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Abstract— In this interdisciplinary paper we develop a wavelet
design framework emphasizing feature preservation. This work
draws fr om results in signal processing,computational math-
ematics, and wavelet theory. We are particularly interested
in linear wavelet transforms for large datasets generated by
computational fluid dynamics simulations. High-fidelity wavelet
transforms can facilitate the visualization and analysis of large
scientific datasets.However, it is important that salient character-
istics of the original featuresbe preserved under the transforma-
tion. Our effort is differ ent fr om classicalfilter designapproaches
which focus solely on performance in the fr equencydomain. In
particular , we present a set of filter design axioms that ensure
certain feature characteristics are preserved fr om scaleto scale,
and that the resulting filters correspond to wavelet transforms
admitting in-place implementation. We alsodemonstratehow the
axioms can be used to design optimal feature-preserving (OFP)
filters, i.e., linear feature-preserving filters that are optimal in
the sensethat they are closestin

���
to the ideal low passfilter.

Results are included that demonstrate the feature-preservation
characteristics of OFP filters.

Index Terms— filter bank, wavelet design,lifting scheme,TVD
transforms, feature preservation

1. INTRODUCTION

Large-scalecomputationalfluid dynamics simulations of
physical phenomenaproduce data of unprecedentedsize
(terabyte and petabyte range). Unfortunately, development
of appropriatedata management,analysisand visualization
techniqueshas not kept pace with the growth in size and
complexity of such datasets.One paradigm of large-scale
visualization and analysis is to browse regions containing
significant featuresof the datasetwhile accessingonly the
data neededto reconstructthese regions. The cornerstone
of an approachof this type is a representationalscheme
that facilitatesranked accessto macroscopicfeaturesin the
dataset[12], [13], [16]. In this approach,a feature-detection
algorithmis usedto identify andrank contextually significant
featuresdirectly in the compresseddomain.

In [12], [13], [16], the linear lifting scheme[19] wasused
for compressingcomponentsof a vector field. The work
reportedhere grew out of our efforts to analyzethe imple-
mentationof the lifting schemeand designnew transforms
that more ardently preserve featuresin discreteflow fields.
The rate-distortioncharacteristicsof many wavelet transforms
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do not bode well for feature preservation [16]. However,
it was unclearas to what distortions the wavelet transform
wrought on the data. It is thereforeuseful to evaluate the
effect of thewavelet transformin termsof processesthatalter
certaincharacteristicsof the data, i.e. features.Additionally,
for very largedatasetsit is necessarythat thefeaturedetection
be performedin the compresseddomain. In this context, it
is essentialthat the wavelet transform preserve significant
featuresin the dataset.

In this paperwe define a framework for the analysisand
designof multiscalefeature-centricfilters throughavariational
characterization.Given the needfor efficient compressionand
processing,we consideronly linear transformsat this time.
What is unique about our approachis that we design the
behavior of the filter in the spatialdomain.We suggestthat
the methodsproposedhere can be usedin conjunctionwith
frequency-basedmethodsto designmultiscalelinear wavelet
filters. A result of our characterizationis a set of axioms
that can be used to analyzeand design filters. Filters that
satisfyour axiomswill bemorelikely to preserve featuresin a
linear wavelet spaceandenablehigh-fidelity featuredetection
in large scientific datasets.Additionally, we seek to design
filters correspondingto waveletsthat can be implementedas
a sequenceof lifting steps[19].

A. Motivation

We now presenta simple one-dimensionalexample from
fluid dynamicsto provide motivation for this effort. Shown
in Figure 1 is a schematicof the shock tube problem. A
shocktubecanbe idealizedasa cylinder, closedat bothends,
with a diaphragmthat separatesa region of gas on the left
with pressureand density given by ��� and ��� respectively,
from a region of gason the right with pressureand density
given by �	� and �
� . Note that � ��� �
� and �
� and � � must
be specified.Initially, the gas is a rest in both regions. The
diaphragmis then rupturedinstantaneouslyand an unsteady
motion ensues.In a typical situation, four uniform regions
and one transitional region emerge. A normal shock wave
propagatingto the right definesthe boundarybetweenuni-
form Regions 1 and 2. The flow field propertiesexhibit a
nonisentropic,discontinuouschangeacrossthemoving normal
shock.The boundarybetweenRegions 2 and 3 is a contact
discontinuity. Densityandtemperaturechangediscontinuously
acrossthecontactdiscontinuitywhile pressureandvelocityare
unchanged.Region 3 is also a uniform region. Region 3 and
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the uniform Region 4 are separatedby an expansionfan in
which� the flow field propertiesvary isentropically. Analytical
expressionscanbeusedto definethepropertiesin eachregion
under the assumptionof one-dimensionalinviscid flow. A
more completedescriptionof this problem can be found in
mostcompressiblefluid dynamicstextbooks(e.g.,see[3]).
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Fig. 1. One-DimensionalShockTube

Assumingwe have a solution to the shock tube problem
describedabove, we now want to visualize the data. In this
case,it is not particularly challengingto locate the features
in the flow field at a given time. However, for the sake of
illustration, we assumethat the dataset is large and that we
want to use a representationschemethat facilitates ranked
accessto featuresin the dataset as discussedpreviously. As
notedabove,asignificantcomponentof theprocessis a feature
detectionperformedusingthecompresseddata.We chooseas
our wavelet transformthe linear lifting scheme[19]. Figure2
shows a sequenceof figuresillustratingtheeffectsof applying
the linear lifting schemeto the densityfield of a shocktube
solution at a given time. The figure on the top left shows
the original data defined using 65 points. Each remaining
figure correspondsto an applicationof the wavelet transform
resulting in 33 points, 17 points, and then 9 points. Of par-
ticular importancein thesefiguresis the fact that application
of thewavelet transformintroducesoscillatorybehavior in the
data.Clearly, theseoscillationsare unacceptableif a feature
detectionalgorithmbasedon gradientsis to be used.Further,
partial reconstructionof the datamay be in significanterror
dueto theseoscillationsandthecompressionof theotherwise
relatively smoothdatamay not be asefficient.

B. RelatedWork

It is well known that waveletscan efficiently approximate
smoothdata [6] and produceefficient compressionschemes.
To suitably preserve edges in scalar image fields, several
linear and non-linearor data-dependentschemeshave been
proposed[5], [7], [8], [14], [23]. In particular, Zhou [23] uti-
lizes EssentiallyNon-Oscillatory(ENO) reconstructions[10]
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Fig. 2. ThreeLevels of Linear Lifting for ShockTubeData

of the data so that fewer high frequency coefficients are
created.Arandiga, Chiavassa,and Donat [4] use nonlinear,
datadependent,ENO techniquesfor imagecompression,and
show them to outperformclassicalalgorithmsfor piecewise
smoothimages.

It is well known that lifting implementationsof linear
wavelets[19] allow for in-placecomputationand, in general,
reduction by half of the computationtime for the wavelet
decomposition.In [20] it is shown that any biorthogonal
wavelet transformcanbe factoredinto lifting steps.

Techniquesemployed in the study of partial differential
equations(PDEs) have been extensively utilized to define
the multiscale behavior of feature detectionalgorithms [1],
[11], [17], [21] for images.Typically, the time variable in
an evolutionary PDE is taken to representa scaleparameter.
Thesetechniquesare usedto enhanceinterregion boundaries
and smoothintra-region variations.In vision and imagepro-
cessingapplications,featuresof interestare usually defined
by edges,i.e. localizedregionsof pixel gradientsthat can be
thought of as discontinuities.It should be noted that linear
PDEsare not completelysuccessfulin enhancingboundaries
while eliminating noise. Discrete models of the diffusion
equation with a nonlinear conductancebased on gradient
information have proven to be particularly useful for these
applications[17], [21].

Our axiomaticfilter designresemblesthe work of Weickert
et al. [21] as well as that of Alvarezet al. [2]. Their frame-
works are different sincethe domainof interestis limited to
imagespopulatedwith strongdiscontinuitiessuchasedges.In
our application,however, not all regions of strong gradients
correspondto discontinuities.In fact, featureswith strong
gradientssuchasexpansionsandboundarylayersshouldnot
be treatedasdiscontinuities.
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C. Outline of the Paper

Our paper is structuredas follows. In Section 2 we de-
scribethe generallinear filter. In Section3 we formalizeour
ideasregardingfeaturepreservation including an analysisthat
definesconstraintsto be placedon the filter coefficients to
ensurethat new extrema are not created.In Section 4 we
describethe lifting scheme,which allows for an efficient, in-
placeimplementationof a biorthogonalwavelet transform.In
Section5 we presenta set of filter designaxiomsbasedon
the resultsin the previous two Sections.In Section6, using
theseaxioms, we design optimal feature preserving(OFP)
filters: linear feature-centricfilters that are optimal in the
sensethat they are closestin ��� to the ideal low passfilter.
Also, we describehow these filters may be employed in
lifting implementationsof feature-centricwavelets.Resultsare
includedin Section7 to demonstratethe feature-preservation
characteristicsof our filters.

2. GENERAL L INEAR FILTER

We now considera generallinear filter andcharacterizeits
behavior. We begin by defininga discrete,scalarquantity ����� �
on anequally-spacedmesh�
��� ��������� � for �!�#"%$'&(&)&($+*-, with, being a positive integer. We seeka multiscaleapproxima-
tion to ���+� � onasecondequally-spacedmesh,� ��.
�/� �0�1�2��� ��.
�
for �3�4"
$5&)&(&)$+, with �6�
��.
�7�8*-���
� , that preserves certain
characteristicsof the original scalar field. We denote this
approximationas � ��.
�/� � .

We now considera generallinear filter of the form

�/��.!�9� ��� :�;<=/> .@?BA = ����� � � : = $ (1)

where C and D arepositive integersandthe A = areconstants
that are independentof the data. The A = are composite
coefficients that representthe combinedeffects of a wavelet
transformimplementedas a filter. The discretemomentsof
the filter aregiven byEGF � :!;<=�> .@? H F A = & (2)

The frequency responseor amplificationfactorof the filter
is given by IKJML0N � :!;<=/> .	? A =PORQ =+S (3)

where the amplification factor representsthe responsefor
the frequency

L
(here TU�WV XZY ). The magnitudeof

IKJML0N
measuresthe amplitude of a unit Fourier coefficient upon
applicationof the filter and the phaseof

IKJML0N
measuresthe

phaseshift that occursuponapplicationof the filter.

3. FEATURE PRESERVATION

It is now appropriateto define what we mean by fea-
ture preservation. In this context, featurepreservation implies
that the “location”, “strength”, and “shape” of featuresare
unchangedafter the application of the general filter (1).
Of course,differencesnaturally occur due to the changein

resolutionbetween� � and � ��.!� . It shouldbe noted that the
behavior of the data in the spatial domain upon application
of the generalfilter (1) is equivalent to the behavior of the
solution of an evolutionary PDE in a scalespace.However,
we do not appealto this approachin the current paperand
rely, instead on more traditional analysis techniques.In a
relatedvein, an analysisof spatialfilters using Taylor series
expansionswasdescribedin [15] wherethefilter performance
was describedin terms of spatial criteria by examining the
non-zerodiscretemoments,i.e., the E F in (2).

In the sectionsthat follow, we formalize what we mean
by featurepreservation and develop conditionsthat the filter
coefficients A = mustsatisfyin orderto preserve certainfeature
characteristics.

A. Feature Position

The “location” of a featureis simply its positionwithin the
domain.Clearly, it is undesirableto have a stationaryfeature
that moves upon applicationof a filter. Similarly, a moving
feature that is improperly translatedis equally undesirable.
This problemis simple to remedy, however. It is well known
thatunsymmetricfilters,whenappliedto data,produce“shifts”
in the data.On the other hand,if the filter is symmetric,no
translationof thedataoccurs.For someunsymmetricfilters, it
is relatively straightforwardto determinewhatshift occursand
to performa translationof the entiredatasetuponapplication
of the filter. For others,this approachis not straightforward.
The simplestapproachis to consideronly symmetricfilters.
The first condition for featurepreservation we specify is that
the generallinear filter in equation(1) mustbe symmetric:

A = � A . = for all
H J�[ Y N

B. Feature Strength

The “strength” of a featurecan be describedin terms of
the changesin the data.For the strengthto be preserved, the
linear filter shouldnot accentuateor diminish local extrema.
This condition can be relatedto the frequency response(3)
of the filter. To be effective, the filter must eliminate high
frequency componentsof thedatabeforesampling.Therefore,
weexpecttheamplificationfactorto bezeroat \ , i.e.,

I]J \ N �" . Further, we may want to specify the numberof derivatives
of the amplificationfactor that we want to be zeroat \ . This
leadsto the secondconstraint:< =

J XZY N = H � A = �#"
$ for ^_�1"%$'Y-$5&)&(&($`�KXaY-$ J`[ * N
andsome�cbdY�$

where � is the numberof zerosof

I]J`L�N
at

L �#\ . To ensure
thata constantfield is not modifiedby applicationof thefilter,
we want the amplificationfactor at the lowest frequenciesto
be unity, i.e.,

I]J " N �eY . Using (3), we caneasily show that
theamplificationfactoris oneprovidedthecoefficientssatisfy
thepartitionof unity. Therefore,thethird conditionfor feature
preservation we specify is that the coefficientsof the general
linear filter (1) mustpartition unity:< = A = �fY J`[ZghN
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While the desiredbehaviors at zero and \ are well under-
stood, the behavior away from theseextremes is not. The
approachwe have taken is to assumethat the �5TiD!j filter is
the optimal filter for the intermediateranges.Therefore,the
fourth condition for featurepreservation we specify is:J &)&(&)$ A . � $ A .
�R$ Ahk $ A �P$ A � $5&)&(&

N
minimizesthe

J�[mlhN
� � distanceto the �5T2D!j filter.

C. Feature Shape

On approachfor describingthe “shape” of a featureis in
terms of regions of monotonevariation in the data. In this
context, “shape” preservation implies that the applicationof
the linear filter shouldnot introducenew extrema.This con-
dition is expressedin imageprocessing[21] as the “causality
condition.” This conditioncanbeimposedby ensuringthat the
lineartransformis TotalVariationDiminishing(TVD) afterthe
datais subsampled.

We now appeal to a concept from computationalfluid
dynamics to help define constraintson the A = values. In
modernCFDsimulations,nonlineartechniquestypically called
“limiting” areusedwith somesuccessto achieve higher-order
temporaland spatial accuracy without spuriousoscillations.
Harten [9] and Yee [22] have madesignificantcontributions
to this field with their work on Total Variation Diminishing
(TVD) algorithms.In our efforts, we focus purely on linear
transformsto preserve efficient invertibility.

In a TVD algorithm,the total variationof the solutiondoes
not increasewith time. In out context, we do not want the
total variationto increaseaswe changescalesfrom ^ to ^�XBY .
This canbe formalizedasnpo J ����.
� Nrq npo J ��� N (4)

where � � is the solutionat the currenttime level, � ��.
� is the
solution at the next time level, and the total variation of the
solution is given bynso J � � N � < � t � �+� � : � Xu� ��� � t (5)

where � ��� � : � and � ��� � are spatially consecutive valuesof the
solutionat time level ^ . By limiting the total variationof the
solutionto belessthanor equalto thevaluein the initial data,
spuriousoscillationsdo not develop in the data.

We now wantto imposetheconditionthatthetotal variation
of the data does not increaseas we proceedfrom finer to
coarserscales.Further, let us notice that we actuallywant to
imposethe TVD constrainton the subsampleddata ����.
� . We
will now describea necessaryandsufficient conditionfor this
to hold for any valuesof � � :

Theorem 1. The following inequalitiesform a necessary
andsufficientconditionfor a filter with coefficients A = to have
the TVD property (4) for any input ��� :< t A � =wv A � = : � t

q Y (6)< t A � = .
� v A � = t
q Y

Proofs of Theorem1 and Corollary 1 appearin the Ap-
pendix.

Corollary 1. Supposethe filter coefficients A = have the
partition of unity property, i.e. x = A = �fY . Thena necessary
and sufficient condition for the filter with coefficients A = to
havetheTVD property(4) for anyinput � � is that A = v A = : � b" for all

H
.

The fifth and final condition for feature preservation we
specifyis that the generallinear filter in equation(1) mustbe
total variationdiminishingafter sampling:

A = v A = : � ba" for all
H J`[zy-N

4. IMPLEMENTATION OF BIORTHOGONAL FILTER BANK

The general filter bank correspondingto a biorthogonal
wavelet transformappearsin Figure 3. The first half of the
filter bankis calledanalysis, andthesecondis calledsynthesis.
The filter { is the analysislow-passfilter, the filter | is the
analysishigh-passfilter, }{ is the synthesislow-passfilter, and}| is the synthesishigh-passfilter. Although the sizeof datain
LP is just half of the size of data in the input we want it to
bean accuraterepresentationof the input data.Also, we want
the perfectreconstructionproperty: the outputexactly equals
the input.

Fig. 3. Biorthogonalwavelet filter bank. LP standsfor low passand BP
standsfor bandpass.The sign ~�� denotesdownsamplingand the sign �0�
denotesupsampling

A. Thez-transformand Laurent Polynomials

Recall that a Laurent polynomial is a finite sum � J`��N �x ?� > ; A �
� � , where D�$�C aresome(possiblynegative) integers.

Thez-transformof a filter { with coefficients A = is theLaurent
polynomial { J��hN ��x = A =

� =
. In other words, we think of

the filter coefficientsascoefficientsof a Laurentpolynomial.
Note that we can think of the input sequence� as a Laurent
polynomialaswell. The main advantageof the z-transformis
that the convolution of � and { correspondsto multiplication
of Laurentpolynomials.This makes it possibleto have more
algebraicstructurein theconvolution operation,aswe will see
below.

If we denoteby {�� and {@� the even and odd parts of {
regardedasLaurentpolynomialswe have:{ J��hN �d{ � J�� � N v � .!� { � J`� � N (7)

Then the QuadratureMirror Filter (QMF) property implies
(see[18]): {�� J��hN � }|�� J�� .!� N $4{�� J��hN �eX }|�� J`� .
� N $ (8)| � J��hN �eX }{ � J`� .
� N $�| � J��hN � }{ � J�� .!� N

| J��hN � � .!� }{ J X � .!� N $�{ J��hN �fX � .!� }| J X � .!� N (9)
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where }{ is the synthesislow-passfilter, and }| is the synthesis
high-passfilter.

Additionally, the perfectreconstructionpropertyis equiva-
lent to the following complementaritycondition:� �'�s� {�� J��hN |�� J`��N{@� J��hN |�� J`��NU� �fY-$ (10)

which, in turn, is equivalent to (see[20]):{@� J`��N and {�� J`��N arerelatively prime

J�� Y N
i.e. that { � J��hN and { � J`��N have no commonzeros.

A secondcondition related to the biorthogonal wavelet
representationof ourfilter bankis thatthescalingfunction(see
[18]) of thewavelet transformis a finite energy function.This
is guaranteedby a conditionon therestrictedtransferoperatorn

. We define the restrictedtransfer operator
n

as follows:
if the length of the convolution product of the sequenceof
coefficients A = with itself is , , then

n
is the

J ,#X6* N �zJ ,1X6* N
matrix obtainedfrom doubleshiftsof this convolutionproduct,
times 2 (see [18]). Then the secondcondition derived from
the biorthogonalwavelet representationis:n

hasoneeigenvalue ����Y J2� * N
andall othershave

t � t � Y
B. TheLifting Scheme

The lifting schemeis a methodof factoringwavelet filters
into basic building blocks called lifting steps, which also
allows for spatial domain wavelet design. Daubechiesand
Sweldens([20]) showed that any biorthogonalwavelet filter
bank can be decomposedinto lifting steps.In Figure 4 we

Fig. 4. Lifting stepsdecomposition:we think of the input andthe filters as
Laurentpolynomials(see[20])

see the lifting stepsdecompositionof the analysishalf of
the biorthogonalfilter bank in Figure 3: we first split the
input sequenceinto even andodd entries,thenwe alternately
filter each channeland use the output to modify the other
channel,and in the end we multiply by scalars YR�P� , resp.� . In Figure5 we seethat the synthesisis exactly a reversed
analysis.The implementationof the filter bank using lifting
allows for an in-placecomputationof the wavelet transform
and leadsto an improvementin efficiency whencomparedto
the standardimplementation.

5. AXIOMS

Having defined feature preservation, we now enumerate
a list axioms for the design of optimal feature-preserving
(OFP)filters. Accordingto the discussionin the previous two
sections,we impose the following feature-preservation and

Fig. 5. Inverselifting stepsdecomposition(see[20])

wavelet-representationrequirementson the filter coefficientsA = : J`[ Y N A = � A . = for all
HJ`[ * N < =

J XZY N = H � A = ��"
$ for ^_�#"%$'Y-$5&)&(&($`�7X�Y�$
andsome�cb�YJ`[Zg�N < = A = �eYJ`[mlhN
betweenall filters with the desiredproperties,

the filter given by the coefficients A =minimizesthe �3� distanceto the �5T2D!j filterJ`[zy-N
A =�v A = : �pb�" for all

HJ2� Y N if A . ; is the first nonzerocoefficient, then the

polynomials A . ; v A . ;�: �
� v A . ;-: �

� � v &(&(&
and A . ;�: � v A . ;�:��

� v A . ;�:!�
� � v &(&)& are

relatively prime.J2� * N the restrictedtransferoperator
n

hasone

eigenvalue �U�eY , andall othereigenvalues

have
t � t � Y

Axioms

J�[ Y N X J`[zy�N
are related to the featurepreservation

propertiesof the OFP filters (see section 3 for details). It
shouldbe notedthat the coefficientsfor the �5TiD!j filter do not
satisfy the TVD constraint

J�[zy-N
. Thus,our OFPfilter design

strategy will seeka compromisebetweenthe ideal frequency
behavior andthefeaturepreservationpropertiesof TVD filters.
Finally, axioms

J2� Y N and

J�� * N ensurethattheproposedfilter
is thelow passfilter of abiorthogonalwavelettransformwhich
canbe implementedasa seriesof lifting stepsandhasa finite
energy scalingfunction (seeSection4 for details).

The following Theorem shows that the spatial domain
axiomsaboveareequivalentto a comprehensivelist of feature-
preserving, approximation, implementation,and optimality
properties:

Theorem 2. The requirements

J`[ Y N X J2� * N above are
necessaryandsufficientconditionsfor thefollowingproperties
to hold:J

A
N

(Convergenceof the cascadealgorithm, see[18])

The iteration ��� Q : ��� JM��N �dx = * A = ��� Q �
J * � X H N

, where��� k � is a box function,convergesin �3� .J��'N
(Accuracy of approximationof order p)

Theerror estimatefor a function � JM��N of class  ¢¡
at scale � � ��* .
� is of the form   J � ��N ¡ t � �£¡ � JM��N t .J j N (Total variation diminishesfrom fine to coarsescale)
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(No moving features)

There is zero phaseshift from fine to coarsescaleJ O N (Lifting schemeimplementation,see[20])

There existscomplementaryhigh-passfilter, and the

associatedwavelettransformadmitsin-place

implementationusing the lifting scheme.J � N (Average grey level invariance)

Theaverage of the data is unchanged whenpassing

from fine to coarsescale.J | N (Preservationof low frequencies)

Themomentof order 0 is 1, and the momentof

order 1 is 0.J { N (Optimality)

Betweenall filters with the desired properties,the

filter givenby the coefficients A = minimizesthe��� distancein the frequencydomainto the ideal

brick wall filter.

Seethe Appendix for a proof of Theorem2.

6. FILTER DESIGN

We now use the framework developed in the previous
Sectionsto designOFPfiltersandfilter banks.For asymmetric
filter with coefficients A = thefrequency responsehastheform:IKJ`L0N � A k v * <=§¦ � A = j�¨��

J H L0N
(11)

and all derivatives of

I
of odd order vanish at zero and at\ . Thereforeit is enoughfor

IKJML�N
to have, for example,the

secondderivative at \ equalto zero,andthenits first, second
and third derivativesat \ arezero.

Remark. If we try to increaseboth the numberof zeros
at 0 and the number of zeros at \ while imposing the
TVD inequalities,we will notice that there are no nontrivial
solutions.For example,if the secondderivative of

IKJ`L0N
has

the property

IZ© ©2J " N � IZ© ©iJ \ N �#" , thenwe get:

A � v
l
A � v«ª A � v Y5¬ A � v * y A � v &(&)&� A �3X
l
A � v«ª A � XaY5¬ A � v * y A � X�&(&)&� "
&

From this we concludethat:

A � v«ª A � v * y A � v &(&(&­� l
A � v Y5¬ A � v

g ¬ A�® v &(&)&��¯"
$
and thenJ
A � v A �

N v g�J
A � v A �

N v ¬ J A � v A �
N v Y5" J A � v A �

N v &(&)&°�±"
which togetherwith the TVD inequalitiesimplies that

A � v A � � A � v A � � A � v A �s� A � v A � �f&)&(&��²"
and this togetherwith the filter being FIR implies that A = �" for all

H b³Y . The sameholds if we replacethe second

derivative above with any otherevenorderderivative of

IKJML�N
.

Hence,we only imposeconditionson the numberof zerosat\ .

A. OFP Low PassFilter Design

Given two positive numbers, and � , we canfind the filter
coefficientsof a symmetricTVD filter which is a partition of
unity, haslength , , has� zerosat \ , andis closestin �3� to the
ideal low passfilter. We usethefollowing two-stepprocedure:

Step1. Make linear substitutionsof A Q with some

� Q such
that the TVD condition on A Q translatesto the condition that
the new variables

� Q are the coefficientsof a point in the , -
dimensionalcube ´ "
$5Y�µ·¶ .

Step2. Usea quadraticoptimizationprocedureto solve for
the new variables

� Q , underthe � linear restrictionsgiven by
the existenceof � zerosat \ .¸�¹ value¸»º 1/2¸�¼ 1/4¸ º 1/2¸ ¼ 1/4¸»½ 0¸»º 1/2¸�¼ 1/4¸ ½ 0¸»¾ 0¸ º ¿ ½ ¼MÀGÁ�¼`Â2Ã(Äi¾�Â2À¸ ¼ ¿ ¾2¾2À�Å�¼`Â2Ã(Ä»¼·Æ2ÆiÀ¸»½ ¿ ¼`Â
Á�¾�À5Ã)Ä»¼MÆ�ÆiÀ¸ ¾ Á ¿ ¼MÂ
Á�¾2À'Ã(Ä»¼·Æ2ÆiÀ¸ Æ ¿ ¼`Â
Á�¾�À5Ã)Ä»¼MÆ�ÆiÀ¸»º ¿ ¾2Ç�È�À�Á ½2½ ÆÉÃ)ÄÉÂ�Ê2º�À¸�¼ ¿ ¼`Â�È2À�Å�Â2º�ËiÃ)Ä�¼M¾2Ë�º2À¸ ½ ¿ ¼�¼ ½ Á�¼`È�À'Ã(Ä»¼`¾�Ë2º�À¸»¾ Á ¿ ¼2¼ ½ Á3¼MÈ2À'Ã)Ä�¼M¾2Ë�º2À¸ÉÆ ¿ ¼�¼ ½ Á�¼`È�À'Ã(Ä»¼`¾�Ë2º�À¸»È ¿ ¼MÂ2È2ÀGÁ�ÆiÊ2Â2Ã(Ä»¼M¾2Ë2º�À¸�¹ value¸»º 3/8¸�¼ 1/4¸ ½ 1/16¸ º 3/8¸ ¼ 1/4¸»½ 1/16¸ ¾ 0¸»º ¼`¾iÄ ½ Ë¸�¼ ½ ÊÉÄ»¼�¼ ½¸ ½ ¼2Ä»¼2¼ ½¸»¾ Áh¼�Ä�¼�¼ ½¸ÉÆ ¼2Ä»¼2¼ ½¸ º ¿ Á ½ Ë2ËhÅ3¼MºiÇ`È2À'Ã(Ä ½�½ ¾2º�À¸ ¼ ¿ Áh¼MÊ ½ Å�Ê ½ Â2È�À'Ã(Äi¾2È�Â2Ë�º2À¸»½ ¿ È2À�Å�¾2ÂiÃ)Ä»¼2¼�¼`È2À¸ ¾ Á ¿ È2À!Å�¾�ÂiÃ)Ä�¼�¼2¼MÈ2À¸ Æ ¿ È2À�Å�¾2ÂiÃ)Ä»¼2¼�¼`È2À¸ È ¿ ¼`¾`Æ2Æ�ÁÌ¼`Ë�È2À'Ã(Äi¾�È2Â2Ë�º2ÀÍ ¸ ¹ value

2 ¸ º 1/2¸ ¼ 1/4
4 ¸»º 3/8¸�¼ 1/4¸ ½ 1/16
6 ¸ º 5/16¸ ¼ 15/64¸»½ 3/32¸ ¾ 1/64
8 ¸»º ¾�ÈÉÄ»¼ ½ Ë¸�¼ ÇiÄi¾ ½¸ ½ ÇiÄiÂ�Æ¸»¾ ¼2Äi¾ ½¸ÉÆ ¼2Ä ½ È�Â
10 ¸ º Â�¾ÉÄ ½ È�Â¸ ¼ ¼Mº2ÈiÄÉÈi¼ ½¸»½ ¼MÈÉÄ»¼ ½ Ë¸ ¾ Æ2ÈÉÄ»¼`º ½ Æ¸ Æ ÈÉÄiÈÉ¼ ½¸ È ¼�Ä»¼`º ½ Æ

Fig. 6. Î st table: optimal featurepreserving(OFP) filters with 2 zerosatÏ ; longerfilters arecloserto the ideal low passfilter; � nd table:OFPfilters
with 4 zerosat Ï ; again,longerfilters arecloserto the ideal low passfilter;Ð rd table:shortestOFP filters with Ñ zerosat Ï (splinefilters)

Examples. Here we explain how we obtainedthe tables
in Figure 6. Let us examine the optimal featurepreserving
(OFP) filters with two zeros at \ that, for a given length
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, , are closestin �3� to the ideal low passfilter. To compute
them,we minimize the squareof the norm of the difference
betweenour filter and the ideal low passfilter, subjectto the
linear identities and inequalitiesgiven by

J`[ * N , J�[Zg�N
, and

J`[zy-N
. Note that we supposedthe filter to be symmetricfrom

the very beginning, so

J`[ Y N is also satisfied.Thereforewe
have to minimize a quadraticfunction of Ahk $'&(&)&($ A ; subject
to somelinear inequalitiesand identities.We can replacethe
TVD inequalitieswith positivity requirementsby using the
following linear substitution:

A ; � � ; (12)

A ; .!�Ò� � ; .
�3X � ;
A ; . � � � ; . � X

� ; .!� v � ;&'&5&
Ahk � �

k X
� � v �

� Xa&(&)& J XZY N ; � ;
Then,imposingthe TVD inequalities

J�[zy-N
on A k $'&(&)&($ A ; is

equivalent to imposing the positivity conditions

� Q bÓ" on
�
k $5&)&(&)$

� ; . This allows us to reducetheproblemto minimizing
a quadraticfunction subjectto somelinear identitieson the
positive domain.Moreover, we canrestrictthe domainfurther
to the cube ´ "
$5Y�µ � ´ "
$5Y�µ � &(&)& � ´ "
$5Y�µ when we notice that
the TVD conditionsimply that

� = q Y for any
H
. This allows

us to usea quadraticoptimizationprocedureto computethe
exact valuesof the solutions.

In Figure6 we list theresulting A = ’s just for
H ba" , because

for
H � " they aredeterminedby symmetry. In the first table

in Figure6 we imposeaccuracy of approximationof orderat
least �Ô�4* . Note that the spline filter

J YR� l $'YP��* $5YR� lhN is not
optimal if we allow for a large enoughnumberof filter taps.

Let us look now at symmetricTVD filters with four zeros
at \ that are also closestto the ideal low passfilter. Again,
we minimize the quadraticfunction given by the squareof
the norm of the differencebetweenour filter and the ideal
low passfilter, subjectto the TVD inequalities,and to three
linear identities,oneidentity given by

J�[Zg�N
and,since��� l

,
two identities given by

J`[ * N . The result is the filters in the
secondtable in Figure 6. Again, note that the spline filter
J YR� Y5¬%$'YR� l $ g �PÕ%$'YP� l $5Y§��Y5¬ N is not optimal if we allow for a
large enoughnumberof filter taps.

We can also look at OFP filters which have the maximum
number� of zerosat \ . For any , we solve a systemof linear
inequalitiesgivenby the TVD conditions,andidentitiesgiven
by theequations

J`[ * N for themaximum� for which a solution
still exists.We get the third table in Figure6. Notethat these
are exactly the spline filters. On the other hand,they are the
symmetricTVD filters that (for a given numberof taps)have
the smallestorder error estimatefor smoothdata,while also
preservinglow frequencies,andannihilatinghigh frequencies.

In conclusion,theshortestfilter thatsatisfiesall our axioms
for a given � is a spline filter of length � v Y . On the other
hand,splinefilters arenot optimal if we allow a large enough
numberof filter taps.

B. High PassFilter Design

We arenow interestedin finding short,symmetric,smooth
high passfilters associatedwith the OFP low passfilters that

we designed.
Recall that, since | J`��N � � .
� }{ J X � .
� N , the designof the

analysishigh passfilter | is equivalent to the designof the
synthesislow-passfilter }{ . This simplifiesthedesign,because
symmetryand regularity conditionsare easierto describein
termsof thesynthesislow-passfilter }{ . Recallthat the“Euclid
algorithm” that generatesa high-passfilter associatedwith a
given low-passfilter in [20] doesnot give a uniquesolution.
We would like to usethe connectionbetween| and }{ to help
us decidein the choiceof | .

Supposenow that the synthesislow-passfilter }{ hascoeffi-
cients &(&(&)$ A .!�R$ A�k $ A �R$ A � $ A � $'&(&)& , and is symmetric,i.e. A . = �A = for all

H
. Then }{ J`��N is a symmetricLaurentpolynomialof

the form}{ J`��N �Ö&(&)& v A �
� . � v A �

� .!� v A k v A �
� v A �

� � v &)&(& (13)

We have:|�� J`��N � Xz}{@� J`� .
� N (14)� &(&)&KX A �
� . � X A �

� .!� X A �rX A �
� X×&)&(&|�� J`��N � X }{@� J`� .
� N� &(&)&KX A �

� . � X A �
� .!� X Ahk X A �

� X A �
� � XØ&(&)&

We are now going to describean algorithm for finding
coefficients A = such that the filter | defined in terms of }{
as in (14) is a high passfilter associatedto a given low pass
filter { .

The input of the algorithm consistsof the coefficients of
the filter { , anda positive integer � that is the desirednumber
of zerosat \ of the filter }{ . The �5Ù`Ú step in the algorithm
looks for filter coefficients A = suchthat A = �#" for all

H � � ,
and suchthat all the linear conditionsgiven by (10) and the
linear constrainsgiven by }{ ’s zerosat \ are satisfied.The
algorithmterminatesfirst time whensucha solutionis found.
The algorithmdoesterminatesincethe numberof degreesof
freedomincreasestwice as fastas the numberof constrains.

Examples. If for {	�p� J YR� l $5YR��*
$'YP� lhN we look for | such
that }{ has one zero at \ , this algorithm finds the solutionA k �

g ��*
$ A � �eYR�-* $ A � �eXZYR� l , which gives}{U� J XZYR� l $'YP��*
$ g �-* $5YR��* $'XZY§� l�N &
Using theQuadratureMirror Filter identities(QMF, see[18]),
this implies that|_� J XZYR� l $'XZYP��* $ g �-* $'XZYP�P* $5XmYR� l $�" $+" N &
In the first table in Figure7 we list the resulting A = ’s for the
filter { � anda few valuesof � (for

H � " the coefficientsare
determinedby symmetry).

Onecanof courseapply the samemethodto any low pass
filter { . For the filter{ � �

J YP��Y§¬
$'YP� l $ g ��Õ
$5YR� l $'YR��Y5¬ N
we get the filters }{ in the secondtable in Figure7.

Similarly, for the filterÛ�Ü�Ý]Þàßß§ß�á!â�ã ßß§ß/á�â ßß§ß/á0â á'äß§ß/á�â ß9åß5ß�á�â á5äß5ß�á�â ßß§ß�á0â�ã ßß§ß�á!â ßß§ß/á	æ
we get the filters }{ in the third table in Figure7.
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ç è valueç é 5/2ç ê 5/16ç � -3/4ç Ü 3/16ç é á'ðRíPß�ìç ê ó åRí'ð§öç � ã åRí'îç Ü ã ì5í§á�îç-ë ß9äRí ó öç�ñ ã ß9äRí§á�îRöç-é åRí§áç ê á ó ß�í5á§ì óç � ã å§ï§í ó îç Ü ã ß ó ï§í5á§ì óç-ë ß�í§áç ñ á'åRí§á5ì óç ò ã ß5ß�í ó îç ô ß5ß�í§á5ì ó

ç-è valueç-é å§äRï5ï�ß/í§á§ì�îRð5öç ê á§ï§ì'ö-ß/í§ì5ö5ä ó öç � ã ß�ì§í5ì§áç Ü ã á�îRåRí5ì5ö5ä óç ë îRö5äRí5ì5ö§ä ó öç ñ îRö5äRí5ì5ö§ä ó öç-é ß9îRï ó ì'î�ß/í�ß5ß/å ó ì5ä5öç ê ß9å§å§á'îPï5í�ß/ï'îRð ó öç � ã å§á�ß ó ß�íPß§ß9å ó ì'äç Ü ã å5ö5îRå5ðRï5í�ß§ß9å ó ì5ä§öç ë ó å ó ì§ì5í'îPì�î ó å óç ñ å ó å�ß�í�îPì'î ó å óç-ò ã á§ì5ö�ß�í5ì ó ð§á5ä§ìç�ô ã á§ì5ö�ß�í5ì ó ð§á5ä§ì

Fig. 7. The three tables above contain filters ÷ø
computed for the OFP filters

ø ê ù ú Î�û+üRýÉ��û+üRý�Î�û+ü'þ ,ø � ù ú Î�û5Î�ÿ§ýiü'û5Î�ÿ§ý2ÿ�û5Î�ÿ§ýiü'û5Î�ÿ§ý�Î�û5Î�ÿ�þ , ø Ü ù ú Î�û5Î/Î��§ý� Î�û5Î/Î��§ý�Î�û5Î/Î��§ýi� � û5Î/Î��§ý+Î Ð û5Î/Î��§ýÉ� � û5Î/Î��§ý+Î�û5Î/Î��§ý � Î�û5Î/Î��§ý+Î�û5Î/Î���þ ,
respectively; in each table the number of zeros at Ï increaseswith the
numberof filter taps

C. Lifting Decomposition

Oncewe decidedon an associatedanalysishigh passfilter| for a given OFP analysislow passfilter { , we can usethe
factoring algorithm from [20] to determinea lifting scheme
decompositioncorrespondingto that particularchoiceof pair
of filters ( {�$»| ). We will againhave to make a choicebetween
many possiblelifting schemedecompositions.Our filtersbeing
symmetric,we decideon a symmetricfactorization,i.e., one
in which every quotientis a multiple of

� v Y (see[20], Section
7.7).

Examples.We will now give the resultinglifting stepsfor
some examples of filters

J {!$�| N . In the case that the OFP
analysislow passfilter { is

J YR� l $5YR��*
$'YP� lhN , the lifting steps
are given by filters � � , the updatefilter

� � , and finally the
scalingwith factorsK and1/K. The filter

� � that specifiesthe
last lifting stepdependson the number � of zerosat \ that}{ has.We denoteit by � Q if }{ has T zerosat \ . The filter � �
doesnot dependon }{ . We have:�R�Ò� YR�-* v � ��*� �Ò� XZYR� l X�YP� l�� $ if ���fY� �Ò� YR��Õ � � X g �PÕ � X g ��Õ v � �PÕ
$ if ����*� �Ò� XZYR� � � � v«ª �-*�Õ � � X�Y g �-*�Õ � XaY g �-*�Õ v ª � �-*�ÕX � � � � $ if ��� g� � � � � Y§*-Õ � � X g YP��Y§*-Õ � � v y

� ��Y§*-Õ � � XÔ¬ y ��Y§*-Õ � X¬ y ��YR*�Õ v y
�
� ��Y§*-ÕwX g Y � � � Y§*�Õ v � � � ��YR*�Õ
$ if ��� l

� � YR�-* (scaling)

For example,to implementthe wavelet transformcorrespond-
ing to {c� J YR� l $'YP��*
$'YR� lhN and some }{ that has2 zerosat \
we would go throughthe following lifting steps:

step1: perform lifting using � �
step2: performlifting using

� � �eYR��Õ � �GX g �PÕ � X g �PÕ v� �PÕ
step3: performscalingusing � �eYR�-*

In the caseof the analysislow passfilter { � J YP��Y5¬%$'YP� l $g ��Õ
$5YR� l $'YP��Y5¬ N we find that the first lifting stepwill have to
be

� � , andnot � � .We have:� � � YR� l�� v YR� l� � � � v Y�
� � X g � Y5¬ � X g � Y5¬%$ if ���eY�
� � Y ª � �-* l "�X l ��Y y X l ��Y y-� v Y ª ��* l " � � $ if �U��*� � YR� l (scaling)

In the case of the filter { �Þ êêÉê � â � êêÉê � â êêÉê � â ���êÉê � â ê ÜêÉê � â ���êÉê � â êêÉê � â � êêÉê � â êêÉê � æ we again find
that the first lifting step will have to be

� � , and not � � . We
get:� � � XZYR� � v Y� � � X � ��* ª XaYR��* ª�

� � Õ l YR� ª Õ-" � v Õ l YR� ª Õ-"� � � * l�y�� � g ��� v * l�y � g ���� � � X y�g Y � ��* � l-l "¤X y-g Y � ��* � l-l " � $ if ���fY� � � Y ª � �-* l "�X l ��Y y X l ��Y y-� v Y ª ��* l " � � $ if �U��*� � Y g ��*-Õ (scaling)

Let us describea completefilter bank associatedto the
OFPfilter {B� J �� $ �� $ ��

N
. According to [20] thereexist many

complementaryhigh passfilters associatedto a givenlow pass
filter. Let us look for a symmetricone.It is easyto checkthat
the bestwe cando with a two-steplifting is

|_� J XZYR�PÕ%$'XZYP� l $ g � l $'XZYP� l $5XmYR�RÕ%$�" $+" N &
It is not possible for | to be symmetric, but the one
above has linear phase, and is the shortest complemen-
tary filter with these properties.The filters { and | form
the analysis half of the filter bank. To get a biorthogo-
nal wavelet transform the associatedsynthesisfilters will
have to be }{ � J XZYP�PÕ
$5YR� l $ g �PÕ%$'YR� l $�XZYP�RÕ N $ and }|±�J "%$�"%$'XZYR� l $5YR��*
$'XZYP� l�N . This is the dual of the biorthogonal
Cohen-Daubechies-Feauveau(5,3) wavelet system.

7. RESULTS

In this Sectionwe will presentsomeresultsobtainedusing
the optimal featurepreserving(OFP)filters we designed,and
comparethem with resultsobtainedusing filters that are not
optimal and not featurepreservingaccordingto our design
procedure,e.g. the linear andcubic lifting filters.
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A. 1D Results

Figure 8 shows the samesequenceof imagesshown in
Figure2, but usinganOFPfilter. Unlike Figure2, the initially
monotonedata remainsmonotone.Although the dissipative
natureof the filter is evident from somesmearing(blurring)
of the features,the dissipationof the filter is not too severe.
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Fig. 8. ThreeLevels of OFPLifting for ShockTubeData

B. 2D Results

Let us look at what happenswhen we useOFP and non-
OFP wavelet transforms for lossy transformationsof two
dimensional data (where some percentageof the wavelet
coefficientsarediscarded).

Let us first considera fluid dynamicsdatasetcontaininga
stationaryobliqueshock.The obliqueshockis a discontinuity
acrosswhich the velocity magnitudeand direction, pressure,
anddensitychangein a prescribedmanner. Theoriginal scalar
pressurefield and velocity direction field are in Figure 9(a)
andFigure10(a),respectively. Thestreamlinesof the velocity
field are shown in Figure 11. In Figure 9(b-d) we see the
resultsof OFPversusnon-OFPwavelet transformsresultsfor
the pressurefield. Note the significantGibbs-like oscillations.
Similarly, the direction of the vector field obtained using
an OFP transformationhas a smooth transition acrossthe
shock,as shown in Figure 10(a), while the direction of the
vector fields obtainedby using non-OFPfilters varieswildly
near the shock, as shown in Figures 10(b) and 10(c). In
Figure11 thestreamlinesof transformedvectorfieldsobtained
by usingfilters with theOFPpropertiesarevery similar to the
streamlinesof the initial vector field, while the streamlines
of transformedvector fields obtainedby using filters that do
not have the OFPpropertieshave somerandomartifacts.This
can be explainedby referring to Figure 10. The transformed
vectorfieldsobtainedby usingfilters thatdo not have theOFP
propertieshave directions that are not convex combinations
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Fig. 9. OFPversusnon-OFPlossywavelet transformsfor thepressurefield:
(a) original pressurevalues; (b) OFP transformationof pressurefield; (c)
linear lifting transformationof pressurefield; (d) cubic lifting transformation
of pressurefield.
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Fig. 10. OFP versusnon-OFPwavelet transformsfor the direction of the
vector fields: (a) original vector directions; (b) vector directionsafter OFP
transformation;(c) vector directions after transformationusing the linear
lifting scheme;(d) vectordirectionsaftertransformationusingthecubiclifting
scheme.

of neighboringvectorsand, therefore,createthe “clustering”
evident in the streamlineplots.

Sinceour new filter banksweredesignedmainly for feature
preservation,we do not expectthemto bebetterthanlinearor
cubic lifting wavelet transformsat lossy datatransformation.
Nevertheless,in generalthey provideerrorratesthatarealmost
as good as for linear or cubic transformation,and, for some
input datasets,they provide smaller error rates than linear
and cubic wavelets.On the right side of Figures12, 13, 14
the horizontal axis of the error rates graphs measuresthe
percentageof wavelet coefficients which are discarded,and
the vertical axis measuresthe total ��� error.

For example, if the input is the periodic, high-oscillation
texture datasetthat we seeon the left side in Figure 12, we
get the error ratesresultson the right sideof Figure12. Note
thattheOFPerrorratesin Figure12 aresmallerthanthelinear
and cubic transformationerror ratesin Figure 12. Also, note
that the smallesterror ratesareobtainedby using }{ with two
zerosat \ , andnot onezeroat \ asbefore.

If the input is the scalardensity field on the left side of
Figure 13 we get very similar error rate resultsfor the OFP
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Fig. 11. OFPversusnon-OFPwavelet transformsfor vectorfields: (a) Zoom
in: the original vector field; (b) streamlinesof the original vector field; (c)
streamlinesof vectorfield transformedusinganOFPwavelet; (d) streamlines
of vectorfield transformedusing the linear wavelet
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Fig. 12. LossyOFPversusnon-OFPwavelet transformsfor a periodic,high-
oscillationtexture dataset:Left: texture dataset;Right: error levels usingOFP
(solid line), linear (dashedline) andcubic (dottedline) wavelet transforms

andnon-OFPwavelet transforms,aswe seeon the right side
of Figure13.
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Fig. 13. LossyOFPversusnon-OFPwavelettransformsfor a densitydataset.
Left: densitydataset;Right: error levels usingOFP(solid line), linear (dotted
line) andcubic (dashedline) wavelet transforms

If theinput is a scalarfield of vectormagnitudesthatwe see
in Figure14, which originatedfrom a Pacific Oceancurrents
dataset,we get the error rateson the right in Figure14.

In Figure 15 we seethe result of applying OFP and non-
OFP filters to a 2D shock image. To get the middle image
we useda two level wavelet transformassociatedto the OFP
filter (1/4,1/2,1/4).To get the right-sideimagewe useda two
level cubic lifting wavelet transform.We noticethat the image
transformedusing the cubic wavelet hasstrongartifacts,due
to the sharpvariationsneardiscontinuities.
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Fig. 14. OFP versusnon-OFPwavelet transformsfor a vector magnitude
dataset.Left: vector magnitudedataset;Right: error levels using OFP (solid
line), linear (dottedline) andcubic (dashedline) wavelet transforms

Fig. 15. Left: original 2d shock image; Middle: OFP lifting result, 80%
wavelet coefficientsdiscarded;Right: Cubic lifting, 80% wavelet coefficients
discarded

C. 3D results

Let us also considera three dimensionaldataset.In Fig-
ure16(a)we arelooking at anexplosiondataset,whereaniso-
surfacewasextractedandrendered.We apply OFPandcubic
wavelettransformsto theoriginal3D dataset,andagainextract
andrenderaniso-surfacefrom eachtransformeddataset.When
we used the OFP wavelet, the octant correspondingto the
smoothedversion of the original data looks similar to the
original iso-surface.Whenwe usedthe non-OFPwavelet, the
octantcorrespondingto the smoothedversionof the original
datadoesnot look similar to the original iso-surface:bright-
nessis significantly reduceddue to Gibbs-like variation of
the datain the transformeddataset,especiallynearthe region
wherethereis a sharptransitionto very high temperature.

8. CONCLUSIONS

In this paperwe defineda spatial domain framework for
the analysis and design of multiscale filters. Included in
this framework are a set of axioms that can be used to
designfilters thatpreserve certaincharacteristicsof thedata—
namelythe position,strength,andshapeof features.The OFP
filters andwavelet transformsdesignedusingour axiomshave
consistentlybetter featurepreservation propertiesthan usual
filters (such as the linear and cubic lifting filters), without
significant sacrifice of the approximation performancefor
lossy transformations.

We suggestthat the methodsproposedhere can also be
usedin conjunctionwith frequency domainmethodsto design
multiscale linear wavelet filters. We plan to utilize these
techniquesto develop vector-valued wavelets with feature
preservingqualities.

APPENDIX I

Proof of Theorem 1. Let us first look at the special
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(a) Original explosiondataset

(b) 3D wavelet transformusingan OFPwavelet

(c) 3D wavelet transformusingcubic wavelet

Fig. 16. OFPversusnon-OFPwavelet transformsin 3D case

casewhere the *-, valuesof � � on level ^ are of the form"
$�"%$'&(&)&($�"%$'Y�$'Y-$5&)&(&($'Y . Without lossof generalitywecansuppose
that A = � " for all

H q " and for all
H b D v Y .

For large enough values of , the intermediatevalues ����
will have the form "
$�"%$'&(&)& "
$ A ; $ A ; v A ; .
�R$ A ; v A ; .
� v
A ; . � $5&)&(&($ A ; v &)&(& v A �P$ A ; v &(&)& v A �R$5&)&(&)$ A ; v &)&(& v A � . Here
we supposethat we use an appropriatemethodof handling
the boundarywhen computing the convolution product, by
which the input signal ��� is paddedat eachboundarywith
valuesequalto the leftmostandthe rightmostexisting values
at the boundary. For example, for our data, we pad the
left boundarywith zerosand the right boundarywith ones.
Thereforethe subsampleddata � ��.!� will have eitherthe form"
$�"%$'&(&)&($�"%$ A ; $ A ; v A ; .!� v A ; . � $ A ; v A ; .!� v A ; . � v A ; . � v

A ; . ��$'&(&)&($ A ; v &(&)& v A � $ A ; v &)&(& v A � $'&(&)&($ A ; v &(&)& v A � , or the
form "%$�"
$5&)&(&($�"
$ A ; v A ; .
� $ A ; v A ; .
� v A ; . � v A ; . � $'&(&)&($ A ; v&(&)& v A � $ A ; v &(&)& v A � $'&(&)&($ A ; v &)&(& v A � . From this it follows
that either nso J � ��.
� N � < t A � = v A � = : � t (15)

or npo J ����.
� N � < t A � = .!� v A � = t (16)

accordingto the parity of the index � suchthat ����� ����" and����� � : �s�4Y . Let us notice that
nso J �/� N � Y . This implies that

a necessarycondition for
npo J � ��.
� Nàq npo J � � N is that the

coefficients in (1) satisfy the two inequalities(6).
We will now prove that the two inequalities(6) are also a

sufficient conditionfor
npo J ����.
� N¤q nso J ��� N . Without lossof

generalitywe can suppose� ��� = ��" for all
H � " . For some

fixed level ^ andvalues � � let us define � by

� = �#� �+� = : � Xu� ��� = (17)

Also, let us considera matrix 	 with components	 ?s� Q �A Q . � ?s.!� v A Q . � ?s. � . Recall that
t
	
t � ��

��� Q x ? t

	 ?s� Q t ,
where

tKt � is the usual � � operatornorm. If (6) holds, then
we have < ? t

	s?s� Q t q Y (18)

for any T , which implies that
t
	
t � q Y . In particular, it follows

that
t
	��

t � q t
�
t � , so< ? t < Q 	s?¢� Q � Q t

q < ? t
�-? t

(19)

We are now going to show that the desired inequalitynso J � ��.
� Nrq nso J � � N is implied by (19). We havenso J � ��.!� N � < ? t
�� �+� � ? : � X��� ��� � ? t

(20)

� < ?
�����
< Q A Q � �+� � ? : � : Q X < Q A Q � ��� � ? : Q

�����

� < ?
�����
< Q A Q

J � ��� � ? : � : Q XÔ� ��� � ? : Q
N �����

� < ?
�����
< Q A Q

J
� � ? : Q : � v � � ? : Q : �

N �����
On the otherhandaccordingto (19) we havenso J � � N � < ? t � �+� ? : � XÔ� ��� ? t

(21)

� < ? t
��? t

b < ?
�����
< Q 	 ?s� Q � Q

�����

� < ?
�����
< Q

J
A Q . � ?s.
� v A Q . � ?s. �

N
� Q �����
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Let us alsonotice that< Q A Q
J
� � ? : Q : � v � � ? : Q : �

N
(22)

� < Q
J
A Q . � ?¢.!� v A Q . � ?s. �

N
� Q

sincewe cansplit thefirst suminto two sumsandthenregroup
the termswith the same� Q factor to get the secondsum.

Finally, by putting (20), (21) and (22) together, we getnso J � ��.!� Nrq nso J � � N . Thereforewe have proved that (6) is a
necessaryand sufficient condition for the TVD property(4).
Let us also notice that in the specialcasewhen x A Q � Y ,
i.e. the coefficients A Q area partition of unity, we canusethe
inequalities < t A � =�v A � = : � t b < A = (23)< t A � = .
� v A � = t b < A =
to concludethat the condition(6) is equivalentto having

A =�v A = : �pb�" (24)

for all
H
. In otherwords,we obtaina proof of Corollary 1.

Proof of Theorem 2.
According to [18],

J
A
N

is equivalent to

J2� * N and

J��'N
is

equivalentto

J�[ * N (seetheAppendixmoredetails).According
to the Corollary in section3.2,

J j N is implied by

J`[zy-N
and

J`[Zg�N
. Also, accordingto our observationsin section3.1,

J�¥hN
is implied by

J�[ Y N . According to [20]

J O N is equivalent to
J�� Y N . From their definitions,

J � N is equivalent to

J`[ZghN
and

J | N is implied by

J�[ Y N and

J`[ZghN
. Finally,

J { N is equivalentto
J`[mlhN

since the Fourier transformpreserves the energy from
the spatialdomainto the frequency domain.

For convenience,we describesomeimportantresultsabout
wavelets and lifting from [18] and [20], usedby us in the
Theoremin Section6 and in the designof the algorithmthat
generatesan associatedhigh passfilter of a given low pass
filter.
Axiom

J2� * N is also known as Condition E. We have (see
[18]):

Theorem. Assume that the dilation equation � JM��N �x = * A = �
J * � X H N

hasa finite energy solution � JM��N � � � . Then
Condition E is a necessaryand sufficient condition for the
cascadesequence��� Q : ��� JM��N � x = * A = �!� Q �

J * � X H N
to converge

to � JM��N . Moreover, if Condition E holds, then the cascade
sequenceconvergesto some � JM��N � ��� .

Another result from [18] is:
Theorem. If x = J XZY N = H � A = �Ó" for ^]�³"
$'Y�$'&(&)&($`� XfY ,

thentheerrorestimatefor a function � JM��N of class   ¡ at scale� � �d* .
� is of the form   J � ��N ¡ t �0�£¡ � JM��N t .
The exact statementof the theoremaboutfactoringwavelet

transformsinto lifting stepsis (see[20]):
Theorem. Given a complementaryfilter pair

J {!$�| N , there
alwaysexist Laurentpolynomials � Q J��hN and

� Q J`��N for Y q T qC anda nonzeroconstant� suchthat theanalysishalf of the
filter bankcanbedecomposedasin Figure4 andthesynthesis
half of the filter bankcanbe decomposedas in Figure5.
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