
Modular Design for Robust Authentication Protocols

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Hilary A. Pike, B.S.

* * * * *

The Ohio State University

2004

Master’s Examination Committee:

Paul A. G. Sivilotti, Adviser

Dong Xuan

Approved by

Adviser

Department of Computer
and Information Science

c© Copyright by

Hilary A. Pike

2004

ABSTRACT

Networks of computers use authentication protocols to verify their identities

to one another. Some protocols, such as Kerberos, are used in a wide variety of

environments with varying network timing parameters. Currently, the correctness

of the Kerberos protocol is coupled to specific assumptions about synchrony. Thus,

the correctness of this protocol must be verified on a case by case basis of deployment.

We present design techniques for constructing modular protocols based on ab-

stract detection oracles. These oracles encapsulate timing parameters to decouple

protocol correctness from explicit timing parameters. We demonstrate this approach

by applying it to the Kerberos authentication protocol, and show how strengthening

this oracle creates an augmented Kerberos protocol capable of tolerating sophisti-

cated attacks.

ii

To my husband, Scott M. Pike, for long hours of support, guidance, laughter, and

challenging conversation.

iii

ACKNOWLEDGMENTS

Many thanks to my colleagues, family, and friends for their support along this

journey. I am extremely grateful to my adviser Paul Sivilotti who has provided

unwaning patience, motivation, and support. Without his guidance, this thesis

would be simply a drifting thought. Thanks also to Dong Xuan for participating in

my thesis examination.

Thanks to Jason Hallstrom and Nigamanth Sridhar for many intriguing conversa-

tions that helped me clarify my research and explore new areas of computer science.

A special thanks to the members of the Reusable Software Research Group (RSRG),

Bruce Weide, Neelam Soundarajan, Tim Long, Bill Ogden, Paolo Bucci, and Bob

Mathis, for helping me to refine each step of my research. Thanks to everyone in

the Software Engineering Lab and Distributed Systems Seminar who made endless

hours of work challenging and enjoyable.

Heartfelt thanks to my parents, Anne and Mark Stock, who consistently chal-

lenged me to see my true potential and follow my dreams. Finally, tremendous

thanks to my sister, Leslie Snavely, who fills so many gaps, answers and asks the

right questions, and helps me find satisfaction in all parts of life.

iv

VITA

December 8, 1978 . Born - Columbus, Ohio

2002 .B.S. Computer Science and
Engineering,
The Ohio State University

2002-2003 . Graduate Research and
Teaching Associate,
Computer and Information Science,
The Ohio State University

FIELDS OF STUDY

Major Field: Computer and Information Science

v

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iii

Acknowledgments . iv

Vita . v

List of Figures . viii

Chapters:

1. Introduction . 1

1.1 Problem . 1
1.2 Approach . 2
1.3 Thesis . 2
1.4 Organization . 2

2. Background . 4

2.1 Authentication . 4
2.2 Abstract Protocol Notation . 5

2.2.1 Processes . 5
2.2.2 Security in Abstract Protocol Notation 8

2.3 Kerberos . 10
2.3.1 Simple Exchange Protocol 13
2.3.2 Additional Protection . 16

2.4 Suppress-Replay . 23

vi

3. Modeling Kerberos . 25

3.1 Kerberos in Abstract Protocol (AP) Notation 25
3.1.1 States of Kerberos . 30
3.1.2 Correctness . 36

3.2 Oracle . 37

4. Kerberos with Intruders . 42

4.1 Intrusion States . 45
4.2 Vulnerability of Kerberos . 50
4.3 The Window of Vulnerability . 52
4.4 Modifying the Oracle . 55
4.5 Correctness . 56

5. Related Work . 57

6. Conclusions . 59

Appendices:

A. A Realization for Random without ⊥ 61

B. States . 62

B.1 Safe States . 62
B.2 Safe and Unsafe States . 64

Bibliography . 71

vii

LIST OF FIGURES

Figure Page

2.1 Simple Exchange: Initial Exchange of Messages 12

2.2 Simple Exchange: Final Exchange of Messages 14

2.3 Simple Exchange: Initial Authentication 16

2.4 Kerberos: Message Diagram . 17

2.5 Kerberos: Initial Exchange of Messages 18

2.6 Kerberos: Secondary Request . 19

2.7 Kerberos: Secondary Reply . 20

2.8 Kerberos: Final Exchange or Messages 21

2.9 Kerberos: Authentication . 22

2.10 Clock Asynchrony . 24

3.1 Client . 26

3.2 Authentication Server . 27

3.3 Server . 28

3.4 State Transition Diagram . 31

3.5 Client with Oracle . 39

viii

3.6 Authentication Server with Oracle . 40

3.7 Server with Oracle . 41

4.1 Clock Asynchrony . 43

4.2 Future Timestamp . 43

4.3 Replayed Message . 44

4.4 State Transition Diagram . 47

4.5 State Diamond . 48

4.6 Unsafe Transitions . 50

4.7 Vulnerable Window 1 . 52

4.8 Vulnerable Window 2 . 53

4.9 Vulnerable Window 3 . 53

A.1 Random . 61

ix

CHAPTER 1

INTRODUCTION

1.1 Problem

Collections of processors networked together form a distributed system. These

communicating processors may share resources and information with one another. In

order to protect these resources, the processors in the system verify the identities of

nodes with which they are communicating. Authentication protocols are algorithms

that perform this verification. Recent increases in the interconnectivity of computers

has created a need for reliable distributed authentication protocols.

The Kerberos protocol is a widely accepted and deployed distributed authenti-

cation algorithm. Kerberos depends directly on synchronized clocks. Synchronized

clocks, in turn, depend on timing properties in a network. Reasoning about the

Kerberos protocol, therefore, requires reasoning about both the clock and timing

properties of a network. Thus, when Kerberos is deployed in networks with different

synchronization properties or the synchronization properties of a network change, the

correctness of this protocol must be re-analyzed. In real systems, ensuring bounds

on network parameters is hard and sometimes impossible. Malicious processes may

exploit vulnerabilities that are created by moments when the timing guarantees

required by the Kerberos protocol are not met.

1

1.2 Approach

Modularity breaks designs into tractable components or modules. We can rea-

son about each module relative to the abstract specification of other modules in

the system. Modules encapsulate design decisions that are likely to change. Since

Kerberos depends directly on timing parameters in the system, we cannot change

the timing model without re-verifying the correctness of the authentication protocol.

In order to address the vulnerabilities in the Kerberos protocol, we create a level of

abstraction between the network parameters and the protocol. We can then reason

about changes to the network in isolation of the protocol.

We posit an oracle that represents the current system model for Kerberos. We

extend this oracle to consider a set of oracles whose specifications represent net-

works with different timing parameters. Using concepts from stabilization theory,

we discuss the security of Kerberos with respect to these different oracles.

1.3 Thesis

A modular approach provides useful abstractions that ease reasoning and thwart

attacks in authentication protocols. Oracles encapsulate timing parameters to de-

couple protocol correctness from timing parameters creating an effective approach

for reasoning about authentication.

1.4 Organization

In Chapter 2, we present background material. In Chapter 3, we model the Ker-

beros protocol in Abstract Protocol notation and encapsulate the timing parameters

of Kerberos with oracles. In Chapter 4, we describe the vulnerability of the protocol

2

and apply software engineering principals to improve reasoning about authentica-

tion. In Chapter 5, we set the context of this work among others in the field. In

Chapter 6, we draw conclusions about this work.

3

CHAPTER 2

BACKGROUND

2.1 Authentication

Authentication is the verification of a communicating principal. A principal is

the basic entity that participates in authentication [KNT91]. Typically, a principal

represents a computer, a process, or a node in the system that is either physically or

logically separated from all other principals. One-way authentication requires that

only one principal prove its identity to another principal, while mutual authentica-

tion requires that both participating principals prove their identities to each other.

A verifier is any principal that authenticates other principals. Authenticating a prin-

cipal allows the verifier to determine what operations and information the principal

can access.

The global state of a protocol encompasses the local states of the processes and

the states of the channels. The set of reachable states of a protocol are those states

witnessed by executing any action of the protocol. The set of safe, or legal, states

are the subset of reachable states that satisfy the specification of the protocol. An

intruder or adversary is an entity that performs malicious actions. When an authen-

tication protocol is composed with an intruder, unsafe states become reachable. The

actions executed by an adversary can be viewed as faults. Authentication protocols

4

can be classified by their fault-tolerance properties, namely, the level of tolerance a

protocol achieves when composed with a specific set of adversaries.

A program can demonstrate masking, nonmasking, or fail-safe tolerance [AG93].

In masking fault-tolerance if a fault occurs when the protocol is in a legal state,

the protocol remains in a legal state. Nonmasking fault-tolerance is less strict. If

the protocol is in a legal state and a fault occurs, nonmasking tolerance allows the

protocol to enter illegal states but requires the protocol eventually return to a legal

state. Fail-safe fault-tolerance is again less strict than masking fault-tolerance. Fail-

safe tolerance requires that a protocol always meet its safety specification, but can

violate the progress specification in the presence of faults.

2.2 Abstract Protocol Notation

We summarize portions of the Abstract Protocol (AP) notation [Gou98] that will

be used to model authentication protocols. The reader is directed to chapters 3 and

4 of [Gou98] for a more thorough description.

2.2.1 Processes

In this notation, a process takes the following general form:

process <process name>

const <const name>, . . . , <const name>
inp <inp name> : <inp type>, . . . , <inp name> : <inp type>
var <var name> : <var type>, . . . , <var name> : <var type>

begin
<action> 8 . . . 8 <action>

end

Each process contains a unique name, a declaration section, and an action section.

5

The declaration section includes global constants, local inputs, and local variables.

Constants can be read but not written by the process; constants with the same name

in multiple processes indicate the same value. All constants are of type integer. In-

puts and variables are both local to a process and, hence, similar names can take

on separate values at different processes. Inputs can be read but not written, while

variables can be both read and written by a process. Comments in AP delineated

using curly braces. Initial conditions for a process are specified by comments in the

protocol.

The action section consists of actions in the form of guarded commands:

guard → statement

Actions in AP can contain guards that are either local to the process, receive guards,

or timeouts. We will not discuss timeout guards in this thesis. Consider a process,

P , with the structure defined above. A local guard for P consists of a boolean

expression. AP uses the ’=’ operator to test equality. A receive guard for P takes

on the following form:

rcv < message> from < process name >

Here, process name can take on any process name in the system except P . Thus,

it is impossible for P to communicate with itself via message passing.

A message can contain zero or more fields. The fields of a message are separated

by commas. Thus, messages can take on one of the following two forms:

<message name>
<message name> (<field.0> , ... , <field.n>)

The message name is an uninterpreted symbol, and each field is interpreted. The

notation ch.P.Q 〈〉 is used to identify the channel from P to Q . This channel con-

sists of a sequence of message instances: ch.P.Q 〈msg1; msg2(10); msg3(2,5) 〉 .

6

Where msg1 has not fields, and msg2 and msg3 have one and two fields respec-

tively. We denote the number of messages in a specific channel as # ch.P.Q and the

number of a specific type of messages as < message name > # ch.P.Q .

A message instance is constructed by executing a send statement:

send < message> to <process name>

For all i, x.i is local to the process. Execution of this statement at process P creates

a message instance where the values of the fields correspond to the values of x.0

through x.n and then appends this instance to ch.P. < process name > .

Statements consist of skip, assignment, sending, sequence, selection, and iter-

ation. We have already discussed the send statement. The skip statement, skip,

executes by doing nothing. The assignment statement denotes parallel assignment:

x.0, . . . , x.n := E.0, . . . , E.n

Each expression (E.0, . . . , E.n) is evaluated and the value of each expression on

the right hand side is assigned to the corresponding variable on the left hand side.

Thus, execution of the statement results in x.0 having the value of E.0, . . . , and

x.n having the value of E.n.

Nondeterministic assignment can be achieved by using the expression random.

Evaluation of the random expression results in a value from a uniform distribution

of the domain of the corresponding variable. Thus, successive execution of x :=

random results in assigning to x each of its possible values infinitely often.

The sequence statement connects two statements with a semicolon:

<statement>; <statement>

This indicates that the execution of the first statement should be sequentially fol-

lowed by execution of the second.

7

A selection statement has the following form, where lg.i stands for a local guard

and stmt.i stands for a statement:

if lg.0 → stmt.0 8 . . . 8 lg.0 → stmt.0 fi

In a selection statement, the disjunction of the local guards must be true. Recall that

local guards are boolean expressions. Execution of the selection statement begins

by first evaluating all the local guards, arbitrarily selecting a true local guard, and

then executing the statement corresponding to the chosen guard.

An iteration statement has the following form, where lg stands for a local guard

and stmt stands for an a legal AP statement:

do lg → stmt od

Execution begins by evaluating lg.i. If the local guard is true, the statement will

execute. Execution repeats until the local guard becomes false. The termination

condition for the iteration statement requires that for all executions, there exists an

integer, k , such that the statement is guaranteed to terminate within k iterations.

2.2.2 Security in Abstract Protocol Notation

Authentication protocols use cryptography as a means of maintaining the in-

tegrity of messages [Gou98]. Integrity ensures that the message received is the same

as the message generated. Cryptography enables two entities to communicate on

an insecure channel in such a way that no one else can understand the contents

of their communications. The information to be communicated is called plaintext.

When the plaintext is encrypted using a key, the result is called ciphertext. The two

communicating principals share keys that allow them to encrypt the plaintext and

decrypt the ciphertext so that they can understand the contents of a message. In

8

addition to the basic structures necessary for constructing protocols, we must con-

sider the additional structures necessary for constructing authentication protocols.

The security concepts presented here are from chapter 18 of [Gou98].

In AP, security protocols assume that each data item to be transmitted is simply

an integer. Thus, plaintext is represented by data items. Cryptography is incor-

porated by assuming the existence of both an encryption function, NCR, and a

decryption function, DCR. These functions both take a security key and data item

as parameters and produce another data item. Keys, themselves, are just integers,

and thus, are also data items. The data item resulting from applying the encryption

function to a key, K, and data item, d, is NCR(K,d) and is described as the encryp-

tion of item d using key K. Similarly, DCR(K,d) is described as the decryption of

item d using key K.

The Abstract Protocol notation defines a pair of keys (K,L) to be secure under

the following two conditions:

1. Restoration: For every data item d,

d = DCR(L,NCR(K,d)) and

d = DCR(K,NCR(L,d))

2. Hiding : For every key K’ other than K and every key L’ other than L, there

is a data item d such that

d 6= DCR(L’,NCR(K,d)) and

d 6= DCR(K’,NCR(L,d))

Restoration requires that data item d encrypted with key K and decrypted with

key L result in the original data item. This requirement indicates that the plaintext

9

created by decryption at the receiving principal is indeed the plaintext generated by

the sending principal. Hiding requires that the only principals able to see the plain-

text message will be those holding the secure keys. A secure key pair is symmetric

(or shared) if and only if K = L. The protocol we consider uses symmetric keys.

Nonces are used in authentication protocols to identify messages or create a

sequential view on the order of messages. In AP notation, a nonce is represented

as an integer or data item. Each process can generate nonces by using a function,

NNC. The NNC function at each process creates a sequence of nonces satisfying:

1. Unpredictability: The value of any generated nonce cannot be deduced from

the values of previously generated nonces.

2. Nonrepetition: Each generated nonce has a unique value.

In security protocols, two types of information appear in channels: ciphertext and

plaintext. We represent ciphertext in a channel by denoting the key used to encrypt

the message. For shared keys, we use KP,Q〈〉 where the names of the processes that

share the key are listed in curly braces and the information inside angled brackets.

Hence, KP,Q〈i〉 , indicates a piece of information, i , encrypted with a key shared by

P and Q .

2.3 Kerberos

κερβερoσ ; also spelled Cerberus. “n. The watch dog of Hades, whose
duty it was to guard the entrance–against whom or what does not clearly
appear; . . . is known to have had three heads . . . ” –Ambrose Bierce, The
Enlarged Devil’s Dictionary [MNSS87]

The Kerberos authentication service [KNT91] was developed at the Massachusetts

Institute of Technology to protect the network services of Project Athena [CDEGR90].

10

The first three versions of Kerberos were created and used internally. Versions 4 and

5 are currently in use by many systems [NT94]. In this thesis we focus on version 5

of the protocol and use the terms Kerberos and Kerberos protocol to indicate version

5.

Kerberos contains three non-malicious entities: a Client (C), an Authentication

Server (AS), and a Server (S). The goal of Kerberos is for S to authenticate C .

Implicit in this goal is a subtle requirement, namely that S should not authenticate

any other entity as C . Each entity trusts the Authentication Server to generate

original, secure keys. Thus, the Authentication Server is a trusted source and shares

a key with each principal in the system. When describing the Kerberos protocol,

we will use K to indicate a Key and subscripts to show ownership of a key. Thus,

KC,AS indicates a key shared by C and AS . The Client uses a ticket and authenti-

cator to prove its identity to the Server and to establish a temporary communication

key that can be used to create a secure channel between the two principals. A ticket

consists of a freshly generated key, the name of the requesting principal, the time of

creation, and a lifetime for which the ticket is valid. An authenticator contains an

encrypted timestamp.

The figures below illustrate the Kerberos protocol [Tun99]. The principals partic-

ipating in each step of the protocol are pictured on each line. The arrow represents

information passing from one principal to another. Thus, when the arrow is present

both a sending and receiving principal are pictured. A single principal on a line

indicates local processing at that node. Diamonds are used to represent the local

decisions being made at a process. Boxes are used to represent the sets of infor-

mation being sent between principals. The boxes are labeled for easy identification.

11

Figure 2.1: Simple Exchange: Initial Exchange of Messages

12

Plaintext is sent using an unlocked box (a dashed line). Ciphertext is pictured as

information inside a box with a lock (a solid line). The lock can only be opened by

a principal that holds the key used to lock the box. Thus, information in unlocked

boxes can be read by all principals and information in locked boxes can be read only

by principals possessing the specified key.

Kerberos adds additional protection by breaking the Authentication Server into

logically distinct sectors, the Key Server (KS) and Ticket Server (TS). Since

both KS and TS are part of AS , they are trusted by all other entities. Tickets

are generated for use in the protocol by both of these sectors. We first consider a

protocol that requires C to obtain only one ticket, from AS , to prove its identity

to S . We then demonstrate an additional layer of protection that requires C to

receive tickets from each sector, before C can prove its identity to S .

2.3.1 Simple Exchange Protocol

The initial exchange of messages is pictured in Figure 2.1. In the first message,

C requests a ticket from AS . This message is represented by Box 1. Box 1 contains

unencrypted information that can be seen by all principals. Box 1 includes the name

of the node generating the message, C , the name of the node with which C wants

to communicate, S , and a nonce, N1 . Upon receipt of Box 1, AS verifies that it

shares a key with both C and S . Recall that initially each principal in the system

shares a key with AS and that KC,AS is the key shared between C and AS .

AS will only generate tickets for those principals in the system with which it shares

a key.

13

Once this check completes successfully, AS creates the requested ticket. In the

second step of the protocol, AS generates a fresh key, KC,S , for C and S to share.

The second message contains Boxes 2 and 3, constructed from the information in

Box 1 and the generated key, KC,S . AS creates Boxes 2 and 3 in response to the

original request from C . Box 2 provides C with the session key KC,S , enclosing

the key and the nonce, taken directly from Box 1. This indicates to C that Box 1

was received and Boxes 2 and 3 were created in response.

Figure 2.2: Simple Exchange: Final Exchange of Messages

14

Box 3 is a ticket to be forwarded to S . The ticket includes the freshly generated

key, KC,S , the name of the requesting principal, C , and a lifetime for which the

ticket is valid, L1 . Notice that the ticket, Box 3, is locked with KAS,S . Hence,

C cannot see the information inside the ticket, but it is needed in order for C to

authenticate with S . In the Kerberos model, each ticket contains a finite time

interval called a lifetime, L . Each ticket is, therefore, only valid until the given

lifetime expires; future authentications will require the generation of a new ticket.

Boxes 2 and 3 comprise Message 2 and are sent back to C . The last step in Figure

2.1 shows the sending of Boxes 2 and 3 from AS to C .

Figure 2.2 illustrates the creation of Message 3 at C . Upon receipt of Boxes 2

and 3, C can unlock Box 2 and retrieve the information inside. The first step in

Figure 2.2 shows that C can view the information in Box 2, but cannot unlock Box

3. Once C views Box 2, it verifies that it sent the original message using nonce

N1 . C then uses an authenticator, Box 4, to prove that it is in possession of the

temporary key, KC,S , that was generated by AS . The authenticator is simply a

timestamp encrypted with the temporary key.

Finally, Figure 2.3 shows the receipt of Message 3 at S . S holds KAS,S and

can unlock Box 3, the ticket. S tests the ticket in Box 3 to determine its validity.

If the ticket is valid, S accepts the session key in Box 3 and unlocks Box 4. S tests

the timestamp in Box 4 for recent generation, comparing the current time at S to

the timestamp. If the timestamp was within an acceptable bound, S authenticates

C . If the timestamp was not acceptable, C ’s request is denied.

15

2.3.2 Additional Protection

Kerberos creates an extra layer of protection by dividing AS into two distinct

entities: a Key Server (KS) and a Ticket Server (TS). KS replaces AS in the

initial exchange and TS replaces S . Now KS shares secret keys with TS and

C , but not with the Server. Conversely, TS shares a secret key with KS and

S , but not with C . KS and TS are logically distinct services, but often reside

in the same physical location. The additional abstraction creates a separation of

Figure 2.3: Simple Exchange: Initial Authentication

16

keys shared with clients and servers. That is, initially, no single entity shares a key

with both clients and servers. The Kerberos protocol contains 5 messages; figure 2.4

shows the message flow among the four entities.

Figure 2.4: Kerberos: Message Diagram

In Figure 2.5 we see an interaction similar to that described previously. C makes

an initial request for communication with TS instead of S . KS checks for shared

keys with C and TS . If the check passes, a fresh key is generated, KC,TS , for

C and TS to share. Again Boxes 2 and 3 are generated from the information in

Box 1 and the new key KC,TS . This time the boxes are locked with KC,KS and

KKS,TS respectively. Box 2 can be unlocked by C because C shares key KC,KS with

KS .

C makes the similar checks and again creates an authenticator, Box 4. Appended

to Message 3 is a new box, Box 5. This indicates to TS that C would like to

establish a secure channel of communication with S . Message 3 includes a nonce

17

Figure 2.5: Kerberos: Initial Exchange of Messages

18

to be returned in Message 4 by TS . Additionally, TS takes the place of S and

Message 3 is now directed to TS , see Figure 2.6.

Figure 2.6: Kerberos: Secondary Request

The protocol continues in Figure 2.7, as TS verifies the ticket, authenticator, and

session request from Message 3. Similar to the simple exchange protocol, TS checks

that the ticket’s lifetime, L1 , is still valid, that the authenticator, Box 4, was freshly

generated, and that it holds KC,TS and KTS,S . If all checks pass, TS generates

a fresh key for C and S to share. The key, KC,S , intended for C is placed in

19

Figure 2.7: Kerberos: Secondary Reply

20

Box 6 along with the nonce from Message 3. A new ticket is created for S , Box

7, including the key, KC,S , name of requester, C , and lifetime, L2 . Message 4,

containing Boxes 6 and 7 are then sent back to C .

After receiving Message 4 (Figure 2.8), C tries to establish a communication

session with S , by sending the fifth and final message. C unlocks Box 6 using the

key it shares with TS , KC,TS . C checks the contents of Box 6 to determine if this

box was created in response to a message by verifying the nonce, N2 . Once the

Figure 2.8: Kerberos: Final Exchange or Messages

21

Figure 2.9: Kerberos: Authentication

nonce has been verified, C creates a new authenticator to prove to S that C holds

the session key inside the ticket, Box 7. The new authenticator contains the most

recent time at C , T4 . Message 5 consists of the new authenticator, Box 8, and the

ticket from TS , Box 7, and is sent to S .

Figure 2.9 displays Message 5 arriving at S , and S unlocking the ticket, Box

7, using the key shared with TS , KTS,S . S inspects the information in the ticket

to determine its validity. If the ticket is found to be valid, S accepts KC,S and

22

unlocks Box 8. The timestamp, T4 , in Box 8 is checked for recent generation. If the

timestamp is within the required window, S authenticates C .

This description presents a successful run of the protocol. If any of the checks

along the way do not pass, the protocol terminates at that point. If the protocol

terminates, then C must restart the protocol by initiating a new request to the

KS . More detailed discussions of Kerberos can be found in [SNS88], [MNSS87],

[Neu], and [KPS02].

2.4 Suppress-Replay

Kerberos depends on the synchronization of clocks between all nodes in the sys-

tem. Synchronized clocks allow principals to check the timestamps generated by

other principals and have an expectation of the range in which the timestamp should

occur. Kerberos has often been criticized for its claimed reliance on “loosely synchro-

nized” clocks [MNSS87] [Neu]. The imprecise definition does not discuss the security

or implementability issues for Kerberos. This synchronization requirement creates

restrictions on the kinds of networks in which Kerberos can safely be deployed.

We model moments when clocks are not synchronous as a fault in the system.

A fault occurs when the clocks at two processes drift apart by more than some

acceptable difference, δ . Owing to the vague description of requirements in the

Kerberos protocol, asynchronous clocks may be a fault in the system or may be a

flaw in the design. The following figure models the occurrence of a fault at node

C and the correction of the fault. In the timing diagram, the x-axis represents real

time. The y-axis represents the difference between the local time of a process and

real time. Thus, when the clock at a process is synchronized with real time, the

23

graph of that process is a horizontal line. When the clock at a process advances

faster than real time, the graph has a positive slope. Conversely, when a clock at

a process advances slower than real time, the graph has a negative slope. If local

clocks are monotonic, the slope of the graph is always greater than, or equal to, -1.

Figure 2.10 shows the clocks of S and C . S remains synchronized with real time,

while C moves ahead of real time, hits a plateau, and then re-synchronizes with real

time. These diagrams will be used in the thesis to discuss the actions of Kerberos

with respect to time.

Figure 2.10: Clock Asynchrony

24

CHAPTER 3

MODELING KERBEROS

3.1 Kerberos in Abstract Protocol (AP) Notation

Our realization of Kerberos in AP notation consists of three processes, C , AS ,

and S . AS will have distinct actions representing KS and TS . We introduce

the type PName for process names in the Kerberos protocol; a PName is an integer.

Thus, C , KS , TS , S , and AS are all PNames. Each process contains material

variables, as well as, catalytic variables. The material variables are imperative to

the functionality of Kerberos. The catalytic variables provide temporary storage for

a process; essentially we do not care what value these variables have at any state

of the protocol. As such, only the material variables are considered in the state

predicates. S contains a local variable, auths , representing authentication of C .

If at the end of a session of the Kerberos protocol auths = true , then S received a

valid rqst message sent from C in that session. However, if at the end of a session

auths = false , no conclusion can be drawn. Thus, Kerberos must satisfy the

following safety property:

auths → S received a valid message sent from C in that session

25

process C

const
KS, TS

var
s t a r t c : boolean , { i n i t i a l l y , s t a r t c = fa l se }
keyc : array [PName] o f in t ege r ,

{ i n i t i a l l y , keyc [KS] = KC,KS ∧
keyc [TS] = ⊥ ∧ keyc [S] = ⊥ }

nc : i n t ege r , { i n i t i a l l y , nc = ⊥ }
x , y , z : i n t e g e r

begin
∼ s t a r t c →

nc , s t a r t c := NNC, true ;
send krqs t (C, TS , nc) to AS

8
rcv krp ly (x , y) from AS →

(x , z) := DCR(keyc [KS] , x) ;
i f z 6= nc → s t a r t c , nc := false , ⊥
8 z = nc →

keyc [TS] , nc := x , NNC;
send t r q s t (NCR(keyc [TS] , TIM) , y , S , nc) to AS

f i
8
rcv t r p l y (x , y) from AS →

(x , z) := DCR(keyc [TS] , x) ;
i f z 6= nc → s t a r t c , nc , keyc [TS] := false , ⊥ , ⊥
8 z = nc →

keyc [S] , nc := x , ⊥ ;
send r q s t (NCR(keyc [S] , TIM) , y) to S

f i
end

Figure 3.1: Client

In our realization, we use the ⊥ symbol to represent the value of an undefined

variable. In AP, this symbol might be realized as a specific integer value that is

26

process AS
const

KS, TS
inp

keyks : array [PName] o f Keys ,
{keyks [TS] = KKS,TS ∧
keyks [C] = KC,KS ∧ keyts [S] = ⊥ }

keyts : array [PName] o f Keys ,
{ keyts [KS] = KKS,TS ∧

keyts [C] = ⊥ ∧ keyts [S] = KTS,S }
L : in t ege r ,
D : i n t e g e r

var
keyas : i n t ege r , { i n i t i a l l y , keyas = ⊥ }
A : in t ege r ,
u , v ,w, x , y , z : i n t e g e r

begin
rcv krqs t (x , y , z) →

i f keyks [x] = ⊥ ∨ keyks [y] = ⊥ → sk ip
8 keyks [x] 6= ⊥ ∧ keyks [y] 6= ⊥ →

keyas := Random;
send krp ly (NCR(keyks [x] , (keyas , z)) ,

NCR(keyks [y] , (x , TIM + L , keyas))) to x
keyas := ⊥

f i
8 rcv t r q s t (w, x , y , z) →

(u , v , x) := DCR(x , keyts [K]) ;
i f ((v − TIM) <= 0) → sk ip
8 ((v − TIM) > 0) →

A := DCR(w, x) ;
i f (ABS(TIM − A) >= D) → sk ip
8 (ABS(TIM − A) < D)) →

keyas := Random;
send t r p l y (NCR(x , (keyas , z)) ,

NCR(keyts [y] , (u , TIM + L , keyas))) to u
keyas := ⊥

f i
f i

end

Figure 3.2: Authentication Server

27

unattainable using the random expression. Since random can return any value

selected from the domain of the variable, we use the Random function to indicate a

function random that will return values selected from the domain - ⊥ . Please see

Appendix A for further discussion on this topic and the realization for Random.

process S
const

KS, TS
inp

D : i n t e g e r
var

auths : boolean , { i n i t i a l l y , auths = fa l se }
keys : array [PName] o f in t ege r ,

{ i n i t i a l l y , keys [KS] = ⊥ ∧
keys [TS] = KTS,S ∧ keys [C] = ⊥ }

A : in t ege r ,
v ,w, x , y , z : i n t e g e r

begin
rcv r q s t (v , w) −>

w, x , y := DCR(keys [TS] , w) ;
i f ((x − TIM) <= 0) − > sk ip
8 ((x − TIM) > 0) − >

A := DCR(y , v) ;
i f (ABS(TIM − A) >= D ∨ keys [C] 6= ⊥) →

sk ip
8 (ABS(TIM − A) < D ∧ keys [C] = ⊥) →

keys [C] , auths := y , true ;
f i

f i
end

Figure 3.3: Server

28

In order to model the Kerberos protocol in AP notation, we introduce a new

function TIM. TIM returns the value of the clock at a process. Different instanti-

ations of TIM would result in different clock models. Instantiating TIM with the

random function produces a clock whose values are taken at random from the set

of integers. Instantiating TIM with sequence numbers provides a monotonically

increasing clock model.

Kerberos uses time to uniquely identify messages, through timestamps, as well as

to check timestamps and lifetimes for validity. Kerberos requires that each process

have access to time and that the times at processes should be “loosely synchronized”

[MNSS87],[Neu]. This synchronization creates a predictable window for timestamps

received in messages. In the Kerberos system, without intruders, the synchronization

of clocks does not affect the security of the protocol. It does, however, affect the

progress guaranteed by the protocol. Kerberos is guaranteed to make progress if

the summation of the time bound between the clocks of two processes, δ1 , and

the message delay, δ2 , is within an acceptable bound, D . That is, progress is

guaranteed only if: δ1 + δ2 < D . In addition, progress depends on the ticket

lifetime, L , satisfying: δ1 + 2δ2 < L . Owing to this direct dependency on time,

the progress properties for Kerberos must include these bounds explicitly. We refer

to the value of the clock of a process, P , at real time x as: timeP,x . If no x is

present, then timeP refers to the current time at process P . Kerberos satisfies the

following progress property:

(#ch.C.S > 0 ∧ ∀x : |timeC,x − timeS,x| < δ1 ∧

δ1 + δ2 < D ∧ δ1 + 2δ2 < L) 7→ auths

29

If a state is reached where the number of messages in ch.C.S is greater than zero,

the clocks at C and S are synchronized within some bound, δ1 , and message

delay is within δ2 , then, eventually (7→) auths will be set to true. In short, if

the system obeys the synchronization requirements of Kerberos and C generates

the last message of the protocol (C is the only process capable of generating this

message), S will authenticate C .

3.1.1 States of Kerberos

The AP representation of Kerberos is shown in Figures 3.1, 3.2, and 3.3. We

discuss the material variables in the representation, the states generated by the

actions at each process, and the corresponding state diagram.

Process C has 3 material variables:

startc ≡ authentication procedure has started

keyc ≡ keys held by C initially or received in messages

nc ≡ nonce sent in the current exchange

Process S has 2 material variables:

auths ≡ authentication was successful between C and S

keys ≡ keys held by S initially or received in messages

Process AS has no material variables. Each of the five messages of Kerberos have

distinct message types, krqst, krply, trqst, trply, rqst. These message types have

a one-to-one correspondence to the informal message in Kerberos as follows:

krqst Message 1 (M1)
krply Message 2 (M2)
trqst Message 3 (M3)
trply Message 4 (M4)
rqst Message 5 (M5)

30

These message types capture the request-reply handshake between C and KS

(krqst, krply), the request-reply handshake between C and TS (trqst, trply),

and C ’s request to S (rqst).

Figure 3.4: State Transition Diagram

We identify states q.0-q.10 as the reachable states for the Kerberos protocol.

The transitions among these states are shown in Figure 3.4. Each transition contains

a letter and a number. The letter indicates the process performing the action; the

number indicates which action at the process is being executed. All steps, except the

first, are triggered by the receipt of a message. As such, initially the only enabled

step is the creation of Message 1 in C . q.0 shows the initial state of the Kerberos

system. Since all actions except action 1 of C are guarded by the receipt of messages

and initially all channels are empty, none of these actions are enabled. Action 1 of

C is guarded by a boolean expression that is initially true .

q.0: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = keyc[S] = keys[C] = keys[KS] ∧ nc = ⊥

keyc[KS] = KC,KS ∧ keys[TS] = KTS,S ∧ ∼ startc ∧ ∼ auths

31

We note here that some variables do not change by executing any actions. We use

Z to represent those variables in the following states.

Z ≡ keyc[KS] = KC,KS ∧

keys[KS] = ⊥ ∧ keys[TS] = KTS,S

Thus, after substitution:

q.0: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

∼ startc ∧ nc = ⊥ ∧ ∼ auths ∧ Z

Executing action 1 of C , the only enabled action, results in updating the startc

variable to indicate that the protocol has begun, as well as generating a nonce for

the current round of communication. Next, C appends message 1 of the protocol to

channel ch.C.AS . Since this is the first action to execute, no prior messages exist

in ch.C.AS . Thus, action 1 of C creates message 1 and sends it to AS . Executing

action 1 of C transitions from q.0 to q.1, step 2 in Figure 2.5.

q.1: ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈 〉 ∧

ch.C.AS = 〈krqst(C, TS, N1)〉 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ nc = N1 ∧ ∼ auths ∧ Z

From q.1 we see that ∼ startc is false (disabling action 1 of C) and incoming

channels to C and S are empty (disabling actions at those processes). ch.C.AS ,

however, contains a single message of type krqst, enabling action 1 of AS . Action

32

1 of AS accomplishes steps 3-6 in Figure 2.5. Upon receiving the krqst message,

AS checks to determine if it shares keys with the process names in fields 2 and 3 of

the krqst message. If it does not, a skip is executed and the protocol will terminate

in state q.8. In q.8, no further actions are enabled (all channels are empty and

startc is false) and the protocol terminates.

q.8: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ nc = N1 ∧ ∼ auths ∧ Z

In a successful run of action 1 of AS , this check passes. AS will then generate

a new key, and compose M2 , a message of type krply, using the new key and the

information from M1 . This message is then sent to C and is in transition in state

q.2.

q.2: ch.C.AS = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈 〉 ∧

ch.AS.C = 〈krply(KC,KS{KC,TS, N1}, KKS,TS{C, L1, KC,TS})〉 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ nc = N1 ∧ keyas = KC,TS ∧ ∼ auths ∧ Z

Again from q.2, only action 2 of C is enabled. C decrypts the first field of the

krply message; C does not hold a key to decrypt the second field. C checks the

krply message for the nonce included in the original request. If the nonces do not

match, the protocol returns to the initial state, q.0. If the nonces match, C accepts

the key, creates a fresh the nonce value, generates a trqst message, and sends the

33

message to AS . The new state is q.3.

q.3: ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈 〉 ∧

ch.C.AS = 〈trqst(KC,TS{T1}, KKS,TS{C, L1, KC,TS)}, S,N2)〉 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ nc = N2 ∧ ∼ auths ∧ Z

The trqst message in ch.C.AS includes an authenticator, a ticket, a process

name, and a nonce, and it enables action 2 of AS . AS receives the message, first

decrypting the ticket (field 2). If the lifetime of the ticket has expired, a skip executes

and the protocol will terminate in state q.9. If the ticket is valid, AS uses the

key inside the ticket to decrypt the authenticator (field 1). The timestamp, or

unencrypted authenticator, is checked for recent generation (within D time units).

If the timestamp was not generated within D units, a skip executes and the protocol

will terminate in state q.9. If both the lifetime and timestamp checks are successful,

the protocol transitions into q.4, appending a trply message to the channel between

AS and C .

q.9: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = KC,TS ∧ keyc[KS] = keys[C] = ⊥ ∧

startc ∧ nc = N2 ∧ ∼ auths ∧ Z

q.4: ch.C.AS = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈 〉 ∧

ch.AS.C = 〈trply(KC,TS{KC,S, N2}, KTS,S{C, L2, KC,S})〉 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ nc = N2 ∧ ∼ auths ∧ Z

34

From q.9, no actions are enabled and the protocol terminates. q.4 enables a

single action, namely action 3 of C . This action is almost identical to action 2 of

C . C receives the trply message and can, again, only decrypt the first portion.

After checking the nonce, C resets startc , nc , and keyc[TS] if the nonce is not

valid and the protocol returns to state q.0. Otherwise, C stores the key from the

trply message and resets the nonce. C generates the final message using the ticket

from the trply message and creating a fresh timestamp encrypted with the key from

message trply. This message is then sent to S by placing it in the channel shared

by C and S (q.5).

q.5: ch.C.AS = ch.AS.C = ch.S.C = ch.AS.S = ch.S.AS = 〈 〉 ∧

ch.C.S = 〈rqst(KC,S{T2}, KTS,S{C, L2, KC,S})〉 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ nc = ⊥ ∧ ∼ auths ∧ Z

From q.5, action 1 of S is the only enabled action. S receives the rqst message

from C and decrypts the ticket (field 2). After decrypting, it tests the lifetime (field

2 of the ticket) for validity. If the ticket has expired, the protocol terminates in q.10

without authentication.

q.10: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ nc = ⊥ ∧ ∼ auths ∧ Z

If the ticket is valid, S uses the key inside the ticket to decrypt the authenticator

(field 1 of rqst). The timestamp in the authenticator is checked for generation

35

within D time units. If the timestamp is not valid, again the protocol terminates

in q.10 without authentication. If the timestamp is valid, S accepts the key for

communication with C and sets auths . A successful execution of this action will

result in authentication of C and reaches q.7. Notice that we do not include a state

labeled q.6. Later, we discuss splitting state q.5 into two separates states.

q.7: ch.C.AS = ch.AS.C = ch.C.S = ch.S.C = ch.AS.S = ch.S.AS = 〈〉 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = KC,S ∧

startc ∧ nc = ⊥ ∧ auths ∧ Z

3.1.2 Correctness

Proof of Safety. Initially, auths is false. Action 1 of S is the only action that

writes auths . Thus, all other actions preserve safety trivially by not updating the

value of auths . C is the only principal who creates messages of type rqst. Hence,

when a message of type rqst is received it must have been sent from C . Upon

receipt of a rqst message, S tests the validity of the message by first checking the

lifetime on the ticket and then checking the timestamp in the message. If both these

checks pass, then S has received a valid message from C and S sets the value of

auths to true. Action 1 of S is the only action that sets auths to true and it does

so only upon receipt of a valid rqst message sent from C . No action changes auths

to false.

Proof of Progress. Assume the Kerberos system meets the synchronization

requirement, i.e.∀x : |timeC,x − timeS,x| < δ1 ∧ δ1 + δ2 < D ∧ δ1 + 2δ2 < L .

Then in state q.5, C places a valid message into the channel. This message will

be received at S in less than δ2 time units, meaning action 1 of S must execute

36

within the allotted time. The synchronization requirements guarantee that both

checks pass and S authenticates C . Thus, if state q.5 is reached by the protocol,

eventually, S authenticates C .

3.2 Oracle

In order for the Kerberos protocol to make progress, a bound must be known

on both relative clock values and message delay. Implicit in this conclusion are as-

sumptions about the way time is kept and the timing parameters in the network.

The progress of Kerberos relies not only on the existence of these bounds, but that

the bounds be known to the processes. These strict requirements imply that Ker-

beros can only make progress in a synchronous system with k-synchronized clocks.

A synchronous system is one with known bounds on message transmission and rel-

ative processor speed. Clocks are k-synchronized if the values of two clocks always

remain within k time units of one another. The Kerberos designers provide no intu-

ition about the guarantees made in a system with less stringent timing properties.

In addition, when we introduce intruders into the system, these restrictions create

vulnerabilities not only for progress, but also for safety.

We would like to reason about Kerberos independent of the specific timing pa-

rameters in a system. By encapsulating these parameters in an oracle, we can reason

about Kerberos based on an abstract representation of the timing parameters in the

system. We posit an oracle that provides this abstraction. By hiding the timing

information in the system, we are able to discuss the correctness properties of Ker-

beros relative the abstract specifications of an oracle rather than discussing specific

models of time.

37

We create an oracle that hides the model of time being used in the above pro-

tocol. The oracle uses a notion of suspicion. An oracle will suspect a process P if

the timestamp T is outside a bound B. The oracle takes three parameters, the first

two are taken from a message and the third is a property of the protocol.

P - process name included in the message
T - timestamp included in the message
B - acceptable upper bound on timestamp

We specify the oracle for a process Q as follows:

Suspect(PName P, Timestamp T, Bound B) ⇔ |timeQ − T | > B

If a process, Q, suspects a process, P, then the time at Q differs from the timestamp

created by P by more than bound B, |timeQ − T | > B . Additionally, the reverse

is true that if a message is received with a process name, P, and a timestamp, T,

that differs from Q’s time by more B, then Q will suspect P. The specification of

this oracle is the same check being performed currently in the Kerberos protocol.

As such, replacing these current checks with the specification of the oracle does not

change the correctness of this protocol. Figures 3.5, 3.6, and 3.7 show the Kerberos

protocol augmented with the oracle; note that C is not affected by adding the

oracle.

38

process C

const
KS, TS

var
s t a r t c : boolean , { i n i t i a l l y , s t a r t c = fa l se }
keyc : array [PName] o f in t ege r ,

{ i n i t i a l l y , keyc [KS] = KC,KS ∧
keyc [TS] = ⊥ ∧ keyc [S] = ⊥ }

nc : i n t ege r , { i n i t i a l l y , nc = ⊥ }
x , y , z : i n t e g e r

begin
∼ s t a r t c →

nc , s t a r t c := NNC, true ;
send krqs t (C, TS , nc) to AS

[]
rcv krp ly (x , y) from AS →

(x , z) := DCR(keyc [KS] , x) ;
i f z 6= nc → s t a r t c , nc := false , ⊥
[] z = nc →

keyc [TS] , nc := x , NNC;
send t r q s t (NCR(keyc [TS] , TIM) , y , S , nc) to AS

f i
[]
rcv t r p l y (x , y) from AS →

(x , z) := DCR(keyc [TS] , x) ;
i f z 6= nc → s t a r t c , nc , keyc [TS] := false , ⊥ , ⊥
[] z = nc →

keyc [S] , nc := x , ⊥ ;
send r q s t (NCR(keyc [S] , TIM) , y) to S

f i
end

Figure 3.5: Client with Oracle

39

process AS
const

KS, TS
inp

keyks : array [PName] o f Keys ,
{keyks [TS] = KKS,TS ∧
keyks [C] = KC,KS ∧ keyts [S] = ⊥ }

keyts : array [PName] o f Keys ,
{ keyts [KS] = KKS,TS ∧

keyts [C] = ⊥ ∧ keyts [S] = KTS,S }
L : in t ege r ,
D : i n t e g e r

var
keyas : i n t ege r , { i n i t i a l l y , keyas = ⊥ }
A : in t ege r ,
u , v ,w, x , y , z : i n t e g e r

begin
rcv krqs t (x , y , z) →

i f keyks [x] = ⊥ ∨ keyks [y] = ⊥ → sk ip
8 keyks [x] 6= ⊥ ∧ keyks [y] 6= ⊥ →

keyas := Random;
send krp ly (NCR(keyks [x] , (keyas , z)) ,

NCR(keyks [y] , (x , TIM + L , keyas))) to x
keyas := ⊥

f i
8 rcv t r q s t (w, x , y , z) →

(u , v , x) := DCR(x , keyts [K]) ;
i f (Suspect (KS , v , 0)) → sk ip
8 (∼ Suspect (KS , v , 0)) →

A := DCR(w, x) ;
i f (Suspect (u , A, D)) → sk ip
8 (∼ Suspect (u , A, D)) →

keyas := Random;
send t r p l y (NCR(x , (keyas , z)) ,

NCR(keyts [y] , (u , TIM + L , keyas))) to u
keyas := ⊥

f i
f i

end

Figure 3.6: Authentication Server with Oracle

40

process S
const

KS, TS
inp

D : i n t e g e r
var

auths : boolean , { i n i t i a l l y , auths = fa l se }
keys : array [PName] o f in t ege r ,

{ i n i t i a l l y , keys [KS] = ⊥ ∧
keys [TS] = KTS,S ∧ keys [C] = ⊥ }

A : in t ege r ,
v ,w, x , y , z : i n t e g e r

begin
rcv r q s t (v , w) −>

w, x , y := DCR(keys [TS] , w) ;
i f (Suspect (TS , x , 0)) − > sk ip
8 (∼ Suspect (TS , x, 0)) − >

A := DCR(y , v) ;
i f (Suspect (u , A, D) ∨ keys [C] 6= ⊥) →

sk ip
8 (∼ Suspect (u , A, D) ∧ keys [C] = ⊥) →

keys [C] , auths := y , true ;
f i

f i
end

Figure 3.7: Server with Oracle

41

CHAPTER 4

KERBEROS WITH INTRUDERS

The assumptions that Kerberos makes with respect to time are quite strict. How

do the guarantees of Kerberos change if the protocol is deployed in an environment

that does not adhere to such strong requirements? In [Gon92], Li Gong presents the

suppress-replay attack that expresses a vulnerability or insecurity in the Kerberos

protocol. Suppress-replay exploits Kerberos’s requirement on synchronized clocks.

In many networks, this requirement is hard, if not impossible, to maintain. The

attack addresses a vulnerability created when the clock of C advances ahead of real

time and C sends a message to S . Figure 4.1 shows a message being sent before the

fault, M1 , the fault occurring, and a message being sent after the clock of C has

drifted ahead 4 time units. In this example, we are considering 4 to be outside the

window of acceptable drift. The vertical lines mark specific moments in real time,

namely T1 and T2 . So M1 is sent at real time T1 , and M2 is sent at real time T2 .

The attack that Gong composes exploits the last message in Kerberos, sent from

C to S . This message contains a freshly generated timestamp from C . In this

example, when C incorporates a timestamp in message M1 , the clock of C has the

same value as real time and the timestamp T1 is included in message M1 . When

42

Figure 4.1: Clock Asynchrony

message M2 is constructed, the clock at C has drifted ahead. The timestamp

included in message M2 is T2 + 4 .

Figure 4.2: Future Timestamp

Gong considers two scenarios, one where the message reaches S and one in

which the message is suppressed. In the first case, when the message arrives at S ,

43

it appears to have been generated in the future (Figure 4.2). In this case, S will

deny access to the client, since the timestamp is not inside the acceptable window.

If the message never arrives at S , C is trivially not authenticated by S . In either

case, the message generated contains correct information, it is simply not valid at

the current moment in real time.

Figure 4.3: Replayed Message

The vulnerability arises from the creation of a message that is not currently valid,

but will be valid at some point in the future. Gong posits a simple intruder, I , that

either copies or suppresses the message with a future stamp, M2 . I holds onto the

message and sends the message at a future time when the message is valid, Figure

4.3. The intruder still cannot see the information inside the message. Thus, the

intruder must guess when the timestamp inside the message becomes valid. This

message will be indistinguishable from a valid message created by C and S will

authenticate I as C when sent at the appropriate time, violating one of the goals

of Kerberos.

44

4.1 Intrusion States

Gong describes two sets of intruders. The weaker set of intruders is capable

of copying messages from the channel ch.C.S and inserting messages into channel

ch.C.S . The stronger set of intruders has the ability to remove and insert messages

on channel ch.C.S . Each of element of these sets can be realized in AP notation.

For instance in one realization, the intruder might remove only the last message in

the channel; in another, the intruder might remove only messages at the front of the

channel. We label the weaker set of intruders as the set WI , the stronger as the set

SI . We limit the intruders in both sets to removing and inserting a finite number of

messages from the channel. Thus, we do not consider denial of service in any form.

In order to represent this fault scenario for Kerberos, we refine the state by

making the following substitutions. We use v and nv to represent valid and invalid

messages respectively.

A = krqst(nc)#ch.C.AS + trqst(nc)#ch.C.AS

A is the number of krqst and trqst messages whose nonces

are equal to the value of variable nc in C.

B = krply(nc)#ch.AS.C + trply(nc)#ch.AS.C

B is the number of krply and trply messages whose nonces

are equal to the value of variable nc in C.

45

D = rqst(v)#ch.C.S

D is the number of messages in the channel from C to S

with valid timestamps sent from process C.

E = rqst(iv)#ch.C.S

E is the number of messages in the channel from C to S

with invalid timestamps sent from process C.

F = rqst(v)#ch.C.S

F is the number of messages in the channel from C to S

with valid timestamps sent from process D.

G = rqst(iv)#ch.C.S

G is the number of messages in the channel from C to S

with invalid timestamps sent from process D.

We make substitutions into the previous state predicates. We also adjust the

states to represent the fault that may be injected in the system, namely that C ’s

clock drifts out of the acceptable bound. This affects only one state of the protocol,

q.5. This state now splits into two states, q.5’ and q.6. Previously, C created only

valid timestamps with q.5’ representing a message with a valid timestamp created

by C . The new state, q.6, represents a message with an invalid timestamp or the

occurrence of a fault in C . The resulting state diagram is picture in Figure 4.4. For

all other states, we explicitly substitute the above predicates. The resulting states

are listed in Appendix B.

46

Figure 4.4: State Transition Diagram

q.5’: A = B = E = F = G = 0 ∧ D = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.6: A = B = D = F = G = 0 ∧ ∧ E = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc = ∧ ∼ auths ∧ Z

Composing intruders with the protocol expands the reachable states for the pro-

tocol and creates a set of unsafe states. These states mimic the safe states, changing

only the number of messages in channel ch.C.S inserted from the intruder (F and

G). Since the intruder may insert messages with valid timestamps as well as invalid

timestamps, each safe state, q.i, corresponds to three unsafe states: one in which

the intruder has inserted valid messages, q.i.f, one in which the intruder has inserted

invalid messages, q.i.g, and one in which the intruder has inserted both valid and

47

invalid messages, q.i.fg. Here e, f, and ef, correspond to F > 0, G > 0 or (F

> 0 and G > 0) respectively. Thus, safe state q.0 corresponds to unsafe states

q.0.f, q.0.g, and q.0.fg. In the state diagrams, we see each safe state and the three

corresponding unsafe states connected in a small diamond. The transitions among

states are indicated by the name of the process executing an action that creates the

transition, S represents the Server action and D represents an Adversary action.

Due to space considerations, the transitional actions are shown only in the smaller

figure, not in the figures containing all the states. The intruder actions (inserting

messages) create transitions from safe states to unsafe states. The transitions among

unsafe states can be either actions of the intruder (inserting messages) or actions

of the server (retrieving intruder messages). The transitions from unsafe states to

safe states occur upon execution of the server action (retrieving intruder messages).

Figure 4.5 displays the state transition diagram for the diamond associated with

q.0; the states in the diagram are listed below.

Figure 4.5: State Diamond

48

q.0: A = B = D = E = F = G = 0 ∧

keyc[TS] = ⊥ ∧ keyc[S] = ⊥ ∧ keys[C] = ⊥ ∧

startc = false ∧ auths = false ∧ Z

q.0.f: A = B = D = E = G = 0 ∧ F > 0 ∧

keyc[TS] = ⊥ ∧ keyc[S] = ⊥ ∧ keys[C] = ⊥ ∧ startc = false ∧ Z

q.0.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = ⊥ ∧ keyc[S] = ⊥ ∧ keys[C] = ⊥ ∧ startc = false ∧ Z

q.0.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = ⊥ ∧ keyc[S] = ⊥ ∧ keys[C] = ⊥ ∧ startc = false ∧ Z

Each diamond contains unsafe transitions from states with valid intruder mes-

sages, q.i.f and q.i.fg, to states in the q.7 diamond Figure 4.6. All states in the

q6 diamond have accepted a valid message and set auths to true. The transitions

among the diamonds demonstrate the vulnerability created by the intruder inserting

valid message into the channel. These transitions model S authenticating a valid

intruder message.

49

Figure 4.6: Unsafe Transitions

4.2 Vulnerability of Kerberos

We consider the composition of the Kerberos Protocol, P , with intruders, WI

and SI , described in the previous section. The properties below are defined for a

general intruder, D . We divide the reachable state predicates of P into the set of

safe or valid states, Y, and the set of unsafe states, U. The set of critical variables,

V, in P (those that need protection from D), contains one element, auths .

Y =
10⋃
i=0

q.i

U =
10⋃
i=0

{q.i.f, q.i.g, q.i.fg}

Q = Y ∪ U

V = {auths}

Security to an intruder can be established by using three concepts of stabilization

theory: closure, convergence, and protection [Gou01],[AG93]. When composed with

an intruder, a protocol is secure against the intruder if these three conditions are

met and insecure if protection is violated.

50

1. Closure: The safe states, Y, are closed under the execution of any action of

P ; the reachable states, Q, are closed under the execution of any action of P

or any action of D .

2. Convergence: Starting in any reachable state, any infinite execution of the

actions of P lead to safe states.

3. Protection: No variable in V is written in any transition from a unsafe state

to a safe state.

We consider the security of PW , the composition of the Kerberos protocol, P ,

and the weaker set of intruders, WI .

PW is closed. From Figure 4.4, we see that the safe states, Y, are closed

under any action of P . The reachable states are closed under any action of PW .

Executing any action in PW results in a transition either inside a diamond or across

diamonds.

PW converges. No intruder messages are added to the channels: ch.C.AS ,

ch.AS.C , or ch.S.C . Each intruder message added to ch.C.S is eventually received

at S . An intruder can insert only a finite number of messages. Thus, for any infinite

run of the protocol, starting at an unsafe state u ∈ U leads to a safe state x ∈ X

where no intruder messages exist in ch.C.S .

PW is NOT secure. The Kerberos protocol is vulnerable when composed with

an intruder WI . When WI inserts a message with a valid timestamp and valid

lifetime into ch.C.S , this message is indistinguishable from a valid message sent

from C . Thus, when S receives the message, S will update the auths variable,

creating a vulnerability in Kerberos. Start in any unsafe state that contains valid

51

Figure 4.7: Vulnerable Window 1

intruder messages, q.i.f or q.i.fg. Action 1 of S may receive a valid message

from the intruder. Since the message is valid, S will set the auths variable and

transition to a state in the q.7 diamond. Once auths is set, its value never changes.

Thus, once entering the q.7 diamond, no transition leads away from this diamond.

Eventually, all intruder messages will be received by S , and the resulting state in

the q.7 diamond is q.7.

4.3 The Window of Vulnerability

Kerberos requires that clocks remain synchronized within a bound, B . The

result is that messages arriving at a principal will be accepted within a 2B window

(i.e. current time ± B). When a clock in the Kerberos system drifts out of the

acceptable bound, it creates a window of vulnerability. The size of this window

will be the duration for which the clock is outside of the bound plus an additional

52

Figure 4.8: Vulnerable Window 2

2B beyond the greatest time encountered. The following figures (4.7, 4.8, and 4.9)

demonstrate the vulnerable windows created by three different kinds of faults.

Figure 4.9: Vulnerable Window 3

In Figure 4.7, we see C ’s clock drifting above the bound, remaining ahead from

T2 to T5, and slowing back down to keep pace with real time. This type of drift

53

creates a vulnerability both when C has drifted above the bound (T2 to T5), as

well as an additional 2B time units. The greatest clock value that C holds outside

the bound is T5. Thus, the greatest timestamp that could be included in a message

will be T5. A message with timestamp T5 will be accepted by S until time T5 +

2B . The vulnerable window created by this clock drift is T2 to T5+ 2B .

In figures 4.8 and 4.9 notice that the vertical lines extend only to the horizontal

line representing S ’s clock. This is to avoid confusion between the C ’s clock jump-

ing values and moments in real time. Since C ’s clock is jumping up in both these

figures, the vertical slices extend only partially down the figure. For each moment

that C ’s clock is outside the allowable bound, a vulnerability is created in the sys-

tem for 2B time units. Figure 4.8 shows C ’s clock jumping above the bound for

one instance in time. When C ’s clock jumps ahead at time T2, it contains the value

T4. In this scenario, the vulnerable window spans from the out of bounds moment

until 2B plus the largest time held at C , T4+ 2B .

Figure 4.7, shows C ’s clock jumps ahead of real time at T2 and remaining ahead

for an extended time period. The greatest value that C ’s clock has before resetting

is T6. If C ’s clock drifts out of the acceptable bound at time T2 and has a largest

value of T6, a window of vulnerability is created from T2 until (T6+ 2B). Notice

here, as in the previous example, the window extends 2B past the largest time

held at C . C may reset sometime before T6, however the 2B is appended to the

greatest timestamp held, not the time at which C reset.

54

4.4 Modifying the Oracle

Kerberos requires a stronger oracle in order to thwart the suppress-replay attacks.

Since we have decoupled timing concerns from authentication concerns, we can adapt

the abstract properties of the oracle. Kerberos augmented with a stronger oracle can

then provide more guarantees on the security provided. We strengthen the oracle

first to impose the restrictions of “loosely synchronized” clocks. We then show that

augmenting Kerberos with this first strengthening does not thwart suppress-replay

attacks. Next, we create a stronger oracle specification that is able to thwart the

suppress-replay intruder.

The original specification (Oracle1) created an abstraction that captured the

check in the Kerberos protocol for a process, Q . This specification did not place

any restrictions on the synchronization of clocks at different processes.

Suspect(PName P, Timestamp T, Bound B) ↔ |timeQ − T | > B

We modify this specification to indicate that not only should the timestamp, T,

in the message be accurate, but also the clocks at two processes should be within a

bound of each other.

Suspect(PName P, Timestamp T, Bound B) ↔

|time− T | > B ∨ |timeQ − timeP | > B

Oracle2 identifies invalid timestamps within messages as well as durations in

which the clock at a process has drifted out of the acceptable bound. In the timing

diagrams, this oracle identifies a window starting when the clock drifts beyond the

bound and ending when the clock drift returns inside the bound. The suppress-

replay intruder creates a window of vulnerability for an additional 2B time units.

55

In order to capture this window, we must track when the clocks drift beyond the

bound as well as the 2B time units in the future for which a vulnerability is created.

The second strengthening (Oracle3) captures the window of vulnerability created

by the suppress-replay intruder.

Suspect(PName p, Timestamp T, Bound B) ↔

|timeQ − T | > B ∨ |timeQ − timeP | > B ∨

∃x : 0 . . . 2B : |timeQ,x − timeP,x| > B

In this oracle, a process Q suspects a process P if any of the following conditions

hold. The time at Q differs from the timestamp by more that a bound, B. The time

at process P and the time at process Q differ by more than B . Or, the time at

process P has differed from the time at process Q by more that B at some point

within the last 2B time units.

4.5 Correctness

PW augmented with Oracle3 is closed. See Section 4.2.

PW augmented with Oracle3 converges. See Section 4.2.

PW augmented with Oracle3 is secure. The Kerberos protocol is secure

when composed with WI . When WI inserts a message with a valid timestamp and

valid lifetime into ch.C.S , although the message is valid, the oracle will currently

suspect C . Thus, when S receives the message, S will discard the message without

updating the auths variable. Additionally, if WI inserts an invalid message, this

too will be discarded by S . Thus, the auths variable is never set upon receipt of a

message from WI . Hence, no transition from an unsafe state to a safe state effects

the variable auths .

56

CHAPTER 5

RELATED WORK

We introduce related work in three areas: designing authentication protocols,

reasoning about authentication protocols, and detection oracles. We briefly describe

these works and provide a comparison to the results presented in this thesis.

In practical systems, synchronized clocks can increase performance [Lis91, Gon93,

DS81]. Existing algorithms, such as the Network Time Protocol (NTP) [Milxt], pro-

vide mechanisms for the probabilistic synchronization of clocks. While clocks can be

synchronized with a very high degree of confidence, depending this synchronization

for correctness is problematic [Lis91, Gon92, BM91]. These problems arise when

the performance enhancements side effects correctness. While many have described

the dangers associated with relying on clock synchronization, to our knowledge none

have used oracles to characterize this space.

Many techniques exist for formally verifying authentication protocols, such as

modal logics, state machines, and theorem provers. Catherine Meadow surveys

these techniques in [Mea94]. Modal logics address belief and knowledge that can be

derived in a distributed system. Perhaps the most well-known is BAN logic [BAN96].

The goal of authentication, as well as the initial assumptions are cast into sets of

beliefs. After each message is received, a new set of beliefs is derived by applying

57

inference rules to the most recent set of beliefs. If the goal can be reached through

such applications, then the protocol has been proven correct. Discussions of this

area can be found in [SC01, Syv92].

State machine approaches are based on the work of Dolev and Yao [DY81] and of

Dolev, Even and Karp [DEK82]. These approaches analyze whether the reachable

states of the program contain unsafe states. State machine approaches address the

states themselves, while the concepts of stabilization discuss transitions among these

states.

Bella and Paulson [Pau98, Bel94] have explored the use of theorem provers to

inductively verify authentication protocols and have applied this approach to Ker-

beros [BP97, BP98b, BP98a]. None of their approaches consider time and how time

affects correctness.

Syverson [Syv93] augments BAN logic with temporal logic. This augmented logic

still does not consider synchronization parameters necessary for correctness.

Chandra and Toueg [CT96] introduced the use of oracles for detecting faults in

distributed systems. Their approach targeted solving the problem of consensus in

different distributed models. Their detectors create abstractions of different dis-

tributed models. These detectors can then be considered to determine the weakest

parameters in which a problem can be solved. Chandra and Toueg address per-

sistent failures. While others have created detection oracles for transient failures

[BDDT98], none have created detection oracles for clock drift.

58

CHAPTER 6

CONCLUSIONS

This thesis makes two contributions. We create oracles that encapsulate network

timing parameters decoupling them from the correctness of Kerberos, and we dis-

cuss the composition of Kerberos with different oracle specifications. We compose

Kerberos with a modified oracle and show how this composition thwarts adversaries

that Kerberos alone could not.

Currently, the Kerberos has a direct dependence on network timing parameters.

Thus, these timing parameters must be known to exist in order to dispatch the

correctness of the Kerberos protocol. We decouple the correctness of Kerberos from

network timing parameters by encapsulating the timing parameters in an oracle.

This allows for the correctness of Kerberos to be dispatched relative to abstract

properties of the oracle. These properties can be realized by many different networks

without requiring new proof obligations. In addition, modifications to the timing

parameters can be made independent of the protocol.

We model Kerberos using Abstract Protocol Notation, and assess the security

properties of Kerberos using three concepts of stabilization theory: closure, conver-

gence, and protection. We demonstrate the insecurity created by composing Ker-

beros with Gong’s weak and strong adversaries. We then discuss the modifications

59

of the oracle necessary to thwart these adversaries. We show that augmenting Ker-

beros with a modified oracle provides security against Gong’s adversaries. Finally,

we discuss the related work in this area.

60

APPENDIX A

A REALIZATION FOR RANDOM WITHOUT ⊥

Our realization of Random simply uses random but excludes special symbols.

The following example considers the symbol ⊥ to be defined as a specific integer

constant (the same assumption made in the realization of Kerberos). Figure A.1,

defines Random using AP notation. In this figure we assign x a Random value

that is not equal to ⊥ .

process Random

var
x : i n t e g e r { i n i t i a l l y , x = ⊥ }

begin

true →
do x = ⊥ →

x := random
od

end

Figure A.1: Random

61

APPENDIX B

STATES

B.1 Safe States

q.0: A = B = D = E = F = G = 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

∼ startc ∧ ∼ auths ∧ Z

q.1: B = D = E = F = G = 0 ∧ A = 1 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.2: A = D = E = F = G = 0 ∧ B = 1 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

62

q.3: B = D = E = F = G = 0 ∧ A = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.4: A = D = E = F = G = B = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.5’: A = B = E = F = G = 0 ∧ D = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.6: A = B = D = F = G = E = 1 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.7: A = B = D = E = F = G = 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = KC,S ∧

startc ∧ auths ∧ Z

63

q.8: A = B = D = E = F = G = 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.9: A = B = D = E = F = G = 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.10: A = B = D = E = F = G = 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

B.2 Safe and Unsafe States

q.0.f: A = B = D = E = G = 0 ∧ F > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ ∼ startc ∧ ∼ auths ∧ Z

q.0.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ ∼ startc ∧ ∼ auths ∧ Z

64

q.0.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ ∼ startc ∧ ∼ auths ∧ Z

q.1.f: B = D = E = G = 0 ∧ A = 1 ∧ F > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.1.g: B = D = E = F = 0 ∧ A = 1 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.1.fg: B = D = E = 0 ∧ A = 1 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.2.f: A = D = E = 0 ∧ B = 1 ∧ F > 0 ∧ G = 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.2.g: A = D = E = F = 0 ∧ B = 1 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

65

q.2.fg: A = D = E = 0 ∧ B = 1 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.3.f: B = D = E = 0 ∧ G = 0 ∧ A = 1 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.3.g: B = D = E = F = 0 ∧ A = 1 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.3.fg: B = D = E = 0 ∧ A = 1 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.4.f: A = D = E = G = 0 ∧ B = 1 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.4.g: A = D = E = F = 0 ∧ B = 1 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

66

q.4.fg: A = D = E = 0 ∧ B = 1 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧ startc ∧ ∼ auths ∧ Z

q.5.f: A = B = E = G = 0 ∧ D = 1 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.5.g: A = B = E = F = 0 ∧ D = 1 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.5.fg: A = B = E = F = 0 ∧ D = 1 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.6.f: A = B = D = E = 1 ∧ G = 0 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

67

q.6.g: A = B = D = 0 ∧ F = 0 ∧ E = 1 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.6.fg: A = B = D = 0 ∧ E = 1 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.7.f: A = B = D = E = G = 0 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = ⊥ ∧ keys[C] = KC,S ∧

startc ∧ auths ∧ Z

q.7.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = ⊥ ∧ keys[C] = KC,S ∧

startc ∧ auths ∧ Z

q.7.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = ⊥ ∧ keys[C] = KC,S ∧

startc ∧ auths ∧ Z

68

q.8.f: A = B = D = E = G = 0 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.8.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.8.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = KC,S ∧ keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.9.f: A = B = D = E = G = 0 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.9.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

69

q.9.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = ⊥ ∧

startc ∧ ∼ auths ∧ Z

q.10.f: A = B = D = E = 0 ∧ G = 0 ∧ F > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = KC,S ∧

startc ∧ ∼ auths ∧ Z

q.10.g: A = B = D = E = F = 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = keys[C] = KC,S ∧

startc ∧ ∼ auths ∧ Z

q.10.fg: A = B = D = E = 0 ∧ F > 0 ∧ G > 0 ∧

keyc[TS] = KC,TS ∧ keyc[S] = ⊥ ∧ keys[C] = KC,S ∧

startc ∧ ∼ auths ∧ Z

70

BIBLIOGRAPHY

[AG93] Anish Arora and Mohamed Gouda. Closure and convergence: A foun-
dation of fault-tolerant computing. IEEE Transactions on Software
Engineering, 19(11):1015–1027, nov 1993. Special Issue on Software
Reliability.

[BAN96] Michael Burrows, Mart́ın Abadi, and Roger Needham. A logic of au-
thentication, from proceedings of the royal society, volume 426, num-
ber 1871, 1989. In William Stallings, editor, Practical Cryptography for
Data Internetworks. IEEE Computer Society Press, 1996.

[BDDT98] Joffroy Beauquier, Sylvie Delaët, Shlomi Dolev, and Sébastien Tixeuil.
Transient fault detectors. In Proceedings of the 12th International Sym-
posium on DIStributed Computing (DISC’98), number 1499, pages 62–
74, Andros, Greece, 1998. Springer-Verlag.

[Bel94] Giampaolo Bella. Inductive verification of cryptographic protocols,
2000 1994.

[BM91] Steven M. Bellovin and Michael Merritt. Limitations of the Kerberos
authentication system. In USENIX Conference Proceedings, pages 253–
267, Dallas, TX, Winter 1991. USENIX.

[BP97] G. Bella and L. Paulson. Using isabelle to prove properties of the
kerberos authentication system. In H. Orman and C. Meadows, editors,
Workshop on Design and Formal Verification of Security Protocols.
DIMACS, 1997.

[BP98a] Giampaolo Bella and Lawrence C. Paulson. Kerberos version IV: Induc-
tive analysis of the secrecy goals. In J.-J. Quisquater, editor, Proceed-
ings of the 5th European Symposium on Research in Computer Secu-
rity, pages 361–375, Louvain-la-Neuve, Belgium, 1998. Springer-Verlag
LNCS 1485.

71

[BP98b] Giampaolo Bella and Lawrence C. Paulson. Mechanising BAN ker-
beros by the inductive method. In A. J. Hu and M. Y. Vardi, editors,
Proceedings of CAV’98, 10th Conference on Computer Aided Verifica-
tion, pages 416–427, Louvain-la-Neuve, Belgium, 1998. Springer-Verlag
LNCS 1427.

[CDEGR90] G. A. Champine, Jr. D. E. Geer, and W. N. Ruh. Project Athena
as a distributed computer system. IEEE Communications Magazine,
23(9):40–51, September 1990.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43(2):225–267,
1996.

[DEK82] D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong
protocols. Information and Control, 55:57–68, 1982.

[DS81] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key
distribution protocols. CACM, 24(7):533–535, August 1981.

[DY81] D. Dolev and A. Yao. On the security of public-key protocols. In
Proceedings of the 22nd Annual IEEE Symposium on Foundations of
Computer Science, pages 350–357, 1981.

[Gon92] Li Gong. A security risk of depending on synchronized clocks. Operating
Systems Review, 26(1):49–53, 1992.

[Gon93] Li Gong. Lower bounds on messages and rounds for network authentica-
tion protocols. In Proceedings of the 1st ACM Conference on Computer
and Communications Security, pages 176–183, November 1993.

[Gou98] Mohomad G. Gouda. Elements of Network Protocol Design. John
Wiley & Sons, INC, 1998.

[Gou01] Mohamed G. Gouda. Elements of security: Closure, convergence, and
protection. Information Processing Letters, 77(2–4):109–114, February
2001.

[KNT91] John T. Kohl, B. Clifford Neuman, and Theodore Y. Ts’o. The evo-
lution of the Kerberos authentication service. In Proceedings of the
Spring 1991 EurOpen Conference, 1991.

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Secu-
rity: Private Communication in a PUBLIC World. Prentice Hall PTR,
2nd edition, 2002.

72

[Lis91] Barbara Liskov. Practical uses of synchronized clocks in distributed
systems. In Proceedings of the 10th ACM Symposium on Principles of
Distributed Computing, pages 1–9, 1991.

[Mea94] Catherine A. Meadows. Formal verification of cryptographic protocols:
A survey. In ASIACRYPT: Advances in Cryptology – ASIACRYPT:
International Conference on the Theory and Application of Cryptology.
LNCS, Springer-Verlag, 1994.

[Milxt] David L. Mills. RFC 1305: Network time protocol
(version 3) specification, implementation, March 1992
http://www.networksorcery.com/enp/rfc/rfc1305.txt.

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos authentication and authorization system. Techni-
cal report, MIT, 1987. http://www.mit.edu/afs/athena/astaff/-
project/kerberos/www/papers.html.

[Neu] B. Clifford Neuman. The Kerberos Network Authentication Service
(V5). Internet request for comment RFC, Internet Engineering Task
Force.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: An authentica-
tion service for computer networks. IEEE Communications Magazine,
32(9):33–38, September 1994.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying crypto-
graphic protocols. Journal of Computer Security, 6:85–128, 1998.

[SC01] Paul Syverson and Iliano Cervesato. The logic of authentication pro-
tocols. Lecture Notes in Computer Science, 2171:63+, 2001.

[SNS88] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authen-
tication service for open network systems. In Winter 1988 USENIX
Conference, pages 191–201, Dallas, TX, 1988. USENIX Association.

[Syv92] Paul F. Syverson. Knowledge, belief, and semantics in the analysis
of cryptographic protocols. Journal of Computer Security, 1(3-4):317–
334, 1992.

[Syv93] Paul F. Syverson. Adding time to a logic of authentication. In Proceed-
ings of the 10st ACM conference on Computer and Communications
Security, pages 97–101, 1993.

[Tun99] Brian Tung. Kerberos: a network authentication system. Addison-
Wesley, Reading, Mass., 1999.

73

