
A biologically inspired framework for Self healing Overlay Systems
Sriram Chellappan, Xun Wang and Dong Xuan

Department of Computer and Information Science,

The Ohio State University,

Columbus, OH 43210

{chellapp, wangxu, xuan}@cis.ohio-state.edu

Abstract: In this report, we study the issue of providing self healing behavior to

overlay systems following biological principles. Specifically we study the

mechanisms of tissue wound healing in human beings and apply the principles to

Intermediate Forwarding Overlay systems. We design a protocol that follows from

the tissue wound healing mechanisms and discuss preliminary insights we have

obtained on its performance under attacks on the Intermediate Forwarding Overlay

systems. We believe that significant performance benefits can be obtained using

biologically inspired healing mechanisms especially under intensive attacks.

1. Introduction

In simple words, an overlay system consists of a set of nodes where each

application (running on a node) establishes connections with other applications and

thereby builds a topology among them on top of the existing IP layer. Due to its

features of being easily deployed and application-controlled, overlay systems have

tremendous scope in the future towards designing newer systems for different

applications. Applications of such systems are (1) Content Delivery Networks

(CDN) [2], (2) Video conferencing [3] and (2) file sharing [4]. Recent research has

extended to scope of overlay systems to provide critical and emergency

communication services to the government and military administration [1, 6]. Such

intermediate forwarding systems themselves will be the target of attacks by

adversaries and hence need to be resilient and ‘self-healing’ such that they can

effectively recover from failures and still maintain performance levels. In this

report, we study to how to apply the tissue wound healing principles and

mechanisms employed by the human body to make such systems self-healing. The

 1

report is organized as follows. In Section 2, we discuss our motivations for this

study. We describe the Tissue wound healing mechanism in Section 3. Section 4

discusses our self-healing protocol under attacks. We discuss preliminary

observations and scope for future work in Section 5.

2. Motivation

The Intermediate Forwarding System (IFS) typically consists of a set of overlay

nodes acting as a communication medium between clients and a critical server.

Clients contact the overlay nodes that in turn talk to the server. Depending on the

service scope, these systems will be comprised of nodes diverse in terms of

geography, processing power, functionality etc.

Considering that the intermediate forwarding systems (IFS) will be used for

emergency communication services, they are prone to attacks. Attacks on nodes can

have serious consequences in terms of disrupting communication between the

clients and the target. We consider two threats to the IFS system, (1) Break-in

attacks and that aim to disclose more nodes and maybe eventually the critical server

and (2) Congestion Attacks that aim to congest a node in the system effectively

preventing it from servicing requests. Nodes disclosed can be targets of future

congestion attacks. This naturally leads to designing good defense mechanisms for

these systems. It is obvious that under large scale and/ or unexpected attacks, it is an

onerous task to maintain performance levels by relying on any manually repair

mechanism. It is very important for the system to be self-healing by itself such that

attacks effects can be effectively minimized.

In this report we study the design self-healing intermediate forwarding systems,

deriving inspiration from many biological organisms that are inherently self-

healing. Biological mechanisms have been successfully used in the past for solving

many real-world problems [7, 8]. Our approach to address the issue of self-healing

IFS systems derives inspiration from the tissue wound healing mechanisms in

human beings fundamentally because of the direct similarities in the attack effects

in both the cases and the special features of the Intermediate forwarding overlay

system that lends itself to apply the tissue healing mechanisms as we discuss later.

 2

3. Tissue Wound Healing Process

Towards realizing self-healing IFS systems, as a first step, we study the tissue

healing process in human beings. The following are phases in the healing system

when reacting to any injured tissue.

1 Bleeding phase: This phase typically is the system’s initial reaction to an

injury. Depending on the nature of injury, the bleeding may be significant.

2 Inflammatory Phase: This phase is a normal and necessary prerequisite to

healing. The cells surrounding the affected area immediately react by killing

poisonous or dead tissues present and they set up mechanisms to signal and

facilitate the successive repair process. To do this, the cells surrounding the

affected tissue (such as master cells, platelets and basophiles) send chemical

mediators out. One result is an increase in the vaso-permeability of the

local vessels, which allows increased exudates production such as plasma

proteins. This production facilitates the successive healing process. Plasma

proteins provide the essential components to generate new tissues.

3 Proliferation Phase: This is the first step of the actual repair. New tissues

will be generated from plasma proteins to replace the lost ones. Many such

tissues are generated and such ‘repair tissues’ are ‘coarse’ in the sense that

they are not ‘perfect’ replacements for the lost tissue. They are just a

temporary alleviation to replace the lost tissues that can bring the damage

effects under control and resume the workability of the affected organ

swiftly.

4 Re-modeling Phase: The repair tissues are eventually remodeled so that

they can exactly replace the lost tissues. This process is neither swift nor

highly reactive. This phase is eventually necessary as otherwise the affected

organ cannot recover ‘fully’ and may still show signs of the injury. In order

to accomplish this, the organ needs to be in a workable state (at least

partially) so that over a period of time the replaced tissue can bring itself to

exactly replace the lost tissues by getting itself molded due to operation of

 3

the organ. This phase is typically an instance of physical therapy.

It is easy to see that the effects of the attacks we consider disrupting the IFS system

are similar to the effects of a wound in the human body. There is a loss of resources,

a detectable change in the systems state and its performance and the need for fast

reaction. More importantly, overlay systems naturally have some salient features

that lend themselves towards applying such mechanisms for recovery. Overlay

networks are flexible with more control at the application layer and addition of new

functionality towards enabling recovery merely translates to running new

applications (software) on the individual nodes. Addition of resources translates to

deployment of more nodes (depending on their availability). Other features of

overlay system that we will consider are their diversity, the ease of swapping

resources etc.

3. A Self-healing protocol for Intermediate Forwarding systems

Before we describe our self-healing protocol, we will describe our system briefly.

Our IFS systems typically consist of nodes residing in a set of intermediate layers

through which clients communicate with a server. Nodes currently residing in any

of the layers are active nodes. Apart from these, there are spare resources available

for replacements. Clients communicate with nodes in the first layer that

communicate with nodes in the next layer and so on. Nodes in the last layer

communicate with the server. Each layer has a Layer head that necessitates any

reaction under attacks. Nodes also maintain connections with a subset of nodes in

their layer with the connectivity established by the Layer head. As mentioned

before, the attacks we consider are break-in attacks and congestion attacks. Figure 1

shows a description of our IFS system.

 4

Figure 1. The Intermediate Forwarding Systems Architecture

Our self-healing mechanism follows from the Tissue wound healing mechanism

discussed in Section 3. Our approach is to by splitting the healing process into two

phases. They are (1) Maintenance Phase and (2) Reaction Phase. The Maintenance phase

(Main protocol) is periodically performed by all the nodes while the Reaction phase

(Reaction protocol) is performed only by the Layer head of a particular layer. In this

section we will describe the protocols and give their pseudo code. Appendix 1 contains

the actual protocols.

4.1. The Main Protocol

This protocol performs the maintenance. Each node in the IFS periodically checks with

its previous layer nodes for their availability. We assume that there is a mechanism to

identify the set of nodes that are congested or broken into (typically, we call such a node

as compromised). Once a node detects that its previous layer nodes are compromised it

forwards the information to its neighbors that eventually reaches the layer head of that

layer. The layer head upon receiving this information takes appropriate action in terms of

just replacing the compromised nodes under mild attack intensities or take stronger action

under heavier intensities. The following is the pseudo code for the protocol.

Pseudo code for the Main Protocol:
// Performed by each node in the system except first layer nodes for maintenance.

Module Main ()

do

 5

nbr = Get neighbors in the previous layer

nbr_cong = Get congested neighbors in previous layer

nbr_broken = Get brokeninto neighbors in previous layer

If (0 < nbr_cong) OR (0 < nbr_broken)

 inform other neighbors of the list of compromised nodes

End If

If LayerHead

 nbr_total_cong = get all congested nodes in previous layer

 nbr_total_broken = get all boken-into nodes in previous layer

 If not contacted by another layer // to assist in recovery

 Call module react // to start the reaction process

 End If

 End If

 While (true)

End Module Main ()

4.2. The Reaction Protocol

Once the layer head obtains the set of compromised nodes in the next layer, it decides

what sort of reaction to take. This reaction can be to replace newer nodes, merge the

layers together or split them. Such a reaction is instinctive in the sense that this may not

be an optimum solution. Rather it is a temporary reaction to the attack. The layer head

also periodically checks to see if any further optimization can be done even during the

absence of attacks. Such operations can be performed only if the layer head can really

determine the Global optimum (at least within a certain bound). We are in the process of

designing such functions for the same.

Pseudo code for the Reaction Protocol:
// Performed at each layer by Layer head only

Input: The set of congested nodes and broken-in nodes in the previous layer

Module Reaction (set a, set b)

Set Flag =1 // To indicate reaction being performed

if (nbr_total_cong = 0) OR (nbr_total_broken = 0) // No attack

 Goto Stage:

endif

Find q nodes to replace the set a and b

 6

If found

 Replace the set of congested and broken-in nodes and connections

Else // System is in a state of alert

Stage: Call Function to determine nature of reaction and resources needed

 If merge needs to be done

 Contact previous layer head to merge

 Reestablish routing tables and connections

 End if

 If split needs to be done

 Remove selected nodes from layer

 Forward to layer before which a layer needs to be added

 Reestablish connections and Routing tables

 End if

End if

Set Flag = 0.

End Module Reaction ()

5. Discussion and Future Work

We have obtained significant insights into the performance of the IFS system in [5].

There we discovered good properties of the IFS system that is static without dynamics.

We clearly studied the effects of three properties of IFS systems, namely (1) node density

(number of nodes in each layer), (2) connectivity degree across the layers and (3) number

of layers. We will leverage our findings there in using these three features in our self-

healing protocol. The following are introductory conclusions that we have obtained in the

design of self-healing IFS systems. Under high intensities of Break-in attacks, we should

dynamically increase the number of layers in the system to make it harder to disclose the

target and also reduce the number of nodes disclosed. Under congestion attacks, we

should merge layers together primarily in order to increase the number of connections

across layers. Such a step may not be optimum in performance because the primary goal

is to restore communication and reduce attack effects. Eventually the system will

'remodel' itself to better states. We are in the process actually implementing the protocol

and trying to obtain clearer insights into self-healing IFS systems. Another direction of

our current work is in designing biologically aware IFS system structures. By this we

wish to employ proactive protection mechanisms to our IFS system by building the

 7

structure based on principles of biological mechanisms. These involve virus defense

structures, structure enabling localization of attacks etc. It is also our belief that this study

will help eventually us in designing biologically inspired self-healing protocols for other

classes of overlay systems.

References

1. A. Keromytis, V. Misra, and D. Rubenstein, "SOS: Secure Overlay Services,"

in Proceedings of ACM SIGCOMM'02, (Pittsburgh, PA), August 2002.

2. J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. “Informed content

delivery across adaptive overlay networks,” In Proceedings of ACM

SIGCOMM 2002.

3. Yang-Hua Chu, Sanjay Rao, and Hui Zhang. “A case for end system multicast,”

In Proceedings of ACM Sigmetrics, Santa Clara, CA, 2000. Bio-networking

4. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord:

A scalable peer-to-peer lookup service for Internet applications,” Technical

Report TR-819, MIT, March 2001.

5. D. Xuan. S. Chellappan, X. Wang and S. Wang, Analyzing Secure Overlay

Services Architectures under intelligent DDoS attack, to appear in Proc. of

IEEE International Conference on Distributed Computing Systems (ICDCS)

2004.

6. David G. Andersen, Mayday: Distributed Filtering for Internet Services, 4th

Usenix Symposium on Internet Technologies and Systems, Seattle,

Washington, March 2003.

7. Jeffrey Kephart, A biologically Inspired Immune System for Computers,

Artificial Life IV, R. Brooks and P. Maes eds., MIT Press, 1994.

8. Michael Wang, Tatsuya Suda: The Bio-Networking Architecture: A

Biologically Inspired Approach to the Design of Scalable, Adaptive, and

Survivable/Available Network Applications, Symposium on Applications and

the Internet, San Diego 2001.

 8

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Michael.html

Appendix 1.

We describe the main and reaction protocols and the corresponding function and

message handlers here.

1. The Main Protocol

Input: No Input
Module Main ()

// Performed by all nodes except ones at the First Layer for maintenance

// Periodically each node checks with its neighbors in previous (i-1) layer.

do

ni.original_nbr_set = func_get_nbrs()

ni.congested_neighbor<- func_get_prev_cong_neighbor_list()

ni.brokeninto_neighbor<- func_get_prev_brokeninto_neighbor_list()

If (0 < ni.congested_neighbor) OR (0 < ni.brokeninto_neighbor)

 send message neighbor_down(original_nbrs,congested nodes, broken-into nodes) to

neighbors

// The above message will eventually reach Lhi

If LayerHead then

 prev_congested_nodes = func_get_congested_list ()

 prev_brokeninto_nodes = func_get_brokeninto_list ()

 If Merge_Flag ==0 then

 call module react(prev_congested_nodes, prev_brokeninto_nodes)

 While(true)

End Module Main ()

2. The Reaction Protocol

Input: Set of congested and broken-in nodes
Module reaction (set a, set b)
// Layer head i does this and replaces (i-1) layer nodes

Set Flag = 1 // to indicate some operation is currently being done.

if (a=0) and (b=0) // no attacks for remodelling purposes

 GoTo Stage:

end

// Obtain q new nodes to replace set a and b

q <- func_get_new_nodes(|a U b|)

if q = (|a U b|) then // Put the q nodes in the overlay

lhi. prev_Layer_Working_Set <- func_get_all_prev_list() // stored in the db. get K

if (Lh(i-1) € (a or b))

 9

 lh(i-1) <- func_choose_layer_head(q U lhi.current_prev_layer_list)

send message_arrange_Peers to lh(i-1)

 //lh(i-1).peer_list <- func_arrange_peers(q U W(i-1))

 lhi. prev_Layer_Working_Set<- func_finalize_connections(lh(i-1).peer_list)

 send message restablish_broken_conn_with_lower_layer (set q) // to Lh(i-1) to

 end

 end

if (all not replaced) then

 Stage: Lhi.new_data_structure = func_advice (int a, int b) // DataStructure contains all info needed to react

 If Lhi.new_data_structure.merge = True

 Lhi.peer_list<- func_get_all_peer_list() // get my nbr’s and so on

 lhi.current_prev_layer_list<- func_get_all_prev_list()

 if Lhi.prev_layer_working_set==o then

 send message partition_resolve() to upper layer

 Lhi.prev_prev_layer_working_set<-send Merge_Request message to Lh(i-1)

 Lhi.prev_prev_working_set <-send message_get_me_Peer_list() to Lh(i-1)

 send message relinquish_head() to node that was previously Lh

 lh(i-1).finalizeconnecitons(Lh(i-1).prev_prev_layer_working_set) // i<- i-1

 Forward message update_conn(Lh(i-1).peer_list)to Lh(i) // one layer up

 End

 If Lhi.new_data_structure.split = True

 Lhi.peer_list<- func_get_all_peer_list() // get my nbr’s and so on

 lhi..current_prev_layer_list<- func_get_all_prev_list()

 Lhi.newdatastructure.split_set <- func_split_advice(lhi.peer_list)

 //split_set contains set nodes to remove

 // nodes removed are forwarded to some fixed layer say B <=L.

 Lhi.peerlist <- arrange_peers(Lhi.peer_list - nodes removed) //

 Lhi.func_finalize_connections(lhi.current_prev_layer_list)

 Forward message update(Lhi.peer_list to Lh(i+1))

 send add_layer_msg (set R, B) to Lh(i+1)

 end

Set Flag =0.

End Module Reaction ()

Output: A new structure

 10

3. Function Handlers:
func_choose_layer_head(set ni)

 {

 // Among the nodes in the input, choose the most powerful one P

 Return P.

 }

func_arrange_peers(set ni)

 {

 // The purpose of this function is for the Layer head ask each node to maintian

 information about only some nodes among its peers. This is to ensure that each node

 does not know all nodes in the same layer, while the layerhead can still

 commmunicate with all nodes in the layer.

 // At the end, each node (including Layer head) will know a subset of nodes in its layer

 Return Layerhead’s contacts in its layer

 }

func_finalize_connections(Set q)

{

 if |q| < d(i-1) // obtained from structure property

 find q-d(i-1) more nodes.

 q = q Union d(i-1)

 // Set up connections for the nodes and inform them of their lower_nbr_list depending

 on dml(i) (obtained from Property)

 // Set up connections for each of the q for their upper_nbr_list depending on dmu(i-1)

 (obtained from Property)

if message received from other nodes

 func_arrange_peers

else

send message arrange_peers(q) to Lh(i-1)

 //Return q. // q=ni for the previous layer (i-1)

}

func_get_nbrs()

{

// get nodeid’s in routing table in previous layer

Return Prev_nbrs

}

 11

func_get_prev_cong_neighbor_list()

{

// get nodeid’s is routing table in previous layer that are congested

// Obtained thru significant delay is ‘Hello’ messages

Return neighbors that are congested

}

func_get_prev_brokeninto_neighbor_list()

{

// get nodeid’s is routing table in previous layer that are broken into

// Obtained thru decoy nodes mechanism etc

Return neighbors that are disclosed or have broken-into

}

func_get_congested_list ()

{

 set a= func_get_prev_cong_neighbor_list()

send message get_all_congested(set a)

 }

func_get_brokeninto_list ()

{

 set a= func_get_prev_brokeninto_neighbor_list()

 send message get_all_brokeninto(set a)

 }

func_advice(set a, set b)

{

// Determine the effect of Set a and Set b

Return desired properties // Return What to do

}

func_split_advice(set a)

{

// Determine the effect of Set a

Return set b // set of nodes to split

}

 12

func_get_all_prev_list()

{

// get nodeid’s in routing table in previous layer and

a = func_get_nbrs()

send message get_all_prev_list(my ID, set a) to all nbrs

Return set p // all nodes in prev layer

}

func_get_all_peer_list()

{

// get nodeid’s in routing table in previous layer and

a = func_get_nbrs()

send message get_all_prev_list(my ID, set a) to all nbrs

Return set p // all nodes in prev layer

}

4. Message Handlers:
message neighbor_down (k,set a, set b)

{

congested nodes = a U func_get_prev_cong_neighbor_list()

broken-into nodes = b U func_get_prev_brokeninto_neighbor_list()

total_nbrs = k U func_get_nbrs()

send message neighbor_down(K, congested nodes, broken-into nodes) to neighbors

 // Hanndled only by a LayerHead

 If K = Null

 send partitionresolve message to upper Layer

 // Store K in database temporarily

 Call func_react (congested nodes, broken-into nodes)

}

message Partition_Resolve()

{

// handled by layer heads

if authorized to handle it then

 send partition recovery message to first layer Lhi // this layer has the info

else

 forward the meggage to upper Layer Head

end

}

 13

message Partition_Recovery()

{

// Handled by Lhi

Forward the message to upper Lhi.

if Partition is detected then decrypt the message to read ID of nodes in the message

 send message my_current_set_to_resolve_partition to Lh in the ID’s

end

}

message my_current_set_to_resolve_partition (current_set)

{

// handled by Lhi
 Read the current_set from the message

 finalize_connections(current_set)

}

message add_layer (set R, int B)

{

// handled by layer_head i

if (i<>B)

 Forward to next lh(i+1)

elseif (i==B)

 //Read the message and obtain Id’s of the nodes

 Lhi.chooselayerhead(set R) // R = layerhead in i-1

 Lhi.finalizeconnections(R)

 a = func_get_all_prev_list()

 send message update_conn(set a) to Lh(i-1)

 // Lh(i-1).arrange_peers

}

message get_all_brokeninto(set a)

{

set a = a U func_get_prev_brokeninto_neighbor_list()

send message get_all_brokeninto(set a) to all nbrs

If LH then stop forwarding

 Return set a

}

 14

message get_all_congested(set a)

{

set a = a U func_get_prev_cong_neighbor_list()

send message get_all_congested(set a) to all nbrs

If LH then stop forwarding

 Return set a

}

message get_all_prev_list(ID, set a)
{

set a = a U func_get_nbrs()

ID = myID U ID

send message get_all_brokeninto(ID, set a) to all nbrs

If LH then stop forwarding

 Return set a

}

message restablish_broken_conn_with_lower_layer (set q)

{

// Hanlded by LayerHead i

 func_arrange_Peers(set q)

 send message get_me_Peer_list to prev Layerhead (i-1)

 func_finalize_connnections

}

message get_me_Peer_list()

{

// handled by layer head i

send message forward_Id’s (my id) to nbrs

}

message forward_Id’s (id)

{

// handled by each node

id = idU myid

send message_forward_Id’s (myid) to nbrs

if Layerhead

 return set myid

}

 15

message arrange_peers(set q)

{

// handled by Lhi

func_arrange_peers(set q)

}

message update_conn(set a)

{

func_finalize_connections(set a)

}

message_start_maintenance()

{

module maintenance()

}

message_relinquish_head()

{

// LayerHead i relinquishes its role as a head completely

}

message_merge_request()

{

Merge_Flag =1

Stage:

 Check Flag

 if Flag <> 1 then

 Lh(i).next_layer_working_Set <- func_get_all_prev_list() // done by Layer Head i-1

 else

 Goto Stage

 end

}

 16

	Module Main ()
	End Module Main ()

