The Ohio State University, Columbus, OH

Abstract
This paper describes a shadow and soft shadow algorithm for
mixed polygonal and volumetric data. The polygons are first
rendered using scanline rasterization and the depth information is
retrieved. Volume rendering using splatting is then used to render
the volumes. Polygons are composited with volumes during the
volume rendering in depth-sorted order slice by slice. We
implement shadow and soft shadow algorithms, combining
volumes and polygons using sheet-based splatting. This shadow
algorithm applies to all combinations of volumes and polygons,
without any restriction on the geometric positioning and overlap
of the volumes and polygons. This paper also discusses how to
implement multiple scattering for high-albedo participating media
during the shadow generation using sheet-based splatting. We use
a convolution technique to model the multiple forward and back
scattering and show results for clouds, a high-albedo participating
medium. Our algorithm constitutes a complete system for shadow
generation.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - Display Algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
- Color, shading, shadowing and texture.

Keywords: visualization, shadows, soft shadows, multiple
scattering, illumination.

1. INTRODUCTION
Volume rendering is the display of datasets sampled in three
dimensions. Splatting is one volume rendering algorithm, which
can create high-quality images, and render efficiently in the case
of a sparse dataset. The basic principles of a splatting algorithm
are: (1) represent the volume as an array of overlapping basis
functions with amplitudes scaled by the voxel values; (2) project
these basis functions to the screen to achieve an approximation of
the volume integral [4]. A major advantage of splatting is that
only relevant voxels are projected and rasterized. This can
tremendously reduce the volume data that needs to be processed
and stored.
 A shadow is a region of relative darkness within an illuminated
region caused by an object totally or partially occluding the light.
Shadows are essential to realistic images. Earlier implementations
of shadows focused on hard shadows, in which a value of 0 or 1 is
multiplied with the light intensity. In volume rendering, as the
light traverses the volume, the light intensity is continuously

attenuated by the volumetric densities. We have proposed a
shadow algorithm that properly determines this light attenuation
and generate shadows from volumetric datasets using splatting
[35].
 Soft shadows include an umbra region, areas for which no part
of the extended light source is visible, and a penumbra region,
areas in which part of the extended light source is visible and part
is hidden or occluded. The generation of soft shadows is a
difficult topic in computer graphics. It requires integrating the
contributions of extended light sources on the illumination of
objects. We have proposed a soft shadow algorithm with a
convolution technique using sheet-based splatting [36].
 Some visualization applications require the volumetric and
geometrical objects to appear together in a single image. For
example, some geometrically defined objects are surrounded by
clouds, smoke, fog, or other gaseous phenomena. The above
shadow and soft shadow algorithm generates shadows for
volumetric datasets only. In this paper, we will extend our shadow
and soft shadow algorithm to deal with a scene including both
volumetric datasets and polygonal geometries.
 For the high-albedo participating media, such as clouds,
multiple scattering cannot be ignored. Here, we implement
multiple scattering using a splatting paradigm and incorporate the
multiple scattering into our shadow algorithm.
 In the following section, background and previous work are
reviewed and motivation for this work is given. Section 3
discusses multiple scattering for high-albedo participating media.
Section 4 describes our shadow algorithm for mixed polygonal
and volumetric data, while Section 5 describes the soft shadow
algorithm for a scene including both volumes and polygons.
Conclusions and future work are given in Section 6.

2. PREVIOUS WORK

2.1 Splatting
In splatting, each voxel is represented by a 3D kernel weighted by
the voxel value. The 3D kernels are integrated into a generic 2D
footprint along the traversing ray from the eye. This footprint can
be efficiently mapped onto the image plane and the final image is
obtained by the collection of all projected footprints, weighted by
the voxel values. This splatting approach is fast, but it suffers
from color bleeding and popping artifacts due to incorrect volume
integration.
 Mueller et al. [23] eliminates this popping drawback by
aligning the sheets to be parallel to the image plane. This splatting
method is called image-aligned sheet-based splatting. All the
voxel kernels that overlap a slab are clipped to the slab and
summed into a sheet buffer. The sheet buffers are composited
front-to-back to form the final image. While this significantly
improves image quality, it requires much more compositing and
several footprint sections per voxel to be scan-converted.
Splatting using post classification was proposed by Mueller et al.
[21] to generate images with crisp edges and well-preserved

{zhangc,crawfis}@cis.ohio-state.edu, 2015 Neil Ave.,
 395 Dreese Lab, Columbus, OH 43210, USA

surface details. In this paper, we use the post-classification to
keep track of the per-pixel contribution to the light attenuation and
generate per-pixel shadows.

2.2 Shadow Algorithms
Earlier implementations of shadows focused on hard shadows, in
which a value of 0 or 1 is multiplied with the light intensity. The
shadow volume algorithm by Crow [5] introduces the concept of
shadow volumes. A 2-pass hidden surface algorithm is proposed
by Nishita and Nakamae [24] and Atherton et al. [1]. Williams
[33] uses a z-buffer depth-map algorithm to generate shadows.
 These shadow algorithms can only determine if an object point
is in shadow or not, resulting in only binary values for the light
intensity. These algorithms are not suitable for volume rendering.
In volume rendering, as the light traverses the volume, the light
intensity is continuously scattered and attenuated by the
volumetric densities. Ray tracing offers the flexibility to deal with
the attenuation of the light intensity and has been used to generate
shadows for both surface representations [32] and volumetric
datasets [6,10]. However, the volumetric shadows using ray
tracing are very costly computationally [19].
 For splatting, Nulkar and Mueller have implemented an
algorithm to add shadows to volumetric scenes using splatting
[26]. They use a two-stage splatting approach. In the first-stage,
splatting is used to construct a three-dimensional light volume; the
second stage is formed by the usual rendering pipeline. Since the
algorithm needs a 3D buffer to store the light volume, it has the
problem of high storage and memory cost. Also, accurate shadows
are difficult to implement using this method, due to the limited
resolution of the light volume. We investigate a new algorithm to
implement shadows using splatting that requires only a 2D buffer
for each light source [35,36]. Kniss et al. [12] also utilize an off
screen buffer to accumulate the light attenuation in their volume
rendering using 3D texture slicing. In this paper, we will extend
our shadow algorithm to generate shadows for a scene including
both volumetric datasets and polygons.

2.3 Multiple Scattering
For low albedo participating media, the scattering is unimportant
compared to the light attenuation. So, the two-pass algorithm
proposed by Kajiya and Von Herzen [10] is used to calculate the
illumination. The first pass computes the light intensity reaching
each voxel, and in the second pass, the light is reflected or
scattered to the viewpoint. This two-pass method is a single
scattering model and it is only valid for low albedo media.
Multiple scattering is important for realistic rendering of high
albedo participating media, for example, clouds. Multiple
scattering must account for scattering in all directions. It is more
physically accurate, but much more complicated and expensive to
evaluate. Max [17] gives an excellent survey of optical models,
including multiple scattering.
 The calculation of multiple scattering can be divided into four
methods [17]: the zonal method, the Monte Carlo method, the P-N
method and the discrete ordinates method. In the zonal method
[28], the volume is divided into a number of finite elements which
are assumed to have constant radiosity. This method is valid only
for isotropic scattering. In the Monte Carlo method [29], a random
collection of photons or flux packets are traced through the
volume, undergoing random scattering and absorption. The
resulting images tend to appear noisy and/or take a long time to
compute. The P-N method [2,10] uses spherical harmonics to
expand the light intensity at each point as a function of direction.
The discrete ordinates method uses a collection of M discrete
directions, chosen to give optimal Gaussian quadrature in the
integrals over a solid angle. Lathrop [14] points out that this

process produces ray effects and presents modifications to avoid
these ray effects. Max [18] describes an approximation to the
discrete ordinates method, which reduces the ray effects by
shooting radiosity into the whole solid angle bin, instead of in a
discrete representative direction.
 Recently, some research on approximate methods to multiple
scattering has been examined to achieve real-time rendering.
Harris and Lastra [7] provide a cloud shading algorithm that
approximates multiple forward scattering along the light direction.
They use impostors to accelerate cloud rendering. Kniss et al. [13]
use an empirical volume shading model and add a blurred indirect
light contribution at each sample. They approximate the diffusion
by convolving several random sampling points and use graphics
hardware to do the volume rendering. Our motivation is to
implement multiple scattering using splatting and add multiple
scattering to our shadow algorithm so that we can deal with high
albedo participating media, like clouds.

2.4 Rendering both Volumes and
Polygons
Since some visualization applications require volumetric and
geometrical objects to appear together in a single image, a volume
rendering technique which incorporates objects described by
surface geometries is necessary to render both surface geometries
and volume modeled objects.
 The most common solution is to convert polygonal and
volumetric data into a common representation: either construct
surface polygons from volume data [16] or change polygon data
to volume data using 3D scan-conversion [11]. This conversion
introduces artifacts and is generally expensive and inefficient. An
alternative approach is to directly render both data types. Levoy
has developed a hybrid ray tracer for rendering polygon and
volume data [15]. Rays are simultaneously cast through a set of
polygons and a volume data array, samples of each are drawn at
equally spaced intervals along the rays, and the resulting colors
and opacities are composed together in depth-sorted order. In
Levoy’s method, both volume and polygon objects are rendered
using ray tracing. Ebert and Parent use another method which
combines volume rendering and scanline a-buffer techniques [6].
The scanline a-buffer technique is used to render objects
described by surface geometries, while volume modeled objects
are volume rendered. The algorithm first creates the a-buffer for a
scanline, which contains a list of all the fragments of polygons for
each pixel that partially or fully cover that pixel. Based on the
scanline-rendered a-buffer fragments, the volume-modeled objects
are broken into sections and combined with the surface-defined a-
buffer fragments. In their paper, the volumes are defined by
procedural functions to model the gaseous phenomena. From a
review of the literature, splatting has not been extended to render
both volumes and polygons. The motivations of our work include
extending the sheet-based splatting algorithm to incorporate
polygon modeled objects and generating shadows and soft
shadows for scenes with both volumes and polygons.

3. MULTIPLE SCATTERING
Our shadow algorithm models the light attenuation as light
traverses the volume. It has generated realistic shadows for low
albedo participating media. However, in order to simulate light
transport for participating media with high albedo, multiple
scattering cannot be ignored. In this section, we will explain how
we implement multiple scattering using splatting and incorporate
it with our shadow algorithm by displaying clouds, a high albedo
participating medium. The clouds are modeled as a collection of
ellipsoids, and Perlin’s fractal function [27] is used to disturb the

density distribution. Figure 1 shows the clouds with the light
emanating behind it. The clouds look unnaturally dark, because
only light attenuation is modeled.

3.1 Implementation of Multiple Scattering
Considering multiple scattering, the light intensity at a point P is
the sum of the direct light from the light source that is not
absorbed by intervening particles and the light scattered to P from
other particles. The calculation of multiple scattering requires
accounting for scattering in all directions. Therefore,),(ωPI ,
the intensity at each point P in each light flow direction ω , can
be expressed as:

dsesgeIPI

sD

dttPDdttP ∫
⋅+

∫
⋅=

−−−−

∫ 00

)(

0

)(

0),()(),(
ωτωτ

ωωω (1)

where 0)(ωI is the original light intensity in direction ω , τ is
the extinction coefficient of the participating media, D is the depth
of P in the media along the light direction, and

''

4

'),(),,(),(ωωωωωωω
π

dsPIsPrsg −⋅−= ∫
'ω

 (2)

represents the light from all directions scattered into direction
ω at the point P. If we denote ωsP − as x, then '
is the bi-directional scattering distribution function (BSDF), and
determines the percentage of light incident on x from direction

that is scattered in direction

),,(ωωxr

'ω ω . We can treat =
 [7, 17], where a is the albedo of the

media at x,

),,('ωωxr
),()() 'ωωτ pxx ⋅⋅

)(x
(a)(x

τ is the extinction coefficient of the media at x,
and is the phase function.),('ωωp
 A full multiple scattering algorithm must compute this quantity
for all light flow directions. This would be very expensive and
impractical with sheet-based splatting. Nishita et al. [25] take
advantage of the strong forward scattering characteristics of
clouds and limit the sampled light flow directions to sub-spaces of
high contribution. Harris et al. [7] further approximate multiple
forward scattering only in the light direction and get good cloud
images. In this paper, we model both multiple forward scattering
and back scattering and we approximate the multiple scattering
along the light direction based on the strong forward scattering
characteristics of clouds. Now we can approximate the integration
of (2) over a solid angle γ around the light direction. Here, ' is
within the solid angle

ω
γ along the light direction l. In sheet-based

splatting, we can calculate the integration sheet by sheet. We then
get the following formulas:

 (3)
AA

A

dllxIllpxxag kk
f

k γγ
γ

τ),(),()()(⋅⋅⋅= ∫

 (4)
BB

B

dllxIllpxxag kk
b
k γγ

γ

τ),(),()()(⋅⋅⋅= ∫

 The above k represents the forward scattering and k is for
the back scattering.

fg bg
Aγ and Bγ are the solid angles for the

forward scattering and the back scattering respectively.
A

lγ and

Bγ
are directions within l Aγ and Bγ . k means the values are

from the sheet k.
 Since the distribution of is encoded within a sheet, the
above formulas for f

k and k can be calculated using a
convolution over the light intensity . The convolution
kernel can be selected to account for the coefficient

),(lxI
bgg

),(lxI

P1

P2

P3

light

particles

P1

P2

P3

light

particles

 (a) (b)
Figure 3: A schematic of light transport (a: forward scattering; b:
forward scattering and back scattering)
Akk γ),()()(llpxxa τ ⋅⋅ or
Bkk γ),()()(llpxxa τ ⋅⋅

1
2

=
≤≤

k
Nk

1−kg

I

. The
convolution calculation is easy to implement in sheet-based
splatting. This shows that multiple scattering can be modeled as
light diffusion along the light direction. Kniss et al. [13] also use
convolution technique to model the light diffusion, but they just
use an empirical volume shading model without theoretical
derivation and they only model multiple forward scattering.

 ⋅+

= −−

,0

11

I
Tg

I kk
k

1−−= keT τ

g

 If only multiple forward scattering is considered, we can get the
recurrence relation:

 (5) − ,1I k

where, 1−k is the transparency of sheet k-1. The
recurrence relation says the light incident on sheet k is equal to the
intensity scattered to sheet k from the sheet k-1 plus the direct
light transmitted to the sheet k. Here, is calculated using a
convolution operation based on (3).
 For multiple forward scattering, we just need to keep the
intensity of the previous sheet, then calculate the multiple forward
scattering 1−k using convolution over 1−k and add it to k .
Figure 2 shows the clouds with multiple forward scattering only.
The clouds look brighter than the clouds in Figure 1 without
multiple scattering.

I

 From the physical viewpoint, when the light is scattered
forward, some light will scatter backwards. In Figure 3a, P1
receives energy from P2 by forward scattering, while in Figure 3b,
P1 also gets energy from P3 by back scattering. In order to
implement back scattering, we keep the light intensity of the
sheets which contribute to the current sheet k. The light intensity
stored is the sum of the direct light plus the multiple forward
scattering. And the back scattering is calculated using a
convolution operation based on (4). Once a sheet obtains new
energy from back scattering, it will add this to the stored light
intensity, and then bounce back energy to its upper sheet. This
process continues until the sheet k to be illuminated is reached.
After the illumination, the total energy at the sheet k is scattered
forward to sheet k+1.
 If we add back scattering to the clouds in Figure 2, we get the
clouds in Figure 4. As energy bounces around, the edges are
brighter, as is the interior region of the clouds.

Figure 1: Clouds without multiple scattering

Figure 2: Clouds with multiple forward scattering only

Figure 4: Clouds with both multiple forward scattering and
multiple back scattering

4. SHADOW ALGORITHM COMBINING
VOLUMES AND POLYGONS
Our previous work developed a shadow algorithm for volumetric
data using sheet-based splatting [35]. In this paper, we will extend
the shadow algorithm to generate shadows for both volume and
polygon data. We assume the polygons are opaque in this section
to describe the shadow algorithm.

4.1 Shadow Algorithm
Our shadow algorithm for mixed polygonal and volumetric data
has two stages. First, the polygons are rendered with respect to
both the viewer and the light source, and the polygons are stored.
At the second stage, sheet-based splatting is used to render the
volumes, and any relevant polygon information is composited into
the scene slice by slice. The depth information from the rendering
of opaque polygons is combined with the shadow buffer which
stores the accumulated light attenuation to determine the shadow
value. Illumination of both polygons and volumes is thus
calculated during this second stage. Next we will explain our
algorithm in detail.

 We use a multi-pass algorithm. Our first pass is to render the
polygons. Since our purpose is to generate shadows, the polygons
are scanline rasterized with respect to the viewer and the light
source. At this stage, the light attenuation is not determined for
the polygons, so no illumination is calculated and the intermediate
rendering results are stored for final rendering. For the image
generation, we store the object color, the normal and the z value
with respect to the viewer into three buffers aligned with the
viewer. For the shadow generation, we save the z value with
respect to the light into a z-buffer aligned with the light source.
 The second stage is to render the volumes and composite the
polygon information slice by slice. Similar to the shadow
algorithm for volumes only [35], we use the non-image-aligned
sheet-based splatting (as shown in Figure 5). The volume is sliced
along the half-way vector between the eye vector and the light
vector. The image buffer is aligned with the eye, and the shadow
buffer is aligned with the light source.
 Polygons in a volumetric scene can be surrounded by
transparent air, or inside a semi-transparent volumetric
participating media. If there are several volumetric datasets in a
scene, we treat them as a single large volume. The positioning
relationship between the polygons and the non-empty volume is
shown in Figure 6, with respect to the slicing direction.
 The polygons at different regions are processed in different
ways. The polygons in region 1 are rendered in one step using the
information stored in the buffers, and whether a point is in
shadow or not is determined by the z value stored in the z-buffer
with respect to the light. Actually, the z-buffer shadow algorithm
is used for region 1. After rendering the polygons in this region,
the shadow of the polygons in front of the volume is calculated
for the first volumetric slice.
 For region 2, whether there are polygons in the current slab is
determined by the depth information of the polygon z-buffer with
respect to the viewer. If there are polygons at the current slab (as
shown in Figure 7), for those pixels corresponding to the
polygons, the footprint evaluation will be calculated in the shaded
region in Figure 7. This is defined by the starting edge of the slab
and the polygon boundary. This footprint contribution is then
composited to the frame buffer with respect to the eye. Next, the
contribution of the polygons in this slab is composited into the
frame buffer with the opacity set to 1.0. Similarly, the
contribution of the footprints and the polygons on the light
attenuation are composited to the shadow buffer with respect to
the light source. In the region 2, the shadow value of a pixel on
the sheet image buffer is determined by a corresponding pixel on
the accumulated shadow buffer, as discussed in our shadow
algorithm [35].
 The polygons in region 3 are similar to the polygons in region
1, but are different in how they are shadowed. We cannot just use
the shadow z-buffer to determine the shadow values for the
polygons in region 3, since we need to consider the shadows cast
by the volume in region 2. So, we use both the accumulated
shadow buffer and the z-buffer to determine the shadow values for
the polygons in this region. The opacity from the z-buffer is set to
1 or 0 depending on whether there is a polygon occluder. We then
take the maximum opacity value as the shadow value for the
pixels corresponding to the polygons in region 3.
 The above shadow algorithm for both the volumes and
polygons using sheet-based splatting applies to all the possible
configurations of volumes and polygons, without any restriction
on the geometric positioning and overlap of the volumes and
polygons. For special cases, pure volumes are rendered in region
2, and pure polygons are rendered in either region 1 or region 3.

p
a

s

eye

light

shadow buffer plane

half-way vector
slices

the pixel to
the eye, (i,j)

the corresponding pixel
to the light, (i’,j’)

slicing
direction

image plane

Figure 5: Non-image-aligned sheet-based splatting
 The region division aids in the efficiency of the algorithm. The
olygons within only air can use a sheet skipping technique and
re rendered fast. We summarize the three regions in table 1.

Table 1: Shadow determination for three regions

Region 1 Region 2 Region 3

Shadow z-buffer
Shadow z-buffer

+
Volume slices

Projective shadows
+

Shadow z-buffer

The shadow algorithm combining volumes and polygons using
platting is demonstrated with the following pseudocode.

1. Rasterize the polygons wrt the eye and store the color, normal

and depth;
2. Rasterize the polygons wrt the light source and store the depth;
3. Transform each voxel to the coordinate system having the half

way vector as the z-axis;
4. Bucket sort voxels according to the transformed z-values;
5. Initialize opacity map to zero;
6. Initialize the shadow buffer to zero;
7. Render the polygons in region 1;
8. Add the shadows caused by polygons in region 1 to the shadow

buffer;
9. For each sheet in front-to-back order
10. Initialize image sheet buffer;
11. Initialize shadow sheet buffer;
12. For each footprint
13. Rasterize and add the footprint to the current image sheet

buffer;
14. Rasterize and add the footprint to the current shadow

sheet buffer;
15. End for;
16. Calculate the gradient for each pixel using central

differences;
17. Classify each pixel in the current image sheet buffer;
18. Map each pixel to the shadow buffer and get its opacity;
19. Calculate the illumination to obtain the final color;
20. Composite the current image sheet buffer to the frame

buffer;
21. Classify each pixel on current shadow sheet buffer and

composite it to the accumulated shadow buffer;
22. Calculate the illumination for polygon pixels in current sheet

and composite it to the frame buffer;
23. Composite the polygon contribution in the current sheet to

the accumulated shadow buffer;
24. End for;
25. Render the rest part of polygons in region 3;
Region 1 Region 3Region 2
(sliced)

polygons

volume

polygons polygons

Slicing direction

front back

Figure 6: Position relationship between polygons and volume
with respect to the slicing direction

slab i

polygon boundary

rays

Figure 7: Region of footprint evaluation
4.2 Shadow Results
Using the above shadow algorithm, we have implemented
shadows for scenes including both volumes and polygons.
 Figure 8 shows the shadows cast from three mushrooms. The
mushrooms are polygons and the bottom plate is represented as
volumetric data. Figure 9 shows a scene in which a dart is thrown
at some rings. The dart is a polygon model, and the rings and the
plate are volumetric data.
 In Figure 10, some mushrooms are under the volumetric Bonsai
tree. The mushrooms cast shadows on the bottom plate and three
mushrooms are in the shadows of the Bonsai tree.
 Figure 11 and Figure 12 are two scenes in which polygons are
inside semi-transparent volumetric data. Figure 11 shows a scene
of a polygon teapot inside volumetric translucent media. We can
see the shadows cast by the teapot on itself and through the
translucent media. Figure 12 is an example of back-to-front
rendering: light comes into the room from the back. A polygon-
defined desk resides in the smoky room. The smoke is modeled
using Perlin’s turbulence function [27].
 Our shadow algorithm combining volumes and polygons also
works for high-albedo media. In Figure 13, a polygonal airplane
flies above clouds. The clouds are modeled with light attenuation
and multiple scattering.

5. SOFT SHADOW ALGORITHM COM-
BINING VOLUMES AND POLYGONS
The generation of soft shadows requires integrating the
contributions of extended light sources on the illumination of
objects. We propose a soft shadow algorithm for volumetric data

using sheet-based splatting in [36]. Our soft shadow algorithm is
an analytic algorithm using convolution techniques. If the light
source is parallel to the slices, then we can calculate the width of
the penumbra region, and generate the soft shadows by
convolving the shadows with respect to the center of the extended
light source, which is generated using the shadow algorithm
discussed in Section 4. In the soft shadow algorithm using sheet-
based splatting, the volume is still sliced along the half-way
vector between the eye vector and the light vector (as shown in

Figure 14). The image plane is aligned with the eye. Due to the
requirement of our soft shadow algorithm, a virtual light source
parallel to the slices is constructed and the shadow buffer is
parallel to the slices (as shown in Figure 14).

Figure 11: A scene of a teapot inside a translucent cube

Figure 12: A scene of a desk inside a smoky room

Figure 13: An airplane flying above the clouds

Figure 8: Shadows of mushrooms

Figure 9: Shadows of rings and a dart

Figure 10: Bonsai tree and mushrooms

 When there are polygons in the scene, we will render the
polygons slice by slice in the same way as the volume, no matter
where the polygons are (as shown in Figure 15). So, we treat both
the volumes and the polygons as a whole volume, although the
polygons are rendered first and their information is stored.
 Similar to the shadow algorithm in Section 4, there are two
stages for the soft shadow algorithm. The first stage is to render
the polygons with respect to the viewer and the light source
respectively, and store the information of the polygons. At the
second stage, splatting is used to render the volumes, composite
the polygon information and generate soft shadows slice by slice.
The first stage is exactly same as the shadow algorithm in Section

4. However, there are some differences in the second stage
between the shadow algorithm in Section 4 and the soft shadow
algorithm in this section.
 The shadow buffer is now parallel to the slices as required by
our soft shadow algorithm. So, the z-buffer for polygons obtained
in stage 1 should be mapped to a new z-buffer parallel to the
slices for easy use in stage 2.
 In order to generate soft shadows for polygons, the polygons
are not rendered in one step as in Section 4. Instead, they are
rendered slice by slice, regardless as to whether they are inside the
volumetric material or not. Therefore, the range of the volume to
be rendered slice by slice is determined by both volumes and
polygons.
 At each slice, the part of the polygons belonging to the current
slab is used to update the shadow buffer. Then the shadow buffer
is convolved to prepare for the next slice. Since the shadow
information of the polygons is stored in a z-buffer, we can
imagine the contribution of the polygons is the boundary of solid
objects. The penumbra-looking region is not the real penumbra
region. The reason is that the contribution of the polygons on the
shadow buffer is the boundary of the regions, not the solid region.
The solution is to fill the regions defined by the boundary. Since
we only keep the z-buffer, our approximate method is to estimate
the thickness for the z-buffer. We use a thickness that is
proportional to the reciprocal of the gradient of the z depth. In this
way, we get realistic, solid-looking soft shadows, where the
silhouettes imply a carved surface with respect to the light.

 We have generated some soft shadows for scenes with both
volumes and polygons, using the above soft shadow algorithm.
Figure 16 is the soft shadows of the mushrooms. Compared with
the hard shadows in Figure 8, the soft shadows have penumbra
regions. Figure 17 shows the soft shadows of the volumetric rings
and the polygon-modeled dart. Figure 18 shows the soft shadows
of the Bonsai tree dataset and the mushrooms. These soft shadows

half way vector

eye

shadow buffer plane

image plane
sheets

extended
light
source

virtual
light
source

slicing
direction

Figure 14: Non-image-aligned sheet-based splatting for soft
shadows

polygons

volume

polygons polygons

Slicing direction

front back

whole region
is sliced

Figure 15: The whole region rendered slice by slice

Figure 16: Soft shadows of mushrooms

Figure 17: Soft shadows of rings and a dart

Figure 18: Soft shadows of Bonsai tree and mushrooms

look more realistic than the hard shadows in Figure 9 and Figure
10.

6. CONCLUSIONS
 In this paper, we first describe how to implement multiple
scattering using sheet-based splatting and incorporate multiple
scattering with our light attenuation model. We use a convolution
technique to approximate the multiple forward scattering and back
scattering for clouds, a high albedo participating medium.
 Based on our shadow and soft shadow algorithm for
volumetric data [35,36], this paper extends the algorithm to
generate shadows and soft shadows for scenes including both
volumes and polygons. The polygons are first rendered using
scanline rasterization with respect to both the eye and the light
source, and the depth information is retrieved. Splatting is then
used to render the volumes. During the volume rendering,
polygons are composited into the volumes slice by slice in the
depth-sorted order. We have implemented shadow algorithm and
soft shadow algorithm combining volumes and polygons. This
shadow algorithm applies to all combinations of volumes and
polygons, without any restriction on the geometric positioning and
overlap of the volumes and polygons.
 In this paper, we explain the shadow algorithm and soft shadow
algorithm with the assumption of opaque polygons. Our future
work is to extend the algorithm to deal with translucent polygons.
 Now our shadow algorithm can generate shadows or soft
shadows for point lights, parallel lights, projective textured lights
and extended light sources [35,36]. Also, our algorithm can deal
with both volumes (including volumetric datasets and
hypertextured objects) and polygons, and combine multiple
scattering and light attenuation model. Our shadow algorithm is a
complete system for shadow generation.

7. ACKNOWLEDGMENTS
We would like to thank the NSF Career Award (#9876022) for
support to this project and thank the University of Erlangen-
Nuremberg for providing the Bonsai tree datasets.

References
[1] P. Atherton, K. Weiler, D. Greenberg, “Polygon Shadow

Generation”, Proc. SIGGRAPH’78, pp. 275-281, 1978.
[2] S. Chandrasekhar, Radiative Transfer, Oxford University Press,

1950.
[3] R. Crawfis, J. Huang, “High Quality Splatting and Volume

Synthesis”, Data Visualization: the state of the art, F.H. Post, G.M.
Nielson, G.P. Bonneau, eds. Kluwer Academic Publishers, pp. 127-
140, 2003.

[4] R. Crawfis, N. Max, “Texture Splats for 3D Scalar and Vector Field
Visualization”, Proc. Visualization’93 , pp. 261-266, 1993.

[5] F. Crow, “Shadow Algorithm for Computer Graphics”, Proc.
SIGGRAPH’77, pp. 242-248, 1977.

[6] D. Ebert, R. Parent, “Rendering and Animation of Gaseous
Phenomena by Combining Fast Volume and Scanline A-buffer
Techniques”, Proc. SIGGRAPH’90, pp. 357-366, 1990.

[7] M. Harris, A. Lastra, “Real-Time Cloud Rendering”, Proc.
Eurographics’2001, vol. 20, no. 3, pp. 76-84, 2001.

[8] J. Huang, K. Mueller, N. Shareef, R. Crawfis, “FastSplats:
Optimized Splatting on Rectilinear Grids”, Visualization’2000, pp.
219-227, 2000.

[9] H.W. Jensen, S.R. Marschner, M. Levoy, P. Hanrahan, “A Practical
Model for Subsurface Light Transport”, Proc. SIGGRAPH’01, pp.
511-518, 2001.

[10] J. Kajiya, B. Von Herzen, “Ray Tracing Volume Densities”, Proc.
SIGGRAPH’84, pp. 165-174, 1984.

[11] A. Kaufman, “An Algorithm for 3D Scan-Conversion of Polygons”,
Proc. Eurographics’87, pp. 197-208, 1987.

[12] J. Kniss, G. Kindlmann, C. Hansen, “Multi-Dimensional Transfer
Function for Interactive Volume Rendering”, IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285,
2002.

[13] J. Kniss, S. Premoze, C. Hansen, D. Ebert, “Interactive Translucent
Volume Rendering and Procedural Modeling”, IEEE Visualization
2002.

[14] K.D. Lathrop, “Ray Effects in Discrete Ordinates Equations”,
Nuclear Science and Engineering, vol. 32, pp. 357-369, 1968.

[15] M. Levoy, “A Hybrid Ray Tracer for Rendering Polygon and
Volume Data”, IEEE Computer Graphics and Applications, vol. 10,
no. 2, pp. 33-40, 1990.

[16] W.E. Lorensen, H.E. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm”, Computer Graphics, vol. 21,
no. 4, pp. 163-169, 1987.

[17] N. Max, “Optical Models for Direct Volume Rendering”, IEEE
Transactions on Visualization and Computer Graphics, vol. 1, no. 2,
pp. 99-108, 1995.

[18] N. Max, “Efficient Light Propagation for Multiple Anisotropic
Volume Scattering”, Photorealistic Rendering Techniques, G. Sakas,
P. Shirley, and S. Mueller, eds. Heidelberg: Springer Verlag, pp.87-
104, 1995.

[19] M. Meissner, J. Huang, D. Bartz, K. Mueller, R. Crawfis, “A
Practical evaluation of Popular Volume Rendering Algorithms”,
2000 Symposium on Volume Rendering, pp. 81-90, Salt Lake City,
October 2000.

[20] K. Mueller, T. Moeller, J.E. Swan, R. Crawfis, N. Shareef, R. Yagel,
“Splatting Errors and Antialiasing”, IEEE Transactions on
Visualization and Computer Graphics, vol. 4, no. 2, pp. 178-191,
1998.

[21] K. Mueller, T. Moeller, R. Crawfis, “Splatting Without the Blur”,
Proc. Visualization’99, pp. 363-371, 1999.

[22] K. Mueller, N. Shareef, J. Huang, R. Crawfis, “High-quality
Splatting on Rectilinear Grids with Efficient Culling of Occluded
Voxels”, IEEE Transactions on Visualization and Computer
Graphics, vol. 5, no. 2, pp. 116-134, 1999.

[23] K. Mueller, R. Crawfis, “Eliminating Popping Artifacts in Sheet
Buffer-based Splatting”, Proc. Visualization’98, pp.239-245, 1998.

[24] T. Nishita, E. Nakamae, “An Algorithm for Half-Tone
Representation of Three-Dimensional Objects”, Information
Processing in Japan, vol. 14, pp. 93-99, 1974.

[25] T. Nishita, Y. Dobashi, E. Nakamae, “Display of Clouds Taking into
Account Multiple Anisotropic Scattering and Sky Light”, Proc.
SIGGRAPH’96, pp. 313-322, 1996.

[26] M. Nulkar, K. Mueller, “Splatting With Shadows”, Volume Graphics
2001.

[27] K. Perlin, E. M. Hoffert, “Hypertexture”, Proc. SIGGRAPH’89, pp.
253-262, 1989.

[28] H. Rushmeier, K. Torrance, “The Zonal Method for Calculating
Light Intensities in the Presence of a Participating Medium”,
Computer Graphics, vol. 21, no. 4, pp. 293-303, 1987.

[29] H. Rushmeier, “Realistic Image Synthesis for Scenes with
Radiatively Participating Media”, PhD Thesis, Cornell University,
May 1988.

[30] C. Soler, F.X. Sillion, “Fast Calculation of Soft Shadow Textures
Using Convolution”, Proc. SIGGRAPH’98, pp. 321-332, 1998.

[31] L. Westover, “Interactive Volume Rendering”, Proceedings of
Volume Visualization Workshop, University of North Carolina,
Chapel Hill, N.C., 1989, pp. 9-16.

[32] T. Whitted, “An Improved Illumination for Shaded Display”,
Communications of the ACM, Vol. 23, No. 6, pp. 343-349, 1980.

[33] L. Williams, “Casting Curved Shadows on Curved Surfaces”, Proc.
SIGGRAPH’78, pp. 270-174, 1978.

[34] A. Woo, P. Poulin, A. Fournier, “A Survey of Shadow Algorithm”,
IEEE Computer Graphics and Applications, vol. 10, no. 6, 1990.

[35] C. Zhang, R. Crawfis, “Volumetric Shadows Using Splatting”, Proc.
Visualization 2002, pp. 85-93, 2002.

[36] C. Zhang, R. Crawfis, “Shadows and Soft Shadows with
Participating Media Using Splatting”, IEEE Transactions on
Visualization and Computer Graphics, vol. 9, no. 2, pp. 139-149,
2003.

	Abstract
	INTRODUCTION
	PREVIOUS WORK
	Splatting
	Shadow Algorithms
	Multiple Scattering
	Rendering both Volumes and Polygons

	MULTIPLE SCATTERING
	Implementation of Multiple Scattering

	SHADOW ALGORITHM COMBINING VOLUMES AND POLYGONS
	Shadow Algorithm
	Shadow Results

	SOFT SHADOW ALGORITHM COM-BINING VOLUMES AND POLYGONS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	References

