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Abstract

Current algorithms for doing Barrier and Allreduce like
pair-wise exchange, dissemination and gather-broadcast do
not give an optimal performance when there is skew in the
system. In pair-wise exchange and dissemination, all the
nodes must arrive for the completion of each step. The
gather-broadcast algorithm assumes a fixed tree topology.
In this paper, we propose to use hardware multicast of In-
finiBand in the design of an adaptive algorithm that per-
forms well in the presence of skew. In this approach, the
topology of the tree is not fixed but adapts depending on the
skew. The last arriving node becomes the root of the tree if
the skew is sufficiently large.

We carried out in-depth evaluation of our scheme and
use synchronization delay as the performance metric for
barrier and allreduce in the presence of skew. Our per-
formance evaluation shows that our design scales very well
with system size. Our designs can reduce the synchroniza-
tion delay by a factor of 2.28 for Barrier and by a factor of
2.18 in the case of Allreduce. We have examined different
skew scenarios and showed that the adaptive design per-
forms either better or comparably to the existing schemes.

1. Introduction

Clusters built from commodity PCs are increasingly be-
ing used in the high performance computing arena. This
is because they are very cost-effective and affordable.
(MPI) [11] programming model has become the defacto
standard to develop parallel applications that deliver high

�
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performance. MPI provides both point-to-point and collec-
tive communication functions. There are many applications
which take advantage of these collective operations. Appli-
cations such as IS and FT in the NAS Parallel Benchmark
suite [9] use these collectives almost exclusively for com-
munication. Thus, providing high performance and scalable
collective communication support is critical for many clus-
ter systems.

Most of the current network interconnects provide fea-
tures to support efficient collective communication. Re-
cently, Infiniband has been emerging as a powerful inter-
connect technology. One of the notable features of Infini-
band is that it supports hardware multicast. By using this
feature, a message can be sent to several nodes in an effi-
cient manner. Also, it has other important features like Re-
mote Direct Memory Access(RDMA) operations. We can
exploit these features to provide efficient and scalable col-
lective operations over Infiniband clusters.

In this paper, we focus on two important collective op-
erations, MPI Barrier and MPI Allreduce. MPI Barrier is
used as a synchronization call. Every process that has called
a barrier blocks until all the participating processes have
called this operation. In MPI Allreduce, each process sup-
plies a vector of certain length which is fixed across all the
processes. All these vectors are reduced to a single vector
using the operator provided in the collective call. Finally
each process receives the resulting vector. Also note that
there is an implicit synchronization of all the nodes partici-
pating in the Allreduce.

Many algorithms have been proposed in the literature
for doing barrier and allreduce [4]. The most popular
ones are the pair-wise exchange, dissemination and gather-
broadcast. An implementation of these algorithms over In-
finiband is discussed in [3]. As Infiniband clusters are
becoming increasingly larger, one important factor to be
considered in designing any collective is the skew of the
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processes involved in the operation. This is true especially
with operations that involve synchronization like barrier and
allreduce. The problem with the traditional algorithms dis-
cussed above is that they assume very little skew in the
system to achieve good performance. Take for example
the pair-wise exchange algorithm where each process goes
through log(n) steps before synchronization is achieved.
Every node is required to participate for all the steps to pro-
ceed. Thus, if one single node arrives late, the algorithm
blocks until this last node has arrived. This tight coupling
of the nodes also exists in the other algorithms like dissemi-
nation and gather broadcast. As a result, in presence of skew
the above mentioned algorithms do not perform optimally.

In this paper we propose to use adaptive algorithms to-
gether with Infiniband’s hardware multicast to implement
efficient barrier and allreduce in varying skew scenarios.
Further, these schemes perform comparably to the tradi-
tional algorithms in the absence of any skew. We have made
use of a combining tree in our approach. The basic idea be-
hind our scheme is to change the topology of the combin-
ing tree used in the collective call so that by the time last
node arrives most of the barrier or allreduce would have
been done. We use Synchronization Delay as the metric to
evaluate the different approaches of doing barrier and allre-
duce. This is defined as the time difference between the last
node leaving the barrier to the last node entering the barrier.
The same kind of approach is taken in [1]. The average
time spent in the collective is generally used to evaluate the
performance of different designs. This is not a good metric
on large size clusters as it includes the skew present in the
system.

We have implemented our designs and integrated them
into the MPI implementation over Infiniband. Compared
to the existing schemes, our scheme can reduce the syn-
chronization delay by a factor of 2.28 in the case of barrier
and by a factor of 2.18 in the case of allreduce when suffi-
cient slack is available. We expect to see much higher ben-
efits for a large size cluster as we use hardware multicast
which scales very well. Our design performs comparably
to the existing schemes in no skew conditions. Also, we
have evaluated different skew scenarios and our designs are
significantly better than the current designs.

The rest of the paper is organized in the following way.
In Section 2, we provide an overview of the Infiniband Ar-
chitecture. In Section 3, we explain the motivation for our
scheme. In section 4, we discuss detailed design issues.
We evaluate our designs in section 5 and talk about the re-
lated work in section 6. Conclusions and Future work is
presented in section 7.

2 InfiniBand Overview

The InfiniBand Architecture (IBA) [2] defines a switched
network fabric for interconnecting processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O. In
an InfiniBand network, processing nodes and I/O nodes are
connected to the fabric by Channel Adapters (CA). Chan-
nel Adapters usually have programmable DMA engines
with protection features. There are two kinds of channel
adapters: Host Channel Adapter (HCA) and Target Chan-
nel Adapter (TCA). HCAs sit on processing nodes.

The InfiniBand communication stack consists of differ-
ent layers. The interface presented by Channel adapters to
consumers belongs to the transport layer. A queue-based
model is used in this interface. A Queue Pair in InfiniBand
Architecture consists of two queues: a send queue and a re-
ceive queue. The send queue holds instructions to transmit
data and the receive queue holds instructions that describe
where received data is to be placed. Communication opera-
tions are described in Work Queue Requests (WQR), or de-
scriptors, and submitted to the work queue. The completion
of WQRs is reported through Completion Queues (CQs).
Once a work queue element is finished, a completion queue
entry is placed in the associated completion queue. Appli-
cations can check the completion queue to see if any work
queue request has been finished. InfiniBand also supports
different classes of transport services. In current products,
Reliable Connection (RC) service and Unreliable Datagram
(UD) service are supported.

InfiniBand Architecture supports both channel semantics
and memory semantics. In channel semantics, send/receive
operations are used for communication. In memory seman-
tics, InfiniBand provides Remote Direct Memory Access
(RDMA) operations, including RDMA write and RDMA
read. RDMA operations are one-sided and do not incur soft-
ware overhead at the remote side.

2.1 Hardware Multicast in InfiniBand

One of the notable features provided by the InfiniBand
Architecture is hardware supported multicast. It provides
the ability to send a single message to a specific multicast
address and have it delivered to multiple processes which
may be on different end nodes. Although the same effect
can be achieved by using multiple point-to-point communi-
cation operations, hardware multicast provides the follow-
ing benefits:

� Since only one send operation is needed to initiate
the multicast, it greatly reduces host overhead at the
sender. By reducing this overhead, multicast latency
as seen by each receiver is also reduced.
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� With hardware supported multicast, packets are dupli-
cated by the switches only when necessary. Therefore,
network traffic is reduced by eliminating the cases
that multiple identical packets travel through the same
physical link.

� Since the multicast is handled by hardware, it has very
good scalability.

In InfiniBand, before multicast operations can be used,
a multicast group which is identified by a multicast address
must be created. Creating and joining multicast groups can
be achieved through the help of InfiniBand subnet manager.

In InfiniBand, hardware multicast operation is only
available under the Unreliable Datagram (UD) transport ser-
vice. In UD, a connectionless communication model is
used. Messages can be dropped or arrive out of order.

3 Motivation

The present schemes of doing barrier or allreduce give
good performance when there is no skew. But in the pres-
ence of skew, this is no longer the case.

We consider barrier using hypercube based pairwise ex-
change algorithm as an example to illustrate the point. In
the absence of skew it takes log(n) number of steps to
achieve synchronization using this algorithm as shown in
b of Figure 1. For a hypercube of dimension 3, this value is
equal to 3. The nodes of the hypercube are named as shown
in a of the figure. Now take the case when all the nodes
do not call barrier at the same time. Assume that one node
calls the barrier much later than the other nodes.Let node 7
be the last arriving node.

In the first step of the algorithm, all the nodes except
node 6 exchange messages in a pair-wise manner. Node 6 is
waiting for node 7 which has not arrived yet, c of Figure 1.
The dotted lines indicate that the nodes have not exchanged
messages so far. After the third step, we see that some of the
nodes are blocked in step 1, some in 2 and others in 3. Now,
when the last node arrives, it would take an extra 3 steps be-
fore the node 0 is released. The problem with this scheme
is that that though most of the nodes call barrier very early,
they do nothing other than waiting for the last node to ar-
rive. Thus, the amount of steps required to complete the
synchronization remain the same no matter when the last
node arrives. The same problem exists in other schemes
like the dissemination and the gather-broadcast algorithm.
In the gather-broadcast algorithm, a combining tree is used
to gather acks from all the nodes to the root of the tree. After
collecting all the acks, the root releases all the other nodes.
If one of the leaf nodes arrives late, it would take an extra
number of steps equal to the height of the tree before the
root can release everybody. Note that the latency of these
extra steps gives us the synchronization delay of the barrier.

It is of the order log(n) for all the schemes where n is the
number of nodes involved in the barrier.

An effective strategy to minimize the synchronization
delay would be to make the topology used in the algorithm
adapt to the skew pattern. The decision on which topol-
ogy to choose should be such that the nodes which arrive
early do useful work to minimize the synchronization de-
lay. Ideally, by the time the last node arrives, most of the
barrier should have been done and very less time is spent
between the last node’s arrival and the release of all the
nodes. This topology change can be dynamic where all the
required steps to change the topology are performed in one
single barrier call as it progresses. Or it could be semi-
dynamic where the topology used in one barrier is based
on the previous barriers done. Please note that though we
are using barrier operation to explain the various design is-
sues, the discussion applies to allreduce as well. One draw
back of the semi-dynamic scheme is that it assumes that the
skew pattern is fixed across the barriers. If this is not the
case, it fails to give good performance. The totally dynamic
scheme does not rely on any such assumption and is optimal
in varying skew conditions.

We have used a token-based combining tree approach in
our design to implement an adaptive scheme for barrier and
allreduce. The basic idea in this approach is that the node
who possesses the token is the root of the combining tree. It
can either decide to pass the token to one of its children or
release all the nodes. We explain in detail the various steps
involved in the token based design in the following sections
of the paper.
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4 Design of the Adaptive Algorithm

In this section we discuss in detail the various design
issues involved in the adaptive scheme.

4.1 Basic Idea

In the standard gather-broadcast algorithm, the topology
of the combining tree used is fixed. As previously dis-
cussed, the problem with using a static tree topology is that
though the root arrived very early, it has to wait for acks
from all of its children. Consider example 1, Figure 2 where
all the nodes have arrived except for the last node. Further,
all the nodes have sent acks to the root and are waiting for
the release message from the root. The release message is
posted only when the root has received the acks from both
its children. As shown in the figure, it takes two more steps
after the last node arrives before the root releases all the
nodes.

Now take example 2 of the same figure. The root node
now has an extra token which it keeps with itself until one
of its children arrived. Soon after receiving the ack from
node 1, the root passes on the token to its other child, node
2. Since node 2 has got hold of the token it is the new root
and the tree topology changes as shown in e of the figure.
As node 5 has already sent its ack, the token now moves on
to the last node which has not arrived yet. As soon as this
node arrives, it finds out that it has the token and releases
everybody. Note that when the last node arrives, the tree
looks as shown in f.

Using a token we were able to cut down the synchro-
nization delay by two hops. Consider a cluster with large
number of nodes where there are multiple level. In this case
we would cut down the delay by the number of hops equal
to the height of the tree. We use hardware multicast of In-
finiband for sending the release message. This enables us
to achieve constant synchronization delay for varying node
sizes.

The only difference between our scheme and the stan-
dard scheme is the use of an extra token apart from the usual
acks. However, unlike the earlier scheme where there is a
fixed root the node holding the token becomes the root of
the tree in our approach. In the example we have assumed
a binary tree topology. We can easily extend this idea to
any kind of tree topology. Also, it is possible that any node,
irrespective of its position in the tree, become the owner of
the token and hence the root of the tree.

4.2 Deciding the root of the tree

We now explain how the token is passed from the current
node holding the token to one of its children. The current
owner of the token after entering the collective starts polling
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Figure 2. Adaptive vs Nonadaptive algorithm

for all its children. If all of them arrive, then all that it has to
do is post a release message. If one of them has not arrived,
then it passes the token to the child who has not arrived yet.
To begin with, the token is present with node 0 who is the
root of the tree. Note that the token is always passed from
the node at a higher level to one of its children in the lower
level. In the case of barrier, the token is an opaque object
while in the case of allreduce, it carries data. We talk more
about the details in the following subsections.

The nodes that are not involved in the token transfer be-
have the same way as in the standard combining tree algo-
rithm. They ack the root as soon as they arrive. The inter-
mediary nodes do the same once they collect the acks from
the children. However, all these nodes have to wait for a
token or a release message.

Other issues to be resolved are, how does the node know
that it holds the token and how is it passed from one node
to the other. Another problem faced by this scheme is that
of race conditions. Consider this scenario where both the
node holding the token and last of its children have arrived
at the same time. In this case, the token from the parent
and the ack from the child are exchanged simultaneously.
This leads to race conditions which have to be avoided to
make the implementation foolproof .Another issue to be dis-
cussed is that the hardware multicast is unreliable. The re-
lease message may not reach some of the nodes in which
case they are kept waiting.We discuss all these issues in the
following detailed design section.

4.3 Detailed Design Issues

4.3.1 RDMA approach to handle the Token and Acks

We use the remote direct memory access (RDMA) opera-
tion of Infiniband to do the token transfer. In our approach,
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we have used a one byte flag for both the token and ack in
the case of barrier. For allreduce, the token as well as the
ack additionally carry a data vector apart from the flag.

By using the RDMA operation the transfer of the token
becomes straight forward. All we have to do is to RDMA
write into an appropriate location in the remote memory
buffer when we want to transfer the token or an ack. But
prior to this, we have to exchange the necessary information
about the buffers among all the participating nodes. Each
node polls on the local memory to check for the token or
the acks.

In the allreduce case, each node apart from the leaves has
to do some computation before it can pass along the token
or the ack. The leaf only includes its data vector in the ack
and passes it to its parent. However, if an intermediary node
has to pass an ack to its parent or a token to its child, it
first computes a data vector from the acks received from the
children. It then includes it in an ack or token and passes it
to the appropriate node.

4.3.2 Avoiding Race conditions

Race conditions are possible in the implementation of the
token-based approach. This is because many combinations
of the token-ack transfers are possible based on the skew
of the system. Take for example a simple case where both
the node holding the token and its last child have arrived
at the same time. In this case, the parent passes the token
to its child and similarly the child acks the parent. If the
child arrived a little late, it would have got the token and it
need not have acked the root. The same is the case with the
parent.

We take care of this race condition by using a simple
technique. We make the child poll both for the token and
the release message at the same time even though it has
passed its ack to its parent. The parent on the other hand
ignores the ack from its child and waits only for the release
message. The child after it finds out that it has the token
posts a release message immediately.

4.3.3 Reliability

Reliability is another issue which has to dealt with as we are
using hardware multicast of Infiniband to post the release
message in our implementation. We cannot be sure that all
the nodes have received the message unless we add some
mechanism to make the multicast reliable.

Reliability can be added by making use of a timeout and
retransmission mechanism. The root stores all the posted
release messages indexed by the count of the barrier or allre-
duce operation. It stores them until it receives an ack from
all the other nodes. A sliding window mechanism can be
employed at the root so that it doesn’t block waiting for the

acks. For more details refer to the paper on MPI Bcast us-
ing hardware multicast support [5]

4.3.4 Flow control

Since we use RDMA based approach to transfer the acks
and the token we need not post any extra descriptors on the
remote node in this case. However hardware multicast re-
quires that descriptors be preposted on all the nodes for the
message to be received.

The way we do this is initially we post a certain number
of descriptors. After every barrier operation we post an ex-
tra descriptor to make sure that there are sufficient number
of descriptors available always.

5 Performance Evaluation

In this section we evaluate the different designs of do-
ing barrier and allreduce. We compare the results of our
adaptive scheme with the existing approaches for barrier
and allreduce. We have used synchronization delay as an
important metric in most of our micro-benchmark tests.

b. 8 node topology for barrier
           and allreduce
a. 4 node topology for barrier c. 8 node topology  for allreduce

e. 16 node topology for allreduced.16 node topology for barrier

Figure 3. Combining trees for barrier and
allreduce

The different schemes considered for barrier are as fol-
lows:

� adaptive: Our implementation of an adaptive barrier
using a combining tree of degree 8. Please refer to the
Figure 3

� nonadaptive: a nonadaptive barrier using a combining
tree of degree 8.

� dissemination: a dissemination based barrier

The different schemes considered for allreduce are as
follows:
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� adaptive: Our implementation of an adaptive allre-
duce. The exact topology used is as shown in the Fig-
ure 3

� nonadaptive: a nonadaptive using the same combining
tree as above.

� pair-wise: allreduce based on the pair-wise exchange
algorithm

5.1 Experimental Testbed

Our testbed cluster consists of 8 SuperMicro SUPER
X5DL8-GG nodes with ServerWorks GC LE chipsets. Each
node has dual Intel Xeon 3.0 GHz processors, 512 KB L2
cache, and PCI-X 64-bit 133 MHz bus. We have used In-
finiHost MT23108 DualPort 4x HCAs from Mellanox. All
nodes are connected to a single Mellanox InfiniScale 24
port switch MTS 2400, which supports all 24 ports run-
ning at full 4x speed. The kernel version we used is Linux
2.4.22smp. The InfiniHost SDK version is 3.0.1 and HCA
firmware version is 3.0.1. The Front Side Bus (FSB) of each
node runs at 533MHz. The physical memory is 1 GB of
PC2100 DDR-SDRAM. The compilers we used were GNU
GCC 2.96 and GNU FORTRAN 0.5.26.

In the following parts of the section we talk in detail
about the various tests performed and discuss the results.

In the first subsection we use the standard micro-
benchmark, Average latency to compare the different
schemes used to implement the collective operation.Note
that measuring the average latency of a collective is mean-
ingful in situations where the skew is negligible. In the
following subsection we use the Synchronization Delay as
a metric to evaluate the above schemes in the presence of
varying skew conditions.

5.2 Average latency for Barrier and Allreduce

To obtain the average latency of a barrier operation we
measure the time taken for each node to perform barrier for
a large number of iterations. We compute the average across
all the nodes and iterations to obtain the average barrier la-
tency. Average latency of allreduce is computed in the same
manner.

In the latency test for the dissemination and pair-wise ex-
change cases, we can safely assume that all the nodes call
barrier or allreduce at same time and also exit the collective
call at the same time. However in the tree-based schemes,
there is one node which exits earlier than the rest. This
could result in skew, but on large clusters this is very small
since the latency is averaged across all the nodes.

Figure 4 shows the average latency results for the barrier
operation. As seen from the figure, the adaptive scheme
latencies are slightly higher than nonadaptive ones though

both schemes use the same tree topology. This is because
we pay a penalty of one extra rdma write operation for some
iterations. This case happens if the root node has passed
the token to the last arriving child but it receives its ack
immediately after. This results in one extra hop towards
the child before it posts the release message. But, on large
number of nodes, this penalty is too small to be observed.

Though the tree based schemes perform badly for small
system sizes, they perform better as the size increases.The
reason is the use of a higher degree fan-in for the combining
tree and use of hardware multicast which scales very well
over large number of nodes.
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different schemes

Figure 5 shows the average latency results for allreduce.
Notice that for node sizes of four and sixteen the adaptive

scheme gives higher latencies. This is because for these
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topologies, the tree is totally balanced unlike the case with
size eight. In balanced tree topologies, it is usually the case
that we pay one extra hop of the token as the penalty. This
is not the usual case in the unbalanced topology with eight
nodes.

Notice that for large number of nodes, both the tree based
algorithms perform better or comparably to the pair-wise
algorithm in allreduce and dissemination in the case of bar-
rier. More importantly, in the case of barrier, the adaptive
scheme performs comparably to the nonadaptive one. In the
case of allreduce, for an unbalanced topology the adaptive
allreduce fares better.

5.3 Synchronization Delay

In this section we focus on the evaluation of different
schemes where unlike the previous case, all the nodes do
not arrive at the same time. We artificially delay some of the
nodes by making these target nodes loop for the specified
amount of time. We outline below our approach of mea-
suring Synchronization Delay which we use to benchmark
different schemes. Following that we present the results of
different test cases showing the performance of the schemes
under the presence of skew.

Measuring Synchronization Delay.Synchronization de-
lay is the time difference between the last node entering
the collective to the last node leaving the collective. The
test to measure this delay consists of a loop where each of
the nodes take turns to send back an acknowledgment us-
ing MPI Send to the node arriving last. Each of the nodes
can determine who is the last arriving node from the input
parameters given to the test program. The last node starts
a timer before calling the operation and stops it as soon as
it receives the ack. It computes this time for all the nodes
and computes the maximum. This maximum minus the la-
tency of the MPI Send gives the Synchronization delay for
the test.

We now give an outline of the different kind of tests con-
sidered in this section. In the first test, we show the scala-
bility of adaptive design compared to the other approaches.
In the second test, we consider the scenario where one node
always arrive late at the collective. In the third test, we ex-
tend this to multiple nodes arriving late. In the fourth and
final test, we show instances of skew where the adaptive
design does not give optimal performance and explain the
approach to solve the problem.

5.3.1 Scalability study

To show the scalability of the adaptive design, we choose
one node to be the target node and delay this node by the
amount equal to twice the average latency of the collective
considered. We perform this test for different system sizes.

Also, we have chosen the highest rank node as the target
node.

Figure 6 shows the results for barrier. From the figure
we observe that the synchronization delay is constant across
different node sizes for adaptive scheme. For nonadaptive
case we see every extra level added to the tree increases this
delay by one hop. This is because in the former scheme,the
token arrives at the target node by the time it called bar-
rier. The combining of acks would have been done and the
node only has to post the release message. Since we are
using hardware multicast, this phase of the barrier is a fast
and scalable operation. In the case of barrier with dissem-
ination, the synchronization delay is proportional to log(n)
where n is the number of nodes involved in the barrier.

Figure 7 is the graph for allreduce. The same reason
described for the barrier applies to allreduce as well. How-
ever, the synchronization delay, though remaining constant
is higher. This is because, the release message now carries
the final result vector of the allreduce operation and hence
is greater in size. Moreover, the synchronization delay also
includes costs of copying and the computation of the final
data vector. We have used a vector of size 128 and of type
MPI DOUBLE in all our test cases. The operator used was
MPI PROD.
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Figure 6. Synchronization Delay, Barrier

5.3.2 Single node arriving late

In this test, the target node is delayed by different amounts
and the synchronization delay is calculated. All the tests are
run on 16 nodes. Once again we choose rank 15 as the target
node. This helps us to understand the behavior of adaptive
scheme better.

Figure 8 shows the results for Barrier. In the adaptive
case, as the delay is increased, we obtain smaller synchro-
nization delays upto a point after which it remains constant.
This is because initially, the token is not reaching the last
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Figure 7. Synchronization Delay, Allreduce

node as the delay is not sufficiently high. However, we per-
form better than the nonadaptive based scheme even in such
cases. This is because, in the adaptive design, an interme-
diary node receives both the token from its parent and acks
from its children. Thus, less time is spent by the ack of the
target node to reach the node holding token unlike the non-
adaptive design, where it has to travel all the way to the top.
For larger delay we observe that the other schemes have the
synchronization delay equal to the average latency. For the
adaptive design, it is equal to the latency of hardware mul-
ticast.

Figure 9 shows the results for allreduce. The same trend
is also observed in the case of allreduce too. However,the
values we obtain are higher than in the case of barrier.We
have already explained this observation in the previous test
case.
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0

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90 100

S
yn

ch
 D

el
ay

 (
us

)

delay

adaptive
nonadaptive

pair-wise

Figure 9. Single node arrives late, Allreduce

5.3.3 Multiple nodes arrive late

In this section we concentrate on evaluating the different
schemes when we use multiple target nodes. For a cluster of
large size, there are many combinations of target nodes pos-
sible. Also, even after fixing the target nodes, these nodes
may arrive in any order. It is not feasible to evaluate the
schemes for all possible cases. However, in the case of bar-
rier on 16 nodes we come with three representative cases
which include all the skew patterns possible.

Observe that all the children under a given root are iden-
tical. That is, no matter what the pattern of arrival of these
children is, the passing of the token is dependent upon the
last two arriving children. The skew between these nodes
decides who gets hold of the token irrespective of the arrival
pattern of the other nodes. Thus we can choose two target
nodes which are the last and second last arriving nodes.

In the topology used in barrier(Figure 3) we have two
subtrees. Thus we have three cases to consider. Both the
target nodes belong to the upper subtree, both belong to the
lower subtree, one belongs to upper subtree and the other to
the lower subtree.

Figure 8 can be used to demonstrate the the third and
the second case. The way we obtained this results earlier
was by skewing only one target node where as all the others
arrived at the same time. The second target node can be as-
sumed to be any one of these other nodes. However, in this
case the second target node always arrives early. We con-
sider the possibility of the second target node arriving early
separately. From the figure, we conclude that if there is a
reasonable amount of difference between the arrival times
of the two target nodes, the adaptive barrier does signifi-
cantly better than the other schemes.

Now consider Figure 11 to show the case where both the
target nodes belong to the upper subtree. This also includes
the missed case explained above. Note that in this case,
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the margin of improvement between the nonadaptive based
scheme and the adaptive scheme has reduced. This is be-
cause the target nodes are now closer to the root than the
earlier case.
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Figure 10. Two nodes arrive late, Barrier
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The allreduce case is more complicated as there are more
subtrees to be considered. In this paper we show only one
set of combinations which we can conclude from Figure 9.
It is the combination in which the one of the target nodes is
a bottom node and the secondary node is any of the nodes
in the tree.

5.3.4 Two nodes arriving equally late

We have taken this as a special case to show the adaptive
scheme does not give optimal performance under this situa-
tion. We also show how this can be improved.

Figure 10 shows the results obtained for the barrier
where the two nodes come late by the same amount of time.
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Figure 12. Two nodes arrive late, Allreduce

Also, the two nodes are the bottom most ones of the tree
and belong to separate subtrees under the main root. We
used nodes with ranks 1 and 15 as the target nodes for this
case. The x axis shows the delay of both nodes. As shown
in the figure, the synchronization delay remains the same in
spite of the increase in the delays of these nodes unlike the
earlier figures where it drops down to the hardware multi-
cast latency.

The similar behavior is observed in allreduce case (Fig-
ure 12)

This behavior is because the token is immobile at the
root when two of the nodes are arriving late. The root can-
not decide to which branch it should pass along the token
unless the second last child arrives. But in this case con-
sidered, the second last child arrives at the same time as the
last child. So, the root is unable to make that decision. We
can overcome this problem in our design, by introducing an
extra token. Now the root can pass two tokens, one to the
second last child and the other to the last child. This idea
can be generalized to include multiple tokens. However, in-
troducing too many tokens increases both the complexity of
the design and adds more traffic into the system.

6 Related Work

Work in [1] deals with designing software barriers when
there is skew in the system caused by the load imbalances.
It explains why such load imbalances occur in a system and
how it leads to processes being skewed. In this paper, the
authors have come up with a semi-adaptive approach where
the nodes which arrive late are placed closer to the root.
This approach is different from our design which is totally
dynamic. In their approach they use a prediction based
scheme based on the recent history of the barriers done.
This scheme has certain drawbacks as it works well when
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the skew pattern remains the same across the barriers. The
approach we have taken in this paper is to use a dynamic
tree topology which adjusts itself to the skew. Changing
the topology of the tree has also been discussed in [8]. But
they have used a counter based combining trees for SMP
systems. The scheme discussed in this paper is targeted for
large scale clusters which use Infiniband as the intercon-
nect. The standard algorithms like pair-wise exchange are
explained in [4] Other algorithms like the gather-broadcast
and dissemination are explained in [3]. We have shown in
the paper the limitations of using such algorithms in sys-
tems having lot of skew. Hardware multicast is also eval-
uated in this paper and [5]. More details about the hard-
ware multicast are found at [2],[6],[7]. Other interconnects
like Quadrics provide hardware multicast[10]. In [12] this
feature is used to implement broadcast. However hardware
multicast in quadrics functions for nodes that are contigu-
ous. NIC-level multicast is studied in [13]. This is differ-
ent from the hardware multicast of Infiniband. In NIC-level
multicast, the broadcast operation is handled by the NIC in-
stead of the host.

7 Conclusions and Future Work

The standard algorithms like pair-wise exchange, dis-
semination and gather broadcast do not perform optimally
when there is skew in the system. This is because the nodes
participating in this algorithms are tightly coupled with each
other in all the steps of the algorithm. The design presented
in this paper removes this limitation by making the tree
topology adapt dynamically to the changing skew scenar-
ios. We have used an adaptive root mechanism where the
last arriving node becomes the root of the tree if the skew is
sufficiently large. We have used hardware multicast in the
release phase of our algorithm. From the results we have
showed that the design presented in this paper scales very
well as the number of nodes increases. We obtained a syn-
chronization delay of 12 us in the case of Barrier which is
close to the hardware multicast latency. This number is con-
stant for varying system sizes. Using our scheme we reduce
the synchronization delay by a factor of 2.28 for Barrier
and by a factor of 2.18 for allreduce. We also show that
the adaptive design performs comparably when there is no
skew. Different skew scenarios were discussed in the paper
and we show that our adaptive design either performs better
or comparable to the existing skew conditions.

In our future work, we would like to extend the idea of a
single token to multiple token and evaluate its performance.
Also we would like to evaluate our scheme over a larger
test bed. We expect to significant performance gains for a
large cluster. We would also like to take a closer look at the
semi-dynamic algorithm and evaluate its performance.
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