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Abstract

MPI derived datatype is a powerful method to define ar-
bitrary collections of non-contiguous data in memory and
to enable non-contiguous data communication in a single
MPI function call. It can be expected that MPI derived
datatypes could become a key aid in application develop-
ment. In practice, however, users prefer packing and un-
packing data in contiguous buffers manually. This usage
actually defeats the purpose of having derived datatypes in
the MPI standard.

In this paper, we employ MPI datatypes in four NAS
benchmarks (MG, LU, BT, and SP) to transfer non-
contiguous data. Comprehensive performance evaluation
was carried out on two clusters: an Itanium-2 Myrinet clus-
ter and a Xeon InfiniBand cluster. Performance results show
that using datatypes can achieve performance comparable
to manual packing/unpacking in the original benchmarks,
though the studied MPI implementations also perform in-
ternal packing and unpacking on non-contiguous datatype
communication. In some cases, better performance can
be achieved because of the optimizations in the MPI pack-
ing/unpacking implementations which are easily overlooked
in manual packing and unpacking by users. In addition, our
results also show that using datatypes can reduce applica-
tion development effort significantly.

Our case study demonstrates that user packing and
unpacking are prone to performance degradation. MPI
datatype is an easy-to-use and efficient way to transfer non-
contiguous data in MPI applications. We expect that with
further improvement of datatype processing and datatype
communication such as [9, 22], datatypes can outperform
the conventional methods of non-contiguous data commu-
nication. Our modified NAS benchmarks can be used to
evaluate datatype processing and datatype communication
in MPI implementations.
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1. Introduction

The MPI (Message Passing Interface) Standard [14, 15]
has evolved as a de facto parallel programming model for
distributed memory systems. As one of its most impor-
tant features, MPI provides a powerful and general way
of describing arbitrary collections of data in memory in a
compact fashion. The MPI standard also provides run time
support to create and manage such MPI derived datatypes.
Other common operations such as regular message passing
functions, remote memory access (RMA), and MPI I/O op-
erations can use these user defined datatypes to transfer data
with arbitrary layouts.

In principle, there are two main goals in providing de-
rived datatypes in MPI. First, MPI derived datatypes are
expected to become a key aid in application development.
Typically MPI derived datatypes allow users to have con-
cise representations of many commonly used data lay-
outs [10, 18] such as strided data, indexed data, and the
lower triangular portion of a matrix. MPI applications
such as (de)composition of multi-dimensional data vol-
umes [2, 7] and finite-element codes [6] often need to ex-
change data with algorithm-related layouts between two
processes. Derived datatypes can be used in these appli-
cations to facilitate the development. Second, MPI de-
rived datatypes provide opportunities for MPI implemen-
tations to optimize datatype communication. The MPI im-
plementations can either use efficient memory copy algo-
rithms/operations [9, 6, 18] or take advantage of advanced
network features [21, 22] to provide high performance non-
contiguous data communication.

In practice, however, to transfer non-contiguous data,
users often bear the data layouts in mind and pack non-
contiguous data into a contiguous buffer at the transmis-
sion side. On the receive side, data is first received in
a contiguous buffer and then unpacked into user buffers.
We term this method user packing/unpacking. Despite of
requiring significant efforts from users, this method has
been widely used in many applications due to the poor per-
formance of traditional MPI implementations with derived
datatypes [6, 10, 19, 21].

In the recent years, the advent of high performance



transport protocols and networking technologies has re-
duced the gap between the network and the memory sub-
systems. Some emerging network technologies such as
InfiniBand [11] have been able to provide performance
comparable to that of the memory system. This trend
causes the memory copy cost in the packing/unpacking ap-
proach become increasingly significant in transferring non-
contiguous data. On the other hand, datatype process-
ing and datatype communication have been improved over
years [10, 9, 12, 18, 6, 21, 22]. Applications designed using
the user packing/unpacking approach can not take advan-
tage of these improvements.

In this paper, we try to answer the following questions:

� Can the performance benefits of MPI datatypes be ex-
ploited in MPI applications?

� Do datatypes really ease application development?

� Is the manual packing and unpacking always efficient?

To answer these questions, we employ datatype commu-
nication in the NAS Parallel Benchmarks [3]. The NAS
benchmarks are derived from computational fluid dynamics
code and have gained wide acceptance as a standard indi-
cator of supercomputer performance. Non-contiguous data
transfers occur commonly in the NAS benchmarks. How-
ever, without surprise, the user packing/unpacking approach
is used. Our main objectives are:

� To study the impact of using derived datatypes on de-
veloping scientific applications

� To evaluate the impact of using derived datatypes on
the performance of the NAS benchmarks

� To provide a set of benchmarks to evaluate MPI imple-
mentations with respect to the processing and commu-
nication of derived datatypes

Non-contiguous data communication occurs in the MG,
LU, BT and SP benchmarks. We apply derived datatype
to these four benchmarks without any change of their al-
gorithms. We perform comprehensive performance evalua-
tion of these modified benchmarks on two cluster systems:
an Itanium-2 cluster with Myrinet [5] and a Xeon cluster
with InfiniBand [11]. Our results show that, using derived
datatypes in the NAS benchmarks the development effort
can be reduced significantly. Compared to the performance
of the original benchmarks, the performance of the mod-
ified NAS benchmarks with datatypes is comparable. In
some cases, better performance can be achieved due to the
optimizations used in the MPI implementations which are
easily missed by users in their packing/unpacking. Our ex-
perience and performance results demonstrate that using de-
rived datatypes in MPI applications is an easy-to-use way to

transfer non-contiguous data with performance comparable
to the user packing/unpacking approach.

The rest of the paper is organized as follows. Section 2
presents an overview of MPI derived datatype communica-
tion. Section 3 describes how to employ datatypes into the
NAS parallel benchmarks. The performance results are pre-
sented in Section 4. We examine the related work in Sec-
tion 5 and draw our conclusions and discuss possible future
work in Section 6.

2 Overview of MPI Derived Datatype

MPI provides basic pre-defined data types such as
MPI REAL and MPI INTEGER. Using these basic data
types, only contiguous buffers containing a sequence of el-
ements of the same type can be involved in MPI commu-
nication and I/O operations. This is too constrictive. Ap-
plications often want to pass messages that contain values
with different data types (e.g., an integer count, followed by
a sequence of real numbers) and non-contiguous data (e.g.,
a sub-block of a matrix). One solution is that users bear the
data layouts in mind and pack non-contiguous data into a
contiguous buffer at the send side and unpack it back at the
receiver side. Instead, MPI provides a mechanism, called
Derived Datatype Communication, to specify arbitrary col-
lections of data in memory concisely. In the rest of this
paper, we use derived datatypes and datatypes interchange-
ably. An MPI datatype is an opaque object that specifies two
things: (1) a sequence of basic data types and (2) a sequence
of displacements [14]. MPI defines a set of functions to dy-
namically construct and destroy various type of datatypes,
such as vector, hvector, distributed array (darray), and so
on. A user can conveniently use these calls to construct
datatypes needed by the application algorithms. We shown
a simple example here. Suppose we want to send one or
more columns in a two-dimensional 4096 � 4096 integer ar-
ray from one process to another process. A derived datatype
can be defined using MPI Type vector(4096, x,
4096, MPI INT, &newtype), where � is the num-
ber of columns. MPI also provides run time support to
use the derived datatypes in other functions. For example,
the datatype, newtype, can be used in other calls such as
MPI Send() and MPI Recv() directly.

MPI datatype communication involves datatype process-
ing and non-contiguous data communication (in this paper,
unless stated otherwise, we refer to datatypes as noncon-
tiguous datatypes). The datatype processing and data com-
munication are implementation specific. We focus on the
MPICH implementation since it is one of the most popular
MPI implementations. MPICH uses internal packing and
unpacking techniques in its implementation. This imple-
mentation may not be the most efficient one since two extra
copies are involved. However, it has little requirements to
the datatype processing component and the underlying net-
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work communication layer [22]. The MPICH developers
have also optimized packing and unpacking algorithm in
their MPICH implementation [10, 9, 18]. We expect that
this implementation can offer performance comparable to
that of the user packing/unpacking approach.

3 Employing MPI Derived Datatypes in the
NAS Benchmarks

The NAS parallel benchmarks [4, 3] are a set of pro-
grams designed as a part of the NASA Numerical Aerody-
namic Simulation (NAS) program originally to evaluate su-
percomputers. They mimic the computation and data move-
ment characteristics of large-scale computations. NAS par-
allel benchmark suite consists of five kernels (EP, MG, FT,
CG, IS) and three pseudo applications (LU, SP, BT) pro-
grams. Our study is based on NPB 2.3 implementation writ-
ten in MPI. There are five classes of NAS benchmarks in
NPB 2.3, each of which is characterized by the number of
elements in its finest grid and the number of iterations to
be performed. There are three classes A, B and C, which
are production grade problem sizes. The other two classes
S and W are designed for developing and debugging pur-
poses.

Non-contiguous communication occurs commonly in
NAS benchmarks, however, there is no derived datatype
used in NAS benchmarks [20]. To transfer non-contiguous
data, the NAS benchmarks explicitly pack/unpack non-
contiguous data to/from dedicated contiguous buffers. This
happens in MG, LU, SP and BT, To the best of our knowl-
edge, there is no user packing/unpacking in the other four
benchmarks. In MG, LU, SP and BT, we replaced the
combination of contiguous communication calls and man-
ual packing/unpacking in the original benchmarks with MPI
derived datatype communication calls. Neither the number
of messages nor the content of each message is changed,
though the data layouts of messages may be different com-
pared to the original version. Other additional techniques
such as overlapping communication with computation to
improve performance are also not applied because we want
to avoid a radical departure from the original implementa-
tion. Therefore, it is meaningful to compare our results with
those of the original implementation to evaluate the impact
of datatypes.

3.1 MG Benchmark

The MG (multi-grid) benchmark solves Poisson’s equa-
tion in 3D using a multi-grid V-cycle. The multi-grid bench-
mark carries out computation at a series of levels and each
level of the V-cycle defines a grid at a successively coarser
resolution. This test requires a power-of-two number of
processors. The partition of the grid onto processors oc-
curs such that the grid is successively halved, starting with

the z dimension, then the y dimension and then the x di-
mension, and repeating until all power-of two processors
are assigned. The NPB 2.3 code uses a three-step di-
mensional exchange algorithm to satisfy boundary condi-
tions. In addition to this, point-to-point communication is
used in the parallel implementation of these stencils to up-
date boundary values for each dimension that is distributed.
MPI Allreduce is also used to concatenate the data and
then replicate the result to each process, The time to per-
form this operation is negligible.

In MG, all non-contiguous data transfers are imple-
mented as packing-then-send or receive-then-unpacking.
The subroutine, comm3, which exchanges sub-domain
boundary data, dominates 99% of the communication time.
Therefore, our discussion focuses on it. In this subroutine,
six messages are sent and six messages are received by each
process, both with two messages in each of the three co-
ordinate dimensions. With hope that data packing can be
overlapped, each process first initializes two non-blocking
receives, then packs boundary data to a buffer and sends
them using two blocking sends. It waits for the completion
of receive operations, and then unpacks the received data to
finish the boundary value exchange procedure.

The sub-domain boundary data have three kinds of lay-
outs as depicted by Figure 1. We construct three datatypes
accordingly. Other modification includes removing data
packing/unpacking code and employing derived datatypes
in all communication operations.

3.2 LU Benchmark

The LU benchmark is a simulated CFD application
which uses symmetric successive over-relaxation (SSOR) to
solve a block lower triangular-block upper triangular system
of equations resulting from an unfactored implicit finite-
difference discretization of the Navier-Stokes equations in
three dimensions. This code requires a power-of-two num-
ber of processors. A 2-D partitioning of the grid onto pro-
cessors occurs by halving the grid repeatedly in the first two
dimensions, alternately x and then y, until all power-of-two
processors are assigned, resulting in vertical pencil like grid
partitions on the individual processors. Not like NPB 2.0
which does diagonal based relaxation which incurs a large
number of communications of 40-byte messages, NPB 2.3
does column based relaxation. This improvement signifi-
cantly reduces the communication cost of LU.

In LU, non-contiguous data transfers are achieved by
point-to-point communication calls with manual pack-
ing/unpacking. Two communication subroutines ex-
change 1 and exchange 3 are involved in the SSOR
procedure. In exchange 1 which dominates the communi-
cation time, there are two two kinds of messages. One is
non-contiguous as shown in Figure 2. The data layout is a
vector in which the block length is five words. Another is

3



 
Memory Address Increases 

(a)  

Memory Address Increases 

(b)
 

 

    Memory Address Increases  

(c)

Figure 1. Data Layout in MG Datatype Communication

contiguous. The message size is the the same size of the
non-contiguous message.
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Figure 2. Data Layout in LU Datatype Commu-
nication

3.3 BT and SP Benchmarks

SP and BT are simulated CFD applications that solve
systems of equations resulting from an approximately fac-
tored implicit finite-difference discretization of the Navier-
Stokes equations. The BT code solves block-tridiagonal
systems of 5x5 blocks; the SP code solves scalar penta-
diagonal systems resulting from full diagonalization of the
approximately factored scheme. Both have a similar struc-
ture.

The NPB 2.3 implementations of SP and BT solve these
systems using a multi-partition scheme. In the multi-
partition algorithm, each process is responsible for several
disjoint sub-blocks of points (“cells”) of the grid. The cells
are arranged such that for each direction of the line solve
phase, the cells belonging to a certain processor will be
evenly distributed along the direction of solution. This al-
lows each processor to perform useful work throughout a
line solve, instead of being forced to wait for the partial
solution to a line from another processor before beginning
work. Additionally, the information from a cell is not sent to
the next processor until all sections of linear equation sys-
tems handled in this cell have been solved. Therefore the
granularity of communications is kept large and fewer mes-

sages are sent. Both SP and BT require a square number of
processes.

Our discussion is focused on the BT benchmark. BT’s
communication patterns are mainly noncontiguous. We
modify most noncontiguous communications in BT using
derived datatypes. Our modification includes defining sev-
eral deeply-nested datatypes because of the complicated
message shapes in the copy faces procedure and re-
placing the original non-contiguous data transfer code with
datatype communication calls.

4 Performance Results

In this section, we first show how many code lines re-
lated to communication can be reduced using MPI derived
datatypes. Then, we present performance results of the
modified NAS benchmarks with derived datatypes on two
typical cluster systems. We compare these results with
those of the original NAS benchmarks. Unless stated other-
wise, the unit megabytes (MB) in this paper is an abbrevia-
tion for 2

���

bytes, or 1024 � 1024 bytes.

4.1 Experimental Setup and Methodology

We conducted our performance evaluations on the fol-
lowing two clusters.

Cluster 1 : A cluster of 128 nodes (the maximum num-
ber of nodes used by the experiments is 16), each with dual
900MHz Intel Itanium 2 processors with 256 KB L2 cache,
1.5MB L3 cache. Each node has a Myrinet 2000 interface
card placed in a PCI-X 64-bit 66MHz bus. The Front Side
Bus (FSB) runs at 266MHz. The physical memory is 4 GB
of multi-channel PC2100 DDR-SDRAM memory. The ker-
nel version is Linux 2.4.21smp. This cluster is provided
by Ohio Supercomputer Center. We refer to this cluster as
IA64-Myrinet cluster.

Cluster 2 : A cluster of 8 SuperMicro SUPER X5DL8-
GG nodes, each with dual Intel Xeon 3.0 GHz proces-
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sors, 512 KB L2 cache, PCI-X 64-bit 133 MHz bus, and
connected to Mellanox InfiniHost MT23108 DualPort 4x
HCAs. The nodes are connected using the Mellanox In-
finiScale 24 port switch MTS 2400. The kernel version
used is Linux 2.4.22smp. The InfiniHost SDK version is
3.0.1 and HCA firmware version is 3.0.1. The Front Side
Bus (FSB) runs at 533MHz. The physical memory is 1 GB
of PC2100 DDR-SDRAM memory. We refer to this cluster
as IA32-IBA cluster.

On the IA64-Myrinet cluster, Intel Fortran 7.1 compiler
is used. On the IA32-IBA cluster, Intel Fortran 7.0 complier
is used. The compiler flag is -O3. In the following subsec-
tions, we show the performance results of both the original
and the modified NAS benchmarks (MG, LU, BT, and SP)
on both clusters. For each benchmark, nine combinations
between 4, 8/9, and 16 processes and A, B, and C classes
are carried out. Since we only have 8 physical nodes in the
IA32-IBA cluster, we run 2 processes on one physical node
to use both processors for test cases which need more than
8 processes. On the IA64-Myrinet cluster, we run only one
process per physical node for all test cases. We use the CPU
cycle counter to obtain timing information, the total instru-
mentation overheads are small enough to be negligible.

4.2 MPI and Memory Performance

On the Itanium-2 Myrinet cluster, we use mpich-
1.2.4..8a-gm (called MPICH-GM in the rest of paper). In
the Xeon IBA cluster, we use MVAPICH-0.9.2 [16]. Fig-
ures 3 and 4 show the latency and bandwidth results of these
two MPI implementations on two clusters. The details of la-
tency and bandwidth tests can be found at [16].

We also test the memory copying bandwidth in both clus-
ters. In the memory copying test, two buffers, each 20
MBytes, are allocated. We copy data sequentially from
one buffer to another buffer. The reported bandwidth is
1200 MBytes/sec on the IA64-Myrinet cluster, and 810
MBytes/sec on the IA32-IBA cluster.

4.3 Reduction of Communication Code

One of the advantages using MPI derived datatypes is to
reduce development effort. The number of code lines is an
important criterion to measure the development effort. We
count the lines of code related to communication in both
the original NAS benchmarks and the modified NAS bench-
marks using datatypes. Figure 5 shows that using datatypes
can reduce the amount of communication code significantly,
52% communication code reduced in MG, 41% reduced
in LU, 12% reduced in BT, and 7% reduced in SP. Note
that we keep the number of communcation operations and
the size of messages unchanged in our modified bench-
marks. Therefore, the reduction is completely from using
datatypes.

Communication Code Lines

0

100

200

300

400

500

600

MG LU BT SP

old
datatype

Figure 5. Lines of Communication Code.

4.4 Performance of MG Benchmark

Figure 6 shows performance results of MG on the IA64-
Myrinet cluster. In this figure, we use old to refer to the
original NAS benchmark, and datatype to refer to the mod-
ified version NAS benchmark using datatypes. These two
legends are also used in the following Subsections. For all
combinations, the datatype version outperforms the orig-
inal version by up to 20% in many cases. For exam-
ple, with 4 processes, an improvement from 12% to 20%
can be achieved for all classes on both clusters. This
improvement was unexpected because in both MPICH-
GM and MVAPICH-0.92, internal packing and unpack-
ing are deployed in their implementations to perform non-
contiguous datatype communication. By tracing down this
dramatic improvement, we found that the improvement
mainly comes from the elimination of a redundant initializa-
tion on a communication buffer in the datatype version. To
show how much benefit comes from this elimination instead
of using datatypes, we also removed this redundant initial-
ization from the original version. We call this modified MG
as modified old version in the plot. Compared to the old
version, the modified old version only removes three lines
from 1150 to 1152 in mg.f. After this change, the datatype
version still outperforms the modified old version, but with
much less improvement by up to 5%. This is mainly due
to different packing and unpacking algorithms used by the
MG developers and the MPICH designers. In both MPICH-
GM and MVAPICH, appropriate optimizations are applied
to pack and unpack messages [10, 9]. In general, these op-
timizations are prone to being overlooked in manual pack-
ing/unpacking.

Figure 7 shows performance results of MG on the IA32-
IBA cluster. It can be observed that the same patterns as
those on the IA64-Myrinet cluster also appear.

In the old version, the cost to transfer non-contiguous
data includes two parts: the memory copy cost in the man-
ual packing and unpacking; and the communication cost. In
the datatype version, the cost of transferring non-contiguous
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Figure 6. MG on IA64-Myrinet Cluster.
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Figure 7. MG on IA32-IBA Cluster.

data is reflected completely in the datatype communication
cost. There is no explicit (un)packing in the datatype ver-
sion. Figure 10 shows the breakdown of the communication
cost and the (un)packing cost in the above three mentioned
versions on both clusters. We choose class B with 4 pro-
cesses as an example. In the plot, we use comm to represent
the communication cost and (un)packing to represent the
(un)packing cost. The (un)packing cost on the IA32-IBA
cluster is higher than that on IA64-Myrinet cluster due to
the lower memory bandwidth on the IA32-IBA cluster, as
mentioned in Section 4.2. The communication cost on the
IA32-IBA cluster is lower than that on IA64-Myrinet clus-
ter due to the high communication performance provided by
the InfiniBand network, as shown in Figures 3 and 4. It can
be observed that using datatypes one can achieve a little bit
better performance than using manual packing and unpack-
ing plus contiguous communication in the MG benchmark.

4.5 Performance of LU Benchmark

Figures 8 and 9 show performance results of LU on the
IA64-Myrinet and IA32-IBA clusters. The performance of
both the datatype version and the original version is very
close. The mostly used datatypes in this benchmark are

quite simple as mentioned in Section 3.2. The datatype pro-
cessing overhead is negligible. Figure 11 shows the com-
munication cost and the (un)packing cost in the test case of
class B with 4 processes.

4.6 Performance of BT Benchmark

Figures 12 and 13 show performance results of BT on
the IA64-Myrinet and IA32-IBA clusters. The performance
of both the datatype version and the original version is very
close. This is also expected due to the internal packing and
unpacking. Note that we could not run class C with 4 pro-
cesses on the IA32-IBA cluster due to its limited memory
capacity.

Figure 14 shows the communication cost and the
(un)packing cost in the test case of class B with 4 processes.
As mentioned in Section 3.3, the derived datatypes we em-
ployed in BT benchmark have complicated nested struc-
tures. Presumably the datatype processing cost should be
high. However, the results in Figures 12 and 13 indicate
that the datatype version outperforms the original version in
terms of the total cost of transferring non-contiguous data.
This is largely because in the original version, the man-
ual packing/unpacking code has loop structures which in-
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Figure 8. LU on IA64-Myrinet Cluster.
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Figure 9. LU on IA32-IBA Cluster.
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Data in LU.

cur bad cache behaviors. The common practice of writing
packing/unpacking code is to have a buffer pointer incre-
mented by one after each iteration. This introduces a data
dependency between back-to-back iterations which hinders
loop transformations.

In the case of class B with 4 processes, using datatypes
can reduce the costs to transfer non-contiguous data by
10% on the IA64-Myrinet cluster and by 25% on the IA32-
IBA cluster. However, because the communication time is
only 2% of the total executime time, we do not see much
improvement in terms of the total execution time using
datatypes.

4.7 Performance of SP Benchmark

Figures 15 and 16 show performance results of SP on the
IA64-Myrinet and IA32-IBA clusters. Similar to the other
applications, the performance of both the datatype version
and the original version is comparable.

5 Related Work

There have been a large amount of research work in
improving the datatype processing and datatype communi-
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Figure 12. BT on IA64-Myrinet Cluster.
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Figure 13. BT on IA32-IBA Cluster.
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Figure 15. SP on IA64-Myrinet Cluster.
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Figure 16. SP on IA32-IBA Cluster.

cation in MPI implementations. These related work can
be grouped into four areas. The first area is to improve
datatype processing system. Gropp et al. [10] have pro-
vided a taxonomy of MPI derived datatypes according to
their memory access patterns and described how to effi-
ciently implement these patterns. Träff et al. have described
a technique, called flattening on the fly, for improving the
datatype processing system [12]. Ross et al. [18] have de-
signed a reusable datatype-processing component for the
MPICH2 implementation [1].

The second area is to optimize packing and unpack-
ing procedures. Byna et al. [6] have presented a tech-
nique which selects an appropriate packing algorithms
with respect to the architecture-specific parameters and the
datatype memory access patterns. Recently, MPICH2 [1]
has begun to deploy segment pack and unpack in its im-
plementation. The Los Alamos Message Passing Inter-
face (LA-MPI) system [8] has used shared memory regions
as pack and unpack buffers in its datatype communication
path.

The third area is to take advantage of network features to
improve noncontiguous data communication. In [21], Wor-
ringen et al. have presented a direct copy technique to im-
prove performance of datatype communication using shared

memory region provided by the SCI network. In [22], Wu
et al. have demonstrated the benefits of using RDMA oper-
ations to support noncontiguous data communication. Four
schemes are proposed to either overlap the packing, com-
munication, and unpacking or eliminate the packing and/or
unpacking.

The fourth area is to benchmark MPI datatype imple-
mentations. Work in [13, 17] focuses on using micro-
benchmark to evaluate the performance of datatype in dif-
ferent MPI implementations.

Our work differs these previous work in the following
three aspects. First, we focus on employing MPI datatypes
in the NAS benchmarks. We analyze the development com-
plexity and effort using MPI datatypes in these application-
level benchmarks. Second, we perform comprehensive per-
formance evaluation of the current datatype implementa-
tion in MPICH on two typical clusters in the context of
NAS benchmarks. Third, the datatype version of NAS
benchmarks can be served as better benchmarks to eval-
uate performance of the datatype processing and datatype
communication in MPI implementations than the micro-
benchmarks which have been used in the previous work.
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6 Conclusions and Future Work

In this paper, we implement four NAS benchmarks: MG,
LU, BT, and SP using MPI datatypes. We perform compre-
hensive performance evaluation of the datatype version of
these NAS benchmarks. Our experimental results on two
clusters show that MPI datatypes can offer performance
comparable to that of using manual packing/unpacking in
these four NAS benchmarks. Our results also show that
the manual packing and unpacking in the original NAS
benchmarks are prone to performance degradation. Using
datatypes can reduce or avoid these limitations. In addition,
using datatype significantly reduces the development effort.
The number of communication code lines is reduced up to
52% and 28% in average in the studied four benchmarks.

All data type constructors provided in the MPI-1.1 stan-
dard are used due to the complicated non-contiguous data
communication patterns in these benchmarks. We believe
our modified NAS benchmarks can serve as application-
level benchmarks to evaluate datatype processing and com-
munication in various MPI implementations.

As for our future work, we plan to use these bench-
marks to evaluate performance of the datatype communica-
tion schemes proposed in [22]. We also work on the exten-
sion to the datatype processing system to take full advantage
of the emerging RDMA communication mechanism.
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