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Abstract—We address the challenges of bursty converge-
cast in multi-hop wireless sensor networks, where a large
burst of packets from different locations needs to be trans-
ported reliably and in real-time to a base station. Via exper-
iments on a 49 MICA2 mote sensor network using a realistic
traffic trace, we determine the primary issues in bursty con-
vergecast, and accordingly design a protocol, RBC (for Re-
liable Bursty Convergecast), to address these issues: To im-
prove channel utilization and to reduce ack-loss, we design a
window-less block acknowledgment scheme that guarantees
continuous packet forwarding and replicates the acknowl-
edgment for a packet; to alleviate retransmission-incurred
channel contention, we introduce differentiated contention
control. Moreover, we design mechanisms to handle varying
ack-delay, to reduce delay in timer-based retransmissions,
and to avoid queue overflow. We evaluate RBC, again via
experiments, and show that compared to a commonly used
implicit-ack scheme, RBC doubles packet delivery ratio and
reduces end-to-end delay by an order of magnitude, as a re-
sult of which RBC achieves a close-to-optimal goodput.

Index Terms— System design, experimentation with real
networks and testbeds, sensor network, bursty converge-
cast, reliability, real-time, error control, contention control,
flow control

I. INTRODUCTION

A typical application of wireless sensor networks is to
monitor an environment (be it an agricultural field or a
classified area) for events that are of interest to the users.
Usually, the events are rare. Yet when an event occurs,
a large burst of packets are often generated and need to
be transported reliably and in real-time to a base station,
the interface between the sensor network and the external
networks (such as the Internet). One exemplary event-
driven application is demonstrated in the DARPA NEST
field experiment “A Line in the Sand” (simply called Lites
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hereafter) [1]. In Lites, a typical event generates up to
100 packets within a few seconds and the packets need to
be transported from different network locations to a base
station, over multi-hop routes.

The high-volume bursty traffic in event-driven appli-
cations pose special challenges for reliable and real-time
packet delivery. The large number of packets generated
within a short period lead to high degree of channel con-
tention and thus high probability of packet collision. The
situation is further exacerbated by the fact that packets are
transported over multi-hop routes: first, the total number
of packets competing for channel access is increased by a
factor of the average hop-count of network routes; second,
the probability of packet collision increases in multi-hop
networks due to problems such as hidden-terminals. Con-
sequently, packets are lost with high probability in bursty
convergecast. For example, with the default radio stack
of TinyOS [2], around 50% of packets are lost for most
events in Lites.

For reliability and real-time in packet delivery, hop-by-
hop packet recovery is better than end-to-end recovery [3],
[4]. Nevertheless, we find that existing hop-by-hop con-
trol mechanisms do not work well in bursty convergecast.
By experimenting with a testbed of 49 MICA2 motes [2]
and with traffic traces of Lites, we observe that the com-
monly used link-layer error control mechanisms do not
significantly improve and can even degenerate packet de-
livery reliability. For example, when packets are retrans-
mitted up to twice at each hop, the overall packet delivery
ratio increases by only 6.15%; and when the number of
retranmissions increases, the packet delivery ratio actually
decreases, by 11.33%.

One problem with existing hop-by-hop control mecha-
nisms is that they do not schedule packet retransmissions
appropriately; as a result, retransmitted packets further in-
crease the channel contention and cause more packet loss.
Moreover, due to in-order packet delivery and conserva-
tive retransmission timers, packet delivery can be signifi-
cantly delayed in existing hop-by-hop mechanisms, which
leads to packet backlogging, queue overflow, and reduc-
tion in network throughput. (We examine the details in
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Section III-A.)
On the other hand, the new network and application

models of bursty convergecast in sensor networks offer
unique opportunities for reliable and real-time transport
control:

• First, the broadcast nature of wireless channels en-
ables a node to determine, by snooping the channel,
whether its packets are received and forwarded by its
neighbors.

• Second, high-precision time synchronization and the
fact that data packets are timestamped relieve trans-
port layer from the constraint of in-order packet de-
livery, since applications can determine the order of
packets by their timestamps.

• Third, the fact that events are rare simplifies flow and
congestion control, since packets are not generated
continuously.

Therefore, techniques that take advantage of these oppor-
tunities and meet the challenges of reliable and real-time
bursty convergecast are desired.

Related work. The performance of packet delivery in
dense sensor networks is studied in [5]. The results show
that, in the presence of heavy channel load, a commonly
used loss recovery scheme at link layer (i.e., lost packets
are retransmitted up to 3 times) does not mask packet loss,
and more than 50% of the links observe 50% packet loss.
The observation shows the challenge of reliable commu-
nication over multi-hop routes, since the reliability de-
creases exponentially as the number of hops increases.

The limitations of timers in TCP retransmission control
are studied in [6]. The author analyzes the intrinsic dif-
ficulties in using timers to achieve optimal performance
and argues that additional mechanisms should be used.
Despite its focus on TCP, the study also applies to retrans-
mission control in sensor networks, since timers directly
affect the reliability as well as the delay in packet deliv-
ery (e.g., large timeout values of timers tend to increase
packet delivery delay, whereas small timeout values tend
to cause unnecessary retransmissions and thus decrease
packet delivery reliability).

RMST [3] and PSFQ [4] show the importance of
hop-by-hop packet recovery in sensor networks. Yet
RMST and PSFQ are not designed for reliable and real-
time bursty convergecast: first, they do not cope with
retransmission-incurred channel contention; second, they
both use timer-based NACK as the basis for retransmis-
sion control, but they do not design mechanisms to allevi-
ate the delay incurred by the timers whose timeout values
are conservatively chosen to reduce unnecessary retrans-
missions; third, they do not design mechanisms to reduce
the probability of ack-loss. Moreover, the timers used in

RMST are not adaptive and can introduce more retrans-
missions or delay than necessary. RMST and PSFQ also
use in-network caching, which, if used in bursty converge-
cast, would consume significant amount of memory.

For packet-loss detection and retransmission control,
MintRoute [7] uses synchronous explicit ack (SEA),
and DFRF [8] uses stop-and-wait implicit ack (SWIA).
Yet neither MintRoute nor DFRF addresses the issue of
retransmission-incurred channel contention. Moreover,
the retransmission timers in DFRF do not adapt to the
varying ack-delay, which can introduce more retransmis-
sion or delay than necessary (as in RMST). (We study in
detail the limitations of SEA and SWIA in Section III-A.)

CODA [9] and ESRT [10] study congestion control
in sensor networks. But they do not consider bursty
convergecast where the traffic bursts are well separated;
instead, they consider a traffic model where multiple
sources are continuously or periodically generating pack-
ets. Therefore, they do not focus on real-time packet de-
livery, and they do not consider retransmission-incurred
delay as well as channel contention. Many transport pro-
tocols, such as ATP [11] and WTCP [12], are also pro-
posed for wireless ad hoc networks. Again, they do not
face the challenges of reliable bursty convergecast, and
cannot be directly applied.

Block acknowledgment [13] is proposed for error as
well as flow control in the Internet. It considers the prob-
lem of in-order packet delivery. Therefore, a lost packet
blocks the delivery of all the packets that are behind the
lost one but have reached the receiver, as a result of which
packet delivery delay is increased. Moreover, a sender can
send packets at most up to its window size once a packet
is sent but unacknowledged, thus the channel resource
may be under-utilized. Block acknowledgment also uses
timers without addressing their limitations, which renders
additional delay in packet delivery.

Contributions of the paper. We discover, to our sur-
prise, that two commonly used hop-by-hop packet recov-
ery schemes do not work well in bursty convergecast. The
lack of retransmission scheduling in both schemes makes
retransmission-based packet recovery ineffective in the
case of bursty convergecast. Moreover, in-order packet
delivery makes the communication channel under-utilized
in the presence of packet- and ack-loss.

To address the challenges, we design an implicit-ack
based protocol RBC (for Reliable Bursty Convergecast).
RBC takes advantage of the unique sensor network mod-
els and overcomes the limitations of existing schemes via
the following mechanisms:

• To improve channel utilization, RBC uses a window-
less block acknowledgment scheme that enables con-
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tinuous packet forwarding in the presence of packet-
and ack-loss. The block acknowledgment also re-
duces the probability of ack-loss, by replicating the
acknowledgment for a received packet.

• To ameliorate retransmission-incurred channel con-
tention, RBC introduces differentiated contention
control, which ranks nodes by their queuing con-
ditions as well as the number of times that the
enqueued packets have been transmitted. A node
ranked the highest within its neighborhood accesses
the channel first.

In addition, we design techniques that address the chal-
lenges of timer-based retransmission control in bursty
convergecast:

• To deal with continuously changing ack-delay, RBC
uses adaptive retransmission timer which adjusts it-
self as network state changes.

• To reduce delay in timer-based retransmission and
to expedite retransmission of lost packets, RBC uses
block-NACK, retransmission timer reset, and chan-
nel utilization protection.

We also design a lightweight flow control mechanism to
avoid queue overflow.

We evaluate RBC by experimenting with an outdoor
testbed of 49 MICA2 motes and with realistic traffic trace
from the field sensor network of Lites. Our experimen-
tal results show that, compared with a commonly used
implicit-ack scheme, RBC increases the packet delivery
ratio by a factor of 2.05 and reduces the packet deliv-
ery delay by a factor of 10.91. Moreover, RBC achieves
a goodput of 6.37 packets/second for the traffic trace of
Lites, almost reaching the optimal goodput — 6.66 pack-
ets/second — for the trace.

RBC is independent of the underlying MAC protocol
and works with any routing protocols that maintain rout-
ing structures (i.e., each node chooses a node as its next-
hop to reach a destination).

Organization of the paper. We describe our testbed and
discuss the experiment design in Section II. In Section III,
we study the limitations of existing hop-by-hop control
mechanisms, and we evaluate the alternatives in reliable
bursty convergecast. We present the detailed design of
RBC in Section IV, then we present the analytical and
experimental results in Section V. We make concluding
remarks in Section VI.

II. TESTBED AND EXPERIMENT DESIGN

Towards characterizing the issues in making bursty
convergecast both reliable and timely, we conduct an ex-
perimental study. We choose experimentation as opposed

to simulation in order to gain higher fidelity and confi-
dence in the observations. Before presenting our study,
we first describe our testbed and the experiment design.

Testbed. We setup our testbed to reflect the field sensor
network of Lites, and we use the traffic trace for a typical
event in Lites as the basis of our experiments.

The testbed consists of 49 MICA2 motes deployed in
a grass field, as shown in Figure 1(a), where the grass is

(a) Environment (b) Grid topology

Fig. 1. The testbed

2-4 inches tall.The 49 motes form a 7×7 grid with a 5-
feet separation between neighboring grid points, as shown
in Figure 1(b) where each grid point represents a mote.
The mote at the left-bottom corner of the grid is the base
station to which all the other motes send packets.

The traffic trace (simply called Lites trace hereafter)
corresponds to an event where each mote except for the
base station generates two packets and, overall, 96 packets
are generated. The cumulative distribution of the number
of packets generated during the event is shown in Figure 2.
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Fig. 2. The distribution of packets generated in Lites trace

If we define the burst rate up to a moment in the event
as the number of packets generated so far divided by the
time since the first packet is generated, the highest burst
rate in Lites trace is 14.07 packets/second. Given that the
highest one-hop throughput is about 42.93 packets/second
for MICA2 motes with B-MAC (the latest MAC compo-
nent of TinyOS) and that, in multi-hop networks, even an
ideal MAC can only achieve 1

4
of the throughput that a
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single-hop transmission can achieve [14], the burst rate
of Lites trace far exceeds the rate at which the motes can
push packets to the base station, a serious challenge for
reliable and real-time packet delivery.

Experiment design. To generate a multi-hop network, we
let each mote transmit at the minimum power level by
which two motes 10 feet apart are able to reliably com-
municate with each other, and the power level is 9 (out
of a range between 1 and 255) in our case. We use the
routing protocol LGR [15] in our testbed, since we can
conveniently configure the routing structure in LGR.1 In
LGR, each mote forwards its traffic to a mote 2 grid-units
closer to the base station, unless the mote is within 2 grid-
units distance from the base station in which case the mote
sends its traffic directly to the base station. Therefore, the
number of routing hops a packet may go through is up to
6, and the average number of hops is 3.3.

For each protocol we evaluate, we run the Lites trace
10 times and measure the average performance of the pro-
tocol by the following metrics:

• Event reliability (ER): the number of unique packets
received at the base station in an event divided by the
number packets generated for the event.
Event reliability reflects how well an event is re-
ported to the base station.

• Packet delivery delay (PD): the time taken for a
packet to reach the base station from the node that
generates it.

• Event goodput (EG): the number of unique packets
received at the base station divided by the interval
between the start and the end of an event.
Event goodput reflects how fast the traffic of an event
is pushed from the network to the base station. By
definition, the optimal event goodput for Lites trace
is 6.66 packets/second, which corresponds to the
case where the packet delivery delay is 0 and all the
packets are received by the base station.

• Node reliability (NR): the number of unique packets
that are generated by a mote and received by the base
station divided by the number of packets generated at
the mote.

(Remark: The study in this paper applies to cases where
network topologies other than grid and routing protocols
other than LGR are used, since the protocols studied are
independent of the network topology and the routing pro-
tocol.)

1To focus on transport issues,we disable the “base-snooping” in
LGR so that the base station does not accept packets snooped over
the channel.

III. BURSTY CONVERGECAST: ISSUES AND

ALTERNATIVES

In this section, we first study the limitations of existing
hop-by-hop packet recovery mechanisms. Then we eval-
uate the alternatives in reliable bursty convergecast.

A. Limitations of two commonly used mechanisms

Two widely used hop-by-hop packet recovery mecha-
nisms in sensor networks are synchronous explicit ack and
stop-and-wait implicit ack. We study their performance in
bursty convergecast as follows.

1) Synchronous explicit ack (SEA): SEA is the default
MAC layer acknowledgment mechanism in TinyOS [2]
and many well-known MAC protocols such as S-MAC
[16]. In SEA, a receiver switches to transmit-mode, im-
mediately after receiving a packet, and sends back the
acknowledgment without going through the procedure of
channel access control. We evaluate SEA in our testbed,
and the event reliability, the average packet delivery delay,
as well as the event goodput is shown in Table I, where

Metrics RT = 0 RT = 1 RT = 2
ER (%) 51.05 54.74 54.63

PD (seconds) 0.21 0.25 0.26
EG (packets/sec) 4.01 4.05 3.63

TABLE I
SEA IN LITES TRACE

RT stands for the maximum number of retransmissions for
each packet at each hop (e.g., RT = 0 means that packets
are not retransmitted). The distribution of the number of
unique packets received at the base station along time is
shown in Figure 3.
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Fig. 3. The distribution of packet reception in SEA

Table I and Figure 3 show that when packets are re-
transmitted, the event reliability increases slightly (i.e., by
up to 3.69%). Nevertheless, the maximum reliability is
still only 54.74%, and, even worse, the event reliability as
well as goodput decreases when the maximum number of
retransmissions increases from 1 to 2.
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The reason why retransmission does not significantly
improve — and can even degenerate — communication
reliability is that, in SEA, lost packets are retransmitted
while new packets are generated and forwarded, thus re-
transmissions, when not scheduled appropriately, only in-
crease channel contention and cause more packet colli-
sion. The situation is further exacerbated by ack-loss
(with a probability as high as 10.29%), since ack-loss
causes unnecessary retransmission of packets that have
been received. To make retransmission effective in im-
proving reliability, therefore, we need a retransmission
scheduling mechanism that ameliorates retransmission-
incurred channel contention.

2) Stop-and-wait implicit ack (SWIA): SWIA takes
advantage of the fact that every node, except for the base
station, forwards the packet it receives and the forwarded
packet can act as the acknowledgment to the sender at
the previous hop [8]. In SWIA, the sender of a packet
snoops the channel to check whether the packet is for-
warded within certain constant threshold time; the sender
regards the packet as received if it is forwarded within the
threshold time, otherwise the packet is regarded as lost.
The advantage of SWIA is that acknowledgment comes
for free except for the limited control information piggy-
backed in data packets.

We evaluate SWIA in our testbed, and the performance
results are shown in Table II. The distribution of packet

Metrics RT = 0 RT = 1 RT = 2
ER (%) 43.09 31.76 46.5

PD (seconds) 0.35 8.81 18.77
EG (packets/sec) 3.48 2.58 1.41

TABLE II
SWIA IN LITES TRACE

reception is shown in Figure 4.
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Fig. 4. The distribution of packet reception in SWIA

Table II and Figure 4 show that the maximum event re-
liability in SWIA is only 46.5%, and that the reliability
decreases significantly when packets are retransmitted at
most once at each hop. When packets are retransmitted up

to twice at each hop, the packet delivery delay increases,
and the event goodput decreases significantly despite the
slightly increased reliability.

Unlike in SEA, we also observe that queues overflow
at four nodes, and one of them drops 41% the packets it
receives consequently.

The above phenomena are due to the following reasons.
First, the length of data packets is increased by the pig-
gybacked control information in SWIA, thus the ack-loss
probability increases (as high as 18.39% in our experi-
ments), which in turn increases unnecessary retransmis-
sions. Second, most packets are queued upon reception
and thus their forwarding is delayed. As a result, the
piggybacked acknowledgments are delayed and the corre-
sponding packets are retransmitted unnecessarily. Third,
once a packet is waiting to be acknowledged, all the pack-
ets arriving later cannot be forwarded even if the commu-
nication channel is free. Therefore, channel utilization as
well as system throughput decreases, and network queu-
ing as well as packet delivery delay increases. Fourth, as
in SEA, lack of retransmission scheduling allows retrans-
missions, be it necessary or unnecessary, to cause more
channel contention and packet loss.

B. Evaluating the alternatives

From the study above, we see that existing hop-by-hop
packet recovery mechanisms do not meet the challenges
of bursty convergecast. Therefore we need to re-think
how to perform hop-by-hop control in bursty converge-
cast. Broadly speaking, the design space can be divided
along the following two dimensions:

• ACK vs. NACK. In negative-ACK (NACK), the
sender of a packet has to buffer the packet for certain
threshold time whether or not the packet has been re-
ceived, whereas in ACK the sender can safely release
the packet whenever it is acknowledged. Therefore,
NACK usually requires more buffering than ACK.
This is especially true when more packets are re-
ceived than lost, which is the normal case in sensor
networks (e.g., the average link reliability is 77.3% in
Lites trace). Given a buffer of constant size, higher
degree of buffering also implies slower speed in de-
livering packets from one node to another.
Moreover, loss of NACK leads to the loss of the cor-
responding packet, whereas loss of ACK only causes
increased channel contention which does not imply
100% probability of packet loss.
Considering the limited memory available in sensor
nodes (e.g., 4KB for MICA2s) and the high relia-
bility and real-time requirements of bursty converge-
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cast, we use ACK as the basis of hop-by-hop control,
and we only use NACK as an assisting mechanism.

• Implicit vs. explicit ACK. Due to physical constraints
of the MICA2 radios, an acknowledgment packet
in SEA takes 16 bytes, including the preamble, the
synchronization-code, and the ack-code [2]. Yet only
3 bytes, used for the ack-code, in the 16-byte ack-
packet carry information meaningful to reliability
control. If we use implicit-ack where control infor-
mation is piggybacked along data packets, all the 16
bytes can be used to convey information meaningful
to transport control.
Moreover, reliable and real-time data transport in
bursty convergecast is essentially an issue above
MAC layer, therefore it would be architecturally
more appropriate to implement the related control
mechanisms above MAC layer. In this case, implicit-
ack is better than explicit-ack in reducing chan-
nel contention, since the latter increases (doubles at
least) the number of packets competing for channel
access.
To make better use of every byte sent and to reduce
channel contention, therefore, we use implicit-ack.

Challenges. As shown in Section III-A.2, protocols based
on implicit-ack face the following special challenges:

• Ack-loss: longer packet length means higher proba-
bility of ack-loss.

• Varying ack-delay: queuing of data packets means
varying delay in acknowledgment.

In addition, bursty convergecast also poses the following
challenges to reliable and real-time transport control:

• Inefficient channel utilization: “in-order packet
delivery”-oriented error control does not fully uti-
lize network resources and introduces additional de-
lay than necessary.

• Retransmission-incurred-contention: retransmission
further increases the number of packets competing
for channel access and thus increases the probability
of packet collision and loss.

• Timer-incurred-delay: conservatively chosen re-
transmission timer increases delay in packet delivery.

• Queue overflow: high-volume bursty traffic and
queue accumulation due to unacknowledged packets
increase the probability of queue overflow.

IV. PROTOCOL RBC

To address the challenges of bursty convergecast, we
design protocol RBC which consists of three components:
error control, contention control, and flow control. Er-
ror control improves channel utilization and handles ack-
loss, varying ack-delay, as well as timer-incurred-delay;

contention control alleviates retransmission-incurred-
contention as well as unbalanced queuing; and flow con-
trol prevents queue overflow. We elaborate on the three
components as follows.

A. Error control

Error control handles reliable hop-by-hop packet deliv-
ery. We present the error control component by explaining
how it addresses the challenges of inefficient channel uti-
lization, ack-loss, varying ack-delay, and timer-incurred-
delay. For clarity of presentation, we consider an arbitrary
pair of nodes S and R where S is the sender and R is the
receiver.

1) Improving channel utilization & reducing ack-loss:
In traditional block acknowledgment [13], a sliding-

window is used for both duplicate detection and in-order
packet delivery.2 The sliding-window reduces network
throughput once a packet is sent but remains unacknowl-
edged (since the sender can only send up to its window
size once a packet is unacknowledged), and in-order de-
livery increases packet delivery delay once a packet is lost
(since the lost packet delays the delivery of every packet
behind it). Therefore, the sliding-window based block ac-
knowledgment scheme does not apply to bursty converge-
cast, given the real-time requirement of the latter.

To address the constraints of traditional block acknowl-
edgment in the presence of unreliable links, we take ad-
vantage of the fact that in-order delivery is not required
in bursty convergecast. Without considering the order of
packet delivery, by which we only need to detect whether
a sequence of packets are received without loss in the
middle and whether a received packet is a duplicate of
a previously received one. To this end, we design, as fol-
lows, a window-less block acknowledgment scheme which
guarantees continuous packet forwarding irrespective of
the underlying link unreliability as well as the resulting
packet- and ack-loss.

Window-less queue management. The sender S organizes
its packet queue as (M + 2) linked lists, as shown in Fig-
ure 5, where M is the maximum number of retransmis-
sions at each hop. For convenience, we call the linked
lists virtual queues, denoted as Q0, . . . , QM+1. The vir-
tual queues are ranked such that a virtual queue Qk ranks
higher than Qj if k < j.

Virtual queues Q0, Q1, . . ., and QM buffer packets
waiting to be sent or to be acknowledged, and QM+1 col-
lects the list of free queue buffers. The virtual queues are
maintained as follows:

2Note that SWIA is a special type of block acknowledgment where
the window size is 1.
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Fig. 5. Virtual queues at a node

• When a new packet arrives at S to be sent, S detaches
the head buffer of QM+1, if any, stores the packet
into the queue buffer, and attaches the queue buffer
to the tail of Q0.

• Packets stored in a virtual queue Qk (k > 0) will not
be sent unless Qk−1 is empty; packets in the same
virtual queue are sent in FIFO order.

• After a packet in a virtual queue Qk (k ≥ 0) is sent,
the corresponding queue buffer is moved to the tail
of Qk+1, unless the packet has been retransmitted M

times3 in which case the queue buffer is moved to the
tail of QM+1.

• When a packet is acknowledged to have been re-
ceived, the buffer holding the packet is released and
moved to the tail of QM+1.

Therefore, the order in which unacknowledged packets
have been sent is maintained in the virtual queues with-
out any window-based control, providing the basis for
window-less block acknowledgment. Moreover, newly ar-
rived packets can be sent immediately without waiting for
the previously sent packets to be acknowledged, which
enables continuous packet forwarding in the presence of
packet- and ack-loss.

Block acknowledgment & reduced ack-loss. Each queue
buffer at S has an ID that is unique at S. When S sends
a packet to the receiver R, S attaches the ID of the buffer
holding the packet as well as the ID of the buffer holding
the packet to be sent next. In Figure 5, for example, when
S sends the packet in buffer a, S attaches the values a and
b. Given the queue maintenance procedure, if the buffer
holding the packet being sent is the tail of Q0 or the head
of a virtual queue other than Q0, S also attaches the ID of
the head buffer of QM+1, if any, since a new packet may
arrive before the next enqueued packet is sent in which
case the newly arrived packet will be sent first. For ex-
ample, when the packet in buffer c of Figure 5 is sent, S

attaches the values c, d, and f .

3Due to block-NACK, to be discussed in Section IV-A.3, a packet
having been retransmitted M times may be in a virtual queue other
than QM .

When the receiver R receives a packet p0 from S, R

learns the ID n′ of the buffer holding the next packet to
be sent by S. When R receives a packet pn from S next
time, R checks whether pn is from buffer n′ at S: if pn

is from buffer n′, R knows that there is no packet loss
between receiving p0 and pn from S; otherwise, R detects
that some packets are lost between p0 and pn.

For each maximal sequence of packets pk, . . . , pk′ from
S that are received at R without any loss in the middle,
R attaches to packet pk′ the 2-tuple 〈qk, qk′〉, where qk

and qk′ are the IDs of the buffers storing pk and pk′ at
S. We call 〈qk, qk′〉 the block acknowledgment for pack-
ets pk, . . . , pk′ . When S snoops the forwarded packet pk′

later, S learns that all the packets sent between pk and
pk′ have been received by R. Then S releases the buffers
holding these packets. For example, if S snoops a block
acknowledgment 〈c, e〉when its queue state is as shown in
Figure 5, S knows that all the packets in buffers between
c and e in Q1 have been received, and S releases buffers
between c and e, including c and e.

One delicate detail in processing the block acknowledg-
ment 〈qk, qk′〉 is that after releasing buffer qk, S will main-
tain a mapping qk ↔ qk′′ , where qk′′ is the buffer holding
the packet sent (or to be sent next) after that in qk′ . When
S snoops another block acknowledgment 〈qk, qn〉 later, S

knows, by qk ↔ qk′′ , that packets sent between those in
buffers qk′′ and qn have been received by R; then S re-
leases the buffers holding these packets, and S resets the
mapping to qk ↔ qn′′ , where qn′′ is the buffer holding the
packet sent (or to be sent next) after that in qn. S main-
tains the mapping for qk until S receives a block-NACK
(to be discussed in Section IV-A.3) or a block acknowl-
edgment 〈q, q′〉 where q 6= qk.

In the above block acknowledgment scheme, the ac-
knowledgment for a received packet is piggybacked onto
the packet itself as well as the packets that are received
consecutively after the packet without any loss in the mid-
dle. Therefore, the acknowledgment is replicated and the
probability for it to be lost decreases significantly, by a
factor of 2.07 in Lites trace (the detailed analysis is to be
presented in Section V-A).

Duplicate detection & obsolete-ack filtering. Since it is im-
possible to completely prevent ack-loss in lossy communi-
cation channels, packets whose acknowledgments are lost
will be retransmitted unnecessarily. Therefore, it is neces-
sary that duplicate packets be detected and dropped.

To enable duplicate detection, the sender S maintains a
counter for each queue buffer, whose value is incremented
by one each time a new packet is stored in the buffer.
When S sends a packet, it attaches the current value of
the corresponding buffer counter. For each buffer q at S,
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the receiver R maintains the counter value cq piggybacked
in the last packet from the buffer. When R receives an-
other packet from the buffer q later, R checks whether
the counter value piggybacked in the packet equals to cq:
if they are equal, R knows that the packet is a duplicate
and drops it; otherwise R regards the packet as a new one
and accepts it. The duplicate detection is local in the sense
that it only requires information local to each queue buffer
instead of imposing any rule involving different buffers
(such as in sliding-window) that can degenerate system
performance.

For the correctness of the above duplicate detection
mechanism, we only need to choose the domain size C

for the counter value such that the probability of losing C

packets in succession is negligible. For example, for the
high per-hop packet loss probability 22.7% in the case of
Lites trace, C could still be as small as 7, since the proba-
bility of losing 7 packets in succession is only 0.003%.4

In addition to duplicate detection, we also use buffer
counter to filter out obsolete acknowledgment. Despite
the low probability, packet forwarding at R may be
severely delayed, such that the queue buffers signified in
a block acknowledgment have been reused by S to hold
packets arriving later. To deal with this, R attaches to
each forwarded packet the ID as well as the counter value
of the buffer holding the packet at S originally; when S

snoops a packet forwarded by R, S checks whether the
piggybacked counter value equals to the current value of
the corresponding buffer: if they are equal, S regards as
valid the piggybacked block acknowledgment; otherwise,
S regards the block acknowledgment as obsolete and ig-
nores it.

2) Dealing with varying ack-delay: When the receiver
R receives a packet m from the sender S, R first buffers
m in Q0. The delay in R forwarding m depends on the
number of packets in front of m in Q0. Since the number
of packets enqueued in Q0 keeps changing, the delay in
forwarding a received packet by R keeps changing, which
leads to varying delay in packet acknowledgment. There-
fore, the retransmission timer at the sender S should adapt
to the queuing condition at R; otherwise, either lost pack-
ets are unnecessarily delayed in retransmission (when the
retransmission timer is too large) or packets are unnec-
essarily retransmitted even if they are received (when the
retransmission timer is too small).

To adaptively setting the retransmission timer for a
packet, the sender S keeps track of, by snooping packets

4Given the small domain size for the counter value as well as the
usually small queue size at each node, the duplicate detection mecha-
nism does not consume much memory. For example, it only takes 36
bytes in the case of Lites.

forwarded by R, the length sr of Q0 at R, the average de-
lay dr in R forwarding a packet after the packet becomes
the head of Q0, and the deviation d′r of dr. When S sends
a packet to R, S sets the retransmission timer of the packet
as

(sr + C0)(dr + 4d′r)

where C0 is a constant denoting the number of new pack-
ets that R may have received since S learned sr the last
time (C0 depends on the application as well as the link re-
liability, and C0 is 3 in our experiments). The reason why
we use the deviation d′r in the above formula is that dr

varies a lot in wireless networks in the presence of bursty
traffic, in which case the deviation improves estimation
quality [17].

At a node, each local parameter α (such as dr for node
R) and its deviation α′ are estimated by the method of
exponentially weighted moving average (EWMA) as fol-
lows:

α← (1− γ)α + γα′′

α′ ← (1− γ′)α′ + γ′|α′′ − α|

where γ and γ′ are weight-factors, and α′′ is the latest
observation of α. As suggested in [17], we set γ = 1

8
and

γ′ = 1

4
in RBC.

3) Alleviating timer-incurred delay: The packet re-
transmission timer calculated as above is conservative in
the sense that it is usually greater than the actual ack-delay
[17]. This is important for reducing the probability of
unnecessary retransmissions, but it introduces extra delay
and makes network resources under-utilized [6].

To alleviate timer-incurred delay, we design the follow-
ing mechanisms to expedite necessary packet retransmis-
sions and to improve channel utilization:

• Whenever the receiver R receives a packet m from
buffer n of the sender S while R is expecting (in
the absence of packet loss) to receive a packet from
buffer n′ of S, R learns that packets sent between
those in buffers n′ and n at S, including the one in n′,
are lost. In this case, R piggybacks a block-NACK
[n′, n) onto the next packet it forwards, by which the
block-NACK can be snooped by S immediately.
When S learns the block-NACK [n′, n) from R, S

resets the retransmission timers to 0 for the packets
sent between those in n′ and n (including the one in
n′), and for each of these packets, S moves the corre-
sponding buffer to the tail of Qk−1 if the buffer is cur-
rently at Qk. Therefore, packets that need to be re-
transmitted are put into higher-ranked virtual queues
and are retransmitted quickly.5

5Note that the movement of NACKed packets do not disrupt the
buffering order required by block-acknowledgment.
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• Whenever S learns that the virtual queue Q0 of R

becomes empty, S knows that R has forwarded all
the packets it has received. In this case, S resets the
retransmission timers to 0 for those packets still wait-
ing to be acknowledged, since they will not be (due
to either packet-loss or ack-loss).
Similarly, when S snoops the acknowledgment for
a packet m, S resets the retransmission timer to 0
for those packets that are sent before m but are still
waiting to be acknowledged.

• When a network channel is fully utilized, it should
be busy all the time. Therefore, if the sender S has
packets to send, and if S notices that no packet is
sent by any neighboring node in a period of C1×Tpkt

time, S sends out the packet at the head of its highest-
ranked non-empty virtual queue, without considering
the retransmission timer even if the packet is to be ac-
knowledged.6 C1 is a constant reflecting the degree
of channel utilization we want and Tpkt is the time
taken to transmit a packet at the MAC layer. Tpkt is
estimated by the method of EWMA.

4) Aggregated-ack at the base station: In sensor net-
works, the base station usually forwards all the packets it
receives to an external network. As a result, the children
of the base station (i.e., the nodes that forward packets
directly to the base station) are unable to snoop the pack-
ets the base station forwards, and the base station has to
explicitly acknowledge the packets it receives. To reduce
channel contention, the base station aggregates several ac-
knowledgments, for packets received consecutively in a
short period of time, into a single packet and broadcasts
the packet to its children. Accordingly, the children of
the base station adapt their error control parameters to the
way the base station handles acknowledgments.

B. Differentiated contention control

In multi-hop wireless sensor networks with reliable per-
hop connectivity, most packet losses are due to collision,
which in turn is caused by heavy channel contention. To
enable reliable packet delivery, lost packets need to be
retransmitted. Nevertheless, packet retransmission may
cause more channel contention and packet loss, thus de-
generating communication reliability. Moreover, there
also exist unnecessary retransmissions due to ack-loss,
which only increase channel contention and reduce com-
munication reliability. Therefore, it is desirable to sched-
ule packet retransmissions such that they do not interfere
with transmissions of other packets.

6This mechanism improves channel utilization without introducing
unnecessary retransmissions because of the “differentiated contention
control” in RBC (to be discussed in the next subsection).

The way the virtual queues are maintained in our
window-less block acknowledgment scheme facilitates
the retransmission scheduling, since packets are automat-
ically grouped together by different virtual queues. Pack-
ets in higher-ranked virtual queues have been transmitted
less number of times, and the probability that the receiver
has already received the packets in higher-ranked virtual
queues is lower (e.g., 0 for packets in Q0). Therefore, we
rank packets by the rank of the virtual queues holding the
packets, and higher-ranked packets have higher-priority in
accessing the communication channel. By this rule, pack-
ets that have been transmitted less number of times will be
(re)transmitted earlier than those that have been transmit-
ted more, and interference between packets of different
ranks is reduced.

Window-less block acknowledgment already handles
packet differentiation and scheduling within a node, thus
we only need a mechanism that schedules packet trans-
mission across different nodes. To reduce interference be-
tween packets of the same rank and to balance network
queuing as well as channel contention across nodes, inter-
node packet scheduling also takes into account the num-
ber of packets of a certain rank so that nodes having more
such packets transmit earlier.

To implement the above concepts, we define the rank
rank(j) of a node j as 〈M − k, |Qk|, ID(j)〉, where Qk

is the highest-ranked non-empty virtual queue at j, |Qk|
is the number of packets in Qk, and ID(j) is the ID of j.
A node with a higher rank value ranks higher. Then, the
distributed transmission scheduling works as follows:

• Each node piggybacks its rank to the data packets it
sends out.

• Upon snooping or receiving a packet, a node j com-
pares its rank with that of the packet sender k. If
k ranks higher than j, j will not send any packet in
the following w(j, k) × Tpkt time. Tpkt is the time
taken to transmit a packet at the MAC layer, and
w(j, k) = 4 − i, when rank(j) and rank(k) dif-
fer at the i-th element of the 3-tuple ranks. w(j, k)
is defined such that the probability of all waiting
nodes starting their transmissions simultaneously is
reduced, and that higher-ranked nodes tend to wait
for shorter time.

• If a sending node j detects that it will not send its
next packet within Tpkt time, j signifies this by mark-
ing the packet being sent, so that the nodes over-
hearing the packet will skip j in the contention con-
trol. (This mechanism reduces the probability of idle
waiting, where the channel is free but no packet is
sent.)
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C. Flow control

In implicit-ack based bursty convergecast, two factors
are most likely to cause queue overflow: high-volume
bursty traffic and queue accumulation due to unacknowl-
edged packets. The window-less block acknowledgment
scheme alleviates the latter in the following ways: first, it
enables quick acknowledgment by forwarding newly re-
ceived packets earlier than those to be retransmitted; sec-
ond, it reduces ack-loss by replicating acknowledgments
for received packets. Therefore, we only need to design a
mechanism for coping with high-volume bursty traffic.

In the presence of bursty traffic, the queue at a node
may overflow if the corresponding senders send too many
packets in a short time. To avoid this, we design as fol-
lows a flow control mechanism which tolerates packet
losses:

• When forwarding packets, a node piggybacks the
number of free queue buffers at its place.

• Whenever a sender S detects that the number Lr of
free queue buffers at the receiver R is below a thresh-
old L, S will stop sending any packet in the following
(L − Lr) × de,R time. L is a constant chosen such
that the probability of losing L packets in succession
is negligible (by which the sender will not fail to de-
tect the congestion state at the receiver), and de,R is
the average interval between R releasing one buffer
and the next one while there are packets enqueued at
R. (R estimates de,R by the method of EWMA.)

• After learning the number Lr of free buffers at the re-
ceiver R each time, the sender S will send at most Lr

packets to R in the following Lr × de,R time unless
S snoops another packet forwarded by R.

• To help relieve queue congestion, the nodes having
less than L queue buffers are not subject to the dif-
ferentiated contention control.

V. ANALYTICAL AND EXPERIMENTAL RESULTS

In this section, we first analyze the ack-loss probability
in RBC, then we present the experimental results.

A. Ack-loss probability

For convenience, we define the following notations:

p : the probability of losing a single (data) packet;
N : the number of packets received in succession

without any loss in the middle;
N ′ : the number of packets lost in succession;
B : the number of packets received in succession

without any loss in the middle, after a packet
is already received;

A : the number of times that the acknowledgment
for a packet is received at the sender.

Assuming that packet losses are independent of one an-
other, we have the probability mass functions for random
variables N and N ′ as follows.

P [N = k] = p(1− p)k

P [N ′ = k] = (1− p)pk

In RBC, when a packet m is received at a receiver R,
the acknowledgment for m can reach back to the sender S

in two ways: S snoops m when it is forwarded by R later,
with probability Pself ; or S does not snoop m but snoops
a packet whose block acknowledgment acknowledges the
reception of m, with probability Pba. Therefore, the prob-
ability Prbc of S receiving the acknowledgment for m can
be derived as follows:

Pself = 1− p

Pba = p
∑

∞

k=0 P [B = k]P [A ≥ 1|B = k]
= p

∑
∞

k=0 P [B = k](1− P [A = 0|B = k])
= p

∑
∞

k=0 P [N = k + 1](1− P [N ′ = k])

= p(1−3p+4p2
−2p3)

1−p+p2

Prbc = Pself + Pba

= 1− p + p(1−3p+4p2
−2p3)

1−p+p2

Then, the probability P ′
rbc of losing the acknowledgment

for a packet in RBC is 1− Prbc.
In the case of Lites trace and implicit-ack, p = 22.7%.

Therefore P ′
rbc = 8.89%, reducing the ack-loss probabil-

ity of SWIA by a factor of 2.07.

B. Experimental results

We have implemented protocol RBC in TinyOS, where
the control logic takes 185 bytes of RAM when each
node maintains a buffer capable of holding 16 packets,
and the control information piggybacked in data packets
takes 14 bytes.7 We have successfully applied RBC in
the field sensor network of Lites to support reliable and
real-time convergecast [1]. We have also evaluated RBC
in our testbed, and the performance results are shown in
Table III. Figure 6 shows the distribution of packet re-

Metrics RT = 0 RT = 1 RT = 2
ER (%) 56.21 83.16 95.26

PD (seconds) 0.21 1.18 1.72
EG (packets/sec) 4.28 5.72 6.37

TABLE III
RBC IN LITES TRACE

ception in RBC. From Table III and Figure 6, we observe
the following properties of RBC:

7We are currently optimizing our implementation to further reduce
the memory consumption and the length of the piggybacked control
information.
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Fig. 6. The distribution of packet reception in RBC

• The event reliability keeps increasing, in a signifi-
cant manner, as the number of retransmissions in-
creases. The increased reliability mainly attributes
to reduced unnecessary retransmissions (by reduced
ack loss and adaptive retransmission timer) and re-
transmission scheduling.

• Compared with SWIA which is also based on
implicit-ack, RBC reduces packet delivery delay sig-
nificantly. This mainly attributes to the ability of con-
tinuous packet forwarding in the presence of packet-
and ack-loss and the reduction in timer-incurred de-
lay.

• The rate of packet reception at the base station and
the event goodput keep increasing as the number of
retransmissions increases. When packets are retrans-
mitted up to twice at each hop, the event goodput
reaches 6.37 packets/second, quite close to the op-
timal goodput — 6.66 packets/second — for Lites
trace.

Moreover, our experiments show that there is no queue
overflow at any node due to the flow control in RBC.

Compared with SWIA, RBC improves reliability by a
factor of 2.05 and reduces average packet delivery delay
by a factor of 10.91. Compared with SEA, RBC improves
reliability by a factor of 1.74, but the average packet de-
livery delay increases by a factor of 6.61 in RBC. Interest-
ingly, however, RBC still improves the event goodput by
a factor of 1.75 when compared with SEA. The reason is
that, in RBC, lost packets are retransmitted and delivered
after those packets that are generated later but transmitted
less number of times. Therefore, the delivery delay for
lost packets increases, which increases the average packet
delivery delay, without degenerating the system goodput.
The observation shows that, due to the unique application
models in sensor networks, metrics evaluating aggregate
system behaviors (such as the event goodput) tend to be
of more relevance than metrics evaluating unit behaviors
(such as the delay in delivering each individual packet).

To further understand protocol behaviors in the pres-
ence of packet retransmissions, we conduct, as follows, a

comparative study of RBC, SWIA, and SEA for the case
where packets are retransmitted up to twice at each hop.

Figure 7 compares the distribution of packet generation
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Fig. 7. The distributions of packet generation and reception

in Lites trace with the distributions of packet reception in
SEA, SWIA, and RBC. We see that the curve for packet
reception in RBC smooths out and almost matches that of
packet generation. In contrast, many packets are lost in
SEA despite the fact that the rate of packet reception in
SEA is close to that in RBC; packet delivery is signifi-
cantly delayed in SWIA, in addition to the high degree of
packet loss.

Figures 8(a)-(c) show the node reliability in SEA,
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Fig. 8. Node reliability

SWIA, and RBC, and Figure 8(d) shows the cumula-
tive distribution of node reliability in SEA, SWIA, and
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RBC. We see that node reliability improves significantly
in RBC: only 4.17% of nodes have a node reliability less
than 80% in RBC; yet in SEA and SWIA, above 80% of
nodes have a node reliability less than 80%.

Figure 9 shows the average node reliability in SEA,

1 2 3 4 5 6
0

20

40

60

80

100

Number of hops to the base station

N
od

e 
re

lia
bi

lit
y 

(%
)

SEA
SWIA
RBC

Fig. 9. Node reliability as a function of routing hops

SWIA, and RBC as the number of routing hops (to the
base station) increases. We see that the node reliability in
RBC is much higher than that in SEA and SWIA at every
routing hop, and that the reliability at the farthest hop in
RBC is even greater than that at the closest hop in SEA
and SWIA.

VI. CONCLUDING REMARKS

Unlike the existing literature on reliable transport in
sensor networks that focuses on periodic traffic, we have
focused on the problem of bursty convergecast where the
key challenges are reliable and real-time error control and
the resulting contention control. To address the unique
challenges, we have proposed the window-less block ac-
knowledgment scheme which improves channel utiliza-
tion and reduces ack-loss as well as packet delivery delay;
we have also designed mechanisms to schedule packet re-
transmissions and to reduce timer-incurred delay, which
are critical for reliable and real-time transport of bursty
traffic. With its well-tested support for reliable and real-
time transport of bursty traffic, RBC has been used in the
sensor network of Lites and is being used in another field
sensor network experiment ExScal, where 10,000 XSM
motes and 300 StarGates are being deployed [18].

From protocol RBC, we see that bursty convergecast
not only poses challenges for reliable and real-time trans-
port control, it also provides unique opportunities for pro-
tocol design. Tolerance of out-of-order packet delivery
enables the window-less block acknowledgment, which
not only guarantees continuous packet delivery in the
presence of packet- and ack-loss but also facilitates re-
transmission scheduling. Well-separated traffic bursts al-
low us to design light-weight congestion control mecha-
nisms. Overall, the unique network as well as applica-
tion models in sensor networks offer opportunities for new

methodologies in protocol engineering and are interesting
areas for further exploration.
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