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Abstract

Biomedical image data can provide rich information
about morphological and functional characteristics of bi-
ological systems. Major challenges to more effective use
of biomedical imaging in basic and clinical research are
the efficient management of large image datasets and image
processing workflows and the effective sharing of data and
workflows in a collaborative environment. In this paper, we
present a suite of services that work collectively to address
issues associated with metadata management, data storage
and management, and management and execution of image
processing workflows. We demonstrate the use of a generic
XML-based metadata and data management system in tan-
dem with a distributed execution system. We perform a pre-
liminary performance evaluation of the system on a cluster
system.

Keywords: Workflow management, Metadata, Dis-
tributed Computing, Image Analysis, XML.

1 Introduction

Analysis of image data is increasingly becoming a key
component of biomedical research. Recognizing this, sev-
eral large and collaborative initiatives have targeted devel-
opment of systems to support access to distributed reposito-
ries of image datasets [7, 24, 30]. Advanced image acquisi-
tion devices make it possible for the biomedical researcher
to obtain structural and functional information at very high
resolution. High-end scanners can generate images up to
20 Gigabytes in size. Storage requirements can be enor-
mous as a single study can generate hundreds of such im-
ages. There are also difficulties in achieving rapid response
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time for various types of data analysis queries into the slide
image database.

On the hardware side, PC clusters built from low-cost,
commodity items are increasingly becoming widely used,
causing a change in the way hardware can be scaled and
leveraged in a cost-effective manner. A remaining chal-
lenge is to develop techniques and middleware support for
1) management of large datasets (from gigabytes to multi-
ple terabytes in size), 2) execution of simple and complex
image analysis workflows, and 3) management of metadata
associated with input/output datasets, intermediate results,
and workflows (the number of images and data files can
go up to millions of files distributed across multiple sys-
tems) on distributed collections of commodity clusters. In
addition to allowing users to traverse images, software sys-
tems should efficiently support the synthesis and analysis
of thousands of images and facilitate the sharing of results
obtained from image analysis.

In [20], we developed a system to support rapid imple-
mentation and distributed execution of image analysis ap-
plications, implemented using the Insight Segmentation and
Registration Toolkit (ITK) [21] and Visualization Toolkit
(VTK) [27]. The system provided support for the combined
use of task- and data-parallelism and pipelined execution
in a distributed environment. However, it implemented a
rather rudimentary mechanism for management of storage,
data, and metadata, which is important for collaborative
studies.

In this work, we extend our previous work to develop and
evaluate a suite of services that work collectively to address
challenging issues in metadata management, data storage
and retrieval, and image workflow management and exe-
cution. We demonstrate the use of a generic, XML-based
metadata and data management system, called Mobius [25],
in conjuction with the distributed execution environment
developed in [20]. We perform a preliminary performance
evaluation of the system on a cluster of machines with vary-
ing number of images.
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Figure 1. A sample image analysis workflow for micro-CT images. A series of methods are applied
on the CT images to reconstruct a 3D volume. In this workflow, the background correction method
consists of another series of operations on data. The result 3D volume can then be registered with
a 3D volume from another imaging session, registered volumes can be visualized and segmented,
and segmentation results can be visualized by the researcher.

2 Motivation and Overview
2.1 Motivation

Although data values and types of data acquired by
different imaging modalities may differ, a common char-
acteristic is that the amounts of data captured by advanced
imaging devices can surpass the storage capacity of a single
machine, requiring use of distributed storage systems.
Another challenge is to provide support for on-demand
image analysis and collaboration. In order to address these
needs, a system should support:

Management and Evolution of image processing work-
flows. Researchers should be able to compose, register,
and version workflows. The definitions and instances of
workflows should be managed in a standard and efficient
way so that researchers can share workflows and reference
others’ workflows in theirs. The system should also allow a
researcher to version workflows (e.g., to add new analysis
components or modify the order of data processing steps)
and manage the updated instances of workflows.

On-demand creation and management of distributed
image databases. In addition to sharing of the output of
data analysis, datasets generated by the intermediate steps
of a workflow could be stored and shared. By examining
these datasets, a collaborator can better understand how the
researcher arrived at her results and to potentially modify

the workflow to see if better results or different conclusions
can be obtained. Furthermore, any of these intermediate
datasets could be utilized as input to a completely new
workflow that builds on previous steps of the original
workflow. This could potentially provide a significant
runtime performance improvement as redundant workflow
steps do not need to be recomputed if they are shared
between multiple workflows [31]. A researcher should be
able to create a database of images and make it available
for remote access. From a performance point of view,
the database should be able to scale to very large datasets
and to large number of clients by taking advantage of
heterogeneous collections of clusters and multiprocessor
machines. In order to minimize 1/0 overheads, techniques
should be implemented for data distribution and data
staging.

Efficient execution of image analysis workflows. An im-
age data processing flow can consist of several stages of 1)
sequences of simple and complex operations, 2) an array
of parameters applied to a group of operations (e.g., reg-
istration, segmentation), and 3) interactive inspection and
visualization of images. As an example, Figure 1 shows an
image analysis workflow for micro-CT images. In order to
speed up complex operations and parameter studies, the sys-
tem should support execution of image analysis workflows
in a heterogeneous and distributed environment. It should
also allow check-pointing of intermediate results so that the
user can carry out interactive inspection on the data.



2.2 System Overview

In this work, we propose a system that consists of three
core services to address these issues. These services collec-
tively provide support for metadata management, data stor-
age and management, and distributed execution.

e The first service builds on a distributed metadata man-
agement component that keeps track of metadata as-
sociated with workflows, input image datasets, inter-
mediate results check-pointed during execution of a
workflow, and output image datasets. This service
allows registration, management, and versioning of
workflows and image information as XML schemas.
Schemas defined by other researchers can be included
in a schema for the workflow and image information
for a study. This service also manages the metadata
associated with image datasets generated by an execu-
tion of a workflow.

e The second service is a storage service that efficiently
manages distributed collections of disks in the system
for storage and staging of collections of input images,
images generated by intermediate stages of the image
analysis workflow, and output datasets. This service
supports distributed storage of large images and index
generation and lookup for efficient data retrieval. It
enables an XML virtualization of relational databases,
as defined by XML Schemas. It allows user-defined
data types to automatically manifest custom databases
at runtime, and data adhering to these data types to be
stored in these databases.

e The third service builds on the distributed execution
middleware developed in [20]. It supports efficient ex-
ecution of image analysis workflow as a network of
image processing components in a distribute environ-
ment. The network of components can consist of mul-
tiple stages of pipelined operations, parameter studies,
and interactive visualization.

We build the three services using Mobius [25] Global
Model Exchange (GME) and Federated Data Exchange
(Mako) services and DataCutter [5]. Mobius is a middle-
ware framework designed for efficient metadata and data
management in dynamic, distributed environments. Its de-
sign is motivated by the Grid (in particular by the activities
of the Data Access and Integration Services group at Global
Grid Forum [11, 17]), by earlier work done at General
Electric’s Global Research Center [22], and by the require-
ments of biomedical research studies that involve integra-
tion of data, including proteomic, molecular, genomic, and
image data, in a multi-institutional environment. Mobius
provides a set of generic services and protocols to support
distributed creation, versioning, management of database

schemas, on-demand creation of databases, federation of
existing databases, and querying of data in a distributed en-
vironment. Its services employ XML schemas to represent
metadata definitions and XML documents to represent and
exchange metadata instances.

In our system, image analysis is described as a network
of data processing components (an image processing work-
flow). Input images in a dataset are processed through this
network to produce sets of output images. Image process-
ing workflows and image datasets are modeled by XML
schemas. These schemas are managed by the metadata
management services of Mobius. Instances of schemas are
stored, retrieved, and managed by the data management ser-
vices of Mobius. The image schema may define attributes
associated with an image, such as the type of the image,
study id for which this image was acquired, date and time
of image acquisition, etc. An instance of the schema cor-
responds to an image dataset with images and associated
image attributes stored across multiple storage systems run-
ning data management servers. For a workflow, the schema
defines the skeleton of the data processing network. An
instance specifies the function names and locations of in-
dividual components, the number of copies and placement
of copies for a component, persistent check-pointing loca-
tions in the workflow (which tells the execution environ-
ment that output from check-pointed components should be
stored as intermediate image datasets in the system), input
and output datasets (conforming to some schema registered
for image data), and data selection criteria (which specifies
the subset of images from input datasets to be processed).
The workflow instance can be stored in the system so that
clients can search for it and execute it using the distributed
execution environment. The distributed execution service
carries out instantiation of components on distributed plat-
forms, and management of data flow between components,
and data retrieval from and storage to distributed collections
of data management servers. An example use of the system
is shown in Figure 2.

In the rest of the paper, we describe each service in more
detail and present performance results. Our preliminary ex-
perimental evaluation of the proposed system focuses on ex-
ecution of workflows with and without check-pointing, and
scalability with respect to storage and retrieval of images on
parallel storage and compute platforms. In a future work,
we plan to investigate the efficacy of the system for collab-
orative studies and studies in which database and workflow
definitions change over time.

3 Related Work

Several projects have focused on problem solving envi-
ronments and runtime support for application execution in
distributed environments [23, 26, 9, 1, 3, 15, 28, 6, 10, 2].
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Figure 2. The overall system architecture. A client can create new schemas for workflow and image
data or use existing ones in the metadata service. The client creates an instance of the workflow
schema, stores it in the data service, and sends an image processing request to the distributed
execution service. The distributed execution service retrieves the workflow instance, instantiates
it on a distributed platform, and manages its execution. The execution of the workflow reads input
data from data services and stores the check-pointed intermediate images and output images in the

system.

The Chimera [3, 15] system implements support for estab-
lishing virtual catalogs that can be used to describe how a
data product in an application has been derived from other
data. The system allows storing and management of infor-
mation about the data transformations that have generated
the data product. This information can be queried and data
transformation operations can be executed to regenerate the
data product. The AppLeS Parameter Sweep Template [10]
is a middleware system for expressing and executing pa-
rameter sweep applications in the Grid. The Pegasus project
develops systems to support mapping and execution of com-
plex workflows in a Grid environment [13, 12]. The Pega-
sus framework uses the Chimera system for abstract work-
flow description and Condor DAGMan and schedulers [16]
for workflow execution. It allows construction of abstract
workflows and mappings from abstract workflows to con-
crete workflows that are executed in the Grid.

These systems, including our system, are conceptually
similar; they target execution of applications in distributed
environments. They differ in their target applications and
the underlying systems and techniques they use. Our sys-
tem targets image analysis applications in which the pro-
cessing structure can be exposed as a network of operations.
We address the metadata and data management issues us-
ing a generic, XML-based metadata and data management

system. This system allows modeling and storage of image
data and workflows as XML schemas and XML documents,
enabling use of common protocols for storing and querying
data. The system is designed as a set of loosely coupled ser-
vices with well-defined protocols to interact with them. For
example, the metadata and data services of our system could
be used by other systems in order to store workflow defini-
tions and instance data. Similarly, our system could use
Condor [16] and Pegasus [13, 12] for scheduling of compu-
tations in a Grid environment.

Linda [2] is a coordination language designed to sim-
plify the construction of complex parallel systems. It relies
on asynchronous and associative communication to coordi-
nate computation in its global Tuple Space. A key to the
success of Linda is its simplicity. However, this simplicity
also makes it difficult to express richer data types and com-
putional requirements, such as maintaining data locality in
the global tuple space. Our work addresses these limitations
in serveral ways. Our data storage system provides the abil-
ity to make intelligent storage decisions such as maintaining
workflow locality. Our data types and querying capabilities
are exteremely expressive as we utilize the rich structural
descriptions of XML Schemas and query using advanced
XML query languages.

A large body of research has been devoted to develop-



ing software infrastructure to enable application execution
in the Grid [14, 17]. Globus [18] provides a set of services
that support authentication, authorization, replica manage-
ment, resource allocation, and job execution. The Storage
Resource Broker (SRB) [29] and the Network Weather Ser-
vice (NWS) [32] are other Grid systems that provide sup-
port for remote file access and resource monitoring, respec-
tively. While our work focuses on issues associated with
metadata/data management and workflow exection, our sys-
tem can leverage those systems in several ways. For exam-
ple, the data service can utilize Globus replica management
services for creating and managing replicas of the datasets.
SRB can be leveraged for remote file access, if images
are stored on remote file systems. NWS can be used for
run time load management of our distributed metadata/data
storage services.

4 Metadata Service: Management of Models
for Workflow and Data

For any image processing application it will be essential
to have a model and the metadata for the image data. In or-
der to support processing of image datasets, we should also
be able to model the workflow, which represents the image
processing structure of an application. In this work, im-
age data and workflows are modeled using XML schemas
and managed by the metadata service. The metadata service
is implemented using the Global Model Exchange (GME)
service of Mobius. We first give a brief description of the
GME and then present how image data and image process-
ing workflows are modeled in the system.

4.1 Mobius GME: A Global Model Exchange

In order to be able to share data type definitions among
data services, there must be a service that allows data mod-
els or schemas to be published and retrieved. Such a ser-
vice would also need to be able to handle model version-
ing, naming conflicts, and model to model referencing.
The GME is a distributed service that provides a protocol
for publishing, versioning, and discovering XML schemas.
Since the GME s a global service, it needs to be scalable
and replicable. To handle these issues, the GME is imple-
mented as an architecture similar to Domain Name Server
(DNS), in which there are multiple GMEs each of which is
an authority for a set of namespaces.

The GME provides the ability for inserted schemas that
reference entities already existing in other schemas and in
the global schema defined by a researcher. When processing
an entity reference, the local GME contacts the authoritative
GME to make sure that the entity being referenced exists
and that the schema referencing it has the right to do so. The
GME enforces a policy for maintaining the integrity of the

«?xm| version="1.0" encoding="UTF-8"7>
<xs:schema targetNamespace="projectmobius.org/1/image”
xmins xs="http www w3 orgi2001/XMLSchama”
xmins img="projectmobius org/11mage” elementFormDefault="gualified”
attributeFormDefault="ungualified”>
<xs.complexType name="imageType™>
<xs:sequence>
<xs:choice>
<xs element name="im ageDataRef" type="xs:string"/>
<xs ‘alement name="imageData" type="xs:basetdBinary"/>
</xs:cheice>
<xs:element name="imageMetaData" type="img:detailSetType" minOccurs="0"/>

<xs attribute name="encoding” type="xs:string” use="required"I>
«/xs: complexType>
<xs.complexType name="detailSetType >
<xs:sequence>
<xs :alement name="detall” type="img:detail Type" minOccurs="0" maxOccurs="unbounded">>
ssss quence>
</xs:.complexType>
<xs:element name="image" type="img:image Type"/>
<xs:complexType name="detail Type™>
<xs'simpleContent>
<xs:extension base="xs string">
<xs :attribute name="descripior” type="xs:string"/>
</us extension>
<ius:simpleContent>
<i/xs:complexType>
<ixs:schema>

Figure 3. Schema for image data.

global schema when deleting schemas. For example, delet-
ing a schema which contains entities that other schemas ref-
erence will destroy the integrity of the global schema. The
GME schema deletion policy will have to handle such spe-
cial cases.

Other services such as storage services can use the GME
to match instance data with their data type definitions. Since
we are using Mobius Mako to store our instance data, all of
our schemas will be published to a GME. These schemas
can be versioned (e.g., a researcher can extend the base im-
age data schema to include annotations and definitions of
features) and referenced in other schemas.

4.2 Image Data Model

Our image model, defined in the XML Schema shown
in Figure 3, is made up of two components: the image
metadata and the image data. The image metadata com-
ponent contains the encoding type of the image (JPEG,
TIFF, etc.) and a detail set entity which allows a collec-
tion of user-defined key value pair metadata. This allows
application specific metadata to be attached to an image,
for application-specific purposes, while maintaining a com-
mon generic model for component reuse. The image data
component contains either a Base64 encoded version of the
image data or an application-interpreted protocol/file sys-
tem reference to the location of the image data. The im-
age model is generic enough to allow the image data to be
embedded with in an instance of the model or it provides
enough information to retrieve the image data from the file
system or other storage system.



4.3 Image Processing Workflow Model

We have adapted the process modeling schema de-
veloped for the Distributed Process Management System
(DPM) [19]. In DPM, the execution of an application in
a distributed environment is modeled by a directed acyclic
task graph of processes. This task graph is represented
in an XML schema. The workflow schema (Figure 4)
in our system defines a hierarchical model starting with a
<workflow> entity which contains several jobs, each rep-
resented by the <job> tag. Each job represents a distibuted
application which is composed of a set of local/distributed
processes. Each component (or process), represented by
the <process> tag, has attributes that describe its execu-
tion to the distributed execution middleware. The name at-
tribute allows the component to be named such that it can be
uniquely identified by the distributed execution framework.
The componentType attribute describes which component
type the process is.

We currently support internal and external component
definitions. An internal component represents a process
or function that adheres to an interface, DataCutter in this
case, and is implemented as a application-specific compo-
nent in the system. An external component represents a
self-contained executable that exists outside the system and
communicates with other components through files*.

The component attribute identifies the path or name of
the execution binary. For an external component, this may
be a path to an executable, whereas for an internal compo-
nent it can be a method or interface. Each component entity
may also contain three optional sub entities, a parameter
set list, a placement, and set of processes. The parameter
set list consists of a list of set of key-value pair parame-
ters that are passed as input into the process. A single set
defines the input to a component, while the list allows for
parameter studies, in which the same data is processed by
the same component, but with different parameters. The
placement entity specifies to the distribute execution service
which nodes to run the process on and how many copies of
the process should be run on each node. The placement
entity also allows for more dynamic scheduling, instead of
specifying specific hostnames wild cards can be use. In this
case, a scheduling software should generate the placement
of components. Finally, the processes set is a set of pro-
cesses that the current process is dependent on. The output
from all the processes in the process set will be sent as in-
put to the current process, thus creating a distributed process
pipeline.

1Although the difference between internal and external components
may seem subtle, this distinction is important because it alows the exe-
cution environment to make assumptions on internal components that it
could not make on externa components such as number of input and out-
put streams for example.

Workflow Model

<?uml version="1.0" encoding="UTF-§"7>
<xs:sch N " dat; ter.org/Dat
xmins: xs="http:/I'www.wl.org/2001/XMLSchema”
xmins:dc="d ter.orgM/D; rPr Model™ ek tFormDetfault="gualifled™>
<xs:element name="workflow">
<xs:complexType>
<NS Sequence>
<xs.element name="job" maxOccurs="unboeunded">
<xs:complaxTypa>
<xs:sequence>
<xs:element names"processes” type="dc:processesType"/>
</us sequance>
<xs:atiribute name="id" type="xs:string" use="required"/>
«xg:attribute nama="nama” types"xs siring™/>
</xs:complexType>
</us element>
</us sequence>
<xs:atiribute name="id" type="xs string” use="required"/>
«<xs:attribute name="description” type="xs:string” use="optional"/>
</xs.complexType>
</xs element>
<us:complexType name="processType">
<AS SEqQuUEnce>
<xs:alement name="params"” type="dc: paramsTypa™/>
<xs:element name="placement” minOccurs="0">
<xs complexType>
<us:aftribute name="host™ type="xs:siring™ use="required”/>
<xs:atiribute name="nCaopies"” type="xs.integer” use="prohibited"/>
</xs:complexType>
</xs:element>
<xs:element name="processes” lype="dc:processesType” minOccurs="0"1>
</us sequence>
<xs:aftribute name="name" type="xs string” use="required">
<xs:aftribute name="componantType” type="de: componentTypa™ uses"required™/>
<xs:altribute name="component” type="xs string” use="regquired"/>
</xs complexType>
<xs:complexType name="processesTypa™>
<xs:choice maxOccurs="unbounded">
“x8: name="| " type="dc: Typa™ minOccurs="0"/>
=<xs:element name="process_ref" type="dc: processRefType” minOccurs="0"/>
<us choice>
</ug:complexType>
<xs:complexType name="paramTypa™>
=xs:attribute name="name" type="xs:string” use="required”/>
<xs:afiribute name="value" type="xs:string" use="required"/>
</xs-complexType>
<us:complexType name="paramsTypa™>
NS SEqUEnce>
=xs:element name="param"” type="dc: paramType" maxOccurs="unbounded™/>
</us:sequence>
</xs:complexType>
<xs:complexType name="processRefType™>
<xs:aftribute name="name" type="xs string” use="required">
=/xg:complexType>
<xs:simpleType name="componeniType™>
<xs:restriction base="xs NMTOKEN">
<us:enumeration value="internal™/>
=xs:enumeration value="external”>
<xs:enumeration value="parallel”/>
</us:restriction>
</xs simpleType>
</ng schema>

Figure 4. Workflow Schema

As discussed earlier, the GME allows a schema to ref-
erence in its definition other schemas registered in the sys-
tem. This allows contruction of complex database schemas
from multiple schemas. We use this functionality to support
nested workflows. That is, workflows consisting of compo-
nents and other workflows. A process in a workflow schema
can be a reference to another job definition enabling one re-
searcher’s process model to be comprised of references to
other small process models.
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Figure 5. Mako Architecture

5 Data Service: Data Storage and Manage-
ment

In order to actually process data, a number of XML in-
stances must be created and stored that adhere to the models
defined by users. Instances of workflows must be created
and stored in the data storage service, so that the execution
service can retrieve them and execute them when appropri-
ate. Additionaly, the input data sets must be ingested and in-
dexed by the data service, so that they can be referenced by
the workflows. The data service component of the system
uses the Mako service of Mobius as the backbone for stor-
age and management of metadata and data instances. We
have augmented the Mako service with a data distribution
and staging component to efficiently utilize distributed stor-
age and computing power in the environment.

51 Mako

Mako (Figure 5) is a service for storing, updating, re-
trieving, and querying XML documents. Mako exposes
data sources as XML data services through a set of well de-
fined interfaces based on the Mako protocol. Data services
can be relational databases, native XML databases, an in-
ternal storage database, or any other database or file system.
Mako defines both a protocol for communication and a ser-
vice implementation that utilizes this protocol. Below are
descriptions of the operations that are relevant to our image
processing infrastructure, and how they are implemented in
Mako.

Storage, Update, and Retrieval. All XML documents
received by a Mako server are validated against an XML
schema as retrieved from the GME server. A Mako instance
can be configured to accept only a specific set of XML

schemas. When each element in the XML document is in-
serted it is indexed and assigned a unique identifier within
the respective Mako. Mako allows XML documents that
are stored in it to be updated. Given proper authorization, a
user may retrieve the XML at any level of the document by
specifying the element’s identifier. This ability to uniquely
identify and retrieve subsections of a particular document
enables efficient retrieval processing time for queries that
only require partial documents.

Querying. Clients and other services may query
XML documents within a Mako by sending it either an
XQuery [8] statement? or an XPath [4] statement. Upon
receiving an XQuery or XPath, if the underlying database
is a relational database, the Mako converts it to SQL and
executes it on the relevant database.

XML Referencing. Mako supports the concepts of vir-
tual inclusion and virtual copying. This means that Mako
allows XML documents to be created that may contain ref-
erences or copies of existing XML documents or elements,
both local and remote. In this way, an XML document
can be distributed and stored across multiple Mako servers
by storing subsections of the document remotely and inte-
grating them with references. This ability is critical in en-
abling large data documents to be partitioned across a clus-
ter while still maintaining the single document semantics of
the model.

For our infrastructure we utilize a collection of Makos
distributed across storage nodes to provide a distributed data
management service. Both workflow instances, metadata
instances describing the image datasets, and image data are
stored in Makos. Currently, when an image is to be stored
in Makao, it is encoded in Base64; more efficient binary data
encoding schemes will be incorporated into the system in
future.

5.2 Data Distribution and Staging

To maximize the efficiency of parallel data accesses for
image data, the data storage service utilizes declustering
techniques. The goal of declustering is to distribute the
data across as many storage units as possible so that data
elements that satisfy a query can be retrieved from many
sources in parallel.

This component consists of two subcomponents. The
distribution computation subcomponent implements multi-
ple algorithms for distribution of datasets across the storage
system. The user or the workflow execution environment
can specify a preferred declustering mechanism, such as
round-robin or demand driven, when it requests a distribu-
tion plan. The data mover subcomponent is responsible for
staging the data according to a distribution plan. This sub-
component can be manifested as either a centralized service,

20ur current implementation provides limited support for X Queries.



through which all data passes, or as a decentralized compo-
nent, utilized by execution nodes. Traditionally, the central-
ized component is only utilized for initial data staging for
the input data sets. The decentralized component is utilized
during workflow execution to distribute computed datasets
(intermediate or output datasets). Presently, the data dis-
tribution and staging component is implemented as a set of
DataCutter read and write filters that can read data from and
write data to multiple Mako servers.

The system currently provides round-robin and demand-
driven strategies for data distribution. In round-robin, data
is distributed across multiple Makos in a round-robin fash-
ion, while the demand driven schema distributes data pro-
portional to the on-the-fly data ingestion bandwidth of indi-
vidual Makos. When data sets are ingested, they can be as-
sociated with a user-defined identifier that can later be used
to retrieve the data set from the data storage service.

6 Distributed Execution Service

The distributed execution service uses the runtime sys-
tem developed in [20]. We provide a brief description here
and present the extensions we have implemented. This ser-
vice integrates two components: 1) the ITK and VTK im-
age processing and visualization libraries [21, 27] and 2) a
component-based runtime system, called DataCutter [5]. A
DataCutter application consists of application-specific com-
ponents, called filters, and one or more filter groups. Im-
age data processing is represented as a filter group, com-
posed of filters that collectively process the data in a se-
quence of operations. These application filters can operate
in a dataflow style, where they repeatedly read buffers from
their input ports, perform application-defined processing on
the buffer, and then write it to their output ports. We de-
veloped a simple abstraction layer that provides isolation
between DataCutter and the ITK and VTK libraries. This
enables the integration between different toolkits to be in-
dependent from any future changes to their underlying im-
plementation. The runtime system allows for combined use
of task-parallelism, data-parallelism, and pipelining for re-
ducing execution time of data processing and analysis ap-
plications.

In this paper, we have extended the runtime system
with two system level filters, MakoReader and MakoWriter.
These filters provide interface between Mako servers and
other filters in the workflow. The MakoReader filter re-
trieves images from Mako servers, converts them into
VTK/ITK data structures, and passes them to the first stage
filters in the workflow. The MakoWriter filter can be placed
between two application filters, which are connected to each
other in the workflow graph, if the output of a filter needs
to be check-pointed. The last stage filters in the workflow
also connect to MakoWriter filters to store output in Mako

servers. The execution of a workflow and check-pointing
can be done stage-by-stage (i.e., all the data is processed by
one stage and stored on Mako servers before the next stage
is executed) or pipelined (i.e., all stages execute concur-
rently; the MakoWriter filters interspersed between stages
both send data to Mako servers and pass it to the next filter
in the workflow).

7 Experimental Results

We investigated the performance of the distributed exe-
cution service in [20]. In this paper, we look at three dif-
ferent aspects of the system: 1) scalability of 1/0 when the
number of Mako servers is varied, 2) performance impact of
demand-driven and round-robin data distribution strategies,
and 3) effect of checkpointing.

7.1 Varying Number of Mako Servers

The first set of experiments investigate the performance
of the system as the number of Mako servers that can store
data is varied. A cluster with 7 nodes was used for this ex-
periment. Each node of the cluster consists of two AMD
Opteron processors with 8 GB of memory, 1.5 TB of disk
storage in RAID 5 SATA disk arrays. The nodes are con-
nected to each other via a gigabit switch. In this experiment,
a simple pipeline of MakoReader->Inverter->MakoWriter
filter group is used with 7500 images as input — each image
was a 256x256-pixel gray scale image. The Inverter filter
inverts the color of each pixel in an image. Two sets of ex-
periments were executed. In the first set of experiments, the
number of MakoReader and Inverter filter copies was fixed
at 7 and each copy was executed on one of the nodes. The
number of MakoWriter filters was varied from 1 to 7. Each
reader filter reads from a single Mako server, sends the data
to Invert filter copies using demand-driven buffer schedul-
ing [5, 20]. Each writer filter writes to the Mako servers
using demand-driven distribution (see Section 5.2). The
number of Mako servers that can store data is equal to the
number of MakoWriter filters. The images were distributed
evenly among 7 Mako servers. In the second set of experi-
ments, the number of Inverter and MakoWriter filter copies
was fixed at 7. The number of MakoReader filters was var-
ied from 1 to 7. In this experiment, each reader filter read
from a single Mako server. The images were distributed
evenly across an increasing number of Mako servers as the
number of MakoReader filters increased (i.e., if there are N
MakoReader filters, the images were distributed across N
Mako servers). The MakoWriter filters stored data in Mako
servers using demand-driven distribution.

The results of these experiments are shown in Figure 6.
The numbers in the graphs are the total execution time for
processing 7500 images. The bars labeled as “Reader” and
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Figure 6. Data I/O Scalability Experiments.
“Reader” and “Writer” bars denote the exper-
iments, in which the number of MakoReader
and MakoWriter filters is varied, respectively.

“Writer” show the execution times when the number of
MakoReader and MakoWriter filters is varied, respectively.
In the figure, we see that the execution time of the image
processing pipeline decreases as the number of reader and
writer filters is increased. The graph shows almost linear
decrease in execution time and good scalability of the sys-
tem when the number of Mako servers that can store and
serve data is increased.

7.2 Effect of Data Distribution Strategies

These experiments investigate the effect of data distri-
bution strategy used by the data service. The cluster setup
is the same as the previous section. The cluster is divided
into two subsets. Subset 1 contains 4 nodes (1, 2, 3, and
4), each with one MakoReader filter and one MakoWriter
filter. Subset 2 contains 3 nodes (5, 6, and 7), each with
one MakoReader filter, one MakoWriter filter, and one copy
of each of the processing filters. A Mako server is run on
each node. This setup corresponds to a configuration in
which some of the machines are used by storage only, while
others can be used for both storage and computation. The
workflow contains 2 stages. Stage 1 performs Invert, Gaus-
sian smooth, and Clip functions, while Stage 2 carries out
Threshold operation on the images. All of these functions
are implemented as filters and form a chain of operations on
data. Stage 1 is executed first; filters in this stage retrieve
the input images from Mako servers. Output from this stage
is stored in Mako servers. Stage 2 filters are executed after
Stage 1; they retrieve data stored at the end of Stage 1 and
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Figure 7. Comparison of demand-driven vs
round-robin data distribution strategy.

process it.

The execution time in figure 7 shows that demand driven
strategy outperforms round robin strategy by a factor of 10
in Stage 2. In Stage 2, the imbalance in amount of data read
by each read filter is now exacerbated by the need to trans-
fer 2/3 of all images read on each node to other nodes in
Subset 2 when round-robin data distribution is used. This
additional network load increases the network traffic dra-
matically, and therefore increases the total execution time in
the round-robin case. On the other hand, the demand-driven
strategy stores more data on local Mako servers in Sub-
set 2, hence reducing the network and remote data access
overhead. This effect is shown in Figure 8. Although im-
ages initially are evenly distributed across all Mako servers,
more images are stored on local Mako servers after Stage 1
and Stage 2. This experiment demonstrates demand-driven
strategy can increase performance dramatically compared
to round robin strategy, when data and processing are het-
erogeneously distributed.

7.3 Effect of Checkpointing

We also examined the effect of checkpointing. This ex-
periment used a cluster of 5 nodes. The nodes were dual
2.4GHz Xeon’s with 1GB memory, 320GB storage, and
connected via a gigabit switch. The goal of this experiment
was to show the cost of capturing intermediate processing
results. The ability to capture these results enables process
failure recovery, data provenance, and enhanced process
model tuning. We varied the number of images processed
between 2250 and 9000. The basic image analysis pipeline,
as shown in Figure 9, reads the data from a data storage
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Figure 9. Checkpointing Experiments Model

service, inverts the image, Gaussian smooths it, clips out a
smaller region, and finally a scalar value based threshold is
applied. Figure 10 shows the execution time of the pipeline
with different checkpointing configurations (corresponding
to the legends from top to bottom in the graph): 1) read and
process all 4 stages of the image analysis, 2) do the same as
in 1 and also write the output data to Mako servers, 3) do
the same as in 2 and also checkpoint at the halfway point
of the image analysis after the smoothing stage, 4) is the
same as case 3 and checkpoint the results of the inverting
and clipping, and 5) is the case in which each stage in the
pipeline was run one at a time, running a copy of the filter on
each node. The data generated by each stage was stored in
Mako servers. The next stage was initiated when the previ-
ous stage finished processing. Each stage read the data that
had been stored by the previous stage in Mako servers. As
is seen from the figure, case 5 performs worst. In case 5, al-
though filters in a stage does not share the CPU power with
filters in other stages, the overhead of checkpoint and restart
reduces the performance. This situation is alleviated by run-
ning all filters at the same time and checkpointing while fil-
ters execute (case 4). We also observe that checkpointing
increases the execution time, as expected. This experiment
shows that careful consideration must be taken when look-
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Figure 10. Intermediate Process Checkpoint-
ing Experiments.

ing into checkpointing processes. There may be locations
in the model where it is cheaper to re-process than it is to
checkpoint unless one wants to checkpoint purely for data
sharing purposes and not just for process failure/recovery.

8 Conclusions

In this work, we presented a suite of services to address
challenging issues in metadata management, data storage
and retrieval, and image workflow management and exe-
cution. Our work demonstrated the use of an XML-based
metadata/data management system in tandem with a dis-
tributed execution service. Our preliminary results show
that the system is capable of scaling its 1/0O performance
as more data server nodes are added. We also observe that
demand-driven data distribution across storage nodes is an
effective approach when data is to be processed and stored
in a heterogeneous setting.
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