
���������	��
��������
���������
����������! #"$�&%'
��	�)(+*#�-,� ���,.�/�102*�3#04��56*7�8�9
����:,;�#"=<?>@�

Category: Research, paper105

Figure A: Effectiveness of the smoothing technique: The vertices of a smooth GARGOYLE(leftmost) are perturbed with a Gaussian
noise (middle-left). These perturbed vertices are taken as input point cloud data (middle-right). The result after our MLS smoothing
with Delaunay preprocessing (rightmost). All pictures are flat shaded in this paper.

ACB8D2EGFIHKJLE

The Moving Least Squares (MLS) method has been very effective
in smoothing point cloud data that may be noisy. However, the
quality of this smoothing depends on how well one can estimate
the neighborhood of the points on the sampled surface. In this work
we present a Delaunay based scheme that estimates this neighbor-
hood from point clouds possibly corrupted with noise. This neigh-
borhood information is used for designing a very simple kernel
function for the MLS which produces quality approximation and
smoothing.

CR Categories: [Computer Graphics]: Modeling—Point-based
Graphics, Surface Reconstruction.

Keywords: smoothing, point cloud, meshing.

M NPO EGFIQSR6TUJLEWVXQ O

Shape modeling from their point samples has become an effective
paradigm because of its light-weight input specification and the
flexibility offered by the process. The recent work on surface re-
construction [3, 4, 6, 11, 16, 20], medial axis approximation [5, 9],
solid modeling [15], rendering [1] are only a few examples attest-
ing this fact. The point sample, often acquired by some scanning
process, contains noise. The Moving Least Squares (MLS) pio-
neered by Levin [17, 18] has been proposed to deal with such noisy
samples by Alexa et al. [2]. Following this work, some other re-
sults were obtained by this powerful technique including the work

of Alexa et al. [1], Pauly et al. [15] and Pauly and Gross [14].
Given a point sample P from a smooth surface Σ Y[Z 3 , The MLS

applied to a point p Y P moves it to a smooth surface M that ap-
proximates Σ. The quality of this approximation depends upon how
well the feature sizes of Σ are approximated from P. The influ-
ence of other points on p is captured by a weight function called
the kernel for p. Ideally, only points from a neighborhood of p
which is smaller than the local feature sizes of Σ should have large
weights. In fact, for reducing computation time only these points
can be allowed to influence the movement of p. All previous works
[2, 14, 15] use k-nearest neighbors for this purpose. However, de-
termining appropriate k is not always easy.

In this paper we propose a simple kernel function that uses De-
launay triangulations of the point set. The combination of the MLS
with this Delaunay kernel achieves quality smoothing and approx-
imation. The point cloud is processed to extract a subset of points
and a a preliminary surface is computed interpolating them. This
surface may have undesirable undulations due to noise. Neverthe-
less, the neighborhood of a point determined by the Delaunay tri-
angles on this surface does not exceed the local feature size under
a reasonable noise model. This neighborhood is used to determine
the kernel function for a subsequent smoothing step.

\] QU^UV O8_a`cb H8D2ECDWd.T8HUF b D

Given a point set P Y�Z 3 , the MLS surface M is defined as the
stationary set of a projector operator Φ e-f g where x Y[Z 3 is projected
by Φ to Φ e Ph x gGY M. The projection Φ e Ph x g is computed as follows.
First, a plane

H i!j x YSZ 3 k x f n l D i 0 m (1)

is determined by minimizing the weighted sum of the squared dis-
tances

∑
p n P
e p f n l D g 2κ epo p l q ogqh (2)

where q is the projection of x onto H and κ is a smooth function
called the MLS kernel. After transforming all points into a local co-
ordinate system defined on H, a second least square optimization

p
rp

q

r

s

s

Figure 1: Point processing: A noisy point sample along with outliers (top-left), small Delaunay balls are shaded white (top-right), inner big
Delaunay balls selected (bottom-left), reconstructed shape from the points on these balls (bottom-right).

is carried out. This optimization gives a polynomial g e u h v g of a
chosen degree which locally approximates M. The projection of x
onto M is given by Φ e Ph x gri q s g e 0 h 0 gtf n.

Usually a Guassian κ e t gui exp e-l t2 v σ2 g is used where σ is a
parameter that determines the local feature sizes of M. The local
feature at a point x on a surface can be defined as the distance of x
to the medial axis of the surface [3]. Ideally σ should be adaptive
to the local feature sizes of Σ from where P is sampled, or at least
should not exceed the local feature sizes of Σ.

Our main contribution is to show that we can choose a very sim-
ple κ e-f g which respects the local feature sizes under a reasonable
noise model. The noise model assumes that P is perturbed from
Σ within some fraction of the local feature sizes. It forms a dense
sample of Σ when projected onto Σ. Notice that these two condi-
tions are reasonable as otherwise the perturbation can be arbitrarily
large creating a point cloud without any resemblance to Σ, or can
be arbitrarily sparse without capturing the features of Σ.

We employ a point processing step from [8] to reconstruct Σ from
P. If P is noisy, this surface may have noisy undulations. Each point
p on this surface has a neighborhood size proportional to the sam-
pling density. This neighborhood is taken for designing the kernel
κ of the MLS.

w x QyV O E{zUF�QSJ b D4D|V OK_

If P is noise-free, one could reconstruct a surface interpolating P
using any of the recent surface reconstruction algorithms and then
could take the appropriate neighborhood of the points for the ker-
nels [3, 4, 6]. In case P is noisy, this proposition fails unless an
algorithm is designed to reconstruct a surface from noisy sample
points. We use the algorithm of Dey and Goswami [8] for this pur-

pose.
The Delaunay triangulation of the input point set P is denoted

DelP. Its dual, the Voronoi diagram, is denoted VorP and a Voronoi
cell for a point p Y P is denoted Vp. The circumscribing balls of the
Delaunay tetrahedra are called Delaunay balls.

To understand the rationale behind the method, first assume that
P is noise-free. For a point p Y P, the inner (outer) pole of p is
the Voronoi vertex that lies inside (outside respectively) Σ and is
farthest from p among all other vertices of Vp. The Delaunay balls
centering the poles are called polar balls. It is known by a result of
Amenta, Choi and Kolluri [5] that the polar balls centering the in-
ner (outer) poles approximate the shape bounded by Σ (unbounded
component of Z 3 l Σ respectively). It is easy to compute the poles
from the Voronoi diagram VorP. However, in absence of Σ, one
needs a mechanism to separate the inner poles from the outer ones
in order to obtain an approximation of Σ. The polar balls satisfy the
following intersection depth property. Two inner (outer) polar balls
that cricumscribe adjacent tetrahedra intersect deeply while an in-
ner and a outer polar ball intersect only in a shallow manner. The
depth of intersection is measured by the angle at which the bound-
aries of the two balls intersect. A breadth-first search starting from
an unbounded polar ball, which is outer for sure, can collect all of
them if the walk moves from an outer polar ball to an adjacent polar
ball only if they intersect deeply.

The above algorithm does not work when P is noisy. A main
reason for this is that the intersections between polar balls do not
follow the intersection depth property. We circumvent this diffi-
culty by observing that, even with noisy point sample where the
points are not perturbed more than a small fraction of the local fea-
ture sizes, some of the Delaunay balls behave like polar balls as in
the noise-free case. We identify them by their relative sizes com-
pared to the nearest neighbor distances. Let B be a Delaunay ball

2

Figure 2: Spread radii of the points indicated with colors. Highest
one-thirds are colored red, middle one-third are colored green, and
lowest one-third are colored blue.

cricumscribing four points pi h i i 1 hP}~}~h 4. We say B is big if the
radius of B is more than ρ � 0 times bigger than the nearest neigh-
bor distance of any pi where ρ is an input parameter. In practice
we choose ρ i 1 } 5 and instead of taking the nearest neighbor dis-
tance, we take the average distance of the 5 nearest neighbors. After
identifying the big Delaunay balls, we partition them using the in-
tersection depth property as in the noise-free case. It is proved in
[8] that, under the noise model as described before, big Delaunay
balls satisfy the intersection depth property and the union of inner
big Delaunay balls approximate Σ. In particular, one can recon-
struct Σ from the subset of P that lie on the boundary of the inner
big Delaunay balls. Figure 1 shows the steps of this algorithm. The
surface Σ̂ which is output by this algorithm is used to determine the
kernel for MLS.

�9���q� � �����I�
The point processing step is quite robust against out-

liers. Some of the Delaunay balls incident to outliers are detected
small since their average 5-nearest neighbor distances are relatively
big. The other big Delaunay balls intersect other outer balls deeply
and hence are detected outer. As a result, the outliers do not lie on
inner big Delaunay balls which are used for preliminary surface.
Figure 1 illustrates this effect.

� � bU` H[T O H���� b F OKbU`

For each point p Y P we determine the kernel function as follows.
In the sum of equations 1 and 2, all points of P are considered. This
leads to a prohibitive computation for moderately large data sets.
To circumvent this problem, usually only a few neighbors such as
k-nearest neighbors of p for a pre-assigned number k are taken in
these sums. Let the set of points of P that are considered while com-
puting the MLS position of a point be called its spread. We propose
a natural, adaptive spread for each p Y P and the corresponding ker-
nel.

The distance between a point p on Σ̂ and its neighbors in Σ̂ is less
than the local feature size of p in Σ. Using this rationale, first we
eliminate some of the points from P as follows. Let Q be the vertex

Figure 3: The preliminary surfaces after the point processing step
(left). The surfaces with the same vertex connectivity after the ver-
tices are smoothed by the MLS with the Delaunay kernels (right).

set of Σ̂. We collect a subset P �t� P that lie close to the set Q. Let
rp be the distance between a vertex p of Σ̂ and the farthest vertex
connected to it on Σ̂. A point is in P � if it lies within rp distance of
a point p Y Q. Observe that outliers are eliminated from P � as they
lie far away from all points of Σ̂. The set P � is smoothed by MLS.
We determine the spreads for each point in P � as follows.

If p Y Q, the neighbors of p on Σ̂ are taken as its spread. If p
is not a vertex in Σ̂, we take s, the nearest vertex of p on Σ̂. The
spread of p is the set of points lying within a distance of rs. The
spreads for two points, one on the surface Σ̂ and one not on Σ̂, are
indicated in the bottom-right picture of Figure 1. The radii of the
spreads as computed by our method are shown in Figure 2. Regions
with relatively small features have small radii. This helps in setting
the kernel width smaller than the local feature sizes.

Let Np denote the spread of p as computed above. The kernel
κ e p h q g of p can be taken exp �X�|� p � q � 2 �X� r2

where q Y Np and r is the
radius of the spread. Instead we simplify the kernel as

κ e p h q g�i 1 if q Y Np h
i 0 otherwise }

We call this kernel the Delaunay kernel. The results with this sim-
plified kernels are shown in Figure 3 and Figure 4.

� � b D�T ` E�D�H O R�J�QS �zKHUF¡V¢D2Q O D

We implemented our algorithm with the CGAL library. This library
provides fast, robust Delaunay triangulations. For example, for
GARGOYLE with approximately 100,000 points, the entire smooth-
ing including the point processing step takes 137 seconds on a 2.8

3

Figure 4: DRAGON with different noise levels smoothed by our
method. The top row contains a Guassian noise with a multiplica-
tive factor of 1000, and the bottom one with a multiplicative factor
of 3000.

Figure 5: The surface reconstructed out of the noisy Stanford
Bunny sample (left), the surface after smoothing the vertices with
the Delaunay kernel (right).

GHZ pentium 4 maching with 1 GB RAM. Table 6 shows the times
for different models.

points Time
object (sec.)

VENUS 50K 52.78
GARGOYLE 100K 134.32

DRAGON 100K 134.35
TYRA 100K 137.13

BUNNY 362K 516.36

Figure 6: Time data.

We compared our method with the MLS method implemented in
POINTSHOP3D [20]. The MLS kernel in this method estimates the
feature sizes using k-nearest neighbors. It suffers from two diffi-
culties. First, in thin regions where usually undersampling occurs,
k-nearest neighbors can reach beyond feature sizes creating severe
distortion in features as Figure 7 shows. Secondly, it cannot handle
outliers. The noise on the bottom of the GARGOYLE creates some
outliers that MLS does not re-position. Our method processes them
gracefully, see Figure 8.

Figure 7: Noisy point cloud of TRICERATOPS (upper left)
smoothed by our method (lower left). MLS with k-nearest neighbor
kernels (upper middle) distorts horns, Delaunay kernel preserves
them (lower right).

Figure 8: MLS with k-nearest neighbor kernels does not re-position
some of the outliers. The vertices of the GARGOYLE was perturbed
to create some outliers at the bottom. The surface with the original
connectivity after MLS smoothing shows the outliers at the bottom
of GARGOYLE (middle). MLS with Delaunay kernel removes the
outliers (right).

There are a number of techniques available for smoothing
meshes [7, 12, 13, 19]. Although we are more concerned with
smoothing point cloud data, we chose the bilateral mesh denois-
ing [10] for a comparison of the mesh qualities. We took the mesh
of GARGOYLE and perturbed it with a Gaussian noise. The outputs
of the bilateral denoising moves the vertices towards sharp features
and tend to produce an uneven mesh. We smoothed the vertices
first with our method and then reconstructed the surface out of the
smooth point sample. The two surfaces with highlights are shown

4

Figure 9: Noisy mesh of GARGOYLE after bi-lateral denoising
(top), the mesh after reconstructing with the vertices smoothed by
our method (bottom).

in Figure 9.

� bu£Ib F bUO J b D

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva. Computing and rendering point set surfaces. IEEE TVCG, to
appear.

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin and C. T.
Silva. Point set surfaces. Proc. IEEE Visualization (2001), 21–28.

[3] N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering.
Discr. Comput. Geom. 22 (1999), 481–504.

[4] N. Amenta, S. Choi, T. K. Dey and N. Leekha. A simple algorithm
for homeomorphic surface reconstruction. Internat. J. Comput. Geom.
Applications 12 (2002), 125–141.

[5] N. Amenta, S. Choi and R. Kolluri. The power crust, union of balls,
and the medial axis transform. Comput. Geom. Theory Appl. 19
(2001), 127–153.

[6] J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via
natural neighbor interpolation of distance functions. Proc. 16th Annu.
Sympos. Comput. Geom. (2004), 223–232.

[7] M. Desbrun, M. Meyer, P. Schröder and A. H. Barr. Implicit fairing
of irregular meshes using diffusion and curvature flow. Proc. SIG-
GRAPH 99 (1999), 317–324.

[8] T. K. Dey and S. Goswami. Provable surface reconstruction from
noisy samples. Proc. 20th Annu. Sympos. Comput. Geom. (2004), to
appear.

[9] T. K. Dey and W. Zhao. Approximating the medial axis from the
Voronoi diagram with a convergence guarantee. Algorithmica 38
(2004).

[10] S. Fleishman, I. Drori and D. Cohen-Or. Bilateral mesh denoising.
SIGGRAPH 03 (2003), 950–953.

[11] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald and W. Stuetzle.
Surface reconstruction from unorganized points. Proc. SIGGRAPH
92 (1992), 71–78.

[12] T. R. Jones, F. Durand and M. Desbrun. Non-iterative, feature-
preserving mesh smoothing. Proc. SIGGRAPH 2003 (2003), 943–
949.

[13] Y. Ohtake, A. Belyave and H.-P. Seidel. Mesh smoothing by adaptive
and anisotropic Gaussian filter. Vision, Modeling and Visualization
(2002), 203–210.

[14] M. Pauly, M. H. Gross and L. P. Kobbelt. Efficient simplification of
point-sampled surfaces. Proc. IEEE Visualization (2002), 163–170.

[15] M. Pauly, R. Keiser, L. P. Kobbelt and M. H. Gross. Shape modeling
with point-sampled geometry. Proc. SIGGRAPH 2003 (2003), 641–
650.

[16] M. Pauly and M. H. Gross. Spectral processing of point-sampled ge-
ometry. Proc. SIGGRAPH 01 (2001).

[17] D. Levin. Mesh-independent surface interpolation. Advances in Com-
put. Math.

[18] D. Levin. The approximation power of moving least-squares. Math.
Comp. 67 No. 224.

[19] G. Taubin. A signal processing approach to fair surface design. Proc.
SIGGRAPH 95 (1995), 351–358.

[20] M. Zwicker, M. Pauly, O. Knoll and M. Gross. Pointshop 3D: An in-
teractive system for point-based surface editing. ACM Trans. Graph-
ics 21 (2002), 322-329.

5

