
Exploiting NIC Architectural Support for Enhancing IP based Protocols on High
Performance Networks

HYUN-WOOK JIN
�
, PAVAN BALAJI

�
, CHUCK YOO

�
, JIN-YOUNG CHOI

�
, AND DHABALESWAR K. PANDA

�

�
Computer Science and Engineering,

The Ohio State University,
Columbus, OH 43210�

jinhy, balaji, panda � @cis.ohio-state.edu

�
Computer Science and Engineering,

Korea University,
Seoul, 136-701, Korea�

hxy@os, choi@formal � .korea.ac.kr

Technical Report
OSU-CISRC-5/04-TR37

Exploiting NIC Architectural Support for Enhancing IP based Protocols on High
Performance Networks �

H. -W. Jin
�

P. Balaji
�

C. Yoo
�

J. -Y. Choi
�

D. K. Panda
�

�
Computer Science and Engineering,

The Ohio State University�
jinhy, balaji, panda � @cis.ohio-state.edu

�
Computer Science and Engineering,

Korea University�
hxy@os, choi@formal � .korea.ac.kr

Abstract
While a number of user-level protocols have been devel-

oped to reduce the gap between the performance capabil-
ities of the physical network and the performance actually
available, their compatibility issues with the existing sock-
ets based applications and IP based infrastructure has been
an area of major concern. To address these compatibility
issues while maintaining a high performance, a number of
researchers have been looking at alternative approaches to
optimize the existing traditional protocol stacks. Broadly,
previous research has broken up the overheads in the tra-
ditional protocol stack into four related aspects, namely:
(i) Compute requirements and contention, (ii) Memory con-
tention, (iii) I/O bus contention and (iv) System resources’
idle time. While previous research dealing with some of
these aspects exists, to the best of our knowledge, there is
no work which deals with all these issues in an integrated
manner while maintaining backward compatibility with ex-
isting applications and infrastructure. In this paper, we ad-
dress each of these issues, propose solutions for minimiz-
ing these overheads by exploiting the emerging architec-
tural features provided by modern Network Interface Cards
and demonstrate the capabilities of these solutions using an
implementation based on UDP/IP over Myrinet. Our exper-
imental results show that with our implementation of UDP,
termed as E-UDP, can achieve up to 94% of the theoretical
maximum bandwidth. We also present a mathematical per-
formance model which allows us to study the scalability of
our approach for different system architectures and network
speeds.

Keywords: Clusters, UDP/IP, Myrinet, Protocol Offload,
Overhead Pipelining

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429, and #CCR-0311542 and the Post-doctoral Fellowship Program
of Korea Science and Engineering Foundation (KOSEF).

1 Introduction

Commodity off-the-shelf (COTS) clusters have been ac-
cepted as a feasible and cost effective approach to main-
stream supercomputing for a broad subset of applications.
Most of the success of these COTS clusters is derived from
the high performance-to-cost ratio achievable through them.
With the advent of the several modern high speed intercon-
nects such as Myrinet [8], InfiniBand [4, 2], Quadrics [24,
3, 27, 26, 28], 10-Gigabit Ethernet [1, 17, 14] and others,
the bottleneck in the data communication path in such clus-
ters has shifted to the messaging software at the sending and
the receiving side.

Researchers have been looking at alternatives by which
one could increase the communication performance deliv-
ered by clusters in the form of low latency and high band-
width user-level protocols such as the Virtual Interface Ar-
chitecture (VIA) [9], FM [23], and GM [12] for Myrinet, U-
Net [35] for ATM and Ethernet, EMP [32, 33] for Gigabit
Ethernet and others. While this approach is good for writing
new applications which completely reside inside the cluster
environment, these have several limitations with respect to
compatibility with existing applications and infrastructure.
In particular, we look at the following incompatibilities:

1. A number of applications have been developed in a
span of several years over the traditional protocols us-
ing the sockets interface. Developing new high per-
formance protocols might not be directly beneficial for
such applications.

2. IP is the most widely accepted and used network pro-
tocol today. However, the above mentioned user-level
protocols are not compatible with existing IP infras-
tructures, i.e., an application using GM over Myrinet
or EMP over Gigabit Ethernet cannot communicate
across clusters where the intermediate nodes/switches
are IP based and do not understand these user-level
protocols.

1

3. Several security mechanisms such as IPsec have been
developed over IP. Using user-level protocols instead
of IP based protocols might require such security
mechanisms to be re-developed for these new proto-
cols.

Researchers have looked at some of these issues in a
segregated manner. For example, user-level sockets over
high performance networks [6, 7, 5, 20, 31] and other sub-
strates [30] have been developed to allow sockets based ap-
plications to take advantage of the high performance net-
works. This approach tries to solve the first issue (allowing
existing sockets based applications to take advantage of the
high performance networks), but does not address the re-
maining issues. Similarly, the Trapeze project [11, 10] by
Chase, et. al., tries to address issues two and three (compat-
ibility with the existing IP infrastructure), but modifies the
sockets interface resulting in incompatibility with existing
applications. These and other related work are discussed in
Section 6 in more detail.

To address these compatibility issues while maintaining a
high performance, a number of researchers have been look-
ing at alternative approaches to optimize the existing tradi-
tional protocol stacks. Broadly, previous research has bro-
ken up the overheads in the traditional protocol stack into
four related aspects, namely: (i) Compute requirements and
contention, (ii) Memory contention, (iii) I/O bus contention
and (iv) System resources’ idle time.

In this paper, we first utilize the earlier proposed tech-
niques, in particular those specific to Protocol Offload En-
gines (POEs) [37, 29, 34], to implement a partial offload of
the UDP/IP protocol stack over Myrinet to address the first
two issues, i.e., compute requirements and memory con-
tention. Next, we modify the Myrinet device driver to al-
low a delayed posting of descriptors in order to reduce the
contention at the I/O bus. Finally, we implement a fine-
grained overhead pipelining technique on the firmware of
the NIC to minimize the link idle time. In this paper, we re-
fer to this implementation as E-UDP (standing for enhanced
UDP). This IP based protocol implementation is not only
compatible with existing sockets applications, but also with
the traditional UDP/IP stack.

In this paper, we focus on the following key questions:
� How does the performance of E-UDP compare with

that of the traditional UDP stack?
� How does the performance of E-UDP compare with

that of the existing user-level high performance proto-
cols?

� Would the feasibility of fine-grained pipelining in E-
UDP be specific to the application communication pat-
tern, i.e., is it formally verifiable that a fine grained
pipelining would be possible for any communication
pattern?

� How does E-UDP perform for various other system
and network configurations, e.g., for 10-Gigabit net-
works, faster I/O buses, etc?

To answer the first two questions, we analyze the perfor-
mance impact of the above mentioned techniques in UDP/IP
over Myrinet. To answer the third question, we present a
formal verification model and show the pipelining capabil-
ities of the Network Interface Card (NIC) architecture in
a generic communication pattern. Finally, to answer the
fourth question, we propose an analytical model in order
to study the performance of our design for various system
and network configurations.

The remaining part of the paper is organized as follows:
In Section 2 we present background information about the
traditional UDP/IP implementation, Protocol Offload En-
gines and the Myrinet network. In Section 3, we discuss
the architectural interaction and implications of the UDP/IP
protocol implementation. In Section 4, we present several
solutions for the system resource contention and other in-
efficiencies introduced by the UDP/IP stack. We present
the experimental and analytical results in Section 5, other
related work in Section 6 and some concluding remarks in
Section 7.

2 Background
In this section, we present a brief background about the

traditional UDP/IP implementation, Protocol Offload En-
gines (POE) and the functionality of the Myrinet NIC. More
details about each of these can be found in [19].

2.1 Traditional UDP/IP Implementation
Like most networking protocol suites, the UDP/IP proto-

col suite is a combination of different protocols at various
levels, with each layer responsible for a different facet of
the communications.

To allow standard Unix I/O system calls such as read()
and write() to operate with network connections, the
file-system and networking facilities are integrated at the
system call level. Network connections represented by
sockets are accessed through a descriptor in the same way
an open file is accessed through a descriptor. This al-
lows the standard file-system calls such as read() and
write(), as well as network-specific system calls such as
sendmsg() and recvmsg(), to work with a descriptor
associated with a socket. Figure 1a illustrates the interac-
tion between the sockets layer and the actual TCP and UDP
protocol stacks in the kernel.

On the transmission side, the message is copied into
the socket buffer, data integrity ensured through checksum
computation (to form the UDP checksum) and passed on
to the underlying IP layer. The IP layer fragments the data
to MTU sized chunks, extends the checksum to include the
IP header and form the IP checksum and passes on the IP
datagram to the device driver. After the construction of a

2

Process

Function Call

Application

System Calls
Socket

System Call
Kernel

Implementations
Socket System Call

Function Call

Functions
Socket Layer

calls via pr_usrreq or pr_ctloutput
TCP

UDP SPP

TP4

System Calls

Process

Sockets Layer

Function Call

(TCP, UDP, IP, ICMP, IGMP)
Protocol Layer Software Interrupt @ slpnet

(caused by interface layer)

to start output
Function Call Interface

Queues
Protocol Queue
(IP input queue)

Hardware Interrupt @splimp
(caused by network device)Interface Layer

Socket Queues

Figure 1. (a) Interaction between the sockets layer and the TCP/UDP protocol stack; (b) Data path in
the traditional protocol stack

packet header, the device driver makes a descriptor for the
packet and passes the descriptor to the NIC using a PIO
(Programmed I/O) operation. The NIC performs a DMA
operation to move the actual data indicated by the descrip-
tor from the socket buffer to the NIC buffer. The NIC then
ships the data with the link header to the physical network
and raises an interrupt to inform the device driver that it has
finished transmitting the segment.

On the receiver side, the NIC receives the IP datagrams,
DMAs them to the socket buffer and raises an interrupt
informing the device driver about this. The device driver
strips the packet off the link header and hands it over to the
IP layer using a software interrupt mechanism. The inter-
rupt handler for this software interrupt is typically referred
to as the bottom-half handler and has a higher priority com-
pared to the rest of the kernel. The IP layer verifies the
IP checksum and if the data integrity is maintained, defrag-
ments the data segments to form the complete UDP message
and hands it over to the UDP layer. The UDP layer verifies
the data integrity of the message and places the data into
the socket buffer. When the application calls the read()
operation, the data is copied from the socket buffer to the
application buffer. Figure 1b illustrates the sender and the
receiver paths.

2.2 Protocol Offload Engines
The processing of traditional protocols such as TCP/IP

and UDP/IP is accomplished by software running on the
central processor, CPU or microprocessor, of the server.
As network connections scale beyond Gigabit Ethernet
speeds, the CPU becomes burdened with the large amount
of protocol processing required. Resource-intensive mem-
ory copies, checksum computation, interrupts and reassem-
bling of out-of-order packets puts a tremendous amount of

load on the host CPU. In high-speed networks, the CPU
has to dedicate more processing to handle the network traf-
fic than to the applications it is running. Protocol Offload
Engines (POE) are emerging as a solution to limit the pro-
cessing required by CPUs for networking links.

The basic idea of a POE is to offload the processing of
protocols from the host processor to the hardware on the
adapter or in the system. A POE can be implemented with
a network processor and firmware, specialized ASICs, or a
combination of both. Most POE implementations available
in the market concentrate on offloading the TCP and IP pro-
cessing, while a few of them focus on other protocols such
as UDP/IP, etc.

As a precursor to complete protocol offloading, some op-
erating systems have started incorporating support for fea-
tures to offload some compute intensive features from the
host to the underlying adapters. TCP/UDP and IP check-
sum offload implemented in some server network adapters
is an example of a simple offload. But as Ethernet speeds
increased beyond 100Mbps, the need for further protocol
processing offload became a clear requirement. Some Gi-
gabit Ethernet adapters complemented this requirement by
offloading TCP/IP and UDP/IP segmentation on the trans-
mission side on to the network adapter as well.

POE can be implemented in different ways depending on
the end-user preference between various factors like deploy-
ment flexibility and performance. Traditionally, firmware-
based solutions provided the flexibility to implement new
features, while ASIC solutions provided performance but
were not flexible enough to add new features. Today, there
is a new breed of performance optimized ASICs utilizing
multiple processing engines to provide ASIC-like perfor-
mance with more deployment flexibility.

3

2.3 Myrinet Network

Local Memory

Host DMA
Engine Processor

RISC Receive DMA
Engine

Local Bus (LBUS)

 Send DMA
Engine

Myrinet Link

I/O Bus

Figure 2. Myrinet NIC Architecture

Myrinet is a high performance Local Area Network
(LAN) developed by Myricom Incorporation. The Myrinet
NIC consists of a RISC processor named LANai, memory,
and three DMA engines (host DMA engine, send DMA en-
gine, and receive DMA engine). Figure 2 illustrates the
Myrinet NIC architecture.

The LANai processor executes the Myrinet Control Pro-
gram (MCP), i.e., the firmware on the NIC. The NIC mem-
ory stores the data for sending and receiving. The host
DMA engine is responsible for the data movement between
the host and the NIC memories through the I/O bus. On the
other hand, the send DMA engine deals with moving the
data from the NIC memory to the Myrinet link. Similarly,
the receive DMA engine deals with moving the data from
the Myrinet link to the NIC memory.

There are several emerging features provided by the
Myrinet NIC. First, the programmability provided by the
Myrinet NICs can be utilized to modify the implementation
of existing features and/or add more features and function-
ality to the NIC. Such programmability can provide plenti-
ful opportunities to enhance existing IP based protocols.

The second interesting feature is the capability of the
memory on the Myrinet NIC. The memory on the NIC runs
at the same clock speed as the RISC processor. Further,
the LBUS (shown in Figure 2) operates at twice the chip
clock speed (two LBUS memory cycles for every clock cy-
cle). The host DMA engine, the receive DMA engine and
the send DMA engine each can request a maximum of one
memory access per clock cycle. The on-chip processor can
request up to two memory accesses per clock cycle. Further,
the memory itself can serve up to two memory accesses per
clock cycle. This means that two DMA engines, e.g., the
host DMA engine and the send DMA engine, can access
the memory simultaneously.

Yet another interesting feature provided by Myrinet is the
capability of the host DMA engine on the Myrinet NIC. The
host DMA engine allows checksum computation during the
DMA operation itself. In addition, to specify the end of the
buffer for a send DMA operation, the Myrinet NIC provides
two kinds of registers. One is the SMLT register, which
specifies not only the end of the buffer in the DMA oper-

ation but also the end of the message segment. The other
register, SML, only indicates the end of the buffer. There-
fore, several chunks of data sent with the SML register set,
are notified as parts of the the same segment on the receiver
side.

3 Architectural Viewpoint of UDP/IP
While the UDP/IP data and control path is fairly straight-

forward with respect to the operating system functionality,
it has a number of implications on the architectural require-
ments of the system which implements this. These archi-
tectural requirements deal with several issues in the sys-
tem such as the computational requirements of the protocol
stack, memory contention caused by the stack, the I/O bus
contention, etc.

3.1 Interaction of UDP/IP with System Resources
UDP/IP interacts with several system resources such as

CPU, host memory, I/O bus and the network link. In this
section, we briefly point out the requirements and extent
of these interactions using the Linux UDP/IP stack as an
example implementation.

CPU Interaction: As described in Section 2.1, a number
of components in the UDP/IP data path tend to be compute
intensive. For example, the copy of the data from/to the
application buffer occurring in the UDP/IP layer has large
computation requirements. Similarly, the checksum com-
putation occurring as a part of the bottom-half (described
in Section 2.1) on the receiver side requires compute re-
sources as well. The bottom-half typically has a higher
priority compared to the rest of the kernel. This means
that checksum computation for incoming packets is given
a higher priority as compared to copying of the data to the
application buffer. This biased prioritization of providing
CPU resources for the different components has interesting
implications as we will see in Section 3.2.

Host Memory Interaction: In cases where the sender
buffer is touched before transmission or when the same
buffer is used for transmission several times (e.g., in a
micro-benchmark test), the application buffer can be ex-
pected to be in cache during the transmission operation. In
such cases the data copy from the application buffer to the
socket buffer is performed with cached data and does not
incur any memory references. However, the case on the re-
ceiver side is quite different. On receiving data, the NIC
initiates a DMA operation to move the received data into
the host memory. If the host memory area for DMA is in
the cache of any processor, the cache lines are invalidated
and the DMA operation allowed to proceed to memory. The
checksum computation, which follows the DMA operation,
thus accesses data that is not cached and always requires
memory accesses. Thus, the checksum computation, the
DMA operation and also the data copy operation in some
cases compete for memory accesses.

4

I/O Bus Interaction: As described in Section 2.1, once
the IP layer hands over the data to the link layer, the de-
vice driver forms a descriptor corresponding to the data and
posts it to the NIC using a PIO operation over the I/O bus.
The NIC on seeing this posted descriptor performs a DMA
operation on the actual data from the host memory to the
NIC memory. Both these operations as well as other DMA
operations corresponding to incoming data use the same I/O
bus and essentially contend for its ownership.

NIC and Link Interaction: The host DMA engine on
the Myrinet NIC performs the DMA operation to fetch the
data from the host memory to the NIC memory. The send
DMA engine waits for the DMA operation to complete be-
fore it can transmit the data from the NIC memory to the
link. This delay in transmitting the data can lead to the
link being idle for a long period of time, in essense under-
utilizing the available link bandwidth.

3.2 Implications of System Resources on UDP/IP
Performance

The interaction of the UDP/IP stack with the various sys-
tem resources has several implications on the end perfor-
mance it can achieve. In this section, we study these per-
formance implications based on some experimental results
using the traditional UDP/IP stack in Linux.

Broad Perspective: Figures 3a and 3b present the time
flow chart on the transmission and reception sides of the
traditional UDP/IP implementation. The figures show the
time chart of the host and the NIC when 10 UDP packets
(of 32KB each) are transmitted in a burst. The time is set
to zero when the first packet is sent by the UDP applica-
tion. The y-axis represents the layers that each packet goes
through in order to be processed. A rectangle is the time
spent in the corresponding layer to process the packet. On
the receiver side, the bottom-half is not dealt as a part of
UDP/IP to clearly point out the overheads caused by the
checksum operation (a part of the bottom-half handler) and
by the data copy operation (a part of UDP/IP). The rect-
angles are shaded alternatively for clarity. In these figures
we can see that the different rectangles in the same layer
are of different sizes especially on the NIC of sender and
on bottom half and UDP of receiver. This is attributed to
the contention between the host and the NIC for the various
system resources including the host CPU, host memory, I/O
bus, etc. We will deal with each of these resources in the
following few subsections.

3.2.1 Compute Requirements and Contention
We first analyze the case of the host CPU contention. The
host performs several compute intensive operations such as
checksum computation, copying the data to the application
buffer, etc. Within these, some of the operations such as the
checksum computation are performed as soon as the data ar-
rives within a higher priority context (bottom-half). During

bulk data transfers where segments are received continu-
ously, this might imply that the CPU is completely devoted
to the bottom-half handler resulting in a starvation for the
other operations with compute requirements such as data
copy from the socket buffer to the application buffer.

We use the results depicted in Figures 3a and 3b to un-
derstand this. If we first consider the transmission side, the
contention between the host and the NIC for the different
system resources causes the NIC to take more time for the
first four packets compared to the other packets. This delay
in the NIC for the first four packets is also reflected on the
receiver side (Figure 3b) where the NIC has a significant
amount of idle time for the first few packets (shown as the
gaps between the rectangles in the figure). These gaps in
the receiver NIC’s active time are in turn reflected on the
bottom-half handling time on the receiver side, i.e., since
the packets are not coming in at the maximum speed on
the network, the host can perform the bottom-half and still
would have enough time to copy the data to the application
buffer before the next packet comes in. In short, in this case
the sender is not sending out data at the peak rate due to re-
source contention; this reduced data rate gives the receiver
ample time to receive data and place it in the application
buffer. Thus, in this case there is no contention for the CPU
on the receiver side.

However, for the later packets (rectangles 5 to 10 for the
NIC), as seen in Figure 3a, the host has completed perform-
ing its checksum and copy operations; so the NIC can pro-
ceed with its operations without any contention from the
host. This reduced contention for the system resources en-
sures that the data can be transmitted at a faster rate by the
NIC, i.e., the time spent for each packet is lesser in this case.
This increased transmission rate also reflects as a lesser idle
time for the NIC on the receiver side (rectangles 5-10 for
the NIC in Figure 3b). Further, this reduced idle time means
that the NIC continuously delivers packets to the host, thus
keeping the bottom-half handler active. This results in the
starvation of lower priority processes in the UDP/IP stack
such as the copy of the data from the socket buffer to the
application buffer. This starvation for CPU is reflected in
the third rectangle in Figure 3b where the copy operation
for the third packet has to wait until all the data correspond-
ing to the other packets has been delivered to the sockets
layer.

To further verify these observations, we have also used
the Performance Measurement Counters (PMCs) for the
Pentium processor to measure the actual time taken by the
data copy operation, due to CPU starvation, cache miss ef-
fects, etc. Figure 4 shows the impact of CPU starvation.
Figure 4a shows the overhead associated with the copy op-
eration when there is a CPU starvation as compared to the
case when there is no CPU starvation. The increase in the
copy overhead is due to not only the wait time associated

5

� ����� ������� ������� 	������ 	������
������
������

�
� �

� ��� ��� � �����
��������� ���

���! �"#�

� $ %&�(' �#)�*

+ ,
-.

� ����� ������� ������� 	������ 	������
������
������

�
� �

� ��� ��� � �����
��������� ���

���! �"#�

� $ %&�(' �#)�*

+ ,
-.

/ 01/1/32 /�/1/42 0�/�/651/�/1/75�0�/1/98�/1/�/68101/�/7:�/1/�/;:�0�/1/90�/�/1/

<>=�?

@�A�B B A#C
D#E�F G

H I�B J�K K L�M1B
D#E�I�N�F J�K

OPH Q

B R CSJUT L�V#W

X YZ
[

/ 01/1/32 /�/1/42 0�/�/651/�/1/75�0�/1/98�/1/�/68101/�/7:�/1/�/;:�0�/1/90�/�/1/

<>=�?

@�A�B B A#C
D#E�F G

H I�B J�K K L�M1B
D#E�I�N�F J�K

OPH Q

B R CSJUT L�V#W

X YZ
[

Figure 3. Time flow chart of the host and the NIC overheads: (a) Sender side; (b) Receiver side

with the process in order to get access to the host CPU but
also cache misses. When UDP tries to copy the data from
the kernel to the user buffer after the CPU starvation, the
cached data during the checksum computation has already
been removed from the cache by other checksum comuta-
tions. Figure 4b shows this wait time associated with the
process before it fetches the data into the cache.

3.2.2 Memory Contention

We next look at the host memory contention. Several op-
erations in the UDP/IP stack such as checksum computa-
tion, data copy to the application buffer, etc., as well as the
DMA operations to and from the network adapter compete
for memory accesses. We again refer to Figure 3 for under-
standing these contention issues. Observing Figure 3b, we
notice that when the rate of the incoming packets increases,
the time taken for the bottom-half increases (rectangles 4-6
in the bottom-half). This is because the checksum com-
putation in the bottom-half handler competes for memory
accesses with the DMA operations carried out by the NIC
(rectangles 5-10 for the NIC overhead in Figure 3b). This
figure shows the impact memory contention can have on the
performance of the UDP/IP stack.

Again, to re-verify these results, we have used PMCs to
measure the actual checksum computation overhead and the
wait time for fetching data from the memory to cache. The
actual impact of memory contention is depicted in Figure 5.
Figure 5a shows the overhead associated with the check-
sum operation during memory contention periods (later seg-
ments in Figure ??) as compared to the case when there’s no
memory contention. Again, there is no change in the actual
checksum computation time. However, the increase in the
checksum overhead is associated with the wait time in the
process in order to get access to the host memory. Figure 5b
shows this wait time associated with the process before it
gets access to the host memory.

3.2.3 I/O Bus Contention

Posting of descriptors by the device driver as well as DMA
of data by the NIC to/from the NIC memory uses the I/O
bus causing contention. The transmission side in Figure 3a

shows the increased time taken by the NIC for rectangles 1-
4. However, this increase in the time taken by the NIC can
be because of both I/O bus contention and memory con-
tention. In order to understand the actual impact of the I/O
bus contention, we modified the UDP/IP stack to offload the
checksum computation to the NIC and allow a zero-copy
implementation. These modifications completely get rid of
the memory accesses by the host avoiding any memory con-
tention that might be possible.

0 500 1000 1500 2000 2500 3000

NIC

UDP/IP

time (us)

Figure 6. Time flow chart of the host and
the NIC overheads on the transmission side
with the modified UDP/IP stack (checksum of-
floaded and zero-copy implementation)

Figure 6 shows the I/O bus contention for the modified
UDP/IP stack. We can see that the UDP/IP overhead is
negligible in this case because of the offloading of the data
touching components. On the other hand, the NIC overhead
for the first rectangle is significantly larger than the rest of
the rectangles due to the contention between the posting
of the descriptors and the DMA of the actual data to the
NIC. Since the host does not touch its memory at all, we
can say that this overhead is completely due to the I/O bus
contention.

3.2.4 Link Idle Time

Figure 7 shows the time flow chart for the NIC and the link
overheads for the traditional UDP/IP stack. As discussed
earlier, the earlier rectangles (1-4) showing the NIC over-
head on the transmission side are larger than the later ones
(5-10) because of the memory and I/O bus contentions. This

6

0

20

40

60

80

100

120

Prompt copy Delayed copy

C
op

y
ov

er
he

ad
 (

us
)

0.E+00

4.E+04

8.E+04

1.E+05

2.E+05

Prompt copy Delayed copy

N
um

be
r

of
 p

ro
ce

ss
or

 c
yc

le
s

Figure 4. Impact of CPU starvation on (a) Overall copy overhead; (b) Cache line fill wait time for
performing the copy operation

0

100

200

300

400

500

No host memory
contention

Host memory
contention

(1st-3rd packets)

Host memory
contention

(4th-6th packets)

C
he

ck
su

m
 o

ve
rh

ea
d

(u
s)

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

No host memory
contention

Host memory contention

N
um

be
r

of
 p

ro
ce

ss
or

 c
yc

le
s

Figure 5. Impact of memory contention on: (a) Checksum overhead on the receiver side; (b) Cache
line fill wait time for performing the checksum operation

0 500 1000 1500 2000 2500 3000 3500

NIC
(Receiver)

Link

NIC
(Sender)

time (us)

Figure 7. Time flow chart for the NIC and the
link overheads for traditional UDP/IP

overhead on the sender NIC is reflected as idle time for the
link and the receiver NIC (shown as gaps between rectan-
gles in the figure). This figure shows that memory and I/O
contention at the host can result in the link being idle for
nearly 50% of the time, in essense dropping the effective
link bandwidth to half. Further, the startup overhead for the
link (shown as the gap before the first rectangle) becomes
especially important for applications which do not carry out
bulk data transfers, e.g., latency micro-benchmark test.

Overall, these results attempt to demonstrate the various
inefficiencies present in the current UDP/IP implementation

due to contention for the existing system resources. In Sec-
tion 4 we present several solutions to address these issues
and implement a high performance UDP/IP stack using the
features provided by the Myrinet network.

4 Enhancing UDP/IP Performance: Design
Overview

In the following few subsections, we discuss several de-
sign solutions for the issues pointed out in the previous sec-
tion. In particular, we look at the issues of (i) Compute
requirements and contention, (ii) Memory contention, (iii)
I/O bus contention and (iv) System resources’ idle time and
suggest efficient designs in the context of the Myrinet net-
work to address these issues.

4.1 Partial Protocol Offloading for Avoiding CPU
and Memory Contention

As discussed in Section 3, the host CPU performs per-
byte operations such as data copy and checksum computa-
tion which result in not only an intensive consumption of
CPU resources, but also memory contention with the DMA
operations that access the host memory from the NIC. Fur-
ther, as described earlier, checksum offload and zero-copy
transmission and reception implemented by some protocol
offload engines allows a significant reduction in these re-
source usage requirements. We regard basic checksum of-

7

floading and zero-copy data transmission as pre-requisites
to our work and implement these on the Myrinet NIC
firmware.

We can consider two design alternatives to offload the
checksum computation on to the NIC. The first alternative
is to let the NIC firmware perform the checksum compu-
tation on the data in the NIC memory. This can be per-
formed in parallel with the protocol processing by the host
CPU. Though this approach would reduce the contention for
the CPU requirement on the host, it would merely shift the
memory contention issue from the host memory to the NIC
memory causing the checksum computation to contend with
the host and network DMA operations. In addition, since
the NIC processor is significantly slower than the host CPU,
it is difficult to expect this approach to reduce the overhead
for checksum computation.

The other approach is to utilize the checksum compu-
tation capability of the host-DMA engine. The checksum
computation by the DMA engine does not generate any ad-
ditional computation overhead or memory accesses since
the data checksum is performed together with the DMA op-
eration and before being placed into the NIC memory. This
allows us to achieve both offloading as well as high per-
formance. At the same time, the checksum offloading does
not introduce any additional memory contention on the NIC
memory.

Together with checksum computation, the data copy
present in the traditional UDP implementation is another
source of CPU and host memory contention. One way to re-
move the copy operation is to utilize the memory mapping
mechanism between the application and the kernel memory
spaces and use the mapped kernel memory space for all data
communication. Another alternative is to directly move the
data in the application buffer through DMA with the ad-
dress and the length of the application buffer. Without the
copy operation, the protocol layer can simply take the vir-
tual address of the application buffer and translate it into
the corresponding physical address by traversing the page
directory and table. This physical address is used by the
NIC to perform the DMA operations. Here, since we allow
applications to use arbitrary application buffers, we have
to consider the linearity of the buffer. In cases where the
buffer is not physically linear, we construct gather or scat-
ter lists so that the NIC can perform a DMA operation for
each linear chunk in the application buffer separately. Both
approaches have their own advantages and disadvantages,
but for efficiency and ease of implementation, we chose the
second approach.

4.2 Scheduling I/O Bus Transactions
As mention in Section 2.1, once the IP layer presents

the information about the outgoing data to the link layer,
the device driver forms a descriptor for the data message
and pushes this descriptor to the NIC through a PIO oper-

ation. While this approach is quite efficient when there is
little contention on the I/O bus, this might lead to a signifi-
cant degradation of the performance when the I/O bus gets
more heavily utilized. For example, bursty communication
requests from applications can generate a high rate of de-
scriptor posting to the network adapter with each descriptor
posting requiring a PIO transaction across the I/O bus.

In order to resolve this problem, we propose a two-level
queue structure to allow an efficient scheduling of the rate of
descriptor posting without sacrificing the performance. Fig-
ure 8 shows the basic structure of two-level queue, where
the level-1 (L1) queue is large and located in the host mem-
ory, while the level-2 (L2) queue is small and located in the
NIC memory.

Firmware
NIC

UDP/IP

Application Device

Driver

L1 Queue L2 Queue

��
Put Get Put Get

Host Memory NIC Memory
Host DMA

I/O Bus

Interrupt

Figure 8. Two level queues to control I/O bus
contention

When an application issues a send request, if the L2 send
queue is not full, the device driver puts the descriptor corre-
sponding to the request in the L2 send queue through a PIO
operation. On the other hand, if the L2 send queue is full,
the descriptor is just queued in the L1 queue. When the NIC
firmware completes a send, an interrupt is triggered, which
means that a vacancy is created in the L2 send queue. Ac-
cordingly, the interrupt handler gets a descriptor from the
L1 send queue and puts it into the L2 send queue through
a PIO operation. This approach ensures that the L1 send
queue behaves in a self-clocking manner, i.e., it uses the in-
terrupt for send completion as a clock to put a new descrip-
tor into the L2 send queue. The description of the two-level
queue on the receiver side is similar.

Consequently, the two-level queue structure can mitigate
the rate of PIO to less than:

�����	��

��������������� �����! #"%$'&�

where � is the maximum number of requests that the NIC
can process in time

�
. And sizeof(L2) is the number of

requests that L2 queue can hold.
The kernel and the NIC do not need to know any details

about the queue structure because the device driver allocates
and manages the L1 queue and can decide the size of the L2
queue. Accordingly, it is easy to apply to various operating
systems and NICs. While we understand the importance
of the performance impacts the size of the L2 queue might

8

have, in this paper, we do not deal with its variation and fix
it to a predefined value for all experiments.

4.3 Fine-Grained Pipelining to Minimize Link
Idle Time

As mentioned earlier, the Myrinet NIC memory allows
two memory accesses per clock cycle while each DMA
engine can only request one memory access per clock
cycle. This means that the transmission of a data seg-
ment by the send DMA engine can be pipelined with the
DMA of the next segment by the host DMA engine (since
these engines can read and write to the memory simultane-
ously1). The current GM architecture follows this approach
for data transmission. We term this form of pipelining
as coarse-grained pipelining. Earlier generation protocols
over Myrinet such as Berkeley VIA achieve a much lower
performance as they do not utilize this information about
the memory clock speed at all and carry out the host DMA
and the network DMA in a serialized manner. However, as
discussed in Section 3, even a coarse-grained pipelining ap-
proach does not fully avoid the idle time in the link since
the transmission is not carried out till the DMA of the entire
segment is completed.

In order to address the issue of the link idle time, we pro-
pose a fine-grained pipelining approach between the net-
work adapter and the Myrinet link. In the fine-grained
pipelining approach, the NIC initiates its DMA operation as
soon as a sufficient number of bytes have arrived from the
host memory (through a host DMA) or the network (through
a receive DMA). For instance, on the sender side the send
DMA engine can send a packet out to the network while the
host DMA engine is still moving a later part of the same
packet from the host to the NIC memory. This approach
allows us to fully pipeline the overheads of the send DMA
and the host DMA for the same packet. It is to be noted that
this approach only aims at reducing the per-byte overhead
of the packet and does not impact the per-packet overhead
associated with UDP/IP.

In order to achieve a fine-grained pipelining between the
NIC and the link overheads, the following conditions should
be satisfied. First, the NIC architecture has to allow multi-
ple accesses to the NIC memory at a time by different DMA
engines. The Myrinet NIC allows two DMA engines to ac-
cess the NIC memory simultaneously. Second, the NIC
has to provide an approach to send several fragments of a
packet separately and realize that these fragments belong
to the same segment on the receiver side. As described in
Section 2, the Myrinet NIC provides two kinds of registers,
namely SMLT and SML. The SMLT and SML registers can
be used to indicate the end of the segment and the fragment,

1In theory, unlike dual ported memory interfaces, the Myrinet NIC
memory does not provide truly concurrent access. However, the number of
requests the memory can handle is twice the number of requests each DMA
engine can generate. So, the accesses can be assumed to be concurrent.

respectively. Third, the NIC firmware should force the host
DMA engine to perform the DMA operation in parallel with
the network DMA engines within the same packet.

While it is easily verifiable that the NIC satisfies the
first two conditions, it is very difficult to verify that the
NIC firmware always guarantees the third property irrespec-
tive of the communication pattern followed by the appli-
cation. To address this, we propose a formal verification
for the fine-grained pipelining based firmware model on the
Myrinet NIC firmware, MCP.

The MCP performs coarse-grained overhead pipelining
for IP based protocols, where DMA overheads across dif-
ferent packets are overlapped. As mentioned earlier, this
technique only aims at reducing the per-byte overhead of
the message. Therefore, it is more effective for large mes-
sages where the per-byte overhead is the dominant part as
compared to small messages where the per-packet overhead
is the dominant part.

The MCP consists of multiple threads: SDMA, RDMA,
SEND, and RECV. The SDMA and SEND threads are re-
sponsible for sending. The SDMA thread moves data from
the host memory to the NIC memory, and the SEND thread
sends data in the NIC memory to the physical network. The
receiving of data is performed by the RDMA and RECV
threads. The RECV thread receives data from the physical
network to the NIC memory. The RDMA thread moves the
received data to the host memory.

Based on this design we suggest an extended firmware de-
sign for fine-grained pipelining as shown in Figure 9. In the
figure, the states in the rectangle (with the dotted line) are
the newly defined states for fine-grained overhead pipelin-
ing. The shaded states in the figure are dispatching entries
of each thread. Each thread starts from the initial state and
when it reaches a dispatching state, yields the processor to
another thread that is ready to run without waiting for the
next event to translate the state of the running thread. The
yielding thread starts at a later point from the state in which
the thread was suspended right before.

For example, let us consider the states for fine-grained
pipelining on the RDMA thread. The initial state of the
RDMA thread is the Idle state. If the amount of data arrived
is more than the threshold for fine-grained pipelining, the
state is moved to Fine Grained Rdma, where the RDMA
thread initiates the host DMA operation to move the data in
the NIC memory to the host memory. After finishing this
DMA operation, in the Fine Grained Rdma Done state, if
there is still more data than the threshold, the RDMA thread
performs the host DMA operation again moving to the
Fine Grained Rdma state. Otherwise, if the receive DMA
has completed, the state of the RDMA thread is changed
to the Rdma Last Fragment state. In this state, the RDMA
thread does the DMA operation for the rest of the packet
regardless of its size.

9

Ready

Idle

sd
m

a_
do

ne

ho
st

_d
m

a_
fr

ee

Busy

Sdma

Dma

recv_done

&& host_dma_free

Rdma
Last

Fragment

Fine
Grained
Rdma
Done

Rdma
Grained

Fine

bytes_larger_than_treshold

rd
m

a_
do

ne

Idle

recv_done

host_dma_in_use

host_dma_free

ho
st

_d
m

a_
fr

eerd
m

a_
do

ne

Dma
Busy

Ready

Rdma
Grained
Coarse

by
te

s_
la

rg
er

_
th

an
_t

hr
es

ho
ld

rd
m

a_
do

ne

th
an

_t
hr

es
ho

ld
by

te
s_

la
rg

er
_

bytes_larger_than_treshold

sdma_done

se
nd

_d
on

e

Fine
Grained

Send
Done

Send
Grained

Fine

Coarse
Grained

Send

sd
m

a_
do

ne

se
nd

_d
on

e

Send
Last

Fragment

Idle

se
nd

_d
on

e

Recv

Idle

re
cv

_d
on

e

st
ar

t_
re

cv

host_dma_in_use

host_dma_free

send_request

Figure 9. State Transition Model for: (a) SDMA, (b) RDMA, (c) SEND, and (d) RECV threads

10

In order to verify the correctness of the about state transi-
tion diagram, we used the Spin verification tool. Spin [16]
is a tool for formal verification of distributed software sys-
tems, such as operating systems and data communication
protocols. It uses a high level language to specify a sys-
tem, called PROMELA (PROcess MEta LAnguage) [15].
Given a model specified in PROMELA, Spin verifies that
the model satisfies properties written in linear temporal
logic (LTL) [22]. LTL was designed for expressing tem-
poral ordering of events and variables; it characterizes the
behavior of systems by specifying some behavior that all
traces of a system must obey.

For the formal verification, we first translate the state tran-
sition diagrams of Figure 9 into specifications written in
PROMELA. We then define propositional symbols and de-
rive verification formulas written in LTL as follows:

Symbol Definitions:
#define sdma

(SDMA state == Sdma)
#define coarse rdma

(RDMA state == Coarse Grained Rdma)
#define fine sdma

(RDMA state == Fine Grained Rdma)
#define coarse send

(SEND state == Coarse Grained Send)
#define fine send

(SEND state == Fine Grained Send)
#define recv

(RECV state == Recv)

Formula 1: ��� (sdma && (coarse send ��� fine send))
Can the SEND thread initiate a send DMA while the SDMA
thread performs a host DMA, and vice versa?

Formula 2: ��� ((coarse rdma ��� fine rdma) && recv)
Can the RECV thread initiate a receive DMA while the
RDMA thread performs a host DMA, and vice versa?

Formula 3: ��� ((coarse send ��� fine send) && recv)
Can the SEND thread initiate a send DMA while the RECV
thread performs a receive DMA, and vice versa?

Formula 4: ��� (sdma && (coarse rdma ��� fine rdma))
The SDMA thread cannot use the host DMA engine while
RDMA thread utilizes it, and vice versa.

Formulas 1 and 2 represent the properties that the sug-
gested model performs the fine-grained pipelining. Formula
3 represents that the model utilizes the Myrinet link in full-
duplex mode. Formula 4 ensures correctness, i.e., only one
thread between SDMA and RDMA should occupy the host
DMA engine at a time. Using these formulas with Spin,
we formally verified that the above presented model per-
forms fine-grained pipelining with any generic communica-
tion pattern.

4.4 Performance Modeling

To analyze the performance of our design described in
Sections 4.1, 4.2, and 4.3 on various systems, we propose
a mathematical performance model. First, we derive the
performance model for coarse-grained pipelining as a base
model to compare against. Next, we describe the perfor-
mance model for fine-grained pipelining. Both models im-
plement the partial protocol offloading as well as the two-
level queuing and differ only in the pipelining mechanism.

4.4.1 Coarse-Grained Pipelining

In the coarse-grained pipelining model, pipelining between
the overheads for the

 	� ��
 &
��� packet at the � ��� layer and
the

�����
packet at the

 �%��
 &���� layer occurs as shown in
Figure 10a, where the smaller numbered layer is the upper
layer. In the figure, ��� and ��� denote the per-packet and the
per-byte overheads at the � ��� layer, respectively. � is the
byte size of the packet.

In this case, the one-way latency and the bandwidth are
given by Equations 1 and 2, respectively, where � is the
number of layers that perform the overhead pipelining. The
subscript � represents the bottleneck layer, and � is the
number of packets. We analyze the bandwidth for a large
number of packets (i.e., ����� &

since we assume that the
test would use a massive data transmission.

4.4.2 Fine-Grained Pipelining

Based on the implementation of partial protocol offloading
and two-level queuing, we can achieve fine-grained pipelin-
ing with the firmware model described in Section 4.3. In
the fine-grained pipelining approach, a layer initiates its per-
byte processing as soon as a sufficient number of bytes have
arrived from the upper layer. Therefore, the overhead of a
packet at the � ��� layer and the same packet at the

 � ��
 &
���
layer are fully pipelined except the per-packet overhead as
shown in Figure 10b.

In the figure, � � is the start-up overhead that is required
to start a per-byte operation such as a DMA operation, �! � is
the per-packet overhead excepting the start-up time � � (i.e.,�" �� � �#�%$&�'�) and (*),+ -.+ � is the size of

�*���
fragment of the�!���

packet in the � ��� layer.
For the first step, in order to model the one-way latency

for fine-grained pipelining, let us define the parameters for
the first packet (i.e.,

� �
). A characteristic of fine-grained
pipelining is that the per-byte overhead of a layer is affected
by the per-byte overhead of the upper layer. Accordingly,
we define a new per-byte overhead, /0-1+ � as follows:

/32 + � �547698 :3;=<%>�;6 if
 � �
 &698 :%?@<%AB;DC ?D8 >1?E<GF�AIH 2
J 8 KB;DC ?6 if
 �9��
 & (3)

where the number of fragments, L , is:

11

��� ���
� �	� ��

�
� �����	� ��������� ���ig 1+ig
iGB ⋅ 1+⋅ iGB

��� "!
$&% !('

)*$ �+!-,&. %0/21 3�4
iS

ig′

11,1,1 ++ ⋅ ii Gx

1,2 +Γ⋅ iB

11,1,1,1 ++ ⋅
+ ii Gx

iϕ 11,2,1,2 ++ ⋅
+ ii Gx

iϕ

Figure 10. Overhead Pipelining: (a) Coarse Grained; (b) Fine Grained

" ���	� �6587�9�: �8;=<?> � @A
�CB 2 �#� �&�ED���� &8F (1)

� � �6G�H ��G �?I 9�: �8;J<K>%�MLCNPO
RQTS �UD��
 � $
 & D ��V � �WD��TV & � @A

�CB 2 � � � �WD�� � &
� ���V �&�ED��TV

(2)

L"2 + � �
XYYZ YY[
 if

 � �
 F / 2 + � H 2 �]\-F �*^ � � �]\�&
6 � if _ � 8 : ? <%> ?` ;=C ?+a ; � �Kbc � if _ � 8 : ? <%> ?` ;=C ?+a ;ed � b (4)

�
is the threshold, i.e., the minimum number of bytes that

make a layer start its per-byte processing; c � is the number
of fragments when the data processing of the upper layer is
faster than the current layer, so it satisfies Equation 5.

The 7 2 + � parameter in the Equation (3) denotes the dor-
mant time between fragments. In other words, 7 2 + � is the
waiting time for

�
bytes to arrive from the upper layer.

Therefore, 7 2 + � is defined as shown in Equation (8).
As a result, the one-way latency of the fine-grained

pipelining is as follows:

" ���	� �6587)I� @ > � @A
�PB 2 + ��fB > � � � � D,� � & � � > �&�ED�/ 2 + > (9)

where
�

is the last layer such that / 2 + >Tg�]\
.

In order to model the bandwidth, we define a param-
eter, h , which is the number of packets after which the
fine-grained pipelining is changed into the coarse-grained
pipelining. This occurs because when a layer passes the

data to the next layer which happens to be slower, data ac-
cumulates in the buffer of the next layer triggering progres-
sively larger transfers in a ripple effect. h is the minimum
integer satisfying the following equation:

Therefore, for all packets from the first to the h ��� , the per-
byte overheads (i.e., / -1+ �) are the same regardless of

�
. On

the other hand, after the h ��� packet, the per-byte overheads
are the same as that of coarse-grained pipelining (i.e., � �).
Thus, the bandwidth of fine-grained pipelining is given by
Equation 15.

An interesting result is that Equation (15) is the same
with Equation (2). This is because fine-grained pipelining
switches to coarse-grained pipelining after the h ��� packet
when a large number of packets are transmitted in burst. As
a result, fine-grained pipelining can achieve a low latency
without sacrificing the bandwidth.

5 Experimental Results

In this section, we first present the capability of our
E-UDP implementation to avoid the various inefficiencies
pointed out in Section 3. Next, we present the performance
achieved by E-UDP compared to other protocol implemen-
tations. Finally, we present the results of our analytical
model showing the performance of E-UDP for various sys-
tem and network configurations.

For the evaluation, we used a pair of machines equipped
with an Intel Pentium III 1GHz processor on an ASUS

12

� ?A� B 2 (� + 2 + � � � �
� ?A� B�� � � DI� � H 2�/ � H 22 + � H 2 �

�A@ B�� � � � DI� @ H ��/ � H 22 + � H 2���� � � (5)

Proof of Equation (5).

(2 + 2 + � � �

(���+ 2 + � � (2 + 2 + � D���� �&�'�/32 + � H 2
� � D����/32 + � H 2 �

�'�/32 + � H 2(�	�+ 2 + � � (�B+ 2 + � D�� � �&� �/ 2 + � H 2
� � D�� ��/ � 2 + � H 2 � � � D�� �/ � 2 + � H 2 � � �/ 2 + � H 2

(�
 + 2 + � � (�	B+ 2 + � D���� �&�'�/ 2 + � H 2
� � D�� 	�/ 	 2 + � H 2 � �'� D�� ��/ 	 2 + � H 2 � �'�6D,���/ � 2 + � H 2 � �'�/ 2 + � H 2

...

(� + 2 + � � (� ?�H 2 + 2 + � DI��� �&�0�/32 + � H 2
� � D�� � ?DH 2�/ � ?=H 22 + � H 2 � �0� D�� � ?DH ��/ � ?=H 22 + � H 2 � �'� DI� � ?�H 	�/ � ?=H �2 + � H 2 �]D
D�D�� �/ 2 + � H 2

(6)

 � ?A� B 2 (� + 2 + � � � �
� ?A� B�� � � D�� � H 2�/ � H 22 + � H 2 �

�A@ B�� � � � D,� @ H ��/ @ H 22 + � H 2 ��� (7)

7 2 + � � XZ [L��0$
 & D _ � $ � 8 :%?E< >1?` ;DC ?+a ; b D,/ 2 + � H 2 if _ � 8 : ?E<%>1?` 2 + � H 2 � � b\
if _ � 8 : ?E<%>1?` 2 + � H 2 d � b (8)

� V �&�ED�/ V ��V �&�UD,/ V & $ ��V H 2 �&�ED�/ V H 2 &�� h � $ D � V � �WD�/ V & $ � V H 2 �&�UD,/ V H 2 & ��V � �ED,/ V & $ ��V H 2 �&�ED�/ V H 2 & (10)

Proof of the lower bound of Equation (10).

h D ��V H 2 �&�ED�/ V H 2 & � h $
 & D ��V �&�ED�/ V &��V �&�ED�/ V � h D ��V � �WD,/ VG$ ��V H 2 $ �UDI/ V H 2 & (11)

 � V � �ED,/ V ��V �&�UD,/ V & $ ��V H 2 �&�UD,/ V H 2 &�� h (12)

Proof of the upper bound of Equation (10).

 h $
 & D � V H 2 �&�ED�/ V H 2 & � h $ $ & D � V � �WD�/ V &h D � V H 2 � �WD�/ V H 2 $ � V $ �ED�/ V H 2 & � � V H 2 � �WD�/ V H 2 & $ $ D � V �&�UDI/ V & (13)

 h � $ D ��V �&�UD,/ V & $ ��V H 2 � �UDI/ V H 2 & � V �&�ED�/ V & $ � V H 2 � �UDI/ V H 2 & (14)

13

� � �6G&H ��G �?I),� @ > � LPNCO
 Q S �UD��@ H 2A
�CB 2 � � �

A
-
B 2 � @ �&�ED�/*-1+ @ &

� LPNCO
 Q S �UD��@ H 2A
�CB 2 � � �

A
-
B 2 � V � �ED,� V � L.-1+ V D.� V &

� LPNCO
 Q S �EDB�@ H 2A
�CB 2 � � � � D � V �&�ED��TV & � �A

-
B 2 L -1+ V D,�6V & �

A
-
B �

�6V
� �� V �&�UD,� V

(15)

motherboard (Intel 815EP chipset). Each machine has a
Myrinet NIC (LANai 9.0) set to a 32bit 33MHz PCI slot,
and the NICs are directly connected to each other through
the Myrinet-1280 link. The Linux kernel version used is
2.2, and we adopt GM (version 1.4) for the device driver
and the firmware on the Myrinet NIC. The MTU size is set
to 32KB.

5.1 System Resource Consumption in E-UDP

To analyze the effect of partial protocol offloading on
the CPU overhead, we measured the overhead on both the
host and the NIC CPUs. Figures 11a and 11b compare the
CPU overheads of the original UDP and E-UDP for small
(1B) and large (32KB) message sizes respectively. For
small messages, though the copy operation and the check-
sum computation overheads are small, we can see a slight
reduction in the CPU overhead, especially on the receiver
side. On the other hand, the NIC overheads of E-UDP are
increased due to the offload of the copy operation and the
checksum computation. Further, some other functionalities
such as a part of the UDP/IP header manipulation also have
been moved to NIC. Overall, the accumulated overhead on
both the host and the NIC are nearly equal (44.7us on E-
UDP Vs. 42.3us on original UDP).

For large messages, however, we can see a large benefit
through partial protocol offloading. By offloading the per-
byte operations from the host, we achieve a very small host
overhead regardless of the message size. At the same time,
there is no significant increase in the overhead on the NIC.

To observe whether E-UDP resolves the resource con-
tention and the idle resource problems, we study the time
flow chart of E-UDP for 10 packets each of 32KB size.
The time flow chart of the original UDP has already been
shown in Section 3. Figure 12 shows the time chart of E-
UDP. We can see that the overhead of each layer can be
fully pipelined with the others from the sender side to the

receiver side. This is due to the fact that E-UDP eliminates
the CPU, the memory, and the I/O bus contentions. In addi-
tion, E-UDP performs a fine-grained overhead pipelining to
overlap the NIC and the link overheads. Consequently, the
largest overhead (i.e., the NIC overhead) hides the smaller
overheads and allows us to achieve a performance close to
the theoretical maximum.

5.2 Latency and Bandwidth

In this section, we compare the performance of E-UDP
with that of the original UDP, GM and Berkeley-VIA [9], a
well-known implementation of VIA. Since there is no im-
plementation of Berkeley-VIA on LANai9, we measured
its performance with a LANai4 based Myrinet NIC on the
same platform.

Figure 13 compares the latency of E-UDP, GM, Berkeley-
VIA, and original UDP with the theoretical minimum la-
tency of the experimental system for large and small mes-
sages respectively. Since the bottleneck of the system is
the PCI bus (1007Mbps of PCI Vs. 1310Mbps of Myrinet-
1280), the theoretical maximum performance in this sub-
section is derived from that achievable by the PCI bus used.
We can observe that the latency of E-UDP is smaller than
the others and almost even with the theoretical minimum
latency. An interesting result is that the latency of E-UDP
is even smaller than that of the user-level protocols, such
as GM and Berkeley-VIA for large message sizes. This is
because E-UDP performs fine-grained overhead pipelining
on the NIC. On the other hand, in the case of small data
sizes (Figure 13b), GM shows the smallest one-way latency.
This is because for small messages, the per-packet overhead
becomes the dominant factor. User-level protocols have a
lower per-packet overhead compared to UDP/IP following
which they are able to achieve a lower latency.

Figure 14 shows the bandwidth achieved by E-UDP com-
pared to the other protocols. A notable result is that E-

14

CPU Overhead (Small Message: 1B)

0

2

4

6

8

10

12

14

16

18

20

Host
(Original
UDP/IP
Sender)

Host
(E-UDP/IP
Sender)

Host
(Original
UDP/IP

Receiver)

Host
(E-UDP/IP
Receiver)

NIC
(Original
UDP/IP
Sender)

NIC
(E-UDP/IP
Sender)

NIC
(Original
UDP/IP

Receiver)

NIC
(E-UDP/IP
Receiver)

O
ve

rh
ea

d
(u

s)

host-DMA

NIC Per-Packet

Device Driver

UDP/IP

Copy+Checksum

CPU Overhead (Large Message: 32KB)

0

50

100

150

200

250

300

Host
(Original
UDP/IP
Sender)

Host
(E-UDP/IP
Sender)

Host
(Original
UDP/IP

Receiver)

Host
(E-UDP/IP
Receiver)

NIC
(Original
UDP/IP
Sender)

NIC
(E-UDP/IP
Sender)

NIC
(Original
UDP/IP

Receiver)

NIC
(E-UDP/IP
Receiver)

O
ve

rh
ea

d
(u

s)

host-DMA

NIC Per-Packet

Device Driver

UDP/IP

Copy+Checksum

Figure 11. CPU overhead on the host and the NIC: (a) Small messages (1 byte); (b) Large messages
(32 Kbytes)

� ����� ������� ������� ������� ������� 	������

���
����

� ��� ��� � �����
��������� ���

 �� !

"�# ��$

 �� !

� ��� ��� � �����
��������� ���

���
����

� # %&�('��*)�+

, -
./

, -
./

0 12
3 14

5 1
617 8
14

� ����� ������� ������� ������� ������� 	������

���
����

� ��� ��� � �����
��������� ���

 �� !

"�# ��$

 �� !

� ��� ��� � �����
��������� ���

���
����

� # %&�('��*)�+

, -
./

, -
./

0 12
3 14

5 1
617 8
14

Figure 12. Time Flow Chart for E-UDP

Latency (Large Message)

0

200

400

600

800

1000

1200

1024 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

La
te

nc
y

(u
s)

Original UDP/IP
Berkeley-VIA
GM API
E-UDP/IP
Theoretical Latency

Latency (Small Message)

0

10

20

30

40

50

60

70

1 32 64 128 192 256 320 384 448 512

Data Size (Bye)

La
te

nc
y

(u
s)

E-UDP/IP Original UDP/IP
Berkeley-VIA GM API

Figure 13. Latency Comparison for (a) Large messages; (b) Small messages

15

UDP achieves a peak bandwidth of 951Mbps which is about
94% of the theoretical maximum bandwidth of the exper-
imental system. The bandwidth of GM is slightly lower
than that of E-UDP. This is because GM employs middle-
grained pipelining that splits a large packet into several seg-
ments with a fixed size of 4KB as shown in Figure 15. This
segmentation increases the packet processing overhead in
proportion to the number of segments. Consequently, the
throughput suffers.

Bandwidth Comparison

0

200

400

600

800

1000

256 4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

B
an

dw
id

th
 (

M
bp

s)

Theoretical throughput
E-UDP/IP
GM API
Original UDP/IP
Berkeley-VIA

Figure 14. Bandwidth Comparison

� ����� � ����� � ����� ������� ������� ������� �������

�	�

�
� ���

�	�

� � ����� �����

Figure 15. Middle-Grained Overhead Pipelin-
ing on GM

An unexpected result in Figure 14 is that for large data
sizes (larger than 1KB) Berkeley-VIA shows a much lower
throughput than the others. This can be partly because we
measured its performance with a LANai4 based NIC. How-
ever, since the rest of the experimental system was the same,
the data-touching portion is unchanged between LANai4
and LANai9. Based on this, the drop in bandwidth is at-
tributed to the lack of pipelining between the NIC and the
link overheads, i.e., the NIC firmware of Berkeley-VIA se-
rializes DMA operations even for those performed by dif-
ferent DMA engines without taking advantage of the capa-
bilities of the Myrinet NIC memory to allow simultaneous
access to both the DMA engines. For example, Figure 16

shows that the NIC and link overheads are never overlapped
on the sender running Berkeley-VIA.

� ������� �
����� �
� �
� !"� �
� # �
���

$�% &('

)+* ,

- % .0/21 3�4	5

Figure 16. Serialization of NIC and Link Over-
heads on Berkeley-VIA

5.3 Performance Modeling Results

To verify that the mathematical performance model sug-
gested in Section 4.4 is accurate, we compare the perfor-
mance evaluated from the model with the real performance
numbers on our test-bed. Figures 17a and 17b show the
latency and bandwidth comparisons, respectively. Since,
from the performance model equations in Section 4.4, the
bandwidth of the coarse and the fine-grained pipelining
mechanisms are the same, Figure 17b does not deal with
coarse and fine-grain pipelining separately. Real data for
coarse-grain pipelining refers to a version of UDP with par-
tial protocol offloading and two level queuing for the I/O
requests, i.e., it differs from E-UDP in only the pipelining
mechanism. As we can see in the figures, the performance
model matches the actual data very closely with an error of
less than 5%.

Based on the performance model, we tried to analyze
the latency and bandwidth of E-UDP on faster networks
and I/O buses than our evaluation system. We considered
2Gbps and 10Gbps networks to reflect the characteristics of
the emerging networks such as Myrinet-2000, 10-Gigabit
Ethernet, and InfiniBand. In addition, we took account of
64bit/66MHz and 64bit/133MHz PCI systems. We used the
per-packet overhead values measured on E-UDP and de-
cided the per-byte overhead values according to the target
network and the PCI bus speed.

Figures 18a and 18b show the latency and bandwidth on
a 2Gbps network with a 64bit/66MHz PCI bus. We can
see that in this case the fine-grained pipelining can achieve
a very low latency for large message sizes compared to
coarse-grained pipelining. In addition, the rate of increase
of the overhead is equal to that of the network link latency;
this shows that fine-grained pipelining is able to hide the
DMA overhead on the NIC behind the link overhead suc-
cessfully. Moreover, Figure 18b shows that both overhead
pipelining mechanisms can achieve a near physical band-
width.

The results on a 10Gbps network and a 64bit/133MHz

16

Latency (Coarse and Fine-Grain Pipelining)

0

100

200

300

400

500

600

700

800

900

4096 8192 12288 16384 20480 24576 28672 32768
Data Size (Byte)

La
te

nc
y

(u
s)

Real Number (Coarse)

Performance Model (Coarse)

Real Number (Fine)

Performance Model (Fine)

Bandwidth (Coarse and Fine-Grain Pipelining)

0

100

200

300

400

500

600

700

800

900

1000

4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

B
an

dw
id

th
 (

M
bp

s)

Real Number

Performance Model

Figure 17. Performance Modeling Results Verification: (a) Latency; (b) Bandwidth

Latency (2Gbps Network and 64bit 66MHz PCI)

0

50

100

150

200

250

300

350

4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

La
te

nc
y

(u
s)

Coarse-Grain Pipelining

Fine-Grain Pipelining

Network Link Latency

Bandwidth (2Gbps Network and 64bit 66MHz PCI)

0

400

800

1200

1600

2000

2400

4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

B
an

dw
id

th
 (

M
bp

s)

Network Link Bandwidth

Coarse and Fine-Grain Pipelining

Figure 18. Latency and Bandwidth measurements on a 2Gbps network with a 64bit/66MHz I/O bus

17

PCI bus are shown in Figures 19a and 19b. We can see that
even fine-grained pipelining cannot fully utilize the network
link. The reason for this is that the PCI bus is the bottleneck
and not the network. Therefore, the performance is limited
by the PCI bus. Another interesting observation is that the
per-packet overhead becomes more important as the speed
of the network and the I/O bus become faster. As shown
in Figure 19a, although fine-grained pipelining can reduce
the latency, it is still high because of the large per-packet
overhead compared to the per-byte overheads such as the
DMA and the link overheads.

6 Related Work
Several researchers have worked on implementing high

performance user-level sockets implementations over high
performance networks. Balaji, et. al have worked on such
pseudo sockets layers over Gigabit Ethernet [6], GigaNet
cLAN [7] and InfiniBand [5]. However, these sockets lay-
ers only deal with compatibility issues with existing appli-
cations and do not focus on compatibility with the existing
IP infrastructure.

Trapeze [11] has implemented zero copy, checksum of-
floading, and a form of overhead pipelining based on
TCP/IP on Myrinet. This research is notable in the sense
that this was the one of the first to show that an IP based pro-
tocol can achieve a significantly high performance. How-
ever, Trapeze provides a different API from the sockets in-
terface and is not compatible with the traditional TCP/IP
implementation. In our paper, we try to achieve a near the-
oretical performance while keeping the socket interface and
compatibility existing the UDP/IP implementations.

For overhead pipelining, several studies have been done
to achieve a middle-grained pipelining [25, 36, 18], which
splits a large packet into smaller sized segments so that the
overheads for a packet at a layer and the same packet at the
next layer are partly pipelined. The middle-grained pipelin-
ing can achieve a lower latency than coarse-grained pipelin-
ing but is not as efficient as fine-grained pipelining. Further,
since middle-grained pipelining splits a packet into separate
segments, each with a separate segment header, it sacrifices
some of the bandwidth.

A notable research on formal verification of the NIC
firmware is performed by Kumar et al. [21], which employs
a model checking approach to implement the NIC firmware.
They use Event-driven State-machine Programming (ESP);
a language for writing firmware for programmable devices
to verify the retransmission protocol, memory safety, and
the deadlock free property of the VMMC [13] firmware.
We expect that their approach can effectively help imple-
ment our suggested model.

7 Concluding Remarks and Future Work
While a number of user-level protocols have been devel-

oped to reduce the gap between the performance capabili-

ties of the physical network and the performance actually
available, their compatibility issues with the existing sock-
ets based applications and IP based infrastructure has been
an area of major concern. To address these compatibility
issues while maintaining a high performance, a number of
researchers have been looking at alternative approaches to
optimize the existing traditional protocol stacks. Broadly,
previous research has broken up the overheads in the tradi-
tional protocol stack into four related aspects, namely: (i)
Compute requirements and contention, (ii) Memory con-
tention, (iii) I/O bus contention and (iv) System resources’
idle time.

There has been some previous research which deals with
some of these aspects. For example, Protocol Offload En-
gines (POEs) have been recently proposed as an industry
standard for offloading the compute intensive components
in protocol processing to specialized hardware. However,
these approaches require network adapters supported with
specialized ASIC based chips which implement the pro-
tocol processing and are not generic enough to be imple-
mented on most network adapters. Further, these deal with
only the compute requirement and memory contention is-
sues and do not address the remaining issues. In short, to
the best of our knowledge, there is no work which deals
with all these issues in an integrated manner while main-
taining backward compatibility with existing applications
and infrastructure.

In this paper, we address each of these issues and propose
solutions for minimizing these overheads. We also mod-
ify the existing UDP/IP implementation over Myrinet to
demonstrate the capabilities of these solutions. We first uti-
lize the earlier proposed techniques to implement a partial
offload of the UDP/IP protocol stack to address the first two
issues, i.e., compute requirements and memory contention.
Next, we modify the device driver to allow a delayed post-
ing of descriptors in order to reduce the contention at the I/O
bus between descriptor posting and the DMA operations of
the actual outgoing or incoming data. Finally, we imple-
ment a fine-grained pipelining technique on the firmware of
the network adapter to minimize the link idle time in order
to achieve a high performance. Further, all these enhance-
ments to the UDP stack are completely compatible not only
with existing applications and infrastructure, but also with
the existing UDP implementations. Our experimental re-
sults show that with our implementation of UDP, termed as
E-UDP, can achieve up to 94% of the theoretical maximum
bandwidth. We also present a mathematical performance
model which allows us the study the performance of our
design for various system architectures and network speeds.

We have done some preliminary work earlier to show that
several features provided by Myrinet network including link
level flow control can be used to provide reliability in data
transmission. This relieves us of the requirement of a heavy

18

Latency (10Gbps Network and 64bit 133MHz PCI)

0

20

40

60

80

100

120

140

4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

La
te

nc
y

(u
s)

Coarse-Grain Pipelining

Fine-Grain Pipelining

Network Link Latency

Bandwidth (10Gbps Network and 64bit 133MHz PCI)

0

2000

4000

6000

8000

10000

12000

4096 8192 12288 16384 20480 24576 28672 32768

Data Size (Byte)

B
an

dw
id

th
 (

M
bp

s)

Network Link Bandwidth

Coarse and Fine-Grain Pipelining

Figure 19. Latency and Bandwidth measurements on a 10Gbps network with a 64bit/133MHz I/O bus

protocol such as TCP/IP and allows us to achieve high per-
formance. As a part of our future work, we plan to integrate
this kind of reliability into E-UDP. Also, we are currently
looking into offloading the per-packet overheads in the cur-
rent UDP/IP stack on to the network adapter. This would
not only allow us to achieve a better performance for small
messages (where the per-packet overhead is dominant), but
also a better scalability for faster networks.

References

[1] 10 Gigabit Ethernet Alliance. http://www.10gea.org/.

[2] InfiniBand Trade Association Specifications.
http://www.infinibandta.org/estore.html.

[3] Quadrics Supercomputers World Ltd. http://www.
quadrics.com/.

[4] InfiniBand Trade Association. http://www.
infinibandta.org.

[5] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Sockets Direct
Protocol over InfiniBand in Clusters: Is it Beneficial?
In the Proceedings of ISPASS 2004, Austin, Texas,
March 10-12 2004.

[6] P. Balaji, P. Shivam, P. Wyckoff, and D. K. Panda.
High Performance User Level Sockets over Gigabit
Ethernet. In the Proceedings of Cluster’02, pages
179–186, Chicago, Illinois, September 23-26 2002.

[7] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda,
and J. Saltz. Impact of High Performance Sockets
on Data Intensive Applications. In the Proceedings
of HPDC-12, pages 24–33, Seattle, Washington, June
22-24 2003.

[8] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[9] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Inter-
face Architecture. In Proceedings of Supercomputing,
1998.

[10] J. Chase, A. Gallatin, A. Lebek, and Y. G. Yocum.
Trapeze API. Technical report, Duke University, 1997.

[11] J. Chase, A. Gallatin, and K. Yocum. End-System Op-
timizations for High-Speed TCP. IEEE Communica-
tions Magazine, 2000.

[12] Myricom Corporations. The GM Message Passing
System.

[13] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and
K. Li. VMMC-2: Efficient Support for Reliable, Con-
nection Oriented Communication. In Proceedings of
Hot Interconnects, 1997.

[14] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cot-
trell, O. Martin, F. Coccetti, C. Jin, D. Wei, and
S. Low. Optimizing 10-Gigabit Ethernet for Networks
of Workstations, Clusters and Grids: A Case Study. In
Proceedings of ICS ’03, Phoenix, Arizona, November
2003.

[15] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, 1991.

[16] G. J. Holzmann. The Model Checker SPIN. IEEE
Transactions on Software Engineering, May 1997.

[17] J. Hurwitz and W. Feng. End-to-End Performance of
10-Gigabit Ethernet on Commodity Systems. IEEE
Micro, January 2004.

19

[18] H. A. Jamrozik, M. J. Feeley, G. M. Voelker, J. E. II,
A. R. Karlin, H. M. Levy, and M. K. Vernon. Re-
ducing Network Latency Using Subpages in a Global
Memory Environment. In Proceedings of ASPLOS-
VII, October 1996.

[19] H. W. Jin, P. Balaji, C. Yoo, J. Y. Choi, and D. K.
Panda. Exploiting NIC Architectural Support for
Enhancing IP based Protocols on High Performance
Networks. Technical report, Ohio State University,
Columbus, Ohio, May 2004.

[20] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-
level Sockets Layer Over Virtual Interface Architec-
ture. In the Proceedings of Cluster ’01.

[21] S. Kumar and K. Li. Using Model Checking to Debug
Device Firmware. In Proceedings of OSDI, 2002.

[22] Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems. Springer Verlag, 1992.

[23] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM). In Proceedings of Supercomputing, 1995.

[24] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network (QsNet):
High-Performance Clustering Technology. In the Pro-
ceedings of Hot Interconnects 9, August 2001.

[25] L. Prylli, R. Westerlin, and B. Tourancheau. Modeling
of a High Speed Network to Maximize Throughput
Performance: the Experience of BIP over Myrinet. In
Proceedings of PDPTA ’98, 1998.

[26] Quadrics Supercomputers World Ltd. Elan Program-
ming Manual. 1999.

[27] Quadrics Supercomputers World Ltd. Elan Reference
Manual. 1999.

[28] Quadrics Supercomputers World Ltd. Elite Reference
Manual. 1999.

[29] G. Regnier, D. Minturn, G. McAlpine, V. A. Saletore,
and A. Foong. ETA: Experience with an Intel Xeon
Processor as a Packet Processing Engine. IEEE Micro,
pages 24–31, 2004.

[30] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine,
R. S. Madukkarumukumana, and G. J. Regnier. CSP:
A Novel System Architecture for Scalable Internet
and Communication Services. In the Proceedings of
the 3rd USENIX Symposium on Internet Technologies
and Systems, pages pages 61–72, San Francisco, CA,
March 2001.

[31] H. V. Shah, C. Pu, and R. S. Madukkarumukumana.
High Performance Sockets and RPC over Virtual In-
terface (VI) Architecture. In the Proceedings of the
CANPC workshop (held in conjunction with HPCA),
pages 91–107, 1999.

[32] P. Shivam, P. Wyckoff, and D. K. Panda. EMP: Zero-
copy OS-bypass NIC-driven Gigabit Ethernet Mes-
sage Passing. In the Proceedings of ICS, pages 57–64,
Denver, Colorado, November 10-16 2001.

[33] P. Shivam, P. Wyckoff, and D. K. Panda. Can
User-Level Protocols Take Advantage of Multi-CPU
NICs? In the Proceedings of IPDPS, Fort Lauderdale,
Florida, April 15-19 2002.

[34] Y. Turner, T. Brecht, G. Regnier, V. Saletore,
G. Janakiraman, and B. Lynn. Scalable Networking
for Next-Generation Computing Platforms. In Pro-
ceedings of SAN, 2004.

[35] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-
Net: A user-level network interface for Parallel and
Distributed Computing. In Proceedings of SOSP, De-
cember 1995.

[36] R. Y. Wang, A Krishnamurthy, R. P. Martin, T. E. An-
derson, and D. E. Culler. Modeling and Optimizing
Computation Pipelines. In Proceedings of SIGMET-
RICS, June 1998.

[37] E. Yeh, H. Chao, V. Mannem, J. Gervais, and
B. Booth. Introduction to TCP/IP Offload Engine
(TOE). http://www.10gea.org, May 2002.

20

