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Abstract

A time-varying Wiener filter extracts a speech signal from a mixture using the a

priori signal-to-noise ratio in a local time-frequency unit. We estimate this ratio
using a binaural processor and derive a ratio time-frequency mask. This mask is
used to extract the speech, which is then fed to a conventional speech recognizer
operating in the cepstral domain. We compare the performance of this system with
a missing-data recognizer that operates in the spectral domain using the time-
frequency units dominated by speech. For use by the missing-data recognizer, the
same processor is used to estimate an ideal time-frequency binary mask, which
selects the speech if it is stronger than the interference in a local time-frequency
unit. We find that the performance of the missing-data recognizer is better on a small
vocabulary recognition task but the performance of the conventional recognizer is
substantially better when the vocabulary size is larger.

Key words: Ideal binary mask, Ratio mask, Robust speech recognition,
Missing-data recognizer, Binaural processing, Speech segregation.



1 Introduction

The performance of automatic speech recognizers (ASRs) degrades rapidly
in the presence of noise and other distortions (Gong, 1995; Lippmann, 1997).
Speech recognizers are typically trained on clean speech and face a problem of
mismatch when used in conditions where speech occurs simultaneously with
other sound sources. To mitigate the effect of this mismatch on recognition,
noisy speech is typically preprocessed by speech enhancement algorithms, such
as microphone arrays (Brandstein and Ward, 2001; Cardoso, 1998; Ehlers and
Schuster, 1997; Hughes et al., 1999), computational auditory scene analysis
(CASA) systems (Rosenthal and Okuno, 1998; Wang and Brown, 1999) or
spectral subtraction techniques (Boll, 1979; Droppo et al., 2002). Microphone
arrays require the number of sensors to increase as the number of interfering
sources increases. Monaural CASA systems employ harmonicity as the primary
cue for grouping acoustic components corresponding to speech. These systems,
however, do not perform in time-frequency regions that are dominated by un-
voiced speech. Spectral subtraction systems typically assume stationary noise.
Hence, in the presence of non-stationary noise sources, their performance is
not adequate for recognition (Cooke et al., 2001). If samples of the corrupting
noise source are available a priori, a model for the noise source can addition-
ally be trained and noisy speech may be jointly decoded using the trained
models of speech and noise (Gales and Young, 1996; Varga and Moore, 1990)
or enhanced using linear filtering methods (Ephraim, 1992). However, in many
realistic applications, adequate amounts of noise samples are not available a
priori and hence training of a noise model is not feasible.

Recently a missing-data approach to speech recognition in noisy environ-
ments has been proposed by Cooke et al. (2001). This method is based on
distinguishing between reliable and unreliable data. When speech is contam-
inated by additive noise, some time-frequency (T-F) units contain predomi-
nantly speech energy (reliable) and the rest are dominated by noise energy.
The missing-data method treats the latter T-F units as missing or unreliable
during recognition (see Section 4.2). Missing T-F units are typically identified
using spectral subtraction. The performance of missing-data recognizer is sig-
nificantly better than the performance of a system using spectral subtraction
for speech enhancement followed by recognition of enhanced speech (Cooke
et al., 2001).

A potential disadvantage of the missing-data recognizer is that recognition is
performed in the spectral or T-F domain. It is well known that recognition us-
ing cepstral coefficients yields a superior performance compared to recognition
using spectral coefficients under clean speech conditions (Davis and Mermel-
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stein, 1980). The superiority of the cepstral features stems from the ability
of the cepstral transformation to separate vocal-tract filtering from excitation
source in speech production (Rabiner and Juang, 1999). Since the missing-
data recognition is based on treating local T-F units as missing or unreliable
T-F features during recognition, it is coupled with a spectral or T-F repre-
sentation. Any global transformation of the spectral features (e.g. cepstral
transformation) smears the information in the noisy T-F units, preventing
its effective marginalization. Attempts to adapt the missing-data method to
the cepstral domain have centered around reconstruction or imputation of
the missing values in the spectral domain followed by transformation to the
cepstral domain (Cooke et al., 2001; Raj et al., 2000). This reconstruction is
typically based either on the speech recognizer itself or on other trained mod-
els of speech. The success of these model-based imputation techniques depend
on the adequacy of reliable data for identification of the correct speech model
for imputation. In addition, errors in imputation procedures affect the perfor-
mance of the system even when the model is correctly identified.

Another potential drawback of the missing-data recognizer, which has not
been well studied, is the problem of data paucity. The amount of “reliable”
data available to the recognizer is a function of both SNR and the frequency
characteristics of the noise source. A decrease in SNR, as well as an increase
in the bandwidth of the noise source causes an increase in the amount of miss-
ing data. This leads to a deterioration in performance for a small vocabulary
task (Cooke et al., 2001). The reduction in reliable data may pose an addi-
tional problem for recognition with larger vocabulary sizes. Paucity of reliable
data constrains the missing-data recognizer to use only a small portion of the
total T-F acoustic model space. This reduced space may be insufficient to
differentiate between a large number of competing hypotheses during decod-
ing. In this paper, we study this issue by comparing the performance of the
missing-data recognizer on two tasks with different vocabulary sizes.

Binaural CASA systems that compute an ideal binary mask have been used
as front-ends for the missing-data recognizer previously (Palomaki et al., 2004;
Roman et al., 2003). A T-F unit in the ideal binary mask is labeled 1 or reliable
if the corresponding T-F unit of the noisy speech contains more speech energy
than interference energy; it is labeled 0 or unreliable otherwise. We employ a
recent binaural speech segregation system (Roman et al., 2003) to estimate an
ideal binary T-F mask. This mask is fed to the missing-data recognizer and
recognition is performed in the spectral domain.

The minimum mean-square error (MMSE) based short-time spectral ampli-
tude estimator, which utilizes a priori SNR in a local T-F unit, has been used
previously to effectively enhance noisy speech (Ephraim and Malah, 1984). a
priori SNR can be obtained if premixing speech and noise signals are avail-
able. Roman et al. (2003) have shown that in a narrow frequency band, there
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exists a systematic relationship between a priori SNR and values of the binau-
ral cues of interaural time differences (ITD) and interaural intensity differences
(IID). Motivated by this observation, we estimate an ideal ratio T-F mask us-
ing statistics collected for ITD and IID at each individual frequency. A unit
in the ratio mask is a measure of the speech energy to total energy (speech
and noise) in the corresponding T-F unit of noisy signal. The ratio mask is
then used to enhance the speech, enabling recognition using Mel-Frequency
Cepstral Coefficients (MFCCs). We use “conventional recognizer” to refer to
a continuous density hidden Markov model (HMM) based ASR using MFCCs
as features.

We compare the performance of the conventional recognizer to that of the
missing-data recognizer on a robust speech recognition task. In particular, we
examine the effect of vocabulary size on the performance of the two recog-
nizers. We find that on a small vocabulary task, the missing-data recognizer
outperforms the conventional ASR. Our finding is consistent with a previous
comparison using a binaural front-end made on a small vocabulary “cocktail-
party” recognition task (Glotin et al., 1999; Tessier et al., 1999). The accuracy
of results obtained using the missing-data method in the spectral domain was
reported to be better than those obtained using the conventional ASR in
the cepstral domain. With an increase in the vocabulary size, however, the
conventional ASR performs substantially better. Results using the missing
value imputation methods have been reported on a larger vocabulary previ-
ously (Raj et al., 2000). Their method uses a binary mask and therefore is
subject to the same limitations stated previously.

The rest of the paper is organized as follows. Section 2 provides an overview
of the proposed systems. We then describe the binaural front-end for both the
conventional and missing-data recognizers in Section 3. The section addition-
ally provides the estimation details of ideal binary and ratio T-F masks. The
conventional and missing-data recognition methods are reviewed in Section 4.
The recognizers are tested on two different task domains with different vo-
cabulary sizes. Section 5 discusses the two tasks and presents the evaluation
results of the recognizers along with a comparison of their relative perfor-
mance. Finally, conclusion and future work are given in Section 6.

2 System Overview

In this study, we analyze two strategies for robust speech recognition: 1)
missing-data recognition and 2) a system that combines speech enhance-
ment with a conventional ASR. The performance is examined at various SNR
conditions and for two vocabulary sizes. Figure 1 shows the architecture of
the two different processing strategies.
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Fig. 1. Architecture of the two robust speech recognition strategies with binaural
preprocessing: The missing-data recognizer and the conventional ASR. Left and
right ear signals are obtained by filtering with HRTFs. A short-time Fourier analysis
is applied to the signals, resulting in a time-frequency decomposition. ITD and IID
are computed in each T-F unit. The missing-data recognizer works with a binary
mask. A ratio mask is used as a speech enhancement strategy and is fed to the
conventional recognizer.

The input to both systems is a binaural mixture of speech and interference
presented at different, but fixed, locations. The binaural signals are obtained
by filtering monaural signals with measured head-related transfer functions
(HRTFs) corresponding to the direction of sound incidence. The responses to
multiple sources are added at each ear. The HRTF measurements consist of
left/right responses of the KEMAR manikin from a distance of 1.4 m in the
horizontal plane, resulting in 128 point impulse responses at a sampling rate
of 44.1 kHz (Gardner and Martin, 1994). HRTFs provide location-dependent
ITD and IID which can be extracted independently in each T-F unit. The
T-F resolution is 20 ms time frames with a 10 ms frame shift, and 512 DFT
coefficients. Frames are extracted by applying a running Hamming window to
the signal.

The missing-data speech recognizer operates in the log-spectral domain by
using the knowledge about the reliability of spectral units at each time frame
of the noisy speech input. Thus a binary mask that informs the recognizer of
which T-F units are dominated by speech energy is required. A 64-channel
auditory filterbank was used previously as a front-end for the missing-data
recognizer (Cooke et al., 2001). We have chosen a DFT representation for
the missing-data recognizer in order to be consistent with the conventional
recognizer. A comparison between the DFT representation and the auditory
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filterbank representation has shown that the difference in recognition perfor-
mance is statistically insignificant. Statistics based on mixtures of multiple
speech sources show that there exists a systematic correlation between the a
priori energy ratio and the estimated ITD/IID values, resulting in a charac-
teristic clustering across frequencies (Roman et al., 2003). To estimate the
ideal binary mask we extend the non-parametric classification method of Ro-
man et al. (2003) in the joint ITD/IID feature space independently for each
frequency bin. The frequency decomposition used by Roman et al. (2003)
was generated by a gammatone filterbank. This classification results in binary
Bayesian decision rules that determine whether speech is stronger than inter-
ference in individual T-F units (energy ratio greater than 0.5). The system
of Roman et al. (2003) was chosen because of the excellent match between
their estimated binary mask and the ideal binary mask.

The conventional approach to robust speech recognition involves preprocess-
ing of the corrupted speech by speech enhancement algorithms. This allows
for the subsequent usage of decorrelating transformations (cepstral transfor-
mation, linear discriminant analysis) and temporal processing methods (delta
features, RASTA filtering) on enhanced spectral features (Shire, 2000). In this
study we use cepstral and delta features which are known to provide improved
recognition accuracy. To enhance noisy speech we etimate an ideal ratio T-F
mask. The statistics described above show that the estimated ITD and IID
have a functional relationship with the a priori energy ratio. We employ this
relationship in a non-parametric fashion to estimate the ideal ratio mask.
Finally, to decode using the conventional ASR, MFCCs are computed from
speech reconstructed after masking the corrupted signal by the estimated ratio
mask.

3 A LOCALIZATION BASED FRONT-END FOR ASR

When speech and additive noise are orthogonal, the linear MMSE filter is the
Wiener filter (Van Trees, 1968). With a frame-based processing, the MMSE
filter corresponds to the ratio of a priori speech eigen values to the sum of a
priori eigen values of speech and noise (Van Trees, 1968). Under asymptotic
conditions, this corresponds to the frame-based Wiener filter (McAulay and
Malpass, 1980; Van Trees, 1968). Ephraim and Malah (1984) have additionally
shown that the optimal MMSE estimate of speech spectral amplitude in a local
T-F unit is strongly related to the a priori SNR. To estimate the speech in
a local T-F unit, we approximate the frame-based filter with an ideal ratio
mask defined using the a priori energy ratio R (ω, t):

R (ω, t) =

[

|S (ω, t) |2

|S (ω, t) |2 + |N (ω, t) |2

]

, (1)
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where S (ω, t) and N (ω, t) are the target and noise spectral values at frequency
ω and time t computed from the signal at the “better ear” - the ear with
higher SNR. This is our computational goal for front-end processing with the
conventional ASR.

In addition, an ideal binary mask assigns the label 1 to those T-F units
whose energy ratio R (ω, t) exceeds 0.5 and assigns the label 0 otherwise. Such
masks have been shown to generate high-quality reconstruction for a variety of
signals and also provide an effective front-end for the missing-data recognition
on a small vocabulary task (Cooke et al., 2001; Roman et al., 2003).

The objective of our front-end processing is to develop effective mechanisms
for estimating both ideal binary and ratio masks. We propose an estimation
method based on observed patterns for the binaural cues caused by the au-
ditory interaction of multiple sources presented at different locations. Roman
et al. (2003) have shown that for two sinusoidal signals, ITD and IID undergo
systematic shifts as the energy ratio between the two sources changes. More-
over, statistics collected from real signals have shown similar patterns. In this
case, training for each frequency bin is required since frequency-dependent
combinations of ITD and IID arise naturally for a fixed spatial configuration.
We employ the same training corpus as used by Roman et al. (2003) con-
sisting of 10 speech signals from the TIMIT database (Garofolo et al., 1993).
Five sentences correspond to the target location set and the rest belong to
the interference location set. Binaural signals are obtained by convolving with
KEMAR HRTFs as described in Section 2. This dataset is different from the
databases used in training the ASRs.

The ITD/IID estimates are computed independently in each T-F unit based
on the spectral ratio at the left and right ears:

(

IT̂D, IÎD
)

(ω, t) =

[

−
1

ω
A

(

XL (ω, t)

XR (ω, t)

)

,
|XL (ω, t) |

|XR (ω, t) |

]

, (2)

where XL (ω, t) and XR (ω, t) are the left and right ear spectral values of the

noisy speech at frequency ω and time t and A
(

rejφ
)

= φ,−π < φ ≤ π. Note
that at high frequencies, the phase is ambiguous corresponding to integer mul-
tiples of 2π. To disambiguate, we identify ITD in the range of 2π/ω centered
at zero delay.

Fig. 2 shows empirical results from the training corpus for a two-source
configuration: target source in the median plane and interference at 30◦. The
scatter plot in Fig. 2A shows samples of IT̂D and R for a frequency bin
at 1 kHz. Similarly, Fig. 2B shows the results that describe the variation of
IÎD and R for a frequency bin at 3.4 kHz. The results are similar to those
obtained by Roman et al. (2003), who use an auditory filterbank for frequency
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Fig. 2. Relationship between ITD/IID and the energy ratio R. Statistics are ob-
tained with target in the median plane and interference on the right side at 30◦.
(a) The scatter plot for the distribution of R with respect to ITD for a frequency
bin at 1 kHz. The solid white curve shows the mean curve fitted to the data. (b)
Corresponding results for IID for a frequency bin at 3.4 kHz. (c) Histogram of ITD
and IID samples for a frequency bin at 2 kHz.

decomposition. Note that the scatter plots exhibit a systematic shift of the
estimated ITD and IID with respect to R . Moreover, a location-based clus-
tering is observed in the joint ITD-IID space as shown in Fig. 2C. Each peak
in the histogram corresponds to a distinct active source. Therefore, to esti-
mate the ideal binary mask we employ non-parametric classification in the
joint ITD-IID feature space as used by Roman et al. (2003). There are two
hypotheses for the binary decision: H1 - target is stronger or R ≥ 0.5 and H2

- interference is stronger or R < 0.5. Classification is obtained using the max-
imum a posteriori (MAP) decision rule: p(H1)p(x|H1) > p(H2)p(x|H2) where

x is
(

IT̂D, IÎD
)

(ω, t) feature vector. The prior probabilities, p(Hi) are com-
puted as the ratio of the number of samples in each class to the totalnumber of
samples. The conditional probabilities, p(x|Hi) are estimated from the training
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data using the kernel density estimation method (Roman et al., 2003).

In order to estimate the ideal ratio mask, we use the same training data. It
is well known that ITD is salient at low frequencies while IID becomes more
prominent at higher frequencies (Blauert, 1997). ITD exhibits different pat-
terns across frequency bins as seen in the number of modes that characterizes
the distribution of the samples (Roman et al., 2003). Hence, there is no unique
parametric curve for all frequencies. Moreover, in the absence of evidence for
a parametric estimate to provide better recognition results, a mean curve is
fitted to the distribution of ITD. This is our estimate of the ideal ratio mask
below 3 kHz. For higher frequencies, we utilize the information provided by the
IID cues and use the same method to estimate the energy ratio. For improved
results, we remove the outliers outside of 0.2 distance from the median. The
resulting mean curves are shown in Fig. 2A (ITD) and Fig. 2B (IID). Thus,
for given IT̂D (ω, t) and IÎD (ω, t), the estimated energy ratio R̂ (ω, t) is the
corresponding value on the mean curve.

4 RECOGNITION STRATEGIES

We evaluate the binaural segregation system described in Section 3 as the
front-end for robust ASR using two different recognizers. Conventional ASR
uses MFCCs as the parameterization of observed speech. MFCCs are com-
puted from the segregated speech obtained by applying the ratio mask to the
noisy input signal. The missing-data recognizer uses log-spectral energy as
feature vectors. This recognizer requires information about which T-F regions
are reliable and which are unreliable. Thus the binary mask, generated by the
binaural system, is additionally fed to the missing-data recognizer. A HMM
toolkit, HTK (Young et al., 2000) is used in training of both recognizers and for
the testing with the conventional ASR. During testing with the missing-data
recognizer, the decoder is modified to incorporate the missing-data methods.

4.1 The Conventional Speech Recognizer

We use the standard continuous density HMM based speech recognizer
trained on clean speech to model each word in the vocabulary (Section 5).
Observation densities are modeled as mixture of Gaussians with diagonal
covariance. The input to this ASR is the estimated speech spectral energy
|Ŝ (ω, t) |2.

|Ŝ (ω, t) |2 = |X (ω, t) |2 · R̂ (ω, t) , (3)
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where |X (ω, t) |2 is the spectral energy of the noisy signal at the better ear
(see Section 5). From the estimated speech spectra, we compute the MFCCs.
MFCCs are chosen as feature vectors as they are most commonly used in state-
of-the-art recognizers (Rabiner and Juang, 1999). 13 cepstral coefficients along
with delta and acceleration coefficients are extracted each frame, including the
0th order cepstral coefficient C0 as the energy term. Frames are extracted as
described in Section 2. A first-order preemphasis coefficient of 0.97 is applied
to the signal.

4.2 The Missing-data Speech Recognizer

The missing-data recognizer (Cooke et al., 2001) makes use of spectro-
temporal redundancy in speech to recognize a noisy speech based on its speech
dominant T-F units. Given an observed speech vector Y , the problem of word
recognition is to maximize the posterior P (Wi|Y ), where Wi is a valid word
sequence according to the grammar for the recognition task. When parts of
Y are corrupted by additive noise, it can be partitioned into its reliable and
unreliable constituents as Yr and Yu. One can then seek the Bayesian decision
given the reliable constituents. In the marginalization method, the posterior
probability using only the reliable constituents is computed by integrating over
the unreliable ones (Cooke et al., 2001). In missing-data methods, recognition
is typically performed using spectral energy as feature vectors. If Y represents
the observed spectrum and sound sources are additive, the unreliable parts
may be constrained as 0 ≤ Y 2

u ≤ Y 2. This bounded marginalization method is
shown by Cooke et al. (2001) to have a better recognition score than the simple
marginalization method, and is hence used in all our experiments employing
the missing-data recognizer. We use mixture of Gaussians with diagonal co-
variance to model the observed speech features as suggested by Cooke et al.
(2001). Feature vectors for the missing-data recognizer comprise of 512 DFT
coefficients per frame as described in Section 2. Log compression is applied to
the resulting energy spectrum of the signal. Delta and acceleration coefficients
are not calculated for log-spectral energy features due to problems in their use
with the marginalization method (Raj, 2000). To provide the missing-data
recognizer with the reliable and unreliable T-F units during decoding, we use
the estimated binary mask as described in Section 3.

5 EVALUATION RESULTS

To compare the effect of vocabulary size on the two recognition approaches
outlined above, we choose two task domains. The first task is speaker-
independent recognition of connected digits. This is the same task used in
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the original study of Cooke et al. (2001). Thirteen (1-9, a silence, very short
pause between words, zero and oh) word-level models are trained for both rec-
ognizers. All except the short pause model have 8 emitting states. The short
pause model has a single emitting state, tied to the middle state of the silence
model. The output distribution in each state is modeled as a mixture of 10
Gaussians, as suggested by Cooke et al. (2001). The grammar for this task
allows for one or more repetitions of digits. All digits are equally probable.
The TIDigits database’s male speaker data is used for both training and test-
ing (Leonard, 1984). Specifically, the models are trained using 4235 utterances
in the training set of this database. Testing is performed on a subset of the
testing set consisting of 232 utterances from 3 speakers. All test speakers are
different from the speakers in the training set. The signals in this database
are sampled at 20kHz.

The second task is the speaker-independent recognition of command and
control type phrases. Two hundred and eight (206 words, a silence and a short
pause between words) word-level models are trained for both recognizers. This
task allows us to increase the vocabulary size from thirteen to two hundred and
eight, a natural progression in testing the effect of vocabulary size on the recog-
nizers. All except the short pause model have 8 emitting states, whose output
distribution is modeled as a mixture of 8 Gaussians. The short pause model
has a single state. The number of Gaussians in the mixture is slightly lower
compared to the digit recognition task due to the lack of adequate training
data for some of the models. The grammar for this task assigns equal prob-
ability to all phrases in the database. For a given phrase, the word sequence
is fixed. The digital data subset of the Apple Words and Phrases database
is used for both training and testing (Cole et al., 1995). In particular, 1996
speakers with IDs 21 through 2604 are used for training. This corresponds to
63835 utterances. Data from 14 speakers with IDs 4 through 19 are used for
testing. This corresponds to 454 utterances. The signals are sampled at 8kHz.

The two tasks also differ in perplexity. Perplexity is one indicator of diffi-
culty of the recognition task along with vocabulary size (Rabiner and Juang,
1999). For the digit recognition task, the perplexity is 11.0. For the command
and control task the perplexity is 3.05. For our task, we calculate the per-
plexity empirically from the word level lattice (Young et al., 2000). The lower
perplexity for the second task is due to the use of a restrictive grammar for
this task (Cole et al., 1995). To test the robustness of the two recognizers in
the aforementioned tasks, noise is added at a range of SNRs from -5 dB to 10
dB in steps of 5 dB. Higher positive values of SNRs are not explored, as one of
the recognizers saturates to ceiling performance at 10 dB. The noise source for
both recognition tasks is the factory noise from the NOISEX corpus (Varga
et al., 1992), which is also used by Cooke et al. (2001). The factory noise
is chosen as it has energy in the formant regions, therefore posing challeng-
ing problems for recognition. It is also impulsive, making it difficult to estimate
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Fig. 3. Performance of conventional and missing-data recognizers on the digits recog-
nition task. Ideal RM refers to the performance of the conventional ASR using the
ideal ratio mask. Estimated RM refers to its performance when using the estimated
ratio mask by the binaural front-end. Ideal BM refers to the performance of the
missing-data ASR using the ideal binary mask. Estimated BM refers to the perfor-
mance of the same when using the estimated binary mask by the binaural front-end.
For comparison, the performance of the conventional ASR without the use of any
front-end processing is also shown.

its spectrum using spectral subtraction methods (Cooke et al., 2001). In all
our experiments, the target speech source is in the median plane and the noise
source on the right side at 30◦, making the left ear the better ear in terms of
SNR (see Section 3).

Fig. 3 summarizes the performance of the two recognizers on the digit recog-
nition task. Performance is measured in terms of word-level recognition accu-
racy under various SNR conditions. “Unprocessed” refers to the baseline per-
formance of the conventional ASR, without the use of any front-end process-
ing. The figure shows the recognition accuracy of the conventional ASR with
the use of ideal and estimated ratio T-F masks (“Ideal RM” and “Estimated
RM” respectively). This is compared to the accuracy of the missing-data rec-
ognizer, which uses ideal and estimated binary T-F masks (“Ideal BM” and
“Estimated BM” respectively).

Fig. 3 shows the robust performance of the ideal ratio mask when used as
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Fig. 4. Performance of conventional and missing-data recognizers on the command
and control task. See Figure 3 caption for notations.

a front-end for conventional ASR. Only a minor performance degradation is
observed even at -5 dB. The performance of the conventional ASR with the
estimated ratio mask degrades much faster than with the ideal ratio mask.
This indicates that the conventional ASR is sensitive to errors in our estima-
tion of the ideal ratio mask. Observe that the performance with the use of
the estimated ratio mask is still substantially better than that with no pre-
processing across all SNR conditions. As reported by Cooke et al. (2001), the
performance of the missing-data recognizer degrades very little with increas-
ing amounts of noise added, indicating the adequacy of recognition using a
binary mask for this task. Also, the performance with the estimated binary
mask is close to that with the ideal binary mask, indicating the high quality of
the front-end to estimate the ideal binary mask (see also Roman et al., 2003).
Notice that, for this task, the performance of the missing-data recognizer is
close to the performance of the conventional ASR with the ideal ratio mask.

Similarly, Fig. 4 summarizes the performance of the two recognizers on the
task of recognition of command and control phrases. The relative performance
of the two recognizers reverses with this increase in the vocabulary size. As
in the digits recognition task, the performance of the conventional ASR using
the ideal ratio mask is close to the ceiling performance. Additionally, its per-
formance using the estimated ratio mask is close to the that with the ideal
ratio mask, especially at SNR > 0 dB. The increased accuracy of the con-
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ventional ASR using the estimated ratio mask compared to its performance
on the digits recognition task is due to the lower perplexity of this task. Its
performance now is substantially better than that of the missing-data recog-
nizer using both ideal and estimated binary masks, particularly at SNR ≥
0 dB. Notice that the performance of the missing-data recognizer with the
estimated binary mask is close to that with the ideal binary mask as in the
digits recognition task, confirming the ability of the front-end to estimate the
ideal binary mask accurately.

Lower accuracy values for the missing-data recognizer using both binary
masks in Fig. 4 may be attributed to a number of reasons. It is known that
the use of mixtures of Gaussians with diagonal covariance structure does not
adequately represent the observed spectral vectors (Cooke et al., 2001) and this
problem gets exacerbated with an increase in the vocabulary size. Thus, under
clean speech conditions, the difference between the accuracy of conventional
and missing-data recognizers increases with increase in vocabulary size (see
also Raj et al., 2000). One could compute MFCCs from the speech resynthe-
sized using the binary T-F masks, and use it for decoding. Under clean speech
conditions, the missing-data recognizer would then have the same recognition
accuracy as that of the conventional ASR. The performance though degrades
rapidly with decreasing SNR (de Veth et al., 1999).

The use of binary masks does not compensate for amplitude distortions, be-
cause the mixture spectral values are used in recognition for those T-F units
labeled 1. Could this be the reason for reduced performance in larger vocabu-
lary recognition? To test the effect of this distortion, we replace the spectral
vectors of the reliable T-F regions with their corresponding clean speech val-
ues, calculated a priori. The performance, at various SNRs, is summarized in
Tables 1 and 2. “Distorted” refers to the performance of the missing-data rec-
ognizer on the mixture spectral values for all T-F units. “Undistorted” refers
to its performance when the reliable T-F units contain clean speech values. In
the unreliable units, we retain the spectral values of noisy speech. We use the
ideal binary mask generated at each SNR to provide the reliability information
for both conditions. Table 1 shows the effect of amplitude distortion on the
digits recognition task. For this task, the effect of amplitude distortion is seen,
as expected, to be minimal across all SNRs, since the recognition accuracy is
already quite high. Table 2 shows the effect of amplitude distortion on the
task of command and control phrases. Except at 0 dB SNR condition, only
a small improvement is observed by eliminating the noise energy from the
reliable T-F units. Hence, the degradation to the overall performance of the
missing-data recognizer caused by this amplitude distortion is statistically in-
significant at the range of SNRs considered here. When using the ideal binary
mask generated at each SNR directly on clean speech, we observe a degrada-
tion in performance. This may be attributed to the use of energy bounds for
the unreliable units in the marginalization method.
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Table 1
Effect of amplitude distortion in the reliable T-F regions on recognition accuracy
(%) of the missing-data recognizer for the digits recognition task.

Amplitude
SNR (dB)

-5 0 5 10

Distorted 92.47 93.28 95.97 96.37

Undistorted 93.68 94.89 95.30 95.43

Table 2
Effect of amplitude distortion in the reliable T-F regions on recognition accuracy
(%) of the missing-data recognizer for the command and control task.

Amplitude
SNR (dB)

-5 0 5 10

Distorted 64.14 70.33 77.11 78.35

Undistorted 65.86 73.85 77.69 80.21

Comparing Figures 3 and 4, we can see that the performance curve for the
missing-data recognizer is steeper on the second task compared to the first
task. Note that this behavior is opposite to that of the conventional ASR.
While the conventional ASR performs better on the second task by utiliz-
ing the lower perplexity of the language model, the missing-data recognizer
is unable to do so. This may be caused by the inability of the missing-data
recognizer to represent all the speech models adequately. The log-spectral rep-
resentation may have a limited expressibility in terms of distinct words that
can be uniquely represented. The TIDigits database has a small vocabulary.
The Applewords database with a larger vocabulary creates many more com-
peting models during decoding. Thus, within the same T-F grid, an increased
number of words need to be discriminated. With the use of a binary mask,
only a small portion of the total T-F acoustic model space is utilized during
recognition. This makes it difficult for the missing-data recognizer to differen-
tiate between competing hypothesis. Fig. 5 shows the effect of using the same
binary T-F mask on two signals. Fig. 5(a) shows the spectrogram of the word
“Billy” and Fig. 5(b) shows the spectrogram of the word “Delete”. Fig. 5(c)
shows a typical ideal binary T-F mask generated at low SNR. The reliable
units in this mask are white and the unreliable black. This binary mask is
applied to the spectrograms in Fig. 5(a) and Fig. 5(b) and the resulting spec-
trograms with only reliable T-F units are shown in Fig. 5(d) and Fig. 5(e),
respectively. Notice that the reliable regions of the two spectrograms are very
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Fig. 5. An illustration of similarity of reliable regions. (a) The spectrogram of the
word “Billy”. (b) The spectrogram of the word “Delete”. (c) An ideal-binary T-F
mask. Reliable T-F units are marked white and unreliable black. (d) The spectro-
gram obtained from (a) by applying the ideal mask in (c). (e) The spectrogram
obtained from (b) by the same ideal masking as in (d).
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similar. In the absence of information in the unreliable regions, it is difficult
for the recognizer to distinguish between the two words. Indeed the recognizer
frequently substitutes one word with the other. The bounded marginaliza-
tion method treats the information in the unreliable regions only as counter-
evidence for recognition of certain models (Cunningham and Cooke, 1999).
Hence, the missing-data recognizer faces increased acoustic complexity during
decoding.

6 DISCUSSION

The advantage of the missing-data recognizer is that it imposes a lesser de-
mand on the speech enhancement front-end than the conventional ASR. Only
knowledge of reliable T-F units of noisy speech, or an ideal binary mask, is re-
quired from the front-end. Moreover, Roman et al. (2003) have shown that the
performance of the missing-data recognizer degrades gradually with increasing
deviation from the ideal binary mask. The binaural system employed here is
able to estimate this mask accurately. Hence, we achieve performance close to
the ceiling performance of missing-data recognition. Conventional ASR on the
other hand, requires full-band speech enhancement by a front-end processor.
In this study, we have employed a ratio T-F mask as a front-end for the con-
ventional ASR, which is estimated using statistics of ITD and IID. Estimation
of the ideal ratio mask is less robust than the estimation of the ideal binary
mask. The conventional ASR is very sensitive to errors of such front-end pro-
cessing (Barker et al., 2004; Raj, 2000). As a result, the performance of the
missing-data recognizer on the small vocabulary task is better than that of
the conventional ASR.

The marginalization method for missing-data recognition is the optimal
spectral domain recognition strategy provided that the missing T-F units can
be ignored for classification (Little and Rubin, 1987). The missing-data recog-
nizer assumes that the unreliable units carry redundant information for speech
recognition. This, however, is not always true. For a small vocabulary task,
the unreliable units may be safely marginalized for good recognition results.
When vocabulary size increases, the acoustic model space becomes densely
populated. Under such conditions, good recognition results may not be ob-
tained by completely ignoring the missing T-F units. This may be caused by
the inability to represent all the acoustic models adequately using only a small
number of reliable T-F units. On the other hand, the ratio T-F mask attempts
to recover the speech in the unreliable T-F units for use in recognition. Ad-
ditionally, under clean speech conditions, recognition accuracy using spectral
features is inferior to using cepstral features. The cepstral transformation re-
tains the envelope of speech while removing its excitation source (Rabiner
and Juang, 1999). The speech envelope contains most relevant information for
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recognition. In addition, cepstral features are used for their quasi-orthogonal
properties (Shire, 2000). Hence, advantage of the conventional ASR shows
when vocabulary size increases. Our experiments also suggest that the sensi-
tivity of the conventional ASR to speech enhancement errors may be mitigated
by employing better language models. Better language models though seem
less effective in overcoming the data paucity limitation of the missing-data
recognizer.

Raj et al. (2000) have previously reported that conventional ASR with re-
constructed missing T-F regions outperforms the missing-data recognizer when
tested on the Resource Management database (Price et al., 1988). The miss-
ing or unreliable T-F units were reconstructed either using speech clusters
or based on their correlations with reliable regions. The speech clusters and
the knowledge of correlations between reliable and unreliable T-F units are
obtained from the training portion of the Resource Management database.
Unlike their system, our estimation of the ideal ratio mask is independent of
the signals used in the training and testing of the speech recognizers. Hence, it
is applicable even when samples of clean speech are unavailable. Additionally,
the accuracy and computational complexity of our ratio mask based system
are not dependent on the nature and size of the vocabulary.

Although our estimated T-F ratio mask provides promising results, other
approaches for the estimation of this mask could also be explored; should a
parametric curve be suspected, the parameters could be optimized to minimize
recognition errors. Future work will also extend to large vocabulary tasks and
explore the robustness of the binaural front-end to changes in location and
number of noise sources.

To summarize, we have proposed a ratio T-F mask, estimated using a binau-
ral processor, as a front-end for conventional ASR. At two different vocabulary
sizes, the use of this mask results in significant improvement in recognition
accuracy at various SNRs when compared to the baseline performance. On the
larger vocabulary task, the performance of the proposed ASR is substantially
better than that of the missing-data recognizer. Our study suggests that opti-
mal preprocessing strategies for robust speech recognition may depend on the
vocabulary size of the task. For small vocabulary applications, computation
of the ideal T-F binary mask may be desirable, whereas a ratio mask may
provide an improved performance with increased vocabulary sizes.
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