
Scalable Startup of Parallel Programs over InfiniBand

WEIKUAN YU, JIESHENG WU AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-5/04-TR33

Fast and Scalable Startup of MPI Programs in InfiniBand Clusters
�

Weikuan Yu Jiesheng Wu Dhabaleswar K. Panda

Network-Based Computing Lab
Dept. of Computer Science and Engineering

The Ohio State University�
yuw,wuj,panda � @cis.ohio-state.edu

Abstract

Fast and scalable process startup is one of the major challenges in parallel computing over large scale clusters.
The startup of a parallel job typically can be divided into two phases: process initiation and connection setup. Both
of these phases can become performance bottlenecks. In this paper, we characterize the startup of MPI programs in
InfiniBand clusters and identify two startup scalability issues: serialized process initiation in the initiation phase and
high communication overhead in the connection setup phase. We propose different approaches to reduce communica-
tion overhead and provide fast process initiation. Specifically, to reduce the connection setup time, we have developed
one approach with data reassembly to reduce data volume and another with a bootstrap channel to parallelize the
communication. Furthermore, we have exploited a process management framework, Multi-purpose Daemons (MPD)
system to speed up the process initiation phase. The bootstrap channel is utilized to overcome the scalability lim-
itations of MPD. Our experimental results show that job startup time has been improved by more than 4 times for
128-process jobs in an InfiniBand cluster. Scalability Models derived from these results suggest that the improvement
can be more than two orders of magnitudes for the startup of 2048-process jobs.

1. Introduction

The MPI (Message Passing Interface) Standard [4] has evolved as a de facto parallel programming model for
distributed memory systems. Traditional research over MPI has been largely focusing on the high performance com-
munication between processes. As cluster computing becomes a prominent platform of high performance computing,
scalable process management of MPI applications becomes an active research topic [3, 1]. One of the major chal-
lenges in process management is the fast and scalable startup of large-scale applications [2, 7, 10, 5, 9]. This issue
becomes even more pronounced in the large scale systems with thousands of nodes. A parallel job is usually launched
by a process manager, which is often referred to as the process initiation phase. These initiated processes usually
require assistance from the process manager to set up peer-to-peer connections before starting communication and
computation. This is referred to as the connection setup phase.

InfiniBand Architecture (IBA) [8] has been recently standardized by industry to design next generation high-end
clusters for both data-center and high performance computing. IBA has been emerging as a popular interconnect
for clusters. Large cluster systems with InfiniBand are being deployed. For example, in the Top500 list released
in November 2003 [16], the 3rd, 111th, and 116th most powerful supercomputers use InfiniBand as their parallel
application communication interconnect. These three systems have 2200, 256, and 512 processors, respectively. The
startup of MPI applications in InfiniBand clusters with such a large scale is a challenging issue. It may take more than

�
This research is supported in part by a DOE grant #DE-FC02-01ER25506, NSF Grants #EIA-9986052 and #CCR-0204429, and a grant from

Los Alamos National Laboratory.

ten minutes to go through the above mentioned process initiation and connection setup phases for an application with
1000 processes without scalable and high performance startup support.

In this paper, we have taken on the challenge to support a scalable and high performance startup of MPI programs
over InfiniBand clusters. With MVAPICH [13] as the platform of study, we have analyzed the startup bottlenecks.
Accordingly, different approaches are developed to speed up the connection setup phase, one with data reassembly at
the process manager and another using pipelined all-to-all broadcast over a ring of InfiniBand QPs (referred to as a
bootstrap channel). In addition, we have exploited a process management framework, Multi-purpose Daemons (MPD)
system to further speed up the startup. The bootstrap channel is also utilized to reduce the impact of communication
bottlenecks in MPD, including multiple process context switches and quadratically increased data volume over the
MPD management ring. Over 128 processes, our work improves the startup time by more than 4 times. Scalability
Models derived from these results suggest that the improvement can be more than two orders of magnitudes for the
startup of 2048-process jobs.

The rest of the paper is structured as follows. Section 2 gives an overview of InfiniBand. Section 3 describes the
startup of parallel programs over InfiniBand and the motivation of this study. Section 4 describes the design of startup
with different approaches to improve the connection setup time and the process initiation phase. Experiments results
are provided in 5. Finally, we conclude the paper in Section 6.

2. Overview of InfiniBand

2.1. Overview of InfiniBand Architecture

The InfiniBand Architecture (IBA) [8] defines a System Area Network (SAN) for interconnecting computing nodes
and I/O nodes. It is a communication and management infrastructure supporting both I/O and interprocessor com-
munications (IPC) for one or more computer systems. In an InfiniBand network, a switched communication fabric is
defined to allow many devices to communicate concurrently at high bandwidth and low latency. Processing nodes and
I/O nodes are connected as end-nodes to the fabric by two kinds of channel adapters: Host Channel Adapters (HCAs)
and Target Channel Adapters (TCAs). These IBA channel adapters off-load much of the communication protocol pro-
cessing from the host CPU, thereby allowing multiple concurrent communications without the traditional overhead.
The IBA/SAN provides zero-copy, OS-bypass data movements to its I/O and computing nodes.

The IBA provides a virtual interface to a consumer with the use of Work Queues (WQ). Consumers create work
queues in pairs (one for send operations and the other receive operations) and specify its class of service for communi-
cation. We call these queue pairs QPs. One or more Completion Queues (CQ) is created and associated with the work
queues. The completion of communication requests is reported through completion queues (CQs). The IBA supports
both channel and memory semantics. In channel semantics, send/receive operations are used for communication. A
receiver must explicitly post a descriptor to receive messages in advance. In memory semantics, RDMA write and
RDMA read operations are used. RDMA operations enable the initiator to write data into or read data from memory
buffers of the peer side without intervention of the peer side.

2.2. Overview of Reliable Connection Service in InfiniBand

InfiniBand provides four types of transport services: Reliable Connection (RC), Reliable Datagram (RD), Unreli-
able Connection (UC), and Unreliable Datagram (UD). The often used service is Reliable Connection in the current
InfiniBand product and software. It is also our focus of this paper. To support reliable connection service, a connection
must be set up between two QPs before any communication.

In the current InfiniBand SDK, each QP has a unique identifier, called QP-ID. This is usually an integer. IBA also
defines two unicast identifiers [8]: a global identifier (GID), and a local identifier (LID). GID may be unique across
subnets and LID may be unique within a subnet. LID is a 16-bit identifier. To make a connection, both QPs must
exchange their QP IDs and LIDs.

3. Motivation

This section provides an overview of MPI program startup in InfiniBand clusters and motivate the study for a
scalable startup scheme.

3.1. Startup of MPI Applications using MVAPICH

MVAPICH [12] is a high performance implementation of MPI over InfiniBand. Its design is based on on MPICH [6]
and MVICH [11]. The current implementation of MVAPICH utilizes the Reliable Connection (RC) service for the
communication between processes.

The connection-oriented feature of IBA RC-based QPs requires each process to create at least one QP for every
peer process. To form a fully connected network of N processes, a parallel application needs to create and connect
at least ���������	��
 QPs during the initialization time, Note that it is possible that these QPs can be allocated and
connected in a on-demand manner [17], however this requires that the connection management subsystem of IBA
can handle asynchronous and client-server model connection establishment, which is not mature yet in the current
IBA software. Another reason for the fully-connected connection model is simplicity and robustness. Therefore, this
connection model has been used in many MPI implementations, including MVAPICH.

The startup of an MPI application using MVAPICH can also be divided into two phases. As shown in Fig. 1(a), an
MPI application using MVAPICH is launched with a simple process launcher iterating over UNIX remote shell (rsh)
or secure shell (ssh) to start individual processes. Each process connects back to the launcher via a port exposed by
the launcher. Except the process rank, each process has no global knowledge about the parallel program.

In the second phase of connection setup, shown in Fig. 1(b), each process also creates ���� QPs, one for each peer
process, given N processes in total. Then, these processes exchange their local identifier (LIDs) and corresponding
QP identifiers (QP-IDs), as mentioned in Section 2.2 for connection setup. Since each process is not connected to its
peer processes, the exchange of these data has to use the connections that are created to the launcher in the first phase.
The launcher collects data about LIDs and QP-IDs from each process, and then sends the combined data back to each
process. When having received the combined data about all processes’ LIDs and QP-IDs, each process then sets up
connections over InfiniBand. A parallel application with fully connected processes is then created.

daemons
(rsh/ssh)

launcher (port)

process (rank)

fork/exec

(a) The Initiation Phase

lid0,qp{n−1} ...lid1,qp{n−1}

process 0

process 1

lid,qp{n−1}

lid,qp{n−1}

launcher

(b) The Connection Setup Phase

Fig. 1. The Startup of MPI Applications in Current MVAPICH

3.2. The Scalability Problem

The simple startup paradigm described in the earlier subsection is able to handle the startup of any small scale
parallel application. However, as the size of an InfiniBand cluster goes to 100s–1000s, the limitation of this paradigm
becomes pronounced. For example, launching a parallel application with 2000 processes may take tens of min-
utes. Among various scalability bottlenecks, there are two main scalability bottlenecks, one in each phase. The first

bottleneck is rsh/ssh-based startup in the process initiation phase. This process startup mechanism is simple and
straightforward, its performance is very poor on large systems. The second bottleneck is communication overhead for
exchanging LIDs and QP-IDs in the connection setup phase. To launch an N-process MPI application, the launcher has
to receive data containing � � � ��
 QP-IDs from each process. Then it returns the combined data with � � ��� � ��

QP-IDs to each process. In total, the launcher has to communicate data in the amount of

� �����
 for an N-process
application. Each QP-ID is usually a four-byte integer, for a 1024-process application the launcher will receive almost
4 MegaBytes data and sends almost 4 Gigabytes of data. This communication usually goes through the management
network which is normally Fast Ethernet or Gigabit Ethernet. Significant communication overhead incurs to slow
down the application startup.

In this paper, we plan to address these two startup scalability problems in InfiniBand clusters. We focus on different
approaches to reduce communication overhead in the connection setup phase and fast process initiation in the initiation
phase.

4. Designing Scalable Startup Schemes

This section describes the design of scalable startup schemes in InfiniBand clusters. We first describe different ap-
proaches used to enhance the connection setup phase while the processes are still launched via rsh/ssh daemons. Then
we exploit the advantages of a process management framework, MPD [3], to replace the rsh/ssh based scheme and
achieve efficient process initiation. We also characterize some MPD features and their limitations to the requirement
of MPI application startup in InfiniBand clusters. A bootstrap channel is introduced to overcome these limitations.

4.1. Efficient Connection Setup

As mentioned in the previous section, because the launcher has to collect, combine and broadcast QP IDs, the
volume of these data scales up in the order of

� ������
 , which leads to prolonged connection setup time. One needs
to consider two directions in order to reduce the connection setup time. The first direction is to reduce the volume
of data that needs to be communicated. The other direction is to parallelize communication for the exchange of QP
ID’s. Along these two directions, we propose the following two approaches to improve the connection setup phase,
respectively.

4.1.1. Approach 1: Reducing the Data Volume with Data Reassembly (DR)

To have processes fully connected over InfiniBand, each process needs to connect with another peer process via one
QP. This means that, each process needs to know � ��� QP IDs, one from each peer process, So out of the combined
data about � � ��� � ��
 QP IDs in the launcher, one process only needs to receive � QPs that is specifically targeted
for it. This requires a centralized component, i.e., the launcher, to collect and reassembly QP IDs. The biggest
advantage of this data reassembly (DR) scheme is that the data volume can be reduced to the order of

� � ����
 . But
there are several disadvantages associated with this scheme. First, the entire data of QP IDs need to be reassembled
at the launcher, possibly multiple times. This leads to another performance/scalability bottleneck. Second, the total
exchange of QP IDs is sequentialized at the launcher. The launcher must receive all QP IDs first and then reassemble
QP IDs and send the reassembled QP IDs to each process. The receive-reassembly-send procedure is serialized.

4.1.2. Approach 2: Parallelizing Communication with a Bootstrap Channel (BC)

In order to parallelize the communication, one must find out the available parallelism and the algorithm to exploit
that. Reexamination of the startup can shed insights on these issues. Essentially, what needs to be achieved at the
startup time is an all-to-all personalized exchange of QP IDs, i.e., each process receives the specific QP IDs from other
processes. In the original startup scheme as shown in Figure 1, the launcher performs a gather/broadcast to help the
all-to-all broadcast of their QP data. On top of that, the DR scheme in Section 4.1.1 reassembles and “personalizes”
QP data to reduce the data volume. Both do not exploit the parallelism of all-to-all personalized exchange. Algorithms
that parallelize an all-to-all personalized exchange can be used here. These algorithms are usually based on a ring-
, hypercube- or torus-based topology, which requires more connections to be provided among processes. With the

initial star topology in the original startup scheme, providing these connections has to be done through the launcher.
However, since a parallelization algorithm can potentially overlap both sending and receiving QP data, it promises
better scalability over clusters with larger sizes.

Among the three possible parallel topologies, the ring-based topology requires the least number of additional con-
nections, i.e., 2 per process. This would minimize the impact of the ring setup time. Another design option to be
considered is that which type of connections should be provided. Either TCP/IP- or InfiniBand-based connections can
be used. Since the communication over InfiniBand is much faster than that over TCP/IP, as shown in Fig. 2. a ring of
InfiniBand QPs is the ideal choice to exploit parallelism, and speed up communication.

0

60

120

180

240

300

360

4 16 64 256 1024 4096 16384

La
te

nc
y

(µ
s)

Message Size (bytes)

VAPI
TCP

Fig. 2. Latency Comparison of Communication over TCP/IP on Fast Ethernet and VAPI on InfiniBand

In our design, we choose a ring of InfiniBand QPs. The second approach works as follows. First, each process
creates two QPs for its left hand side (lhs) and right hand side (rhs) processes, respectively. We call these QPs bootstrap
QPs. Second, the DR scheme mentioned in Section 4.1.1 is used to set up connections between these bootstrap QPs as
shown in Figure 3(a). Thus, a ring of connections over InfiniBand is created, as shown by the dotted line in Figure 3(a).
We refer to this ring as a bootstrap channel. After the bootstrap channel is set up, each process initiates a broadcast of
its own QP IDs over the bootstrap channel in the clockwise direction as shown in Fig. 3(b) with four processes. Each
process also forwards what it receives to its next process. In this scheme, we take advantage of both communication
parallelism and high performance of bootstrap channel over InfiniBand to reduce the communication overhead for the
connection setup.

lid,qp{lhs,rhs}

lid,qp{lhs,rhs}

launcher

(lid,qp){lhs,rhs}

(lid,qp){lhs,rhs}

process 0

process 1process 2

process 3

(a) Setup a Bootstrap Channel

lid,qp{n−1}

lid,qp{n−1}

lid,qp{n−1} lid,qp{n−1}

lid,qp{n−1} lid,qp{n−1} lid,qp{n−1}

lid,qp{n−1}

lid,qp{n−1}lid,qp{n−1}

lid,qp{n−1} lid,qp{n−1}

process 0

process 1

(2) (3)(1)

(1) (0) (3)

process 2

process 3

(2)

(1)

(0)

(3)

(0)

(2)

(b) Ring-Based All-to-all Broadcast of QP Data

Fig. 3. Parallelizing the Total Exchange of InfiniBand Queue Pair Data

4.2. Fast Process Initiation with MPD

The rsh/ssh-based process initiation is another bottleneck of the application startup in large clusters. It is desirable
that we take advantage of some resource management systems [14, 2, 9, 15, 3] to facilitate the process initiation.
MPD [3] is designed to be a general process manager interface that provide the needed support for MPICH, from which
MVAPICH is developed. It mainly provides fast startup of parallel applications and convenient runtime management
of parallel jobs. Instead of sequentially launching processes over rsh/ssh daemons, MPD parallelizes the launching
of application processes over a ring of MPD daemons. As shown in Fig. 4, a console process from the user front
end sends a request to the ring of MPD daemons to launch a parallel job. This request is instantly propagated across
the ring. The specified set of daemons then start a ring of management processes, each of which in turn starts an
application process for the parallel job. MPD achieves the fast startup of parallel jobs because the startup time for
all pairs of managers and application processes is parallelized. An explicit interface (i.e. BNR) is also introduced to
help the parallel programming library to obtain information from the process manager (in this case, MPD). This type
of information is typically only stored and known in the MPD database, such as the rank of an individual process.
In addition, processes can exchange information through its put/fence/get model, exposed as the BNR interface. One
process stores (puts) a (key,value) pair at its manager, a part of the MPD database, then another process retrieves (gets)
that value by providing the same key.

Although this fast, parallelized process startup from MPD solves the process initiation problem, the significant
volume of QP data poses a great challenge to the MPD model. As shown in Fig. 5(a), the database is distributed over
the ring of manager processes when each process stores (puts) their process-specific data to its manager. To collect the
data from every peer process, one process has to send a request and get the reply back for the target process. At the
completion of these data exchanges, each process then sets up connections with all the peers, as the process 0 shown
in Fig. 5(a). Together, messages for the request and the reply make a complete round over the manager ring. For a
parallel job with N processes, there are ��� � � �	��
 message exchanges in total. Each of these messages is in the
order of

� ���
 bytes and has to go through the ring of manager processes. In addition, since application processes
store and retrieve data through their corresponding manager processes at each node, process context switches are very
frequent and they further degrade the performance of ring-based communication. Furthermore, the message passing
is over TCP/IP sockets, which delivers lower performance than InfiniBand-based connections as shown in Fig 2.

There are different alternatives to overcome these limitations. One way of doing that is to replace the connections
for the MPD manager ring with VAPI connections to provide fast communications. In addition, copies of QP data
can be saved at each manager process as the first copy of QP data passes through the ring. Then further retrieve

mpd daemons

mpd managers

fork/exec

fork/execconsole

req

std i/o

Processes

Fig. 4. MPD Parallelized Process Initialization

Store (put) Retrieve (get) RepRetrieve (get) Req

Processes

mpd managers

peer 3

peer 2

peer 1

process 0

process 1

process 2

process 3

(a) Exchange of Queue Pair IDs Over the Ring of Manager

Store (put) Retrieve (get) Req Retrieve (get) Rep

Processes

mpd managers

lhs

rhs

process 3

process 0

process 1

process 2

(b) Setting up Bootstrap Channel within Processes

Fig. 5. Improving the Scalability of MPD-Based Startup

(get) requests can get the data from the local manager directly instead of the MPD manager ring. This approach will
improve the communication time, however, the process context switches still exist between the application processes
and manager processes. In addition, retrieve requests made before QP data reaches the local manager process still has
to go through the manager ring. Last but not least, this approach necessitates a significant amount of instrumentation
of MPD code and can affect its portability.

Instead of exchanging all the QP data over the ring of MPD manager processes, we propose to perform the exchange
of QP IDs over the bootstrap channel described in Section 4.1.2. However, setting up the bootstrap channel still has to
go through the ring of manager processes. As shown in Fig. 5(b), each process first creates and stores QP IDs for its
left side (lhs) and right hand side (rhs) processes to the local manager. Then, from the database, they retrieve the data
for its left hand side and right hand side processes, and use these data to set up InfiniBand connections. Eventually
a ring of such connections are constructed and form a bootstrap channel. This bootstrap channel is then utilized to
perform a complete exchange of QP IDs as described in Section 4.1.2. Since this bootstrap channel is provided within
the application processes and over InfiniBand, this approach will not only provide fast communication performance
and eliminate the process context switches, but also reduce the number of communications on each manager process.

5. Performance Evaluation

In this section we describe experimental results of our implementation. Our implementation is based on MVAPICH
0.9.1. We provide both the rsh/ssh-based and MPD-based parallel startup. For the rsh/ssh-based startup, we provide
fast connection setup with both the data reassembly (DR) and the bootstrap channel (BC)-based approaches. For
MPD-based startup, we use the bootstrap channel inside the application processes to enhance the startup time.

Experiments were conducted on a 256-node cluster of 4GB DRAM dual-SMP 2.4GHz Xeon at the Ohio Super-
computing Center. For fast network discovery with data reassembly (DR) or the bootstrap channel (BC), we used
ssh to launch the parallel processes. Performance comparisons were provided against MVAPICH 0.9.1 (Original). To
eliminate the impact of network communication to file access, (file system performance could be a big bottleneck for
a large cluster), all binary executable files were duplicated at local disks.

Number of Processes 4 8 16 32 64 128
Original (sec) 0.59 0.92 1.74 3.41 7.3 13.7
SSH-DR (sec) 0.58 0.94 1.69 3.37 6.77 13.45
SSH-BC (sec) 0.61 0.95 1.70 3.38 6.76 13.3
MPD-BC (sec) 0.61 0.63 0.64 0.84 1.58 3.10

Table 1. Comparisons of Parallel Job Startup Time over MVAPICH with Different Approaches

5.1. Experimental Results

Table 1 shows the startup time for parallel jobs of different number processes using different approaches. SSH-
DR represents ssh-based startup with QP data assembly (DR) at the process launcher. SSH-BC represents ssh-based
startup using the bootstrap channel (BC) to exchange QP IDs. MPD-BC represents MPD-based startup with a bootstrap
channel for the QP Id exchange.

As the number of processes increases, both SSH-DR and SSH-BC reduce the startup time, compared to the original
approach, This is because data reassembly can reduce the data volume by an order of

� ���
 and the bootstrap channel
can parallelize the communication time. Note that BC-based approach performs slightly worse than the the original
and DR-based approach for small number of processes. This is due to the overhead from setting up the additional
ring over InfiniBand. As the number of processes increases, the benefits becomes greater. However, with less than
or equal to 128 processes, the length of entire QP IDs is still less than 2K. With either TCP-based or VAPI-based
communication, the communication time for the connection setup, is in the order of milliseconds, while the total
startup time is in the order of seconds, dominated by the process initiation time. However, either SSH-BC and SSH-
DR will be able to provide more scalable startup for a job with thousands of processes since they both are able to
remove the major communication bottleneck imposed by the sheer volume QP data. In contrast, the MPD-based
approach with a bootstrap channel provides the most scalable startup. On one hand, MPD-BC provides efficient
parallelized process initialization, compared to the ssh-based schemes. On the other hand, it also pipelines the QP data
exchange over a ring of VAPI connections, hence this approach speeds up the connection setup phase. Compared to
the original approach, the MPD-BC approach reduces the startup time for a 128-process job by more than 4 times.

5.2. Analytical Models and Evaluations for Large Clusters

As indicated by the results from Section 5, the benefits of the designed schemes will be more pronounced for
parallel jobs with larger number of processes. In this section, we further analyze the performance of different startup
schemes and provide parametrized models to gain insights about their scalability over large clusters. The total startup
time ���������	��
� can be divided into two components: the process initiation time and the connection setup time, denoted
as ������� � and �����	��� respectively. Based on the scalability analysis, we use the following model to describe the startup
time of the following schemes, the original scheme (Original), ssh-based scheme with data reassembly (SSH-DR) and
the MPD-based scheme with the bootstrap channel (MPD-BC). Each of the models shows the time for the startup of

� processes, and the last component describes the time for other overheads that are not quantified in the models, for
example, process switching overhead.

Original: � ������ ��
 � � � � � � �
��	� ��� � � � ���
	���� 	�

�� � �
The process initiation phase time ��� � � � scales linearly as the number of processes increases with
ssh/rsh-based approaches, while during the connection setup there are 2N messages communicated
over TCP/IP. Half of them are gathered by the launcher, each being in the order of

� ���
 bytes; the
other half are scattered by the launcher, each of

� �����
 bytes .

SSH-DR: � �������	��
 � � ��� � � �
��	��� ����� � � � ����� � ��� � � ��	
���� �
The process initiation time ��� � � � scales linearly with ssh/rsh. During the connection setup phase,
the amount of computation scales in the order of

� �����
 (the constant � ����� � can be very small,
being the time for extracting one QP Id), and there are 2*N message communicated over TCP/IP.
Half of them are gathered by the launcher, each being in the order of

� ���
 bytes; The other half are
scattered by the launcher, each of them is only

� ���
 bytes due to reassembly.

MPD-BC: � �������	��
� � ��� � � � � � �����
��	��� � � �!����
� � �"��� � � � � �
	
���� �
The process initiation time ������� � scales constantly using MPD, however there is a small fractional
increase of communication time for the request message � ���!� . During the connection setup phase,
the time to setup a bootstrap channel increases in the order of

� ���
 . and also each process handles
N message in the pipeline, each in the order of

� ���
 bytes.

Original: � ������ ��
 � (sec) � ��#%$ �&#'# � �
�� � �&#($) � � � ���
	���� 	

���#%$ � �
SSH-DR: ���������	��
 � (sec) � ��#%$ �&#'# � �
�� ��*%$+)-,'.0/ � � �1� �2#%$+) � � � � 	
��3#($ � �
MPD-BC: � �������	��
� (sec) � ��#($ � #4�3#($ #'# �&# � �
��	��#($ # �&*5# � �"� � $+) � � � � 	
���#%$ 65#

The above scalability models are parameterized based on our analytical modeling. As shown in Fig. 6, the exper-
iment results confirm the validity of these models for jobs with 4 to 128 processes. Fig. 7 shows the scalability of
different startup schemes when applying the same models to larger jobs from 4 to 2048 processes. Both SSH-DR and
MPD-BC improves the scalability of job startup significantly. It is to note that, MPD-BC scheme improves the startup
time by about two orders of magnitudes for 2048-process jobs.

0

4

8

12

16

20

4 8 16 32 64 128

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original
SSH-DR
MPD-BC

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 6. Performance Modeling of Different
Startup Schemes

0

500

1000

1500

2000

2500

4 8 16 32 64 128 256 512 1024 2048

S
ta

rt
up

 T
im

e(
se

c)

Number of Processes

Original Modeling
SSH-DR Modeling
MPD-BC Modeling

Fig. 7. Scalability Comparisons of Different
Startup Schemes

6. Conclusions and Future Work

In this paper, we have presented schemes to support scalable startup of MPI programs in InfiniBand clusters. With
MVAPICH as the platform of study, we have characterized the startup of MPI jobs into two phases: process initiation

and connection setup. To speed up connection setup phase, we have developed two approaches, one with queue pair
data reassembly at the launcher and the other with a bootstrap channel. In addition, we have exploited a process
management framework, Multi-purpose Daemons (MPD) system, to improve the process initiation phase. The per-
formance limitations in the MPD’s ring-based data exchange model, such as exponentially increased communication
time and numerous process context switches, are eliminated by using the proposed bootstrap channel. We have imple-
mented these schemes in MVAPICH [13]. Our experimental results show that, for 128-process jobs, the startup time
has been reduced by more than 4 times. We have also developed an analytical model to project the scalability of the
startup schemes. The derived models suggest that the improvement can be more than two orders of magnitudes for the
startup of 2048-process jobs with the MPD-BC startup scheme.

In future, we want to provide a file broadcast mechanism to MPD system to achieve efficient loading of jobs [5, 10].
We also plan to expand the BNR interface of MPD system so that the manager database can be suitably distributed
according to the hints provided in the requests. Furthermore, we intend to provide a hypercube-based scalable startup
over really large systems, e.g., future Peta-scale clusters with tens of thousands of processors.

Software Availability
The new startup code will be released in the next release of MVAPICH version 0.9.5, and be available at the link:
http://nowlab.cis.ohio-state.edu/projects/mpi-iba/.

References

[1] M. Baker, G. Fox, and H. Yau. Cluster Computing Review, November 1995.
[2] R. Brightwell and L. A. Fisk. Scalable parallel application launch on Cplant. In Proceedings of Supercomputing, 2001,

Denver, Colorado, November 2001.
[3] R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process management system for parallel programs. Parallel

Computing, 27(11):1417–1429, 2001.
[4] M. P. I. Forum. MPI: A message-passing interface standard. The International Journal of Supercomputer Applications and

High Performance Computing, 8(3–4), 1994.
[5] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and S. Coll. STORM: Lightning-Fast Resource Management. In Proceed-

ings of the Supercomputing ’02, Baltimore, MD, November 2002.
[6] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation of the MPI Message Passing

Interface Standard. Parallel Computing, 22(6):789–828, 1996.
[7] E. Hendriks. Bproc: The beowulf distributed process space. In Proceedings of the 16th Annual ACM International Conference

on Supercomputing (ICS 02), New York, New York, June 2002.
[8] Infiniband Trade Association. http://www.infinibandta.org.
[9] M. Jette and M. Grondona. SLURM: Simple Linux Utility for Resource Management. In Proceedings of the 4th LCI

International Conference on Linux Clusters, San Jose, CA, June 2003.
[10] A. Kavas, D. Er-El, and D. G. Feitelson. Using Multicast to Pre-Load Jobs on the ParPar Cluster. Parallel Computing,

27(3):315–327, 2001.
[11] Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface Architecture.

http://www.nersc.gov/research/FTG/mvich/ index.html, August 2001.
[12] J. Liu, J. Wu, S. P. Kini, D. Buntinas, W. Yu, B. Chandrasekaran, R. Noronha, P. Wyckoff, and D. K. Panda. MPI over

InfiniBand: Early Experiences. Technical Report OSU-CISRC-07/00-TR16, Department of Computer and Information Sci.,
The Ohio State University, Columbus, OH 43210, January 2003.

[13] Network-Based Computing Laboratory. MVAPICH: MPI for InfiniBand on VAPI Layer. http://nowlab.cis.ohio-
state.edu/ projects/mpi-iba/index.h tml, January 2003.

[14] OpenPBS Documentation. http://www.openpbs.org/docs.html.
[15] Quadrics Supercomputers World, Ltd. Quadrics Documentation Collection. http://www.quadrics.com/onlinedocs/

Linux/html/index.html.
[16] TOP 500 Supercomputers. http://www.top500.org/, 2003.
[17] J. Wu, J. Liu, P. Wyckoff, and D. K. Panda. Impact of On-Demand Connection Management in MPI over VIA. In Proceedings

of the IEEE International Conference on Cluster Com puting, 2002.

