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Abstract

The influence field is a commonly exploited fea-
ture in sensor network applications. By way of
example, it is used in classification and track-
ing of different types of objects using a wireless
sensor network. Being spatially distributed, this
feature allows us to tradeoff nodal computation
with network communication. By the same to-
ken, however, not only is its calculation subject
to nodal failures but also to channel fading and
channel contention. In this paper, we study how
to accurately and efficiently estimate the influ-
ence fields of objects in such an unreliable setting
so the objects can still be distinguished. We de-
rive, for node and network fault models, the nec-
essary nodal density for estimating the influence
fields. We also identify conditions under which ad-
ditional algorithmic techniques are needed to com-
pensate for faults and present three such tech-
niques: probabilistic reporting, temporal aggrega-
tion/segregation, and spatial reconstruction. We
provide experimental corroboration of our analy-
sis through 40-50 Mica2 sensor node experiments.
Finally, we demonstrate how reliable and efficient
classification and tracking were thus achieved in a
fielded system of 90 Mica2 sensor nodes that we
called “A Line In The Sand”.

1 Introduction

The influence field of an object is, intuitively
speaking, the region where the object is detectable
(see Fig. 1). The influence field of an object thus
depends on the type(s) of sensors being used for
detection (magnetometers in Fig. 1), and it is es-
sentially characterized by the area and the shape
of the region. It is useful for a variety of sensor
network applications, especially those of surveil-
lance, where typical tasks include detection, clas-
sification, and tracking of various types of objects.
This is because object types can often be distin-

guished based on their influence field areas and/or
shapes and located based on some intrapolation of
the influence field.

Figure 1. Magnetometer based influence
fields for two object types.

In a system that we recently fielded in several
outdoor settings, the influence field feature was
successfully exploited as the primary basis for clas-
sification and tracking of people, people carrying
a significant amount of metal on them (aka “sol-
diers”) and cars, via a dense, wireless sensor net-
work. The intended use of this system, which was
called A Line in the Sand, is to use a sensor net-
work to protect high-valued assets, to secure ex-
tended borders or perimeters, and to monitor ac-
tivity of personnel or vehicles in remote or access-
denied geographic areas. Our past deployments
covered only a 20m by 10m area using 90 sensor
nodes; currently, the influence field approach of A
Line in the Sand is being tested for deployment in
a 10km by 500m area using 10,000 sensor nodes.

The influence field approach should be con-
trasted to the traditional approach for classifica-
tion and tracking using some form of Unattended
Ground Sensors. The Remotely Monitored Bat-
tlefield Sensor System (REMBASS) is a represen-
tative example. REMBASS devices are equipped
with high-fidelity acoustic, seismic and magnetic
sensors and have sufficient processing power and
memory to perform time-frequency analysis and
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signature matching algorithms on the sensor out-
puts. These devices have a fairly large range for
some object types, and provide high classification
accuracy and low false positives. On the other
hand, they are expensive, require careful and pre-
cise deployment as well as frequent remote moni-
toring. Their coverage area for relatively small ob-
jects, such as persons, is rather limited. And the
failure of a single REMBASS device causes loss of
coverage in its region, as they are too expensive to
be redundantly deployed.

The drawbacks of the REMBASS approach mo-
tivate the use of a dense network of relatively in-
expensive nodes in contexts such as A Line in
the Sand. In turn, the resource constraints and
limited sensing and communication range of such
nodes —we used Mica 2 motes— motivate the
suitability of using the influence field. Each sensor
node merely has to detect a binary “presence” of
an object; network-based aggregation of these bits
yields the influence field without requiring sub-
stantial or complex node operation.

The key challenge in realizing the influence field,
as our experience with A Line in the Sand showed,
is the unreliability of wireless sensor networks.
Event loss –both in nodes and in the network– is
fundamental to wireless sensor node platforms and
its impact on the application can be substantial.
Thus both node and network unreliability have to
be dealt with in estimating the influence field.

In the particular case of A Line in the Sand,
network contention errors dominated the unrelia-
bility, intuitively because the number of messages
being aggregated was large relative to the capac-
ity of the network. This unreliability affected the
design not just of the application, but also of ev-
ery network service that we implemented. (As the
reader will see, in some instances, the network ser-
vice tuning has to be performed jointly with that
of the application.) To the best of our knowledge,
the impact of network unreliability in estimating
the influence field has not been addressed before,
nor has it been addressed in the context of dis-
tributed classification and tracking, which has led
us to the present work.

Contributions of the paper. In this pa-
per, we address the problem of reliably estimating
the influence field of various objects types in the
presence of various types of sensor network faults,
in terms of how to preserve the differences in the
area and/or shape across various object types.

For each fault type, we provide: (1) analyti-
cal results on the fault-affected estimates of the
influence field, (2) procedures for calculating the
ideal sensor node density for efficient and reliable
estimation, (3) algorithms techniques to provide
efficient and reliable estimation when the deploy-
ment density does not meet or exceeds the ideal
density, and (4) where appropriate, experimental
corroboration of our analysis or algorithmic tech-
niques realized using 40–50 Mica2 sensor node ex-
periments in our testbed.

Our results can be instantiated in a composi-
tional way, and thus accommodate cases where
multiple fault types occur. We show that shows
that node and network faults raise competing (i.e.,
two-sided constraints) on the density of the net-
work.

Finally, we show how we experimentally dealt
with reliable estimation of influence fields to clas-
sify and track persons, soldiers, and cars in A Line
in The Sand. The case study provides a data point
for the importance of dealing with network unre-
liability in both the network and the application
level. It also identifies a need for routing protocols
in sensor networks to provide uniform reliability
(at least for nodes that are equidistant from an
aggregator node).

Organization of the paper. In Sec. 2,
we describe previous related work. In Sec. 3, we
present the system and fault models. We define
and analyse the influence field feature, state its
relation to the concept of sensor coverage, and
formulate the problem of its reliable estimation
in Sec. 4. Then, in Sec. 5, we analyze the im-
pact of faults on estimation, derive necessary con-
ditions for reliably estimating the area and shape
of various objects’ influence field in a manner that
preserves their difference, and provide three algo-
rithmic techniques that to deal with these faults
whenever necessary. In Sec. 6, we provide some
details of our implementation of a A Line in the
Sand and how we dealt with different fault classes
in our design. Finally, we make concluding re-
marks and discuss future work in Sec. 7.

2 Related Work

The notion of influence of an energy source is
used in many science and engineering applications.
In some formulations, the distribution of the inten-
sity of the source at various points is considered
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while modeling its influence. For example, Kellogg
et al [1] model the temperature distribution of a
heat source across a region as an influence graph
and use the graph to design algorithms for dis-
tributed control. In other formulations, including
Zhao et al [14] and ours, the distribution of the
intensity is not modeled. Zhao et al [14] define
an influence area as the number of sensors that
“hear” an object. Our definition of the influence
field also captures the shape of the influence of the
object.

As mentioned in the introduction, we are not
aware of prior work on reliably estimating influ-
ence field of an object in the presence of network
faults. For the case of node faults, Krishnamachari
et al [8] have presented probabilistic decoding
mechanisms to detect regions of events in the pres-
ence of uncorrelated sensor faults with relatively
low probability (around 10%). Our work accom-
modates the case of uniform nodal failures, we also
present techniques to handle network faults whose
impact is non-uniform across the network such as
fading, and network faults whose failure probabil-
ity grows with the event size such as contention.

With respect to applications of the concept of
influence, Zhao et al [14] suggest that the influence
area can be used to track multiple targets that are
separated in space. To the best of our knowledge
our work is the first to consider the robustness of
the approach in classification and tracking in an
unreliable network (the A Line in the Sand net-
work has unreliability as high as 50%). We are not
aware of prior work that applies the estimation of
an influence field for robust classification.

Most approaches for classification and tracking
of targets that are not based on influence use a
centralized approach that typically involves pat-
tern recognition or pattern matching using time-
frequency signatures produced by the different
types of objects [3]. Meesookho, et al [2] de-
scribe a collaborative classification scheme based
on exchanging local feature vectors. The accu-
racy of this scheme improves only as the number
of collaborating sensors increases, which imposes
a high load on the network. By way of contrast,
Duarte et al [5] describe a classifier in which each
sensor extracts feature vectors based on its own
readings and passes them through a local pat-
tern classifier. Although the approach loads the
network only slightly, it requires significant com-
putational resources at each node. Most of the

work on distributed tracking is based on collabo-
rative signal and information processing, sequen-
tial Bayesian filtering, and extended Kalman fil-
tering [4,9–11,14,15], that require significant node
computation.

Our work relates the influence field to the no-
tion of sensor coverage [6, 13]. Typically, sensor
coverage is defined as independent of the type of
objects at hand, whereas we consider a definition
that is with respect to each target type.

3 System and Fault Models

In this section, towards defining and estimating
the influence field we outline the system model.
And towards analyzing the impact of faults on the
reliability of the estimation of influence fields, we
outline the fault models.

3.1 System model

The system consists of a number of wireless sen-
sor nodes, N . Each node has a unique identifier
and consists of a processing unit, memory, radio,
power source, and one or more sensors of different
types. A single node has limited processing power,
memory, and energy which make the execution of
complex, computation intensive algorithms on it
infeasible. We assume a localization service that
provides the relative or absolute position for each
node and a time synchronization service that en-
ables each node to timestamp its detection with
a time value that is the same at all nodes in the
network.

The sensor nodes are distributed uniformly over
a geographic region that is to be monitored. We
model this region as a large finite number, Ω, of
perfectly spaced logical points that serve as the po-
tential locations where nodes can be deployed. We
denote the ratio N/Ω by ρ, which intuitively rep-
resents the sensor density in the network. When
we refer to the area A of a subregion, we mean A
is the number of these Ω points in the subregion.

We assume that the wireless network is con-
nected, hence it is possible to aggregate messages
from any subset of the nodes in the system, al-
beit that such aggregation may require multi-hop
communications.

3.2 Fault models

Sensor networks are subject to a large class
of faults, resulting from inexpensive hardware,
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limited resources, unreliable communications and
extreme environmental conditions. We consider
both node and network fault types.

Node faults. Sensor nodes fail in a va-
riety of ways, including hardware failure, soft-
ware crash/deadlock/livelock, sensor or actuator
debonding, battery exhaustion, or simply in the
form of a transient event loss.

At any time, the net effect of a node fault can be
modelled as missing the detection of a object, i.e.
a false negative, or asserting the detection when
there is no object, i.e. a false positive. Although
the analysis and techniques described in the pa-
per can be made to apply to the latter class, we
henceforth consider only false negatives.

Node fault model: Formally, we assume that
the probability that any node misses the detection
of an event, whether it is due to transient, perma-
nent or intermittent node fault, is 1−pn. In other
words, we assume that false negatives at nodes
are independent of each other and independent of
the objects.

Network faults. Wireless communications in
the multi-hop network are subject to both fading
and contention effects.

Due to the limited transmission power of each
node, messages sent over the wireless channel are
subject to propagation loss in the medium. This
fading loss depends on link characteristics such
as distance, relative orientation of sender and re-
ceiver, altitude differences, environmental condi-
tions, etc.

Fading model: Formally, we assume that there
is a uniform probability, 1 − pf , of message loss
due to fading for any single hop communication in
the network. It follows that in the absence of any
other faults, the probability of message loss due to
fading for any h hop communication is 1− ph

f .
The broadcast nature of wireless communica-

tion implies that nodes share the same physical
channel. This leads to loss due to channel con-
tention when multiple senders try to transmit mes-
sages on the same frequency at the same time.
The degree of message loss depends on several
factors like the type of Medium Access Control
(MAC) protocol used, the inherent synchronicity
of message transmissions, and most importantly
the number of nodes trying to send data simulta-
neously. We assume a standard CSMA/CA MAC

protocol wherein nodes try to avoid collisions us-
ing random backoffs and channel sensing.

Contention model: Formally, we assume that
there is a uniform probability, 1 − pc, of message
contention loss that is a function of the number
of nodes simultaneously trying to send a message
each and of the number of slots available for a
node to choose its random backoff from. (Charac-
terization and experimental corroboration of this
function is provided in Sec. 5).

4 Influence Field

The influence field of an object j with respect to
a given sensing modality is the region surrounding
j where j will be “detected” by a sensor of that
type located at any point in that region. By de-
tected, we mean that the signal-to-noise ratio of
the disturbance created by the object at the sensor
exceeds a fixed detection threshold.

Of course, the influence field of different objects
may differ for a given sensor modality: e.g., a car
may have a larger influence field area than that
of a motorcycle with respect to magnetometer
sensors. And the influence field may differ for
different sensor modalities: e.g., a car may have
a smaller influence field area than that of a
motorcycle with respect to acoustic sensors.

Assumptions. For simplicity of presentation, we
assume that the size of the influence field of j is
invariant with respect to its location. Likewise,
the shape of the influence field is invariant with
respect to location, up to rotation. Also for sim-
plicity, we limit our attention to one given sensing
modality. The modality will remain implicit in our
notation.

4.1 Estimating the influence field

Estimation consists of calculating the area and
the shape of the influence field. Recall that the
distribution of sensor nodes is uniform.

Regarding the former, if we assume sensor node
density ρ exceeds some lower bound that depends
on the targets at hand, the estimation of the area
A of the influence field of j is effectively reduced
to counting the number of nodes that detect j.
With uniform distribution, the number of sensors
in any region of area A follows a binomial distribu-
tion with parameters (A, ρ). For practical values
of A and ρ, we can exploit the rule of thumb for
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the normal approximation to this binomial distri-
bution that the value of the random variable lies
within 3 times the standard deviation of the ex-
pected value in 99% of the trials.

Proposition 1 Given uniform deployment of
sensors, whp the number of sensors that lie in the
influence field of j is in the interval

(A× ρ) − 3×√
A× ρ× (1− ρ) ..

(A× ρ) + 3×√
A× ρ× (1− ρ)

Relation to sensor coverage. Sensor coverage
in a region is the minimum number of sensors that
“cover” (i.e., will detect) each point in the region.
While this typical definition of the concept is in-
dependent of the type of objects at hand, a more
useful definition for our purposes would be one
that is with respect to each object type. (Thus,
the sensor coverage of object j in a region may
be different from the sensor coverage of another
object in that region.)

Consider the influence field of j. Since sen-
sor nodes are distributed uniformly, the number
of sensor nodes in the influence field of j has the
same distribution as the number of sensor nodes
that cover j when j is located at any point in a
region of area A. We can now relate the area of
the influence field of j to sensor coverage of j.

Proposition 2 Given a uniform deployment of
sensor nodes and any region of area A. If K is the
sensor coverage of j in that region, then whp

K ≥ (A× ρ) − 3×√
A× ρ× (1− ρ)

Regarding the shape of the influence field, if we as-
sume that the sensor density exceeds some lower
bound that depends on the objects at hand, es-
timating the shape of the influence field of j is
effectively reduced to calculating the shape of the
region that smoothly bounds the sensor nodes that
detect j.

4.2 The problem of reliable estimation

Node and network faults impact estimation of
the area and the shape of the influence field of
j. In particular, the impact may not be simply
proportional to the area and the distribution of
the sensors whose detections are successfully ag-
gregated may no longer be uniform.

Classification is an example of an application
that can exploit area estimation. Different object

types may be classified via separation between the
areas of their respective influence fields. Errors in
area estimates can thus result in misclassifications.

Tracking is an example of an application that
can exploit shape estimation. Object location may
be tracked from the locations of the sensors that
detect it, i.e., by computing the centroid of their
locations. Shape distortion errors can thus result
in inaccuracy of tracking. (The same argument
would apply for classification based on the shape
of the influence field.)

We are therefore led to the problem of how to re-
liably estimate the size and shape of the influence
fields of objects so that they can still be compared.
More specifically, we focus on two subproblems of
reliable estimation:

1. How to ensure that for objects whose respec-
tive influence field areas are separable, the
separation remains between the fault-affected
estimates of their respective influence field ar-
eas?

2. How to preserve the shape of the influence
field of an object in the fault-affected esti-
mate of the object influence field, by preserv-
ing the uniformity of distribution of the sen-
sors whose detections are not affected?

5 Reliable Estimation

In this section, we address problems 1. and
2. outlined above successively for each of the fault
models discussed in Sec. 3. Specifically, for each
fault model,

• we analytically identify necessary conditions
for accurately preserving the separation be-
tween area estimates and the shape estimates,

• we derive an ideal density for node de-
ployement with respect to the given sensing
modalilty for the efficiency of estimation, and

• we characterize algorithmic techniques and
parameter tuning options to deal with situa-
tions where the ideal density is not achievable,
including cases where the deployed density is
less than and more than ideal.

Also, where appropriate, we provide experimen-
tal corroboration of our analysis and algorithmic
techniques via experiments realized on Mica2 sen-
sor motes.
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We note that, conceptually, the analyses for
the node faults and the fading faults are simi-
lar, whereas that for the contention faults is dif-
ferent. Moreover, our approach is compositional
and thus the analysis, which is presented sepa-
rately for each fault type, can build upon the
constraints/distributions identified for other fault
types.

5.1 Nodal failures

Let A1, A2, ... Ak be the influence fields of
k types of objects ranging from the smallest to
the largest. Recall that pn is the probability that
a sensor node does not miss a detection. The
number of non-faulty nodes in a region of area Ai

thus has a binomial distribution with parameters
(ni, pn), where ni is the number of nodes in the
area Ai. However, since the network is uniformly
distributed with nodes, ni itself is a random vari-
able that a binomial distribution, with expected
value E(ni) and variance V (ni) as follows:

E(ni) = ρ×Ai (1)

V (ni) = Ai × ρ× (1− ρ) (2)

The mean and variance of the number of nodes
detecting object i, respectively E(di) and V (di),
are then as follows:

E(di) = ρ×Ai × pn (3)

V (di) = Ai × ρ× pn × (1−ρ× pn) (4)

For this distribution for variously chosen values
of Ai, ρ and pn, we heuristically observe that in
99% of the trials, the value of the random variable
lies within three times the standard deviation of
the expected value.

In order for separation between object types to
be maintained whp, we require the following in-
equality to hold for each pair (i, i+1).

E(di+1)−(3×
√

V (di+1)) > E(di)+(3×
√

(V (di)) (5)

Using Eqs. 3, 4, and 5, the minimum density
ρi(i+1) required to maintain separation between ob-
jects i and i + 1 whp, is given by the following
condition.

ρi(i+1) >
B

(pn + B × pn)
(6)

where

B =
9× (

√
A(i+1) +

√
Ai)2

(A(i+1) −Ai)2
(7)

Let ρ̂ be the maximum of all ρi(i+1). ρ is
then the minimum density required to maintain
separation between object types whp in the pres-
ence of independent nodal failures with uniform
probability pn.

Dealing with inadequate density by tem-
poral aggregation. If the density of the
network is less than ρ̂, temporal aggregation can
be used to obtain the necessary separation of
object types. In this technique, we aggregate
the influence fields of object over a fixed interval
of time t. The aggregated influence field is the
area covered by the object in time t. This area
depends on the size, shape and motion model of
the object. Using Eq. 5, we can determine the
interval over which we need to aggregate to be
able to separate object types whp. The influence
field is thus used in a spatio-temporal context. In
this manner, we can also separate object types
that have the same influence field but different
motion models.

Dealing with excess density by probabilis-
tic reporting. If the density of the network is
greater than ρ̂, we can improve system efficiency
and lifetime by decreasing the number of messages
sent over the network and still accurately estimate
the influence field. Here, each node reports a mes-
sage with uniform probability Pr. The number of
reporting nodes in an area Ai is thus a random
variable with mean and variance as given below:

E(ri) = ρ×Ai × pn × Pr (8)

V (ri) = Ai × ρ× pn × Pr × (1−ρ× pn × Pr) (9)

In order for separation between object types to
be maintained whp, we require the following in-
equality to hold for each pair (i, i+1)and (Pr)i(i+1)

is the probability of reporting.

E(r(i+1))−(3×
√

(V (r(i+1))) > E(ri)+(3×
√

V (ri))
(10)

Using Eqs. 8, 9 and 10, the minimum prob-
ability (Pr)i(i+1) required to maintain separation
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between objects i and i+1 whp, is given by the
following condition:

(Pr)i(i+1) >
B

((pn × ρ) + (B × pn × ρ))
(11)

where

B =
9× (

√
A(i+1) +

√
Ai)2

(A(i+1) −Ai)2
(12)

Let Pr be the maximum of all (Pr)i(i+1). Pr is
then the minimum probability required to main-
tain separation of object types whp in the presence
of independent nodal failures.

5.2 Fading error over multiple hops

We now obtain a necessary condition to achieve
separation of object types in the presence of fad-
ing over multiple hops en route to the aggregator.
For simplicity, we assume that the object size is
small as compared to the distance from the aggre-
gator, hence all detections corresponding to the
same object travel the same number of hops.

Recall that pf is the probability of a message
being received over a single hop in the presence of
fading. Thus, over h hops, the probability of suc-
cessful reception of a message equals (pf )h. Again,
these failures being independent, the number of
successful transmissions at any distance has a bi-
nomial distribution.

Since the messages originating from nodes
closer to the aggregator have lower probability
of failure, the influence field of a smaller object
close to the aggregator can overlap with that
of a larger object farther away. We apply the
following techniques to maintain separation whp,
between influence fields of two object types in the
presence of fading errors.

Dealing with fading errors by distance de-
pendent probabilistic reporting. In order to
compensate for non-uniform reception probability,
we once again use the probabilistic reporting tech-
nique. Let D be the maximum number of hops to
the aggregator. The probability of reporting for
a sensor at distance h from the aggregator is set
to p

(D−h)
f . Thus, the probability of reporting for

nodes D hops from the aggregator is 1, while for
h = 1, the probability of reporting is p

(D−1)
f .

The number of messages successfully received
for an object i which is h hops away from the
aggregator, is a random variable f(h) whose ex-
pected value and variance are obtained as follows:

E(f(h)i) = Ai×ρ×pD−h
f ×ph

f = Ai×ρ×pD
f (13)

V (f(h)i) = Ai × ρ× pD
f × (1− (ρ× pD

f )) (14)

In order for separation between object types
to be maintained whp for each pair (i, i+1), we
require that the number of messages successfully
received whp for the smaller object i located at
h = 1 be less than the number of messages suc-
cessfully received whp for the larger object i+1
located at h = D.

E(f(D)j)−(3
√

V (f(D)j)) > E(f(1)i)+(3
√

V (f(1)i))
(15)

However, from Eq. 13 and Eq. 14, we observe
that using distance based probabilistic reporting,
the distribution of the number of successfully re-
ceived messages is independent of the number of
hops.

Thus, from Eqs. 13, 14 and 15, the minimum
density ρi(i+1) required to maintain separation be-
tween objects i and i+1 whp, is given by the fol-
lowing condition:

ρi(i+1) >
B

(pD
f + (B × pD

f ))
(16)

where

B =
9× (

√
A(i+1) +

√
Ai)2

(A(i+1) −Ai)2
(17)

Let ρ̂ be the maximum of all ρi(i+1). ρ̂ is then the
minimum density required to maintain separation
between object types whp in the presence of fading
errors.

Note that we can deal with conditions where
we have less than or more then this density ρ by
using the techniques discussed in Sec.5.1.

Dealing with fading errors by spatial recon-
struction. As an alternative to probabilistic
reporting, we present the spatial reconstruction
technique wherein the aggregator can compensate
for multi-hop losses, given the source information
for the messages it receives. Spatial reconstruc-
tion is the dual of probabilistic reporting. Since
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the probability of receiving a message from a node
h hops away is ph

f , if k messages are received from
distance h, the aggregator considers this as having
received k

ph messages. In this case, all detecting
nodes transmit with the same probability, which
may be lower than 1 for reasons of efficiency as dis-
cussed earlier. The necessary conditions required
to maintain separation between object types can
be derived as before.

5.3 Channel contention over a single hop

Next, we analyze the effect of interference due
to channel contention. Message losses due to colli-
sion occur in wireless sensor networks due to lack
of a collision detection mechanism. In our event
based traffic model, all nodes detect an object si-
multaneously and hence compete for the channel
at the same instant. Thus, as the event size in-
creases, the message losses increase too. We ana-
lyze the effect of channel contention on the aggre-
gation, under the assumption of the following one
hop model.

Suppose n nodes, all within one hop of each
other and the aggregator, detect an object and
want to convey this detection to a aggregator.
Whenever a node detects an event, it randomly
chooses one of c channel slots for transmitting the
message. Let c be greater than n. If multiple
nodes choose the same slot, their messages collide
and all of them are assumed to be lost. In a sense,
this models a random backoff MAC scheme.

The expected number of messages that will be
successfully received by the aggregator equals the
expected number of slots that are chosen by ex-
actly one node. This is an instance of a classical
occupancy problem in combinatorics. Let X1, X2,
... , Xn be random variables, so that Xi is 1 if
a slot is chosen by exactly one node and 0 oth-
erwise. The probability that a slot is chosen by
exactly one node is equal to the probability that
all other nodes choose different slots. This is the
probability that a message does not get lost due
to channel contention, which we denoted as pc in
Sec. 3.

pc = (1− 1/c)(n−1) (18)

The number of nodes with a slot for themselves,
i.e., the number of messages that do not get lost
due to channel contention is a random variable
having a binomial distribution with parameters

(n, pc). The mean and variance of the distribu-
tion, denoted as E(s) and V (s), are as follows:

E(s) = n× pc = n× (1− 1
c
)(n−1) (19)

V (s) = n× pc × (1− pc) (20)

From Eq. 19, it is seen that for a given c, as n
increases, the expected number of successful mes-
sages reaches a maximum and then starts decreas-
ing.

Definition: The inversion point of a net-
work with respect to a given observer is
the number of senders for which the ex-
pected number of messages received is
maximum.

The inversion point, denoted as ninv, obtained by
solving for the maxima of Eq. 19 is as follows:

ninv =
1

ln(1 + 1
c )

(21)

Due to inversion, the aggregator may receive
fewer detection messages for a larger object than
it receives for a smaller object, hence the sepa-
ration between object types may not be preserved.

Experimental results.

Figure 2. Network reliability under varying
traffic load in a one hop network.
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Fig. 2 shows the experimentally measured
impact of increasing the number of transmitters
on the network reliability of the single hop model.
This experiment was performed using Mica2
motes running TinyOS [7] version 1.0, using
globally synchronized time to generate concurrent
messages. The nodes were placed in a circle
around the aggregator within one hop of each
other and of the aggregator. The transmission
power of the nodes was set to be high enough
to negate fading losses in the medium. The
experimental results in Fig. 2 have been aver-
aged over 50 trials for each of the traffic loads
ranging over 1-40. For the traffic loads under
consideration, not only does the reliability of the
network decrease significantly as the number of
nodes increases, but it leads to the inversion effect
as can be seen in Fig. 3. Network unreliability
also causes an overlap between the number of
messages that can be received at the aggregator
implying that previously separable influence fields
will no longer be separable.

Figure 3. Inversion in a one hop network.

Dealing with inversion by probabilistic re-
porting. In order to eliminate inversion, we scale
down the number of messages sent by reporting
with a uniform probability Pr. For an object i,
the number of nodes that will detect the object
correctly is a random variable with expected value
and variance as follows:

E(ri) = Ai × ρ× Pr (22)

V (ri) = Ai × ρ× Pr × (1− ρ× Pr) (23)

Recall from Eq. 18 that the probability of a
message being successfully received for a object
i is dependent on the number of reporting nodes,
which itself is a random variable. We make a sim-
plifying assumption that while the number of re-
porting nodes for a object is a random variable,
the probability of success is uniform and depends
on the expected number of reporting nodes. This
assumption results in a smaller traffic load being
subjected to larger contention than it would really
experience. Similarly, the larger traffic loads are
subjected to lower contention than actual. Con-
sequently, the interval over which the number of
received messages is distributed, subsumes the in-
terval that would be obtained in practice. Hence,
the necessary conditions for maintaining separa-
tion between object types, resulting from our as-
sumption are conservative.

We now have for object i

pci = (1− 1/c)(E(ri)−1) (24)

Using Eqs. 22 and 24 the number of messages
that are successfully received for this object is now
a random variable whose mean and variance are
given by:

E(si) = Ai × ρ× Pr × pci (25)

V (si) = Ai×ρ×Pr×pci×(1−(ρ×Pr×pci)) (26)

In order for separation between object types to
be maintained whp, we require the following in-
equality to hold for each pair (i, i+1):

E(s(i+1))− 3×
√

V (s(i+1)) > E(si) + 3×
√

V (si)
(27)

The following procedure can be used to mechan-
ically select the probability of reporting such that
the influence fields for all object types are separa-
ble.
select-pr()
begin

• For each pair (i, i+1), where 1 ≤ i and i <
k, using Eq. 25, 26 and 27, obtain a range
of probabilities given by the closed interval
(min((Pr)ij),max((Pr)ij)).

• Let (Prmin, Prmax) denote the intersection
of all such ranges.
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• If the intersection is not empty, choose Pr =
Prmin.

end
When all nodes report with uniform probability
Pr obtained by the above procedure, separation
between object types is maintained whp.

Dealing with empty intersection by tem-
poral segregation. If the procedure de-
scribed in the previous subsection returns an
empty range of feasible reporting probabilities,
there exist a, b, c such that a < b < c and
max((Pr)ab) < min((Pr)bc). Thus, there exist
pairs for which eliminating inversion requires
a small probability of reporting. In order to
overcome this, the inversion point has to be
increased. According to Eq. 21, this can be
achieved by increasing the number of channel
slots c. By doing this, we temporally segregate
the messages. Temporal segregation can also be
achieved by incorporating an additional appli-
cation level backoff before reporting a message.
Note that one can also eliminate the problem of
channel contention by precisely scheduling the
transmission of messages. One example of such
a scheme is TDMA. The drawback of all these
schemes is that they incur an additional delay
overhead.

Experimental results.

Figure 4. Probabilistic reporting using p=0.5.

Fig. 4 shows the results of using the prob-
abilistic reporting scheme with probability for

transmitting a message as 0.5 for the same exper-
imental setup as in the previous subsection. At
each concurrent sending event, all the potential
transmitters independently decide whether or
not to transmit their message. The graph shows
that by using probabilistic reporting, inversion is
avoided for the traffic loads under consideration.
However, note that the intersection in this case is
empty hence even with probabilistic transmission,
we do not achieve disjoint ranges of message
reception.

Figure 5. Temporal segregation by increasing
number of channel slots.

Fig. 5 shows the results of increasing the num-
ber of slots available for backoff on the reliability
of the single hop network. The experimental
setup was similar to the first case wherein all
nodes transmitted concurrently. However, in this
experiment, the number of slots available for
choosing when to transmit was quadrupled as
compared to the previous case. Once again, the
results have been averaged over 50 trials for each
traffic load. As seen from the graph, by increasing
the number of slots, we are able to avoid inversion
for the traffic loads under consideration. The
graphs also demonstrate that the overlap between
messages received was eliminated for some traffic
loads and significantly reduced for others. In fact,
if the number of slots were increased even further,
there would be no overlap.
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Remark on tracking. As discussed in Sec. 4,
the centroid of the estimated shape of the influence
field for a object can be used to track it. In the
absence of faults, the centroid approach still works
because the nodes are deployed with uniform prob-
ability. Nodal faults occur independently at each
node with a certain probability, hence the distri-
bution of failed nodes over the influence field can
be assumed uniform. Similarly, the one-hop con-
tention model for faults is based on nodes select-
ing the same slot for transmission randomly, hence
again the distribution of failures is uniform.

In the multi-hop case, however, the probabil-
ity of failure is non-uniform because nodes far-
ther away are subject to a higher loss rate than
nodes nearby. However, the techniques of distance
dependent probabilistic reporting and spatial re-
construction compensate for the non-uniformity of
network failures. E.g., in the distance dependent
probabilistic reporting scheme, at each hop far-
ther from the aggregator, the probability of loss
increases but the number of nodes reporting from
that region is also scaled up accordingly so that
messages are received uniformly over the entire in-
fluence field. Similarly, in the spatial reconstruc-
tion scheme, each message received from a region
farther out is weighted accordingly to get a uni-
form spatial representation of the influence field.
Due to the uniformity preserving nature of faults
or the techniques described above, the shape of the
influence field is preserved and we can still use the
centroid approach to reliably track the movement
of objects in the network.

6 Case study: A Line In The Sand

In this section, we describe the implementation
of a distributed classification and tracking sys-
tem using a wireless sensor network. The system,
called A Line In The Sand consists of 90 MICA2
motes deployed in a grid-like manner with 1.5m
inter-node separation to cover a 20m x 10m area.
A Line In The Sand has been deployed in several
outdoor settings to accurately distinguish between
civilians, soldiers and cars by estimating their in-
fluence fields based on magnetometer and micro-
power impulse radar sensors. For simplicity of pre-
sentation, we only describe classification between
a soldier and a vehicle using magnetometer based
influence fields.

A magnetometer sensor measures the value of

the magnetic field around it. As metallic objects
approach these sensors, they create a disturbance
in this magnetic field which can be detected by
the sensors using techniques like variance-based
thresholding. The amount of disturbance created
by a vehicle containing a large amount of metal
is significantly higher than that created by a
soldier carrying a limited amount of metal in the
form of weapons, etc. As explained in Sec. 4, the
average inter-node separation of 1.5m and hence
the density, of the network is dictated by the
ability to sense and detect the smallest object
in the system, i.e., a soldier. Consequently, in
this high density network, a vehicle generates a
large number of concurrent detections. Network
loss due to contention, hence poses the key
challenge in A Line In The Sand. To add to this,
the limited communication range of each node
necessitates the use of multi-hop routing to the
classifier. Node communications are therefore
subject to faults due to both contention and
fading over multiple hops. Each of the services
or components in our system had to be designed
specifically to handle this network unreliability.
In this section, we focus only on issues relating to
the classification and tracking application.

Influence field measurements.

Figure 6. Probability Distribution Functions
of the Influence field of a soldier versus a car
measured experimentally at the motes.

Fig. 6 shows the probability distribution func-
tion for the influence fields when measured at the
nodes. In this outdoor experiment, timestamped
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detections were recorded in the non-volatile
memory at each mote during 100 runs of a soldier
and car each, moving through the network.
These detections were then downloaded offline
and time-correlated to recreate the measured
influence fields and their probability distribution.
While these nodal detections were subject to
nodal and sensing faults, the measured influence
fields were derived in the absence of network loss
due to contention or fading.

Effect of network faults. As can be seen
from the probability distributions in Fig. 6, there
exists a clear separation between the measured
influence fields for a soldier and a car, suggesting
that classification between these object types
should be feasible. However, the difference in
message traffic generated by these object types
affect network reliability differently. In the case
of a soldier, the size of the influence field is
relatively smaller and so the dominant losses are
due to fading over multiple hops en route to the
classifier. By tuning certain network parameters
like transmission power of nodes relative to the
average internode spacing of 1.5m, the effects of
fading can be substantially mitigated. For a car
though, the influence field is significantly larger,
hence contention losses dominate multi-hop fad-
ing effects. Indeed, as predicted by the analysis in
Sec. 5, we observe that reliability drops sharply
for a car when compared to the soldier case.

Dealing with network faults. Routing reliabil-
ity. The implications of network loss for protocol
design are significant. From the analysis in Sec. 5
and the experimentally measured influence fields,
we can derive the minimum reliability needed in
the network to be able to separate the influence
fields for a car and a soldier. In this particular
case, we require that the number of messages re-
ceived in the case where the least number of nodes,
i.e. 37, detect the car, when hit by the minimum
reliability should still be separable from the num-
ber of messages received in the case where the
maximum number of nodes, i.e. 16, detect a sol-
dier, and are subjected to the best network relia-
bility which of course is bounded by 1. The min-
imum required reliability for our network is thus
17/37 or 45%.

Figs. 7 and 8 demonstrate the impact of net-
work unreliability on the accuracy of estimating

Figure 7. Influence field PDFs for soldier ver-
sus vehicle measured experimentally at the
classifier using baseline routing protocol.

influence fields and hence on classification and
tracking. Fig. 7 shows the probability distribu-
tion of the influence fields estimated by the clas-
sifier based on the messages received in each of 50
runs of a soldier and a car using a baseline rout-
ing protocol. Fig. 8 shows the distribution of the
estimated influence fields for the same objects us-
ing the GridRouting protocol with appropriately
tuned network parameters. As seen from the two
graphs, the baseline version, which provides lower
reliability, suffers from the inversion problem de-
scribed in Sec. 5 whereas the GridRouting protocol
meets the reliability requirements of the applica-
tion and preserves separation between the object
types.
Uniformity of routing reliability. Recall from
Sec. 5 the requirement that for accurate classifica-
tion and tracking, the reliability should not only
be above a certain threshold, but also be uniform.
Our experiments with different routing protocols
have shown that the number of messages received
under varying traffic loads and the distribution of
these messages over the source region vary sig-
nificantly for different routing protocols. Fig. 9
shows a comparison between the experimentally
measured performance of two routing algorithms:
GridRouting and MintRoute [12].

The experimental setup for this test consists
of a 7x7 grid of motes spaced 1.5m apart in a
manner similar to LITeS. Fig. 9 shows this layout
with the classifier node at the bottom left corner.
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Figure 8. Influence field PDFs for soldier ver-
sus car measured experimentally at the clas-
sifier using GridRouting protocol.

Figure 9. Comparison of uniformity of net-
work reliability between GridRouting and
MintRoute.

Two sets of experiments were conducted, one for
each of the routing protocols running on TinyOS
version 1.0. Each node in the figure has been
labelled with the fraction of detection messages
generated by that node which were received by
the classifier. As can be seen from the figure, for
the traffic model in A Line In The Sand, wherein
a large burst of traffic is generated by detections
for a car, GridRouting provides substantially
more uniform reliability than MintRoute. Note
that even in GridRouting, the overall reliability
decreases as we consider nodes farther away
from the classifier, as explained by the multi-hop
analysis in Sec. 5. However, the nodes along
the diagonal, which are equidistant from the
classifier have fairly similar reliability in the case
of GridRouting. The GridRouting protocol thus

meets our requirement of uniformity of failure
probabilities for nodes at the same distance from
the classifier.

Figure 10. Classification and tracking of a car
in A Line In The Sand.

System performance. Finally, we give some
performance data for A Line In The Sand. By
considering the influence field analysis and appro-
priately tuning the network protocols and param-
eters, we were able to achieve the desired classi-
fication accuracy of 99%. The accuracy of track-
ing is higher for the soldier (1-2m) as compared
to a car (3-5m) providing further evidence of the
claim that reliability and uniformity are depen-
dent on the object type. The system is able to
classify and track multiple objects moving concur-
rently through the network as long as they are sep-
arated by a minimum distance threshold. Fig. 10
shows a snapshot of the classification and tracking
output produced by the system for a car moving
through the network.

7 Conclusions and Future Work

In this paper, we considered the problem of reli-
ably estimating the influence fields of different tar-
get types in a wireless sensor network subject to
a variety of faults. We provided mechanical pro-
cedures for sensor node density selection as well
as algorithmic techniques appropriate for dealing
with each fault class. Corroboration of our results
and techniques was provided through at-scale ex-
periments.

We showed how reliable estimation was
achieved to enable accurate classification and
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tracking in A Line In The Sand. The case study
also provided a data point for the significant im-
pact of network unreliability on network and appli-
cation design, as well as one for a need for routing
protocols in sensor networks to provide uniform
reliability.

Our work reveals a notable co-dependence be-
tween application design and network design.
To achieve the desired estimation reliability, we
needed in some cases to use both techniques that
affected the network (such as tuning of MAC or
routing protocol parameters) and that affected the
application (such as tuning the probability of re-
porting and the rate of temporal aggregation).
How to design stable and scalable systems when
there are such cyclic dependencies involved is an
issue of interest to us.

Although our compositional models allow us to
reason about the effects of different types of node
and network faults in isolation, there are some
relevant and more complex fault models that we
have not dealt with analytically. One such model,
which we dealt with only experimentally in A Line
In The Sand concerns multi-hop contention and
fading errors. In future work, we seek to address
this model analytically. We will also incorporate
in our analysis consideration of fault positives and
multiple concurrent targets that we dealt with ex-
perimentally, towards addressing the gap between
existing theory and practice.
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