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Abstract

We present a fast local clustering service, FLOC, that
produces nonoverlapping and approximately equal-sized
clusters. The clustering is such that all nodes within unit
distance of a clusterhead belongs to its cluster, and no node
m units away from the clusterhead may belong to its cluster.

By asserting m ≥ 2 FLOC achieves locality: effects of
cluster formation and faults/changes at any part of the net-
work are contained within at most 2 units. By taking unit
distance to be the reliable communication radius and m to
be the maximum communication radius, FLOC exploits the
double-band nature of wireless radio-model and achieves
clustering in constant time regardless of the network size.

Through simulations and experiments with actual de-
ployments, we analyze the tradeoffs between shorter com-
pletion time and reduced network contention, and suggest
suitable parameters for FLOC to achieve a short comple-
tion time while avoiding network contention.

Keywords: Clustering, locality, self-configuration, self-
healing, local fault-tolerance.

1 Introduction

Large-scale ad hoc wireless sensor networks introduce
challenges for self-configuration and maintenance. Central-
ized solutions that rely on pre-defined configurer or main-
tainer nodes are unsuitable: Requiring all the nodes in a
large-scale network to communicate their data to a central-
ized base-station depletes the energy of the nodes quickly
due to the long-distance and multi-hop nature of the com-
munication and also results in network contention.

Clustering is a standard approach for achieving efficient
and scalable control in these networks. Clustering facili-
tates the distribution of control over the network. Clustering
saves energy and reduces network contention by enabling
locality of communication: nodes communicate their data

over shorter distances to their respective clusterheads. The
clusterheads aggregate these data into a smaller set of mean-
ingful information. Not all nodes, but only the clusterheads
need to communicate far distances to the base station; this
burden can be alleviated further by hierarchical clustering,
i.e., by applying clustering recursively over the clusterheads
of a lower level.

To enable efficient and scalable control of the network,
a clustering service should combine several properties. The
service should achieve clustering in a fast and local manner:
cluster formation and changes/failures in one part of the net-
work should be insulated from other parts. Furthermore, the
service should produce approximately equal-sized clusters
with minimum overlap among clusters. Equal-sized clusters
is a desirable property because it enables an even distribu-
tion of control (e.g., data processing, aggregation, storage
load) over clusterheads; no clusterhead is over-burdened or
under-utilized. Minimum overlap among clusters is desir-
able for energy efficiency because a node that participates in
multiple clusters consumes more energy by having to trans-
mit to multiple clusterheads.

In this paper we are interested in a stronger property,
namely a solid-disc clustering property, that implies mini-
mization of overlap. The solid-disc property requires that
all nodes that are within a unit distance of a clusterhead be-
long only to its cluster. In another words, all clusters have a
nonoverlapping unit radius solid-disc.

Solid-disc clustering is desirable since it reduces the
intra-cluster signal contention: The clusterhead is shielded
at all sides with nodes that belong to only its cluster, so
the clusterhead receives messages from only those nodes
that are in its cluster, and does not have to endure receiving
messages from nodes that are not in its cluster. Solid-disc
clustering also results in a guaranteed upper bound on the
number of clusters: In the context of hierarchical cluster-
ing, minimizing the number of clusters at a level leads to
lower-cost clustering at the next level. Finally solid-discs
yield better spatial coverage with clusters: Aggregation at



the clusterhead is more meaningful since clusterhead is at
the median of the cluster and receives readings from all di-
rections of the solid disc (i.e., is not biased to only one di-
rection).

Equi-radius solid-disc clustering with bounded overlaps
is, however, not achievable in a distributed and local man-
ner. We illustrate this observation with an example for a
1-D network (for the sake of simplicity).
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Figure 1. Each pair of brackets constitutes one cluster of unit
radius, and colored nodes denote clusterheads.
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Figure 2. A new node j joins the network between clusters of
clusterheads L and K.
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Figure 3. Node j forms a new cluster and leads to re-clustering
of the entire network.

Consider a clustering scheme that constructs clusters
with a fixed radius, say R = 1, solid-disc. Figure 1 shows
one such construction. We show that for fixed radius clus-
tering schemes, a node join can lead to re-clustering of the
entire network. When node j joins the network (Figure 2),
it cannot be subsumed in its neighboring clusters as j is not
within unit distance of neighboring clusterheads L and K.
j thus forms a new cluster with itself as the clusterhead.
Since all nodes within unit radius of a clusterhead should
belong its cluster, j subsumes neighboring nodes l1 and k1

in its cluster. This leads to neighboring clusterheads L and
K to relinquish their clusters and election of l2 and k2 as
the new clusterheads (Figure 3). The cascading effect prop-
agates further as the new clusterheads l2 and k2 subsume
their neighboring nodes leading to re-clustering of the en-
tire network.

Our contributions. We show that solid-disc clustering with
bounded overlaps is achievable in a distributed and local
manner for approximately equal radii (instead of exactly
equal-radii). More specifically, we present FLOC, a fast
local clustering service that produces nonoverlapping and
approximately equal-sized clusters. The resultant clusters
have at least a unit radius solid-disc around the clusterheads,
but they may also include nodes that are up to m, where

m ≥ 2, units away from their respective clusterheads. By
asserting m ≥ 2 FLOC achieves locality: effects of cluster
formation and faults/changes at any part of the network are
contained within at most 2 units distance.

FLOC is fast and scalable: it achieves clustering in
O(1) time regardless of the size of the network. FLOC is
also locally self-healing in that after faults stop occurring,
faults and changes are contained within the respective clus-
ter or within the immediate neighboring clusters, and FLOC
achieves re-clustering within constant time.

While presenting FLOC we take unit radius to be the
reliable communication radius of a node and m to be the
maximum communication radius. In so doing we exploit
the double-band nature of wireless radio-model and present
a communication- and, hence, energy-efficient clustering.

We simulate FLOC using Prowler [15] and analyze the
tradeoffs between shorter completion time and reduced net-
work contention. Further, we implement FLOC on the
Mica2 [16] mote platform and experiment with actual de-
ployments to corroborate the simulation results.

Outline. After presenting the network and fault model in
the next section, we present the basic FLOC program in
Section 3. In Section 5, we present additional actions for
FLOC that improves the convergence time of the cluster-
ing. We discuss our simulation and implementation results
in Section 6. We present related work in Section 7 and con-
clude the paper in Section 8.

2 Model

We consider a wireless sensor network where nodes lie
in a 2-D coordinate plane. The wireless radio-model for
the nodes is double-band: A node can communicate re-
liably with the nodes that are in its inner-band (i-band)
range, and unreliably (i.e., only a percentage of messages
go through) with the nodes in its outer-band (o-band) range.
This double-band behavior of the wireless radio is observed
in [6, 17, 18]

We define the unit distance to be the i-band radius. We
require that the o-band radius is m units where m≥2. This
is a reasonable assumption for o-band radius [6, 17, 18]. In
this paper, we take m = 2 for simplicity of presentation.
Nodes can determine whether they fall within i-band or o-
band of a certain node by using any of the following meth-
ods:
• Nodes are capable of measuring the signal strength of a

received message [9]. This measurement may be used
as an indication of distance from the sender. E.g., as-
suming a signal strength loss formula ( 1

1+d2 ), where d
denotes distance from the sender, the i-band neighbors
receive the message with [0.5, 1] of the transmission
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power, and the o-band neighbors receive the message
with [0.2, 0.5] power.

• Nodes may maintain a record of percentage of received
messages with respect to neighbors [6], and infer the
i-band/o-band neighbors from the quality of the con-
nections.

• An underlying localization service [11, 14] may pro-
vide the nodes with these distance information.

We assume that nodes have timers, but we do not require
time synchronization across the nodes. Timers are used for
tasks such as sending of periodic heartbeats and timing out
of a node when waiting on a condition. Nodes have unique
ids. We use i, j and k to denote the nodes, and j.var to de-
note a program variable residing at j. We denote a message
broadcast by j as msg j.

A program consists of a set of variables and actions at
each node. Each action has the form:

<guard> −→ <assignment statement>
A guard is a boolean expression over variables. An assign-
ment statement updates one or more variables.

Fault model. Nodes may fail-stop and crash, but we as-
sume that the network does not get partitioned. New nodes
can join the network. These faults can occur in any finite
number, at any time and in any order.

A program is self-healing iff after faults stop occurring
the program eventually recovers to a state from where its
specification is satisfied.

Problem statement. Design a distributed, local, scalable
and self-healing program that constructs a clustering of a
network such that:

• a unique node is designated as a clusterhead of each
cluster,

• every node in the inner-band of a clusterhead j belongs
to j’s cluster,

• no node outside the outer-band of a clusterhead j be-
longs to j’s cluster,

• every node belongs to a cluster, and

• no node belongs to multiple clusters.

3 FLOC program

3.1 Justification for m ≥ 2

As an illustration of local self-healing of FLOC, consider
Figure 4. When j joins the network it is subsumed by one
of its neighboring clusters as j is within 2 units of the clus-
terhead L, thus leading to local healing.

Furthermore, Figure 5 illustrates how FLOC locally self-
heals when all clusters are of radius 2 and a new node j joins
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Figure 4. New node j joins one of its neighboring clusters.

the network. j elects itself as the clusterhead since it is not
within 2 units of the clusterheads of its neighbors l1 and
k1. Nodes l1 and k1 then join the cluster of j because they
are not within 1 unit of their respective clusterheads but are
within 1 unit of j. Thus j forms a legitimate cluster as in
Figure 6.
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Figure 5. j′s neighbors are l1 and k1.
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Figure 6. j becomes the clusterhead.

3.2 Program

Each node j maintains only two variables, status and
cluster id, for the FLOC program. j.status has a domain
of {idle, cand, c head, i band, o band}. As a shorthand, we
use j.x to denote j.status=x. j.idle is true when j is not
part of any cluster. j.cand means j wants to be a cluster-
head, and j.c head means j is a clusterhead. j.i band (re-
spectively j.o band) means j is an inner-band (resp. outer-
band) member of a clusterhead; j.cluster id denotes the
cluster j belongs to. Initially for all j, j.status = idle and
j.cluster id = ⊥.

FLOC program consists of 6 actions.
Action 1 is enabled when a node j has been idle for

some random wait-time chosen from the domain [0 . . . T ].
Upon execution of action 1, j becomes a candidate for be-
coming a clusterhead, and broadcasts its candidacy.

Action 2 is enabled at an i-band node of an existing clus-
ter when this node receives a candidacy message. If this re-
cipient node determines that it is also in the i-band of the
new candidate, it replies with a conflict message to the can-
didate and attaches its cluster-id to the message. We use a
random wait-time from the domain [0 . . . t] to prevent sev-
eral nodes replying at the same time so as to avoid colli-
sions.

Action 3 is enabled at j when j receives a conflict mes-
sage in reply to its candidacy announcement. The conflict
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Figure 7. The effect of actions on the status variable.

message indicates that if j forms a cluster its i-band will
overlap with the i-band of the sender’s cluster. Thus, j gives
up its candidacy and joins the cluster of the sender node as
an o-band member.

Action 4 is enabled at j if j does not receive a conflict
message to its candidacy within a pre-defined period ∆. In
this case j becomes a clusterhead, broadcasts this decision
with c head msgj .

Action 5 is enabled at all the idle nodes that receive a
c head msg. These nodes determine whether they are in
the i-band or o-band of the sender, adjust their status ac-
cordingly, and adopt the sender as their clusterhead.

Action 6 is enabled at an o band node j when j receives
a c head msg from a clusterhead i of another cluster. If j
determines that j falls in the i-band of i, j joins i’s cluster
as an i band member.

(1) timeout(j.idle) −→ j.status:=cand;
bcast(cand msgj)

[]
(2) timeout(j.i band ∧ rcv(cand msgi)) −→

if(j ∈ i-band of i)
bcast(conflict msgj)

[]
(3) j.cand ∧ rcv(conflict msgi) −→

j.status := o band;
j.cluster id := msgi.cluster id

[]
(4) timeout(j.cand) −→ j.status := c head;

bcast(c head msgj)
[]
(5) j.idle ∧ rcv(c head msgi) −→

j.status := i band | o band;
j.cluster id := i;

[]
(6) j.o band ∧ rcv(c head msgi) −→

if(j ∈ i-band of i)
j.status := i band;
j.cluster id := i;

Figure 8. Program actions for j.

3.3 Analysis

The candidacy period for a node can last at most ∆ time,
and we require that the election of a clusterhead is com-
pleted in an atomic manner: If two nodes that are less than
2 units apart become candidates concurrently, both may
succeed and as a result the i-bands of the resultant clus-
ters could be overlapping. To avoid this case with a high
probability, the domain T of the timeout period for action 1
should be large enough to ensure that no two nodes that are
less than 2 units apart have idle-timers that expire within ∆
time of each other.

Note that T depends only on the local density of nodes
and is independent of the network size. Hence, it is suffi-
cient to experiment with a representative small portion of
a network to come up with a T that avoids collusions of
clusterhead elections with a high probability. For the rare
cases where the atomicity requirement for elections is vio-
lated, our additional actions presented in Section 5 reassert
the solid-disc clustering property.

Theorem 1. Regardless of network size, FLOC produces a
clustering of nodes within constant time T + ∆.
Proof. An action is enabled at every node within at most T
time: if no other action is enabled in the meanwhile, action
1 is enabled within T time.

From Figure 7 it is easy to observe that once an action
is enabled at a node j, j is assigned to a cluster within at
most ∆ time: If the enabled action is 5, then j is assigned
to a cluster instantaneously. If the enabled action is 1, then
one of actions 3 or 4 is enabled within at most ∆ time, upon
which j is assigned to a cluster immediately.

Also note that once j is assigned to a cluster (i.e.
j.status ∈ {c head, i band, o band}) no further action
can violate this property. Only actions 2 and 6 can be en-
abled at j: Action 2 does not change j.status, and action
6 changes j.status from o band to i band, but j is still a
member of a cluster (in this case a closer cluster).

Thus, every node belongs to a cluster within T + ∆.
Since cluster id contains a single value at all times, and
no node belongs to multiple clusters.

Furthermore, when the atomicity of elections is satisfied,
actions 2, 3, and 6 ensure that the clustering satisfies the
solid-disc property: If there is a conflict with the i-band of a
candidate j and that of a nearby cluster, then j is notified via
action 2, upon which j becomes an o band member of this
nearby cluster via action 3. If there is no conflict, j becomes
a clusterhead and achieves a solid-disc by dominating all the
nodes in its i-band. The o band members of other clusters
that fall in the i-band of j join j’s cluster due to action 6.

Theorem 2. The number of clusters constructed by FLOC
is within 3-folds of the minimum possible number.
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Proof. A partitioning of the network with minimum num-
ber of clusters is achieved by tiling hexagonal clusters of
radius 2 (and circular radius

√
3). The worst case construc-

tion, where FLOC partitions the network with maximum
number of clusters, is achieved by tiling hexagonal clusters
of radius 2/

√
3 (and circular radius 1). In this worst case,

the number of clusters constructed by FLOC is 3 times the
minimum possible number.

3.4 Discussion

After clustering, a node can be in the i-band of at most
one clusterhead. A clusterhead has all the nodes in its i-
band as its members and some from its o-band. The o-band
members do not need to hear the clusterhead every time,
the i-band members may suffice for most operations. If
the clusterhead is sending an important message that needs
to reach all members, in order for the o-band members to
also receive it reliably, the i-band members may relay this
message when they detect missing acknowledgements from
nearby o-band members —the i-band members can hear
both the clusterhead and the o-band members reliably. Dur-
ing a convergecast (data aggregation) to the clusterhead, the
messages from o-band members may or may not reach the
clusterhead directly. If a message from an o-band member
is tagged as important, it may be relayed by an i-band mem-
ber upon detection of a missing acknowledgement from the
clusterhead.

Optimization. Ideally, we want that a conflict is first re-
ported by a node that is closest to the candidate, so that the
candidate, upon aborting its candidacy, can join this clos-
est cluster. Another advantage of selecting the notifier to
be closest to the candidate is that, then the conflict message
of the notifier is overheard by as many nodes within the i-
band of the candidate, upon which these overhearing nodes
can decide that there is no need to report a conflict again.
This way communication- and, hence, energy-efficiency is
achieved.

One way to choose the closest notifier is to set t at a
notifier node to be inversely proportional to the distance
from the candidate. If an underlying localization service
is not available, the same effect can be achieved by setting
t inversely proportional with respect to the received signal
strength of the candidacy message. A notifier sets t smaller
the higher the received signal strength of the candidacy mes-
sage at that notifier.

4 Self-healing

Node failures. FLOC is inherently robust to failures of
cluster members (non-clusterhead nodes), since such fail-
ures do not violate the clustering specification in Section 2.

However, failure of a clusterhead leaves its cluster mem-
bers orphaned. In order to enable the members to detect
the failure of the clusterhead, we employ heartbeats. The
clusterhead periodically broadcasts a c head msg. If the
lease at a node j expires, i.e., j fails to receive a heart-
beat from its clusterhead within the duration of a lease pe-
riod, L, then j dissociates itself from the cluster by setting
j.status := idle and j.cluster id := ⊥. While setting the
idle-timer, j adds L to the selected random wait time so as
not to become a candidate before all the members can detect
the failure of the clusterhead.

After a clusterhead failure, all the cluster members be-
come idle within at most L time. After this point, the dis-
solved members either join neighboring clusters as o-band
members, or an eligible candidate unites these nodes in a
new cluster within T + ∆ time. Due to our selection of
m=2, this is achieved in a local manner.

The lease for o-band nodes should be kept high. Since
they receive only a percentage of the heartbeats they may
make mistakes for small values of L. Keeping the lease
period high for the o-band nodes does not affect the per-
formance significantly, because the o-band nodes are mold-
able: Even if they have misinformation about the existence
of a clusterhead, the o-band nodes do not hinder new cluster
formation, and even join these clusters if they fall within the
i-band of these clusterheads.

L is tunable to achieve faster stabilization or better
energy-savings.

Node additions. FLOC requires that nodes wait for
some random time (chosen from [0 . . . T ]) before they can
become a candidate. Some of the newly added nodes re-
ceive a heartbeat (c head msg) from a nearby clusterhead
within their initial waiting period and join the correspond-
ing cluster as an i band or o band member. Those nodes
that fail to receive a heartbeat message within their deter-
mined waiting times become candidates, and either form
their own clusters (via action 2), or receive a conflict mes-
sage from an i band member of a nearby cluster and join
that cluster (via action 3).

5 Extensions to the basic FLOC program

Choosing a sufficiently large T guarantees the atomicity
of elections and, hence, the solid-disc clustering. Here we
present some additional actions to ensure that the solid-disc
property is satisfied even in the statistically rare cases where
atomicity of elections are violated.

Consider a candidate i and an idle node k that is within
2 units of i. If k’s idle timer expires before i’s election is
completed (i.e., within ∆ time of i’s candidacy announce-
ment), then atomicity of elections is violated. Even though
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there exists a node j that is within the i-bands of both i
and k, both candidates may succeed in becoming cluster-
heads: Since k’s candidacy announcement occurs before i’s
c head msg, action 2 is not enabled at j and j does not
send a conflict msg to k.

Our solution is based on the following observation.
Since i broadcasts its cand msg earlier than that of k and
since a broadcast is an atomic operation in wireless sensor
networks: i’s broadcast is received at the same instant by all
the nodes within i’s i-band. These i-band nodes can be em-
ployed for detecting a conflict if a nearby node announces
candidacy within ∆ of i’s candidacy.

To implement our solution we introduce a boolean vari-
able lock to capture the states where an idle node j is aware
of a candidacy of a node that is within unit distance to itself.
The value of j.lock is material only when j.status = idle.
Our solution consists of 4 actions.

Action 7 is enabled when an idle node j receives a can-
didacy message. If j determines that j is in the i-band of
the candidate, j sets lock as true.

Action 8 is enabled when an idle and locked node j re-
ceives a candidacy message. If j determines that it is also in
the i-band of this new candidate, it replies with a “potential
conflict” message to the candidate.

Action 9 is enabled when a node receives a “potential
conflict” message as a reply to its candidacy announcement.
In this case the node gives up its candidacy and becomes
idle again. This time, to avoid a lengthy waiting, the node
selects the random wait-time from the domain [0...T/2].

Action 10 is enabled if an idle j remains locked for ∆
time. Expiration of the ∆ timer indicates that the candidate
that locked j failed to become a leader: since otherwise j
would have received a c head msg and j.status would have
been set to i band. So as not to block future candidates j
removes the lock by setting j.lock :=false.

(7) j.idle ∧ rcv(cand msgi) −→
if(j ∈ i-band of i) j.lock := true

[]
(8) timeout(j.lock ∧ rcv(cand msgi)) −→

if(j ∈ i-band of i) bcast(pot conf msgj)
[]
(9) j.cand ∧ rcv(pot conf msgi) −→

j.status := idle

[]
(10) timeout(j.lock == true) −→ j.lock := false

Note that these additional actions are applicable only
in the statistically rare violations of atomicity of elections;
they do not cure the problem for every case. If T is cho-
sen too small, there may be some pathological cases where

there is a chain of candidates whose i-bands overlap with
each other that results in the deferring of all candidates in
the chain. These chains should be avoided by choosing a
large enough T .

6 Simulation and implementation results

In this section we analyze, through simulations and ex-
periments, the tradeoffs between smaller T and reduced net-
work contention and determine a suitable value for T that
allows both a short time for clustering and results in lit-
tle network contention. We also analyze the scalability of
FLOC with respect to network size.

6.1 Simulation

For our simulations, we use Prowler [15], a MAT-
LAB based, event-driven simulator for wireless sen-
sor networks. Prowler simulates the radio transmis-
sion/propagation/reception delays of Mica2 motes [9], in-
cluding collisions in ad-hoc radio networks, and the opera-
tion of the MAC-layer.

Our implementation of FLOC under Prowler is per
node and is a message-passing distributed program. Our
code is available from www.cis.ohio-state.edu/
˜demirbas/floc/. In our simulations, we use a grid
topology for simplicity (note that FLOC is applicable for
any kind of topology and does not require a uniform dis-
tribution of nodes). In the grid, each node is unit dis-
tance away from its immediate North, South, East, and West
neighbors. We use a signal strength of 1; the i-band neigh-
bors are the nodes with Received Signal Strength Indicator
(RSSI) > 0.5, and the o-band neighbors have RSSI > 0.2
. It follows that immediate N, S, E, W neighbors are i-
band neighbors, and immediate diagonal neighbors and 2-
unit distance N, S, E, W neighbors are o-bound neighbors.

Figure 9 shows the resulting partitioning from executing
FLOC on a 10-by-10 grid. The arrow at a node points to its
respective clusterhead. In the figure, there are 16 clusters.
Each clusterhead contains at least its i-band neighbors as it
members, that is, solid-disc clustering is observed.

Below we analyze the tradeoffs involved in the selec-
tion of T ; for this part we use a 10-by-10 grid (as described
above) for the simulations. Then, we consider larger net-
works (up to 25-by-25 grids) and investigate the scalability
of the performance of FLOC with respect to network size.
We repeat each simulation 10 times and take the average
value from these runs. In all our graphs, the error bars de-
note the standard deviation in our data.

Due to MAC layer delays, the average transmission time
for a packet is around 25 msec. Thus, we fix t = 50 msec
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Figure 9. Clusters formed by FLOC on a 10-by-10 grid.

and ∆=200 msec for our simulations.
Tradeoffs in the selection of T . Using a small value

for T allows a shorter completion time for FLOC as shown
in Figure 10. However, a small value for T also increases
the probability of violation of atomicity of elections; Figure
11 shows that while T decreases the number of violations
of atomicity of elections increases.

Figure 10. Completion time versus T

Ideally, we want the elections to be completed in an
atomic manner. For up to some number of atomicity viola-
tions, our extra actions in Section 5 enable successful solid-
disc clustering. However, for small values of T (T < 5
sec) several nodes declare their candidacy around the same
times, and we encounter increase in the number of messages
sent and the number of nodes sending messages as shown
in Figure12. This leads to network traffic contention and
loss of messages due to collisions. For T = 2 the num-
ber of reception of collided messages are 20% of the total

Figure 11. Number of atomicity violations versus T

messages received. This collision rate climbs to 30% for
T = 1, and 55% for T = 0.5. Due to these lost messages,
for T < 5, we observe deformities in the shape of the clus-
ters formed; the solid-disc clustering property is violated.
The message loss also leads to an increase in the number
of clusters formed as shown in Figure 13. For example, for
T = 0.5 half of the clusters formed are single node clusters.

To achieve a quick completion time while avoiding net-
work contention, we choose T = 5 sec in our FLOC pro-
gram –and for the rest of this section. We observe that with
T = 5 the solid-disc clustering property is satisfied by every
run of the FLOC program.

Scalability with respect to network size. In Theo-
rem 1, we showed that the completion time of FLOC is
unaffected by the network size. To corroborate this result
empirically, we simulated FLOC with T = 5 for increas-
ing network size of up to 25-by-25 nodes (while preserving
the node density). Figure 14 shows that the clustering is
achieved in 5 sec regardless of network size.

We also investigated the average number of clusters con-
structed (NCC) by FLOC with respect to increasing net-
work size. An interesting observation is that, NCC for a
given N is predictable; the variance is very small as seen in
Figure 15. Since clusters have, on average, around 6 mem-

7



Figure 12. Messages sent versus T

Figure 13. Number of clusters formed versus T

bers, N/6 gives NCC for our grid topology networks.
For a grid of 25-by-25, FLOC constructs around 100

clusters. In the theoretical best case, an omniscient central-

Figure 14. Completion time versus network size

Figure 15. Number of clusters formed versus network size

ized partitioning scheme (see Theorem 2) could tile this grid
with 60 hexagons (with circular radius of

√
3 and hexagonal

radius of 2). That is, in practice FLOC has an overhead of
only 1.67 when compared with the best scheme. Note that,
in Theorem 2, we have determined that NCC for FLOC is
always within 3-folds of this best scheme.

6.2 Implementation

We implemented FLOC on the Mica2 [16] mote plat-
form using the TinyOS [10] programming suite. Our
implementation took about 500 lines of code; our
code is available from www.cis.ohio-state.edu/
˜demirbas/floc/.

The Mica2 motes use Chipcon [5] radio CC1000 for
transmission. RSSI at a mote can be obtained using the
CC1000 radio interface in the TinyOS radio stack: RSSI
varies from -53dB to -94dB, the radio interface encodes this
into a 16 bit integer value —the lower the value the higher
the signal strength. By experimenting at an outdoor envi-
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Figure 16. 5-by-5 grid topology deployment

ronment and comparing power level and reliable range of
reception we chose a transmission power of 7, from a range
of 1 to 255. At a power level 7, we obtain reliable reception
up to 15 feet with RSSI ranging from 0 to 140. By selecting
appropriate thresholds for RSSI, we divided this 15 feet dis-
tance into two equal halves as in-band range and out-band
range: we considered RSSI between 0-80 as in-band and
80-140 as out-band.

We performed our experiments at an outdoor parking lot;
Figure 16 shows a picture of our deployment. To mimic our
simulation topology settings, we arranged 25 Mica2 motes
in a 5-by-5 grid where each mote is 6 feet away from its im-
mediate North, South, East, and West neighbors. From our
signal strength settings it follows that, ideally, immediate N,
S, E, W neighbors are i-band neighbors, and immediate di-
agonal neighbors and 2-unit distance N, S, E, W neighbors
are o-bound neighbors. Based on our simulation results,
to achieve a quick completion time while avoiding network
contention, we chose T =5 sec, ∆=200 msec.

In our set up, we placed a laptop in the center of the net-
work to collect status reports from the motes: After the clus-
tering is completed, every mote sets its transmission power
to maximum level temporary and broadcasts a status report.
This report indicates the completion time of the clustering
program at the respective mote, and whether the mote is a
clusterhead, i-band, or o-band member of a cluster. In order
to avoid collisions, these reports are spread in time.

We performed over 20 experiments with these settings.
We observed the average number of clusters formed to be
4. The cluster sizes were reasonably uniform, the average
number of motes per cluster was 6. The average over time
for the clustering to complete was 4.5 seconds.

When we increased the inter node spacing to 8 feet, with

the same settings for signal strength measurements, as ex-
pected the number of clusters increased to an average of 6.
The average completion time was again 4.5 seconds.

We observed in our experiments that i-band/o-band
membership determination using RSSI is not always ro-
bust. This is because RSSI depends on the transmission
and interference characteristics of the environment as well
as the radio hardware characteristics at the individual motes.
Transmitting candidacy and clusterhead messages 3 times,
and using the average RSSI from the corresponding 3 re-
ceptions would make the i-band/o-band determination more
robust. Alternatively, as we discussed in Section 2, a con-
nectivity service or localization service can be employed for
i-band/o-band membership determination.

7 Related work

Several protocols have been proposed recently for clus-
tering in wireless networks [1, 3, 4, 8, 13].

Max-Min D-cluster algorithm [1] partitions the network
into d-hop clusters. It does not guarantee solid-disc cluster-
ing and in the worst case, the number of clusters generated
may be equal to the number of nodes in the network (for a
connected network).

Clubs [13] forms 1-hop clusters: If two clusterheads
are within 1-hop range of each other, then both the clus-
ters are collapsed and the process of electing clusterheads
via random timeouts is repeated. Clubs does not satisfy
our unit distance solid-disc clustering property: cluster-
heads can share their 1-hop members. Also, in contrast
to Clubs, FLOC does not collapse any cluster once it is
formed. FLOC resolves contentions by delaying the latter
candidates from becoming clusterheads.

LEACH [8] also forms 1-hop clusters. The energy
load of being a clusterhead is evenly distributed among the
nodes by incorporating randomized rotation of the high-
energy clusterhead position among the nodes. Nodes elect
themselves as clusterheads based on this probabilistic ro-
tation function and broadcast their decisions. Each non-
clusterhead node determines its cluster by choosing the
clusterhead that requires the minimum communication en-
ergy. LEACH does not satisfy our solid-disc property: Not
all nodes within 1-hop of a clusterhead j belongs to j.
LEACH style load-balancing is readily applicable in FLOC
by using the above mentioned probabilistic rotation func-
tion for determining the waiting-times for the candidacy an-
nouncements at the nodes.

The algorithm in [3] first finds a rooted spanning tree of
the network and then forms desired clusters from the sub-
trees. It gives a bound on the number of clusters constructed
and the convergence time is of the order of the diameter of
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the network. It is locally fault-tolerant to node failures/joins
but may lead to re-clustering of the entire network for some
pathological scenarios.

For a given value of R, the algorithm in [4] constructs
clusters such that all the nodes within R/2 hops of a clus-
terhead belong to that clusterhead and the farthest distance
of any node from its clusterhead is 3.5R hops. With high
probability, a network cover is constructed in O(R) rounds;
the communication cost is O(R3).

In an earlier technical report [12], we have presented –
under a shared memory model– a self-stabilizing cluster-
ing protocol, LOCI, that partitions a network into clusters
of bounded physical radius [R, mR] for m ≥ 2. LOCI
achieves a solid-disc clustering with radius R. Clustering is
completed iteratively within O(R4) rounds.

In a workshop paper [7], we have outlined the basic
FLOC algorithm. However, [7] contains neither any sug-
gestions for suitable T values, nor any simulation and ex-
perimentation results.

8 Concluding remarks

The properties of FLOC that make it suitable for large
scale wireless sensor networks are its: (1) locality, in that
each node is affected only by nodes within 2 units, (2) scal-
ability, in that clustering is achieved in constant time in-
dependent of network size, and finally (3) self-healing ca-
pability, in that it tolerates node failures and joins locally
within 2-units.

Through simulations and experiments with actual de-
ployments, we analyzed the tradeoffs between shorter com-
pletion time and reduced network contention, and suggested
suitable values for the domain, T , of the randomized candi-
dacy timer to achieve a short completion time while avoid-
ing network contention. Since in FLOC each node is af-
fected only by nodes within 2 units, it is sufficient to ex-
periment with a representative small portion of a network to
determine suitable values for T .

As part of future work, we are planning on integrat-
ing FLOC in our “Line in the Sand” (LITeS) tracking
service [2] to achieve scalable and fault-local clustering.
As part of the DARPA/Network Embedded Systems Tech-
nology project, our research group has already deployed
LITeS over a 100-node sensor network across a large ter-
rain and achieved detection, classification, and tracking of
various types of intruders (e.g., persons, cars) as they moved
through the network. We are also investigating the role of
geometric, local clustering in designing efficient data struc-
tures for evaluation of spatial queries in the context of sen-
sor networks.
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