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Abstract— In this interdisciplinary paper we develop a wavelet
design framework emphasizingfeature presewation. This work
draws from results in signal processing,computational math-
ematics, and wavelet theory. We are particularly interested
in linear wavelet transforms for large datasets generated by
computational fluid dynamics simulations. High-fidelity wavelet
transforms can facilitate the visualization and analysis of large
scientific datasets.However, it is important that salientcharacter-
istics of the original featuresbe presered under the transforma-
tion. Our effort is differ ent fr om classicalfilter designapproaches
which focus solely on performance in the frequencydomain. In
particular, we presenta set of filter design axioms that ensure
certain feature characteristics are presewed from scaleto scale,
and that the resulting filters correspondto wavelet transforms
admitting in-place implementation. We alsodemonstratehow the
axioms can be usedto design optimal feature-presewring (OFP)
filters, i.e., linear feature-presewing filters that are optimal in
the sensethat they are closestin L? to the ideal low passfilter.
Results are included that demonstrate the feature-presewation
characteristics of OFP filters.

Index Terms—filter bank, wavelet design,lifting scheme,TVD
transforms, feature presewation

1. INTRODUCTION

Large-scalecomputationalfluid dynamics simulations of
physical phenomenaproduce data of unprecedentedsize
(terabyte and petabyte range). Unfortunately development
of appropriatedata managementanalysisand visualization
techniqueshas not kept pace with the growth in size and
complity of such datasets.One paradigm of large-scale
visualization and analysisis to browse regions containing
significant featuresof the datasetwhile accessingonly the
data neededto reconstructthese regions. The cornerstone
of an approachof this type is a representationakcheme
that facilitatesranked accessto macroscopicfeaturesin the
datasef{12], [13], [16]. In this approach.a feature-detection
algorithmis usedto identify and rank contextually significant
featuresdirectly in the compressedlomain.

In [12], [13], [16], the linear lifting scheme[19] wasused
for compressingcomponentsof a vector field. The work
reportedhere grew out of our efforts to analyzethe imple-
mentationof the lifting schemeand designnew transforms
that more ardently presere featuresin discreteflow fields.
The rate-distortioncharacteristicef mary wavelettransforms
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do not bode well for feature preseration [16]. However,
it was unclearas to what distortions the wavelet transform
wrought on the data. It is thereforeuseful to evaluate the
effect of the wavelettransformin termsof processeshatalter
certain characteristicof the data, i.e. features.Additionally,
for very large datasetst is necessaryhatthe featuredetection
be performedin the compressediomain. In this context, it
is essentialthat the wavelet transform presere significant
featuresin the dataset.

In this paperwe define a frameawork for the analysisand
designof multiscalefeature-centridilters througha variational
characterizationGiven the needfor efficient compressiorand
processingwe consideronly linear transformsat this time.
What is unique about our approachis that we designthe
behavior of the filter in the spatialdomain. We suggestthat
the methodsproposedhere can be usedin conjunctionwith
frequeng-basedmethodsto designmultiscalelinear wavelet
filters. A result of our characterizations a set of axioms
that can be usedto analyzeand design filters. Filters that
satisfyour axiomswill be morelikely to presere featuresn a
linear wavelet spaceand enablehigh-fidelity featuredetection
in large scientific datasets Additionally, we seekto design
filters correspondingo waveletsthat can be implementedas
a sequencef lifting steps[19].

A. Motivation

We now presenta simple one-dimensionakxample from
fluid dynamicsto provide motivation for this effort. Shavn
in Figure 1 is a schematicof the shock tube problem. A
shocktube canbeidealizedasa cylinder, closedat both ends,
with a diaphragmthat separates region of gason the left
with pressureand density given by p, and p, respectiely,
from a region of gason the right with pressureand density
given by p; and p;. Note thatp, > p; and p; and p, must
be specified.Initially, the gasis a restin both regions. The
diaphragmis then rupturedinstantaneouslyand an unsteady
motion ensues.In a typical situation, four uniform regions
and one transitional region emege. A normal shock wave
propagatingto the right definesthe boundarybetweenuni-
form Regions 1 and 2. The flow field propertiesexhibit a
nonisentropicdiscontinuoushangeacrosshe moving normal
shock. The boundarybetweenRegions 2 and 3 is a contact
discontinuity Densityandtemperaturehangediscontinuously
acrosghe contactdiscontinuitywhile pressurendvelocity are
unchangedRegion 3 is also a uniform region. Region 3 and



the uniform Region 4 are separatedy an expansionfan in
which the flow field propertiesvary isentropically Analytical
expressionganbe usedto definethe propertiesn eachregion
under the assumptionof one-dimensionalinviscid flow. A
more completedescriptionof this problem can be found in
most compressibldluid dynamicstextbooks(e.g.,see[3]).
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Fig. 1. One-DimensionaShockTube

Assumingwe have a solution to the shock tube problem
describedabove, we now want to visualize the data. In this
case,it is not particularly challengingto locate the features
in the flow field at a given time. However, for the sale of
illustration, we assumethat the datasetis large and that we
want to use a representatiorschemethat facilitates ranked
accesdo featuresin the datasetas discussedreviously. As
notedabove, a significantcomponenbf the processs afeature
detectionperformedusingthe compressedata.We chooseas
our wavelettransformthe linear lifting scheme19]. Figure2
shaws a sequencef figuresillustrating the effectsof applying
the linear lifting schemeto the densityfield of a shocktube
solution at a given time. The figure on the top left shavs
the original data defined using 65 points. Each remaining
figure corresponddo an applicationof the wavelet transform
resultingin 33 points, 17 points, and then 9 points. Of par
ticular importancein thesefiguresis the fact that application
of the wavelettransformintroducesoscillatorybehaior in the
data. Clearly, theseoscillationsare unacceptabléf a feature
detectionalgorithm basedon gradientsis to be used.Further
partial reconstructionof the datamay be in significanterror
dueto theseoscillationsandthe compressiorof the otherwise
relatively smoothdatamay not be as efficient.

B. RelatedWork

It is well known that wavelets can efficiently approximate
smoothdata[6] and produceefficient compressiorschemes.
To suitably presere edgesin scalar image fields, several
linear and non-linearor data-dependerschemeshave been
proposed5], [7], [8], [14], [23]. In particular Zhou [23] uti-
lizes EssentiallyNon-Oscillatory (ENO) reconstructiong10]
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Fig. 2. ThreelLevels of Linear Lifting for Shock Tube Data

of the data so that fewer high frequenyg coeficients are
created.Arandiga, Chiavassa,and Donat [4] use nonlinear
datadependentENO techniquedor imagecompressionand
shav them to outperform classicalalgorithmsfor piecevise
smoothimages.

It is well known that lifting implementationsof linear
wavelets[19] allow for in-placecomputationand, in general,
reduction by half of the computationtime for the wavelet
decomposition.In [20] it is showvn that any biorthogonal
wavelet transformcan be factoredinto lifting steps.

Techniquesemployed in the study of partial differential
equations(PDEs) have been extensiely utilized to define
the multiscale behaior of feature detectionalgorithms|[1],
[11], [17], [2]] for images.Typically, the time variable in
an evolutionary PDE is taken to representa scaleparameter
Thesetechniquesare usedto enhanceanterregion boundaries
and smoothintra-region variations.In vision and image pro-
cessingapplications,featuresof interestare usually defined
by edgesi.e. localizedregions of pixel gradientsthat canbe
thought of as discontinuities.It should be noted that linear
PDEsare not completelysuccessfuin enhancingooundaries
while eliminating noise. Discrete models of the diffusion
equation with a nonlinear conductancebased on gradient
information have proven to be particularly useful for these
applicationg[17], [21].

Our axiomaticfilter designresembleghe work of Weickert
et al. [21] aswell asthat of Alvarezet al. [2]. Their frame-
works are differentsince the domainof interestis limited to
imagespopulatedwith strongdiscontinuitiessuchasedgesin
our application,however, not all regions of strong gradients
correspondto discontinuities.In fact, featureswith strong
gradientssuchas expansionsand boundarylayers should not
be treatedas discontinuities.



C. Outline of the Paper

Our paperis structuredas follows. In Section2 we de-
scribethe generallinear filter. In Section3 we formalize our
ideasregardingfeaturepreserationincluding an analysisthat
definesconstraintsto be placedon the filter coeficients to
ensurethat new extrema are not created.In Section4 we
describethe lifting schemewhich allows for an efficient, in-
placeimplementationof a biorthogonalwavelet transform.In
Section5 we presenta set of filter designaxiomsbasedon
the resultsin the previous two Sections.In Section6, using
these axioms, we design optimal feature preserving (OFP)
filters: linear feature-centricfilters that are optimal in the
sensethat they are closestin L2 to the ideal low passfilter.
Also, we describe how thesefilters may be employed in
lifting implementation®f feature-centrisvavelets.Resultsare
includedin Section7 to demonstratehe feature-presesmtion
characteristic®f our filters.

2. GENERAL LINEAR FILTER

We now considera generallinear filter and characterizets
behaior. We begin by defininga discrete scalarquantity s; ;
onanequally-spacetheshz;; = [Az; forl =0, ...,2N with
N being a positive integer. We seeka multiscaleapproxima-
tionto s;; onasecondequally-spacedheshz;_1 ; = lAz;_;
for i =0,...,N with Az;_; = 2Az;, that preseres certain
characteristicsof the original scalar field. We denote this
approximationas s;_1 ;.

We now considera generallinear filter of the form

+n
Sj—-1,01 = E Ak Sj20+k,

k=—m

@)

wherem andn are positive integersandthe a; are constants
that are independentof the data. The a; are composite
coeficients that representhe combinedeffects of a wavelet

transformimplementedas a filter. The discrete momentsof

the filter are given by

+n
og = E klay .

k=—m

)
The frequeng responseor amplificationfactor of the filter
is given by

+n
GB)= Y are™’

k=—m

®3)

where the amplification factor representsthe responsefor
the frequeny B (herei = /—1). The magnitudeof G(3)
measuresthe amplitude of a unit Fourier coeficient upon
applicationof the filter and the phaseof G(8) measureghe
phaseshift that occursupon applicationof the filter.

3. FEATURE PRESERVATION

It is now appropriateto define what we mean by fea-
ture presenration. In this context, featurepreseration implies
that the “location”, “strength”, and “shape” of featuresare
unchangedafter the application of the general filter (1).
Of course,differencesnaturally occur due to the changein

resolutionbetweenz; andz;_;. It shouldbe notedthat the

behaior of the datain the spatial domain upon application
of the generalfilter (1) is equivalentto the behaior of the

solution of an evolutionary PDE in a scalespace.However,

we do not appealto this approachin the current paperand
rely, insteadon more traditional analysistechniques.In a

relatedvein, an analysisof spatialfilters using Taylor series
expansionsvasdescribedn [15] wherethefilter performance
was describedin terms of spatial criteria by examining the

non-zerodiscretemomentsj.e., the o, in (2).

In the sectionsthat follow, we formalize what we mean
by feature preseration and develop conditionsthat the filter
coeficientsa;, mustsatisfyin orderto presere certainfeature
characteristics.

A. Featur Position

The “location” of a featureis simply its positionwithin the
domain.Clearly, it is undesirabldgo have a stationaryfeature
that moves upon applicationof a filter. Similarly, a moving
feature that is improperly translatedis equally undesirable.
This problemis simpleto remedy however. It is well known
thatunsymmetridilters, whenappliedto data,produce‘shifts”
in the data.On the other hand,if the filter is symmetric,no
translationof the dataoccurs.For someunsymmetridilters, it
is relatively straightforvardto determinewhatshift occursand
to performa translationof the entire datasetuponapplication
of the filter. For others,this approachis not straightforvard.
The simplestapproachis to consideronly symmetricfilters.
The first condition for featurepreseration we specifyis that
the generallinear filter in equation(1) mustbe symmetric:

ar =a_y forall k (F1)

B. Feature Strength

The “strength” of a feature can be describedin terms of
the changedn the data.For the strengthto be presered, the
linear filter should not accentuateor diminish local extrema.
This condition can be relatedto the frequeng responseg(3)
of the filter. To be effective, the filter must eliminate high
frequeny component®f the databeforesampling.Therefore,
we expecttheamplificationfactorto bezeroat, i.e.,G (7) =
0. Further we may wantto specifythe numberof derivatives
of the amplificationfactorthat we wantto be zeroat 7. This
leadsto the secondconstraint:

> (=)kkiay =0, for j=0,1,...,p— 1,
k
andsomep > 1,

(F2)

wherep is the numberof zerosof G () at 8 = . To ensure
thata constanffield is not modifiedby applicationof thefilter,
we want the amplificationfactor at the lowest frequencieso
be unity, i.e., G (0) = 1. Using (3), we caneasily shov that
the amplificationfactoris one provided the coeficientssatisfy
the partition of unity. Therefore the third conditionfor feature
presenration we specifyis that the coeficients of the general
linear filter (1) mustpartition unity:

Zakzl
k

(F'3)



While the desiredbehaiors at zeroand « are well under
stood, the behavior away from these extremesis not. The
approachwe have taken is to assumethat the sinc filter is
the optimal filter for the intermediateranges.Therefore,the
fourth condition for featurepreseration we specifyis:

(...,a—2,a_1,ap,a1,as,...) Minimizesthe
L2 distanceto the sinc filter.

(F'4)

C. Feature Shape

On approachfor describingthe “shape” of a featureis in
terms of regions of monotonevariation in the data. In this
contet, “shape” presenation implies that the application of
the linear filter should not introducenew extrema.This con-
dition is expressedn imageprocessing21] asthe “causality
condition” This conditioncanbeimposedby ensuringthatthe
lineartransformis Total VariationDiminishing(TVD) afterthe
datais subsampled.

We now appealto a conceptfrom computationalfluid
dynamicsto help define constraintson the a; values. In
modernCFD simulationsnonlineartechniquesypically called
“limiting” areusedwith somesuccesgo achiere higherorder
temporal and spatial accurag without spuriousoscillations.
Harten[9] and Yee [22] have madesignificant contributions
to this field with their work on Total Variation Diminishing
(TVD) algorithms.In our efforts, we focus purely on linear
transformsto presere efficient invertibility.

In aTVD algorithm,the total variationof the solutiondoes
not increasewith time. In out context, we do not want the
total variationto increaseaswe changescalesrom j to j —1.
This canbe formalizedas

TV (sj_1) < TV (s;) 4)

wheres; is the solution at the currenttime level, s;_; is the
solution at the next time level, and the total variation of the
solutionis given by

TV (35) = D Isja1 — 85l (6)
1

wheres; ;1 ands;; are spatially consecutie valuesof the

solutionat time level j. By limiting the total variation of the

solutionto belessthanor equalto thevaluein theinitial data,

spuriousoscillationsdo not develop in the data.

We now wantto imposethe conditionthatthetotal variation
of the data doesnot increaseas we proceedfrom finer to
coarserscales Further let us notice that we actually want to
imposethe TVD constrainton the subsamplediatas;_;. We
will now describea necessaryndsufficient conditionfor this
to hold for ary valuesof s;:

Theorem 1. Thefollowing inequalitiesform a necessary
and suficientconditionfor a filter with coeficientsa, to have
the TVD property (4) for any input s;:

> lask + asr41| < 1
> lazk—1 + az <1

(6)

Proofs of Theorem1 and Corollary 1 appearin the Ap-
pendix.

Corollary 1. Supposethe filter coeficients a;, have the
partition of unity property i.e. 3, ax = 1. Thena necessary
and suficient condition for the filter with coeficientsa;, to
havethe TVD property(4) for anyinputs; is thatay + a1 >
0 for all k.

The fifth and final condition for feature preseration we
specifyis that the generallinearfilter in equation(1) mustbe
total variation diminishing after sampling:

ar+agt1 >0 forall k (F5)

4. IMPLEMENTATION OF BIORTHOGONAL FILTER BANK

The generalfilter bank correspondingto a biorthogonal
wavelet transformappearsin Figure 3. The first half of the
filter bankis calledanalysis andthe seconds calledsynthesis
The filter h is the analysislow-passfilter, the filter g is the
analysishigh-pasdilter,  is the synthesidow-passfilter, and
g is the synthesishigh-pasdilter. Althoughthe size of datain
LP is just half of the size of datain the input we wantit to
be an accuraterepresentationf the input data.Also, we want
the perfectreconstructionproperty: the output exactly equals
the input.

h ®) L D, h
g (B) BP ® g

Fig. 3. Biorthogonalwavelet filter bank. LP standsfor low passand BP
standsfor band pass.The sign | 2 denotesdonnsamplingand the sign 1 2
denotesupsampling

A. Thez-transformand Laurent Polynomials

Recall that a Laurent polynomial is a finite sum L(z) =
Z;”:n a;z’, wheren, m aresome(possiblynegative) integers.
Thez-transformof afilter A with coeficientsay, is the Laurent
polynomial h(z) = Y, axz*. In other words, we think of
the filter coeficients as coeficients of a Laurentpolynomial.
Note that we can think of the input sequences as a Laurent
polynomialaswell. The main advantageof the z-transformis
that the corvolution of s and h correspondgo multiplication
of Laurentpolynomials.This makesit possibleto have more
algebraicstructurein the corvolution operationaswe will see
below.

If we denoteby h. and h, the even and odd parts of h
regardedas Laurentpolynomialswe have:

h(2) = he(2®) + 27 ho(2%) @)

Then the QuadratureMirror Filter (QMF) property implies
(see[18]):

he(2) = Go(2 1), ho(2) = =Ge(z 1), ®)
ge(2) = _ho(z_l): 9o(2) = he(z_l)
9(2) = 27 h(—=27"), h(z) = —27'g(=z7") ©)



wheref is the synthesidow-passfilter, and j is the synthesis
high-pasdilter.

Additionally, the perfectreconstructiorpropertyis equiva-
lent to the following complementaritycondition

he(2)  ge(2)

det =1, 10
“(nd 50) 4o
which, in turn, is equivalentto (see[20]):

he(z) andh,(z) arerelatively prime (W1)

i.e. thath.(z) and h,(z) have no commonzeros.

A secondcondition related to the biorthogonal wavelet
representationf ourfilter bankis thatthe scalingfunction(see
[18]) of the wavelettransformis a finite enegy function. This
is guaranteedby a conditionon therestrictedtransferoperator
T. We define the restrictedtransferoperatorT’ as follows:
if the length of the corvolution productof the sequenceof
coeficientsay, with itselfis N, thenT is the (N —2) x (N —2)
matrix obtainedfrom doubleshiftsof this convolution product,
times 2 (see [18]). Thenthe secondcondition derived from
the biorthogonalwavelet representatioris:

T hasoneeigervalue\ =1
andall othershave |\| < 1

(W2)

B. The Lifting Scheme

The lifting schemeis a methodof factoringwavelet filters
into basic building blocks called lifting steps, which also
allows for spatial domain wavelet design. Daubechiesand
Sweldens([20]) showved that ary biorthogonalwavelet filter
bank can be decomposednto lifting steps.In Figure 4 we

Fig. 4. Lifting stepsdecompositionwe think of the input andthe filters as
Laurentpolynomials(see[20])

see the lifting stepsdecompositionof the analysishalf of
the biorthogonalfilter bank in Figure 3: we first split the
input sequenceénto even and odd entries,thenwe alternately
filter eachchanneland use the output to modify the other
channel,and in the end we multiply by scalars1/K, resp.
K. In Figure5 we seethat the synthesids exactly a reversed
analysis.The implementationof the filter bank using lifting

allows for an in-place computationof the wavelet transform
and leadsto an improvementin efficiency when comparedo
the standardmplementation.

5. AXIOMS

Having defined feature preseration, we now enumerate
a list axioms for the design of optimal feature-preserving
(OFP)filters. Accordingto the discussiorin the previous two
sections,we impose the following feature-presemtion and

LP—|> e
BP—{>—(+ ——(t

Fig. 5.

Inverselifting stepsdecomposition(see[20])

wavelet-representationequirementson the filter coeficients
ag.

(F1) ar = a_y, for all k

(F2) > (-1)*Kap =0, forj=0,1,..,p—1,
al;1d somep > 1

(F3) Z ap = 1

k

(F4) betweenall filters with the desiredproperties,
thefilter given by the coeficientsay
minimizesthe L? distanceto the sinc filter

(F5) ar + apy1 >0 for all k

(W1) if a_,, is thefirst nonzerocoeficient, thenthe
polynomialsa_, + a_n 122 + a_pi42’ + ...
and a_pi1 +G_pni32 +a_py52% + ... are
relatively prime.

(W2) the restrictedtransferoperator?” hasone

eigervalue A = 1, andall othereigervalues
have |\| < 1

Axioms (F1) — (F5) arerelatedto the feature preseration
propertiesof the OFP filters (see section 3 for details). It
shouldbe notedthat the coeficientsfor the sinc filter do not
satisfythe TVD constraint(£'5). Thus,our OFPfilter design
stratgy will seeka compromisebetweenthe ideal frequeny
behaior andthefeaturepreserationpropertieof TVD filters.
Finally, axioms(1W1) and(W2) ensurethatthe proposedilter
is thelow pasdfilter of a biorthogonawavelettransformwhich
canbeimplementedasa seriesof lifting stepsandhasa finite
enegy scalingfunction (seeSection4 for details).

The following Theorem shavs that the spatial domain
axiomsabove areequialentto acomprehensielist of feature-
preserving, approximation, implementation,and optimality
properties:

Theorem 2. Therequirements(F1) — (WW2) above are
necessanandsuficientconditionsfor the following properties
to hold:

(a) (Corvemenceof the cascadealgorithm, see[18])
Theiteration ¢( 1) (t) = 3, 2ax¢¥) (2t — k), whee
#9 is a box function, corvemesin L2.

(Accuracy of apptoximationof order p)

Theerror estimatefor a function f(t) of classC?

at scale At = 277 is of the form C(At)?| £ (¢)].
(Total variation diminishesfrom fine to coarse scale)

(b)

(©)



TV(sj—1) <TV(s;)-

(No moving features)

There is zeio phaseshift from fine to coarse scale
(Lifting schemeimplementationsee[20])

There exists complementanhigh-passfilter, and the
associatedvavelettransformadmitsin-place
implementatiorusing the lifting scheme

(Average grey level invariance)

The average of the datais unchanged whenpassing
from fine to coarse scale

(Preservationof low frequencies)

The momentof order 0 is 1, and the momentof
order 1is 0.

(Optimality)

Betweenall filters with the desied properties,the
filter given by the coeficientsa; minimizesthe

L? distancein the frequencydomainto the ideal
brick wall filter.

Seethe Appendixfor a proof of Theorem?2.

6. FILTER DESIGN

We now use the framework developed in the previous
Sectiongo designOFPfilters andfilter banks.For a symmetric
filter with coeficientsa;, thefrequeny responséasthe form:

G(B)=ag+2 Z apcos(kp) (11)
E>1
and all derivatives of G of odd order vanish at zero and at
w. Thereforeit is enoughfor G(3) to have, for example,the
secondderivative at m equalto zero,andthenits first, second
andthird derivativesat = are zero.

Remark. If we try to increaseboth the numberof zeros
at 0 and the number of zeros at = while imposing the
TVD inequalities,we will notice that there are no nontrivial
solutions.For example,if the secondderivative of G(8) has
the propertyG" (0) = G (=) = 0, thenwe get:

a1 + 4as + 9as + 16a4 + 25a5 + ...
= aq1 —4as + 9a3 — 16a4 + 25a5 — ...
= 0.

From this we concludethat:

a1 +9as + 25a5 + ... = 4as + 16a4 + 36ag + ... = 0,
andthen
(a1 +a2) +3(az +a3) + 6(az +aq) +10(ag +as) +... = 0

which togetherwith the TVD inequalitiesimplies that
ai+ay=astaz=az3+ag=a4+as=... = 0

and this togetherwith the filter being FIR implies that a;, =
0 for all & > 1. The sameholds if we replacethe second

derivative above with ary otherevenorderderivative of G(83).
Hence,we only imposeconditionson the numberof zerosat
.

A. OFP Low PassFilter Design

Giventwo positive numbersN andp, we canfind thefilter
coeficientsof a symmetricTVD filter which is a partition of
unity, haslengthV, hasp zerosat«, andis closestin L? to the
ideallow passfilter. We usethe following two-stepprocedure:

Stepl. Make linear substitutionsof a; with someb; such
thatthe TVD conditionon a; translateso the conditionthat
the new variablesb; arethe coeficientsof a pointin the N-
dimensionalcube[0, 1]V.

Step2. Usea quadraticoptimizationprocedureto solve for
the new variablesb;, underthe p linear restrictionsgiven by
the existenceof p zerosat .

[Ca; ] value

ag 172
ay 14

ag 2

aq 1/4

as 0

ag 172

a1 1/4

ag 0

a3 0

ag (21im — 16)/367
ay (337 + 16)/144n
as (16 — 37)/144m
a3 —(16 — 37)/144n
ay (16 — 37)/144x
ag (376m — 224)/690x
a (165w + 608)/1380m
ag (112 — 157)/1380x
a3 —(112 — 157)/1380m
ay (112 — 157)/1380x
ag (1657 — 496) /1380

value ]

a0 38
a1 1/4
ag 1/16
a0 378
ay 14
as 1/16
a3 0
ao 13/28
ay 20/112
an 1/112
a3 —1/112
ay 1/112
ap (=288 + 10757)/2230m
ay (=192 + 92657) /35680
ag (57 + 36)/1115m
a3z —(5m + 36)/1115m
ay (57 + 36)/1115m
ag (1344 — 1857) /35680
[(p ] a; ] value ]
7 | ao 7
ay 14
7 | ag 38
ay 14
as 116
6 | ag 5716
ay 15/64
ay 332
a3 1/64
3 ao 35/128
ay 7/32
as 7/64
a3 1/32
ay 1/256
0 | ap 63/256
ay 105/512
ag 15/128
a3 | 45/1024
ay 5/512
ag 1/1024

Fig. 6. 18t table: optimal feature preserving(OFP) filters with 2 zerosat
x; longerfilters are closerto the ideal low passfilter; 2"d table: OFPfilters
with 4 zerosat 7; again,longerfilters are closerto the ideal low passfilter;
3" table: shortestOFP filters with p zerosat w (splinefilters)

Examples. Here we explain how we obtainedthe tables
in Figure 6. Let us examine the optimal feature preserving
(OFP) filters with two zerosat = that, for a given length



N, areclosestin L? to the ideal low passfilter. To compute
them, we minimize the squareof the norm of the difference
betweenour filter andthe ideal low passfilter, subjectto the
linear identities and inequalitiesgiven by (F2), (F3), and
(F'5). Note that we supposedhe filter to be symmetricfrom
the very beginning, so (F'1) is also satisfied. Thereforewe
have to minimize a quadraticfunction of ay, ..., a, Subject
to somelinear inequalitiesand identities.We canreplacethe
TVD inequalitieswith positivity requirementsby using the
following linear substitution:

ap, = by (12)
n—1 = bp_1—b,
pn—2 = bn—2 - bn—l + bn

ag = byg—0b1+b— (—l)nbn

Then,imposingthe TVD inequalities(F'5) on ag, ..., a, is
equivalent to imposing the positivity conditionsd; > 0 on
b, ---, bn. This allows usto reducethe problemto minimizing
a quadraticfunction subjectto somelinear identities on the
positive domain.Moreover, we canrestrictthe domainfurther
to the cube[0,1] x [0,1] x ... x [0,1] when we notice that
the TVD conditionsimply thatb, < 1 for ary k. This allows
us to usea quadraticoptimization procedureto computethe
exact valuesof the solutions.

In Figure6 we list theresultinga;,'s justfor & > 0, because
for k < 0 they are determinedoy symmetry In the first table
in Figure 6 we imposeaccurag of approximationof orderat
leastp = 2. Note that the splinefilter (1/4,1/2,1/4) is not
optimal if we allow for a large enoughnumberof filter taps.

Let uslook now at symmetricTVD filters with four zeros
at 7 that are also closestto the ideal low passfilter. Again,
we minimize the quadraticfunction given by the squareof
the norm of the differencebetweenour filter and the ideal
low passfilter, subjectto the TVD inequalities,and to three
linear identities,oneidentity given by (F'3) and,sincep = 4,
two identities given by (F'2). The resultis the filters in the
secondtable in Figure 6. Again, note that the spline filter
(1/16,1/4,3/8,1/4,1/16) is not optimal if we allow for a
large enoughnumberof filter taps.

We canalsolook at OFP filters which have the maximum
numberp of zerosat 7. For any N we solve a systemof linear
inequalitiesgiven by the TVD conditions,andidentitiesgiven
by theequationg F'2) for the maximump for which a solution
still exists. We getthe third tablein Figure 6. Notethat these
are exactly the splinefilters. On the other hand,they are the
symmetricTVD filters that (for a given numberof taps)have
the smallestorder error estimatefor smoothdata,while also
preservingow frequenciesandannihilatinghigh frequencies.

In conclusion the shortesffilter thatsatisfiesall our axioms
for a given p is a spline filter of length p+ 1. On the other
hand,splinefilters are not optimal if we allow a large enough
numberof filter taps.

B. High PassFilter Design

We arenow interestedn finding short, symmetric,smooth
high passfilters associatedvith the OFP low passfilters that

we designed.

Recall that, since g(z) = z~'h(—z""), the designof the
analysishigh passfilter g is equialentto the designof the
synthesidow-passfilter /. This simplifiesthe design,because
symmetryand regularity conditionsare easierto describein
termsof the synthesidow-passfilter A. Recallthatthe “Euclid
algorithm” that generates high-pasdfilter associatedvith a
given low-passfilter in [20] doesnot give a unique solution.
We would like to usethe connectiorbetweeng and A to help
us decidein the choiceof g.

Supposeow thatthe synthesidow-passfilter 7 hascoefi-
cients...,a_1,aq, a1, as, as, ..., andis symmetric,i.e.a_j =
ay, for all k. Thenh(z) is a symmetricLaurentpolynomial of
the form

h(z) = . +aez > +arz7 +ag+ a1z + a2’ + ... (13)
We have:
ge(z) - _ho(z_l) (14)
= . —CL3272 —alz*1 — a1 —as2 — ...
9o(2) = _ﬁe(zil)

.- a4:z_2 - 022_1 —ag — a2z — a4z2 - ...

We are now going to describean algorithm for finding
coeficients a;, such that the filter g definedin terms of h
asin (14) is a high passfilter associatedo a given low pass
filter h.

The input of the algorithm consistsof the coeficients of
thefilter h, anda positive integer! thatis the desirednumber
of zerosat 7 of the filter h. The st stepin the algorithm
looks for filter coeficientsa, suchthata, = 0 for all £ > s,
and suchthat all the linear conditionsgiven by (10) and the
linear constrainsgiven by k's zerosat « are satisfied. The
algorithmterminatedirst time whensucha solutionis found.
The algorithm doesterminatesincethe numberof degreesof
freedomincreaseswice asfastasthe numberof constrains.

Examples.If for h; = (1/4,1/2,1/4) we look for g such
that 2 has one zero at =, this algorithm finds the solution
ap =3/2,a; = 1/2,ay = —1/4, which gives

h=(-1/4,1/2,3/2,1/2,—1/4).

Using the QuadratureMirror Filter identities(QMF, see[18]),
this implies that

g=(-1/4,-1/2,3/2,-1/2,-1/4,0,0).

In the first tablein Figure 7 we list the resultingay’s for the
filter h; anda few valuesof [ (for k < 0 the coeficientsare
determinedby symmetry).

One canof courseapply the samemethodto ary low pass
filter h. For the filter

hy = (1/16,1/4,3/8,1/4,1/16)

we getthe filters & in the secondtablein Figure7.
Similarly, for the filter

hpo( L 120 13 20 1 1 1,
T M12° 1127 1127 1127 112° 1127 112° 112° 112

we getthefilters A in the third tablein Figure7.



aop 3/2

a1 1/2

a2 /4 |[ai | value ]

ag 5/4 ao 5/2

a1 | 34 a1 5116 || ai ] value |

a2 -1/4 a2 -3/4 ao 39771/25480

as -1/4 as 3/16 a1 27501/50960

as 1/8 ao 28/15 as —15/52

ao 15/14 a1 63/80 as —243/5096

a1 13/14 as —3/4 as 409/50960

as -1/7 as —5/24 as 409/50960

as -9/14 aq 19/60 ao | 1476541/1136590

Qa4 5/28 as —19/240 ai 133247/174860

as 2/7 ag 3/2 a2 —32161/113659

ae -1/7 a1 261/256 as | —304387/1136590

ag 63/64 a2 —37/64 a4 63655/454636

ai 65/64 as | —167/256 as 3631/454636

as -1/16 aq 1/2 ae —2501/568295

as | —57/64 as 23/256 ar —2501/568295

as 13/64 as —11/64

as 31/64 ar 11/256

ag —3/16

ar —7/64

as 7/128
Fig. 7. The three tables abae contain filters &
computed for the OFP filters hy = (1/4,2/4,1/4),
ha = (1/16,4/16,6/16,4/16,1/16), hz =  (1/112,

—1/112,1/112,29/112,13/112,29/112, 1/112, -1/112,1/112),
respectiely; in each table the number of zeros at 7 increaseswith the
numberof filter taps

C. Lifting Decomposition

Oncewe decidedon an associateanalysishigh passfilter
g for a given OFP analysislow passfilter h, we canusethe
factoring algorithm from [20] to determinea lifting scheme
decompositiorcorrespondingo that particularchoiceof pair
of filters (h, g). We will againhave to make a choicebetween
mary possibldifting schemelecompositionsOur filters being
symmetric,we decideon a symmetricfactorization,i.e., one
in which every quotientis amultiple of z+1 (see[20], Section
7.7).

Examples.We will now give the resultinglifting stepsfor
some examples of filters (h, g). In the casethat the OFP
analysislow passfilter h is (1/4,1/2,1/4), the lifting steps
are given by filters s;, the updatefilter ¢, and finally the
scalingwith factorskK and1/K. Thefilter ¢; thatspecifiesthe
last lifting step dependson the numberp of zerosat = that
h has.We denoteit by s; if & hasi zerosat 7. The filter s,
doesnot dependon k. We have:

s1 = 1/2+42/2

tn = —-1/4-1/4z, ifp=1

tip = 1/822—3/82—3/8+2/8, if p=2

t1 = —1/72%4+9/282% — 13/282 — 13/28 + 92/28
—22/7, ifp=3

tp = T7/1282* —31/1282% + 57/1282% — 65/1282 —
65/128 + 572/128 — 3122 /128 + 723 /128, if p =4

K = 1/2 (scaling)

For example,to implementthe wavelet transformcorrespond-
ing to h = (1/4,1/2,1/4) andsomeh thathas?2 zerosat 7
we would go throughthe following lifting steps:

stepl: performlifting using s;
step2: performlifting usingt; = 1/82% —3/82z —3/8 +
z/8
step3: performscalingusing X = 1/2
In the caseof the analysislow passfilter A = (1/16,1/4,
3/8,1/4,1/16) we find that the first lifting stepwill have to

be t;, andnot s; .We have:
tin = 1/42+1/4
So = z+1
ta = —-3/162—3/16, if p=1
ta = 192/240—4/15—4/15z+19/24022, if p=2
K = 1/4 (scaling)
In the case of the filter h =

1 -1 1 29 13 29 1 -1 1 H 1
(1127 1127 1127 1127 1127 1127 1127 112? 112) we agaln flnd

that the first lifting stepwill have to be ¢;, and not s;. We
get:

thn = —1/z+1

s = —z/29-1/29

ta = 841/980z + 841/980

sg = 245z/377+ 245/377

ts = —5317/27440— 5317/27440z, if p=1

ts3 = 192/240 —4/15—4/152 + 19/2402%, if p =2
K = 13/28 (scaling)

Let us describea completefilter bank associatedo the

OFPfilter h = (},3%, +). Accordingto [20] thereexist mary
complementarhigh passfilters associatedio a givenlow pass
filter. Let uslook for a symmetricone.lt is easyto checkthat

the bestwe cando with a two-steplifting is

= (_1/87

It is not possible for g to be symmetric, but the one
above has linear phase,and is the shortest complemen-
tary filter with these properties.The filters h and g form
the analysis half of the filter bank. To get a biorthogo-
nal wavelet transform the associatedsynthesisfilters will

have to be h = (—1/8,1/4,3/8,1/4,—1/8), and § =

(0,0,—1/4,1/2,—1/4). This is the dual of the biorthogonal
Cohen-Daubechies-Feagau(5,3) wavelet system.

—1/4,3/4,-1/4,-1/8,0,0).

7. RESULTS

In this Sectionwe will presentsomeresultsobtainedusing
the optimal featurepreserving(OFP)filters we designedand
comparethem with resultsobtainedusing filters that are not
optimal and not feature preservingaccordingto our design
procedureg.g.the linear and cubic lifting filters.



A. 1D Results

Figure 8 showns the same sequenceof imagesshavn in
Figure2, but usingan OFPfilter. Unlike Figure2, the initially
monotonedata remains monotone.Although the dissipatve
natureof the filter is evident from somesmearing(blurring)
of the featuresthe dissipationof the filter is not too severe.
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Fig. 8. ThreelLevels of OFP Lifting for ShockTube Data

B. 2D Results

Let us look at what happensvhen we use OFP and non-
OFP wavelet transformsfor lossy transformationsof two
dimensional data (where some percentageof the wavelet
coeficientsare discarded).

Let usfirst considera fluid dynamicsdatasetcontaininga
stationaryoblique shock.The oblique shockis a discontinuity
acrosswhich the velocity magnitudeand direction, pressure,
anddensitychangein a prescribednanner The original scalar
pressurefield and velocity direction field are in Figure 9(a)
andFigure 10(a),respectrely. The streamlinesf the velocity
field are showvn in Figure 11. In Figure 9(b-d) we seethe
resultsof OFP versusnon-OFPwavelet transformsresultsfor
the pressurdield. Note the significantGibbs-like oscillations.
Similarly, the direction of the vector field obtained using
an OFP transformationhas a smooth transition acrossthe
shock, as shavn in Figure 10(a), while the direction of the
vector fields obtainedby using non-OFPfilters varieswildly
near the shock, as shavn in Figures 10(b) and 10(c). In
Figure11the streamline®of transformedrectorfields obtained
by usingfilters with the OFP propertiesarevery similar to the
streamlinesof the initial vector field, while the streamlines
of transformedvector fields obtainedby using filters that do
not have the OFP propertieshave somerandomartifacts.This
can be explainedby referring to Figure 10. The transformed
vectorfields obtainedby usingfilters thatdo not have the OFP
propertieshave directionsthat are not corvex combinations

(@) (b)

(©) ()

Fig. 9. OFPversusnon-OFPlossywavelettransformsfor the pressurdield:
(a) original pressurevalues; (b) OFP transformationof pressurefield; (c)
linear lifting transformatiorof pressureield; (d) cubiclifting transformation
of pressurdield.

(@ '~ (b)

© @

Fig. 10. OFP versusnon-OFPwavelet transformsfor the direction of the
vector fields: (a) original vector directions;(b) vector directionsafter OFP
transformation;(c) vector directions after transformationusing the linear
lifting scheme(d) vectordirectionsaftertransformatiorusingthe cubiclifting
scheme.

of neighboringvectorsand, therefore,createthe “clustering”
evidentin the streamlineplots.

Sinceour new filter banksweredesignednainly for feature
presenration,we do not expectthemto be betterthanlinear or
cubic lifting wavelet transformsat lossy datatransformation.
Neverthelessin generathey provide errorratesthatarealmost
as good as for linear or cubic transformationand, for some
input datasetsthey provide smaller error rates than linear
and cubic wavelets.On the right side of Figures12, 13, 14
the horizontal axis of the error rates graphs measuresthe
percentageof wavelet coeficients which are discarded,and
the vertical axis measureshe total L? error.

For example, if the input is the periodic, high-oscillation
texture datasethat we seeon the left sidein Figure 12, we
getthe error ratesresultson the right side of Figure 12. Note
thatthe OFPerrorratesin Figure12 aresmallerthanthelinear
and cubic transformationerror ratesin Figure 12. Also, note
that the smallesterror ratesare obtainedby using 7 with two
zerosat wr, and not one zeroat = asbefore.

If the input is the scalardensity field on the left side of
Figure 13 we get very similar error rate resultsfor the OFP



-~
—
-___ _ ____
_ _
- @&

-

. (d)

Fig. 11. OFPversusnon-OFPwavelettransformsor vectorfields: (a) Zoom
in: the original vector field; (b) streamlinesof the original vector field; (c)
streamlinef vectorfield transformedusingan OFPwavelet; (d) streamlines
of vectorfield transformedusingthe linear wavelet

Fig. 12. LossyOFPversusnon-OFPwavelettransformsfor a periodic,high-
oscillationtexture datasetl eft: texture datasetRight: errorlevels using OFP
(solid line), linear (dashedine) and cubic (dottedline) wavelet transforms

and non-OFPwavelet transforms,as we seeon the right side
of Figure 13.

Fig. 13. LossyOFPversusnon-OFPwavelettransformdor a densitydataset.
Left: densitydatasetRight: error levels using OFP (solid line), linear (dotted
line) and cubic (dashedine) wavelet transforms

If theinputis a scalarfield of vectormagnitudeghatwe see
in Figure 14, which originatedfrom a Pacific Oceancurrents
datasetwe get the error rateson the right in Figure 14.

In Figure 15 we seethe result of applying OFP and non-
OFP filters to a 2D shockimage. To get the middle image
we useda two level wavelet transformassociatedo the OFP
filter (1/4,1/2,1/4).To getthe right-sideimagewe useda two
level cubiclifting wavelettransform.We noticethattheimage
transformedusing the cubic wavelet has strongartifacts,due
to the sharpvariationsneardiscontinuities.
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Fig. 14. OFP versusnon-OFPwavelet transformsfor a vector magnitude
datasetLeft: vector magnitudedataset;Right: error levels using OFP (solid
line), linear (dottedline) and cubic (dashedine) wavelet transforms

Fig. 15. Left: original 2d shockimage; Middle: OFP lifting result, 80%
wavelet coeficients discardedRight: Cubic lifting, 80% wavelet coeficients
discarded

C. 3D results

Let us also considera three dimensionaldataset.In Fig-
ure 16(a)we arelooking at anexplosiondatasetywhereaniso-
surfacewas extractedand renderedWe apply OFP and cubic
wavelettransformgo theoriginal 3D datasetandagainextract
andrenderaniso-surbicefrom eachtransformediatasetWhen
we usedthe OFP wavelet, the octant correspondingto the
smoothedversion of the original data looks similar to the
original iso-surfice.Whenwe usedthe non-OFPwavelet, the
octantcorrespondingo the smoothedversionof the original
datadoesnot look similar to the original iso-surfce: bright-
nessis significantly reduceddue to Gibbs-like variation of
the datain the transformeddatasetespeciallynearthe region
wherethereis a sharptransitionto very high temperature.

8. CONCLUSIONS

In this paperwe defineda spatial domain framework for
the analysis and design of multiscale filters. Included in
this framework are a set of axioms that can be used to
designfilters that presere certaincharacteristicef the data—
namelythe position, strength,and shapeof featuresThe OFP
filters andwavelettransformsdesignedisingour axiomshave
consistentlybetter feature preseration propertiesthan usual
filters (such as the linear and cubic lifting filters), without
significant sacrifice of the approximation performancefor
lossy transformations.

We suggestthat the methodsproposedhere can also be
usedin conjunctionwith frequengy domainmethodgo design
multiscale linear wavelet filters. We plan to utilize these
techniquesto develop vectorvalued wavelets with feature
preservingqualities.

APPENDIX |
Proof of Theorem 1. Let us first look at the special



(a) Original explosion dataset

(b) 3D wavelet transformusing an OFP wavelet

(c) 3D wavelet transformusing cubic wavelet

Fig. 16. OFPversusnon-OFPwavelet transformsin 3D case

casewherethe 2N valuesof s; on level j are of the form
0,0,...,0,1,1, ..., 1. Without lossof generalitywe cansuppose
thata, = O for all ¥ < 0 andfor all & > n + 1.
For large enoughvalues of N the intermediatevalues 5;
will have the form 0,0,...0,a,,a, + an-1,a, + an_1 +
Ap—2y -y Qp + ... + Q1,0 + ... + @1,...,0n + ... + a1. Here
we supposethat we use an appropriatemethod of handling
the boundarywhen computing the cornvolution product, by
which the input signal s; is paddedat eachboundarywith
valuesequalto the leftmostand the rightmostexisting values
at the boundary For example, for our data, we pad the
left boundarywith zerosand the right boundarywith ones.
Thereforethe subsampledlatas;_, will have eitherthe form
07 07 = 0) Qn, Gn +an—1+ Gn—2,0n +ap—1+ap2+tan_3+
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Qp—4yeeyQp + oo + Q1,0n + ... +Q1,..c, @y + ... + a1, OF the
form 0,0, ...,0,an+an—1,an +an—1+an—2+an_3, .., an +
w.tai,an+ ... + a1, ..., apn + ... + a1. Fromthis it follows
that either

TV (sj-1) = Z lask + azk41] (15)

or

TV (sj_1) = Z |azk—1 + azk| (16)

accordingto the parity of the index [ suchthats;; = 0 and
sji+1 = 1. Let us noticethat TV (s;) = 1. This implies that
a necessarycondition for TV (s;_1) < TV(s;) is that the
coeficientsin (1) satisfythe two inequalities(6).

We will now prove that the two inequalities(6) are alsoa
sufficient conditionfor TV (s;_1) < TV (s;). Without loss of
generalitywe can supposes; = 0 for all ¥ < 0. For some
fixed level j andvaluess; let us definey by

Yk = Sjk+1 — Sjk (17)
Also, let us considera matrix A with componentsA,, ; =
Ai—om—1 + Gj—2m—2- Recall that |A|1 = max; Zm |Am,i|a
where| |; is the usual L' operatornorm. If (6) holds, then

we have
Z [Amil <1

for ary 4, which impliesthat|A|; < 1. In particulat it follows
that |Ay|; < |y|1, so

We are now going to shawv that the desired inequality
TV (sj—1) < TV(s;) is implied by (19). We have

(18)

(19)

TV(sj1) = Z |55,2m+2 — 55,2ml] (20)

m

= Z Z AiSj 2m424i — Z aiSj.2m+i
m 1 7

= Z Zai(sj,2m+2+z' - Sj,2m+i)
m 1

= D D aiemyite + Yamyis1)
m 1

On the otherhandaccordingto (19) we have
Z |$jam+1 - s]7m|

m

> 1yml

SO Ay
i
Z (@Gi—2m—1 + QGi—2m—2)Yi

TV (s;) (21)

A%

Z %

m




Let us also notice that

Z ai(Y2m+i+2 + Y2mtit1) (22)

2
Z (@i—2m—1 + Gi—2m—2)Y;

(2
sincewe cansplit thefirst suminto two sumsandthenregroup
the termswith the samey; factorto getthe secondsum.

Finally, by putting (20), (21) and (22) together we get

TV (sj—1) < TV (s;). Thereforewe have provedthat (6) is a
necessanand sufficient condition for the TVD property (4).
Let us also notice that in the specialcasewhen ) a; = 1,
i.e. the coeficientsa; area partition of unity, we canusethe

inequalities
D lask +azka|l = D

Z|a2k—1 +ag| > Zak

to concludethat the condition (6) is equivalentto having

(23)

ar +ak41 >0 (24)

for all k. In otherwords, we obtaina proof of Corollary 1.

Proof of Theorem 2.

According to [18], (a) is equialentto (W2) and (b) is
equialentto (F'2) (seethe Appendixmoredetails).According
to the Corollary in section3.2, (¢) is implied by (F'5) and
(F'3). Also, accordingto our obsenationsin section3.1, (d)
is implied by (F1). According to [20] (e) is equialentto
(W1). From their definitions, (f) is equivalentto (F'3) and
(9) is implied by (F'1) and (F'3). Finally, (h) is equialentto
(F4) since the Fourier transformpreseres the enegy from
the spatialdomainto the frequeng domain.

For corveniencewe describesomeimportantresultsabout
wavelets and lifting from [18] and [20], usedby us in the
Theoremin Section6 andin the designof the algorithm that
generatesan associatechigh passfilter of a given low pass
filter.

Axiom (W2) is also known as Condition E. We have (see
[18]):

Theorem. Assume that the dilation equation ¢(t)
> & 2ax (2t — k) hasafinite enegy solutiong(t) € L?. Then
Condition E is a necessaryand suficient condition for the
cascadesequence+V) (1) = 3", 2a;¢( (2t — k) to corverge
to ¢(t). Moreover, if Condition E holds, then the cascade
sequenceornvergesto someg(t) € L2.

Anotherresultfrom [18] is:

Theorem. If 3, (=1)*¥k%a, = 0 for j = 0,1,...,p — 1,
thenthe errorestimatefor a function f(¢) of classC? atscale
At = 277 is of the form C(At)?|fP)(t)|.

The exact statemenbf the theoremaboutfactoringwavelet
transformsinto lifting stepsis (see[20]):

Theorem. Given a complementanyfilter pair (h, g), there
alwaysexist Laurentpolynomialss;(z) and¢;(z) for 1 <14 <
m anda nonzeroconstantk’ suchthatthe analysishalf of the
filter bankcanbe decomposedsin Figure4 andthe synthesis
half of the filter bank can be decomposedsin Figure5.
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