
Sockets vs RDMA Interface over 10-Gigabit Networks: An In-depth analysis of
the Memory Traffic Bottleneck

�

Pavan Balaji
Comp. and Info. Science,
The Ohio State University,

Columbus, OH 43210,
balaji@cis.ohio-state.edu

Hemal V. Shah
Embedded IA Division,

Intel Corporation,
Austin, Texas,

hemal.shah@intel.com

D. K. Panda
Comp. and Info. Science,
The Ohio State University,

Columbus, OH 43210,
panda@cis.ohio-state.edu

Abstract

The compute requirements associated with the TCP/IP
protocol suite have been previously studied by a number of
researchers. However, the recently developed 10-Gigabit
Networks such as 10-Gigabit Ethernet and InfiniBand have
added a new dimension of complexity to this problem, Mem-
ory Traffic. While there have been previous studies which
show the implications of the memory traffic bottleneck, to
the best of our knowledge, there has been no study which
shows the actual impact of the memory accesses generated
by TCP/IP for 10-Gigabit networks. In this paper, we do
an in-depth evaluation of the various aspects of the TCP/IP
protocol suite including performance, memory traffic and
CPU requirements, and compare these with RDMA capa-
ble network adapters, using 10-Gigabit Ethernet and In-
finiBand as example networks. Our measurements show
that while the host based TCP/IP stack has a high CPU
requirement, up to about 80% of this overhead is associ-
ated with the core protocol implementation especially for
large messages and is potentially offloadable using the re-
cently proposed TCP Offload Engines. However, the host
based TCP/IP stack also requires multiple transactions of
data over the current moderately fast memory buses (up
to a factor of four in some cases), i.e., for 10-Gigabit net-
works, it generates enough memory traffic to saturate a typ-
ical memory bus while utilizing less than 35% of the peak
network bandwidth. On the other hand, we show that the
RDMA interface requires up to four times lesser memory
traffic and has almost zero CPU requirement for the data
sink. These measurements show the potential impacts of
having an RDMA interface over IP on 10-Gigabit networks.

Keywords: Sockets, RDMA, TCP/IP, InfiniBand

�

This research is supported in part by National Science Foundation
grants #CCR-0204429 and #CCR-0311542 to Dr. D. K. Panda at the Ohio
State University.

1 Introduction

High-speed network interconnects that offer low latency
and high bandwidth have been one of the main reasons at-
tributed to the success of commodity cluster systems. Some
of the leading high-speed networking interconnects include
Ethernet [18, 1, 20, 16], InfiniBand [5, 2], Myrinet [11]
and Quadrics [4, 28, 30, 29, 31]. Two common features
shared by these interconnects are User-level networking
and Remote Direct Memory Access (RDMA). Gigabit and
10-Gigabit Ethernet offer an excellent opportunity to build
multi-gigabit per second networks over the existing Eth-
ernet installation base due to their backward compatibility
with Ethernet. InfiniBand Architecture (IBA) is a newly de-
fined industry standard that defines a System Area Network
(SAN) to enable a low latency and high bandwidth cluster
interconnect. IBA mainly aims at reducing the system pro-
cessing overhead by decreasing the number of copies asso-
ciated with the message transfer and removing the kernel
from the critical message passing path.
The Transmission Control Protocol (TCP) [36, 37] is one

of the universally accepted transport layer protocols in to-
day’s networking world. Despite the development of other
protocols such as VIA [12, 3, 14, 9, 10], FM [27], GM [15]
and EMP [34, 35] that have been coming up in the wake of
the rapidly changing industries and networking technolo-
gies, TCP continues its dominance due to its reliability,
adaptability and robustness for a wide range of applications.
The introduction of gigabit speed networks a few years back
had challenged the traditional TCP/IP implementation in
two aspects, namely performance and CPU requirements.
In order to allow TCP/IP based applications achieve the
performance provided by these networks while demanding
lesser CPU resources, researchers came up with solutions in
two broad directions: user-level sockets [7, 8, 33, 6, 24, 25]
and TCP Offload Engines [38].
User-level sockets implementations rely on zero-copy, OS-

1

bypass high performance protocols built on top of the high
speed interconnects. The basic idea of such implementa-
tions is to create a sockets-like interface on top of these
high performance protocols. This sockets layer is designed
to serve two purposes: (a) to provide a smooth transition to
deploy existing applications on to clusters connected with
high performance networks and (b) to sustain most of the
performance provided by the high performance protocols.
TCP Offload Engines, on the other hand, offload the TCP
stack on to hardware in part or in whole. Earlier Gigabit
Ethernet adapters offloaded TCP and IP checksum compu-
tations on to hardware. This was followed by the offload
of message segmentation (LSO/TSO). In the recent past, a
number of companies including Intel, Adaptec, Alacritec,
etc., have been working on offloading the entire TCP stack
on to hardware. In short, both these approaches concen-
trate on optimizing the protocol stack either by replacing
the TCP stack with zero-copy, OS-bypass protocols such as
VIA, EMP or by offloading the entire or part of the TCP
stack on to hardware.
The advent of 10-Gigabit networks such as 10-Gigabit

Ethernet and InfiniBand has added a new dimension of com-
plexity to this problem, Memory Traffic. While there have
been previous studies which show the implications of the
memory traffic bottleneck, to the best of our knowledge,
there has been no study which shows the actual impact of
the memory accesses generated by TCP/IP for 10-Gigabit
networks and those generated by RDMA capable network
adapters.
In this paper, we evaluate the various aspects of the TCP/IP

protocol suite for 10-Gigabit networks including perfor-
mance, memory traffic and CPU requirements, and com-
pare these with RDMA capable network adapters, using 10-
Gigabit Ethernet and InfiniBand as example networks. Our
measurements show that while the host based TCP/IP stack
has a high CPU requirement, up to about 80% of this over-
head is associated with the core protocol implementation
especially for large messages and is potentially offloadable
using the recently proposed TCP Offload Engines or user-
level sockets layers.
Further, our studies reveal that for 10-Gigabit networks,

the sockets layer itself becomes a significant bottleneck for
memory traffic. Especially when the data is not present
in the L2-cache, network transactions generate significant
amounts of memory bus traffic for the TCP protocol stack.
As we will see in the later sections, each byte transferred
on the network can generate up to four bytes of data traffic
on the memory bus. With the current moderately fast mem-
ory buses (e.g., 64bit/333MHz) and low memory efficien-
cies (e.g., 65%), this amount of memory traffic limits the
peak throughput applications can achieve to less than 35%
of the network’s capability. Further, the memory bus and
CPU speeds have not been scaling with the network band-

width, pointing to the fact that this problem is only going to
worsen in the future.
We also evaluate the RDMA interface of the InfiniBand

architecture to understand the implications of having an
RDMA interface over IP in two aspects: (a) the CPU re-
quirement for the TCP stack usage and the copies associated
with the sockets interface, (b) the difference in the amounts
of memory traffic generated by RDMA compared to that
of the traditional sockets API. Our measurements show that
the RDMA interface requires up to four times lesser mem-
ory traffic and has almost zero CPU requirement for the data
sink. These measurements show the potential impacts of
having an RDMA interface over IP on 10-Gigabit networks.
The remaining part of the paper is organized as follows: In

Section 2, we give a brief background about InfiniBand and
the RDMA interface and the TCP protocol suite. Section 3
provides details about the architectural requirements associ-
ated with the TCP stack. We describe the tools and utilities
we used in Section 4. We present some experimental results
in Section 5, other related work in Section 6 and draw our
conclusions in Section 7.

2 Background

In this section, we provide a brief background about the In-
finiBand Architecture and the RDMA interface, the TCP/IP
protocol suite, user-level sockets implementations and TCP
Offload Engines.

2.1 InfiniBand Architecture

InfiniBand Architecture (IBA) is an industry standard that
defines a System Area Network (SAN) to design clusters
offering a low latency and high bandwidth. In a typical IBA
cluster, switched serial links connect the processing nodes
and the I/O nodes. The compute nodes are connected to the
IBA fabric by means of Host Channel Adapters (HCAs).
IBA defines a semantic interface called as Verbs for the con-
sumer applications to communicate with the HCAs.
IBA mainly aims at reducing the system processing over-

head by decreasing the number of copies associated with
a message transfer and removing the kernel from the crit-
ical message passing path. This is achieved by providing
the consumer applications direct and protected access to the
HCA. The specifications for Verbs includes a queue-based
interface, known as a Queue Pair (QP), to issue requests to
the HCA. Figure 1 illustrates the InfiniBand Architecture
model.
Each Queue Pair is a communication endpoint. A Queue

Pair (QP) consists of the send queue and the receive queue.
Two QPs on different nodes can be connected to each
other to form a logical bi-directional communication chan-
nel. An application can have multiple QPs. Communica-

2

Send Rcv

Q
P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network
Layer

Transport
Layer

PHY Layer

Link Layer

Network
Layer

Transport
Layer

Operations,etc
Consumer Transactions,

(IBA Operations)
Consumer Consumer

Transport

WQE

Adapter
Channel

Port Port Port

Packet Relay

Port

Physical link Physical link

(Symbols)(Symbols)

Packet

IBA Operations

(IBA Packets)

IBA Packets

Packet Packet

C
ha

nn
el

 A
da

pt
er

Fabric

Figure 1. InfiniBand Architecture (Courtesy
InfiniBand Specifications)

tion requests are initiated by posting Work Queue Requests
(WQRs) to these queues. Each WQR is associated with
one or more pre-registered buffers from which data is either
transfered (for a send WQR) or received (receive WQR).
The application can either choose the request to be a Sig-
naled (SG) request or an Un-Signaled request (USG). When
the HCA completes the processing of a signaled request,
it places an entry called as the Completion Queue Entry
(CQE) in the Completion Queue (CQ). The consumer appli-
cation can poll on the CQ associated with the work request
to check for completion. There is also the feature of trigger-
ing event handlers whenever a completion occurs. For Un-
signaled request, no kind of completion event is returned to
the user. However, depending on the implementation, the
driver cleans up the the Work Queue Request from the ap-
propriate Queue Pair on completion.

2.1.1 RDMA Communication Model

IBA supports two types of communication semantics: chan-
nel semantics (send-receive communication model) and
memory semantics (RDMA communication model).
In channel semantics, every send request has a correspond-

ing receive request at the remote end. Thus there is one-to-
one correspondence between every send and receive opera-
tion. Failure to post a receive descriptor on the remote node
results in the message being dropped and if the connection
is reliable, it might even result in the breaking of the connec-
tion. In memory semantics, Remote Direct Memory Access
(RDMA) operations are used. These operations are trans-
parent at the remote end since they do not require a receive
descriptor to be posted. In this semantics, the send request
itself contains both the virtual address for the local transmit
buffer as well as that for the receive buffer on the remote
end.
Most entries in the WQR are common for both the Send-

Receive model as well as the RDMA model, except an ad-

ditional remote buffer virtual address which has to be spec-
ified for RDMA operations.
There are two kinds of RDMA operations: RDMA Write

and RDMA Read. In an RDMA write operation, the initia-
tor directly writes data into the remote node’s user buffer.
Similarly, in an RDMA Read operation, the initiator reads
data from the remote node’s user buffer. IBA does not sup-
port scatter of data, hence the destination buffer in the case
of RDMA Write and RDMA Read has to be contiguously
registered buffer.

2.2 TCP/IP Protocol Suite

There have been a number of studies of the TCP/IP data
transfer path [17, 19, 32]. In this section, we briefly re-
iterate on these previous studies on the Linux TCP/IP pro-
tocol suite.
Like most networking protocol suites, the TCP/IP protocol

suite is a combination of different protocols at various lev-
els, with each layer responsible for a different facet of the
communications. The Socket abstraction was introduced
to provide a uniform interface to network and interprocess
communication protocols. The sockets layer maps protocol-
independent requests from a process to the protocol-specific
implementation selected when the process was created (Fig-
ure 2). For example, a “STREAM” socket corresponds to
TCP, while a “Datagram” or “DGRAM” socket corresponds
to UDP, and so on.

Process

Function Call

Application

System Calls
Socket

System Call
Kernel

Implementations
Socket System Call

Function Call

Functions
Socket Layer

calls via pr_usrreq or pr_ctloutput
TCP

UDP SPP

TP4

Figure 2. The sockets layer maps protocol-
independent requests from the process to
protocol-specific implementations

To allow standard Unix I/O system calls such as read()
and write() to operate with network connections, the
filesystem and networking facilities are integrated at the

3

system call level. Network connections represented by
sockets are accessed through a descriptor (a small integer)
in the same way an open file is accessed through a de-
scriptor. This allows the standard filesystem calls such as
read() and write(), as well as network-specific sys-
tem calls such as sendmsg() and recvmsg(), to work
with a descriptor associated with a socket.
A socket represents one end of a communication link and

holds or points to all the information associated with the
link. This information includes the protocol to use, state
information of the protocol (which includes source and des-
tination addresses), queues of arriving connections, data
buffers and option flags. Figure 3 illustrates the commu-
nication between the layers of network input and output.

System Calls

Process

Sockets Layer

Function Call

(TCP, UDP, IP, ICMP, IGMP)
Protocol Layer Software Interrupt @ slpnet

(caused by interface layer)

to start output
Function Call Interface

Queues
Protocol Queue
(IP input queue)

Hardware Interrupt @splimp
(caused by network device)Interface Layer

Socket Queues

Figure 3. Communication between the layers
of network input and output

The data processing path taken by the TCP protocol stack
is broadly classified into the transmission path and the re-
ceive path. On the transmission side, the message is copied
into the socket buffer, divided into MTU sized segments,
data integrity ensured through checksum computation (to
form the TCP checksum) and passed on to the underlying
IP layer. Linux-2.4 uses a combined checksum and copy
for the transmission path, a well known optimization first
proposed by Jacobson, et al. [13]. The IP layer extends the
checksum to include the IP header and form the IP check-
sum and passes on the IP datagram to the device driver. Af-
ter the construction of a packet header, the device driver
makes a descriptor for the packet and passes the descriptor
to the NIC. The NIC performs a DMA operation to move
the actual data indicated by the descriptor from the socket
buffer to the NIC buffer. The NIC then ships the data with
the link header to the physical network and raises an inter-
rupt to inform the device driver that it has finished transmit-
ting the segment.

On the receiver side, the NIC receives the IP datagrams,
DMAs them to the socket buffer and raises an interrupt
informing the device driver about this. The device driver
strips the packet off the link header and hands it over to
the IP layer. The IP layer verifies the IP checksum and if
the data integrity is maintained, hands it over to the TCP
layer. The TCP layer verifies the data integrity of the mes-
sage and places the data into the socket buffer. When the
application calls the read() operation, the data is copied
from the socket buffer to the application buffer. Figure 4
illustrates the sender and the receiver paths.

2.3 User-level Sockets Implementations

User Level Protocols achieve high performance by gaining
direct access to the network interface in a protected manner.
While User level protocols are beneficial for new applica-
tions, existing applications written using the sockets inter-
face, have not been able to take advantage of these proto-
cols. In order to allow these applications achieve the better
performance provided by these networks, researchers came
up with a number of solutions including user level sockets.
The basic idea of a user level sockets is to create a pseudo

sockets-like interface to the application. This sockets layer
is designed to serve two purposes: a) to provide a smooth
transition to deploy existing application on to clusters con-
nected with high performance networks and b) to sustain
most of the performance provided by the high performance
protocols.

2.4 TCP Offload Engines (TOEs)

The processing of TCP/IP over Ethernet is traditionally ac-
complished by software running on the central processor,
CPU or microprocessor, of the server. As network connec-
tions scale beyond Gigabit Ethernet speeds, the CPU be-
comes burdened with the large amount of TCP/IP proto-
col processing required. Reassembling out-of-order pack-
ets, resource-intensive memory copies, and interrupts put a
tremendous load on the host CPU. In high-speed networks,
the CPU has to dedicate more processing to handle the net-
work traffic than to the applications it is running. TCP Of-
fload Engines (TOE) are emerging as a solution to limit
the processing required by CPUs for networking links (Fig-
ure 5). A TOE may be embedded in a network interface
card, NIC, or a host bus adapter, HBA.
The basic idea of a TOE is to offload the processing of

TCP/IP protocols from the host processor to the hardware
on the adapter or in the system. A TOE can be implemented
with a network processor and firmware, specialized ASICs,
or a combination of both. Most TOE implementations avail-
able in the market concentrate on offloading the TCP and IP
processing.

4

�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

Post TX

Return to Application

write()

checksum and copy

Packet leaves

DMA
NIC

Kick Driver

Driver

INTR on transit success
Post

Descriptor

Socket Buffer

gets data
Application

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

App buffers

 copy

Driver

INTR on arrival

Packet arrives

DMA

socket buffer

NIC

Wait for
read()

Figure 4. TCP Data Path: (a) Send; (b) Receive

Operating
System

TCP

 IP

 MAC

 PHY

MAC

PHY

 IP

TCP

Application

Software

Hardware TOE Adapter

Figure 5. TCP Offload Engine

As a precursor to TCP offloading, some operating systems
support features to offload some compute intensive features
from the host to the underlying adapters. TCP and IP check-
sum offload implemented in some server network adapters
is an example of a simple offload. But as Ethernet speeds
increased beyond 100Mbps, the need for further protocol
processing offload became a clear requirement. Some Gi-
gabit Ethernet adapters complemented this requirement by
offloading TCP segmentation on the transmission side on to
the network adapter as well.
TOE can be implemented in different ways depending on

end-user preference between various factors like deploy-
ment flexibility and performance. Traditionally, processor-
based solutions provided the flexibility to implement new
features, while ASIC solutions provided performance but
were not flexible enough to add new features. Today, there
is a new breed of performance optimized ASICs utilizing
multiple processing engines to provide ASIC-like perfor-
mance with more deployment flexibility.
In a firmware or processor based implementation, TOE is

implemented using off-the-shelf components like a network
processor or a microprocessor running a real time operating

system (RTOS) and a MAC/PHY. The protocol processing
from the host CPU is offloaded to the protocol stack in the
RTOS, provided proper hooks are supplied by the hardware
to offload these protocols from the host. The advantage of
this implementation is the flexibility of the solution and the
wide availability of the components.
In an ASIC-based implementation, TCP/IP processing is

offloaded to performance-optimized hardware. ASIC im-
plementations are customized for TCP/IP protocol offload,
offering better performance than processor based imple-
mentations. There is a general agreement that the advan-
tages of this implementation are performance and scalabil-
ity, but at the expense of flexibility.
There are implementations which try to take advantage

of both the processor-based implementation and the ASIC-
based implementation. The intent is to be able to provide
scalability and flexibility while maintaining performance.
In environments where dropped packets are infrequent and

connections are maintained for long periods of time, the
bulk of the overhead in the TCP/IP is the data transmission
and reception. The offloading of this overhead if common
referred to as a data path offloading. Data path offload-
ing eliminates the TCP/IP overhead in the data transmis-
sion/reception phase. The host stack maintains responsibil-
ity for the remaining phases (i.e., connection establishment,
closing and error handling).
Full offloading executes all phases of the TCP stack in

hardware. With full offload, a TOE relieves the host not
only from processing data, but also from connection man-
agement tasks. In environments where connection manage-
ment or error handling are intensive tasks, there is a defini-
tive advantage to full offload solutions.
Depending on the end-user application, data path offload

or full offload may be equally effective in lowering the host
CPU utilization and increasing the data throughput.

5

3 Understanding TCP/IP Requirements

At a high level, it is generally accepted that TCP/IP is a
CPU and I/O intensive protocol stack. The stack in most
operating systems is optimized to allow cache hits for the
buffers involved in the data transmission and reception.
The Linux TCP/IP stack uses advanced techniques such as
header prediction to maximize cache hits in a single stream
data transfer. However, with the increasing memory sizes,
the gap between the cache and the memory sizes is grow-
ing, leading to more and more compulsory cache misses.
In this section, we study the impact of cache misses not
only on the performance of the TCP/IP protocol stack, but
also on the amount of memory traffic associated with these
cache misses; we estimate the amount of memory traffic for
a typical throughput test. In Section 5, we validate these
estimates through measured values.
Memory traffic comprises of two components: Front Side

Bus (FSB) reads and writes generated by the CPU(s) and
DMA traffic generated through the I/O bus by other devices
(NIC in our case). We study the memory traffic associated
with the transmit path and the receive paths separately. Fur-
ther, we break up each of these paths into two cases: (a)
Application buffer fits in cache and (b) Application buffer
does not fit in cache. These two cases lead to very different
memory traffic analyses, which we will study in this section.
Figures 6a and 6b illustrate the memory accesses associated
with network communication.

3.1 Transmit Path

As mentioned earlier, in the transmit path, TCP copies the
data from the application buffer to the socket buffer. The
NIC then DMAs the data from the socket buffer and trans-
mits it. For the case when the application buffer fits in the
cache, the following are the steps involved on the transmis-
sion side:
CPU reads the application buffer: Most micro-

benchmark tests are written such that the application buffer
is reused on every iteration. The buffer is fetched to cache
once and it remains valid throughout the experiment. Sub-
sequent reading of the buffer gets its copy from the cache.
So, there is no data traffic on the FSB for this step.
CPU writes to the socket buffer: The default socket

buffer size for most kernels including Linux and Windows
Server 2003 is 64KB, which fits in cache (on most systems).
In the first iteration, the socket buffer is fetched to cache and
the application buffer is copied into it. In the subsequent
iterations, the socket buffer stays in one of Exclusive, Modi-
fied or Shared states, i.e., it never becomes Invalid. Further,
any change of the socket buffer state from one to another of
these three states just requires a notification transaction or
a Bus Upgrade from the cache controller and generates no

memory traffic.
NIC does a DMA read of the socket buffer: Most cur-

rent memory I/O controllers allow DMA reads to proceed
from cache. Also, as an optimization, most controllers do
an implicit write back of dirty cache lines to memory during
a DMA read. Since the socket buffer is dirty at this stage,
this generates one byte of memory traffic during the DMA
operation.
Based on these three steps, in the case where the applica-

tion buffer fits in the cache, there is one byte of memory
traffic for every byte of network data transmitted.
However, due to the set associative nature of some caches,

it is possible that some of the segments corresponding to the
application and socket buffers be mapped to the same cache
line. This requires that these parts of the socket buffer be
fetched from memory and written back to memory on every
iteration. In the worst case, this might sum up to as many
as three additional memory transactions (one additional ex-
plicit write back and one fetch of the socket and the applica-
tion buffers to cache). It is to be noted that, even if a cache
line corresponding to the socket buffer is evicted to accom-
modate another cache line, the amount of memory traffic
due to the NIC DMA does not change; the only difference
would be that the traffic would be a memory read instead
of an implicit write back. Summarizing, in the case where
the application buffer fits in cache, in theory there can be
between 1-4 bytes of data transferred to or from memory
for every byte of data transferred on the network. However,
we assume that the cache mapping and implementation are
efficient enough to avoid such a scenario and do not expect
this to add any additional memory traffic.
For the case when the application buffer does not fit into

the cache, the following are the steps involved on the trans-
mission side:
CPU reads the application buffer: The application

buffer has to be fetched every time to cache since it does
not completely fit into it. However, it does not have to be
written back to memory each time since it is only used for
copying into the socket buffer and is never dirtied. Hence,
this operation requires a byte of data to be transferred from
memory for every byte transferred over the network.
CPU writes to the socket buffer: Again, we assume that

the socket buffer is small enough to fit into cache. So, once
the socket buffer is fetched to cache, it should stay valid
throughout the experiment and require no additional mem-
ory traffic. However, the large application buffer size can
force the socket buffer to be pushed out of cache. This can
cause up to 2 bytes of memory traffic per network byte (one
transaction to push the socket buffer out of cache and one to
fetch it back).
NIC does a DMA read of the socket buffer: Similar to

the case where the application buffer fits into the cache, the
socket buffer is dirty at this point. When a DMA request

6

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

���
��� ���

���

NIC

1

2

3

L2 Cache Memory

Application
Buffer

SocketSocket
Buffer Buffer

Application
Buffer

I/O

4

Implicit Write
Back

Bridge
North

Controller
Memory

Controller
Cache

NIC

1

2

3

4

5

Socket
Buffer

Application
Buffer

Application
Buffer

Socket
Buffer

����������
����������
����������
����������
����������
����������
����������
����������
����������

	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	
	�	�		�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��� ��

���������������������

L2 Cache Memory

I/O

North
Bridge

Cache
Controller Controller

Memory

Figure 6. Memory Traffic for Sockets: (a) Transmit Path; (b) Receive Path

from the NIC arrives, the segment of the socket buffer cor-
responding to the request, can be either in cache (dirtied)
or in memory. In the first case, during the DMA, the mem-
ory controller does an implicit write back of the cache lines
to memory. In the second case, the DMA takes place from
memory. So, in either case, there would be one byte of data
transferred either to or from memory for every byte of data
transferred on the network. Based on these, we can expect
the memory traffic required for this case to be between 2 to
4 bytes for every byte of data transferred over the network.
Also, we can expect this value to move closer to 4 as the
size of the application buffer increases (forcing more cache
misses for the socket buffer).
As discussed earlier, due to the set-associative nature of

the cache, it might be required that the socket buffer be
fetched from and written back to memory on every itera-
tion. Since the socket buffer being pushed out of cache and
fetched back to cache is already accounted for (due to the
large application buffer), the estimated amount of memory
traffic does not change in this case.

3.2 Receive Path

The memory traffic associated with the receive path is sim-
pler compared to that of the transmit path. We again con-
sider 2 cases for the receive path: (a) Application buffer fits
into cache and (b) Application buffer does not fit into cache.
For the case when the application buffer fits into cache, the
following are steps involved on the receive path:
NIC does a DMA write into the socket buffer: When

the data arrives at the NIC, it does a DMA write of this data
into the socket buffer. During the first iteration, if the socket
buffer is present in cache and is dirty, it is flushed back to
memory by the cache controller. Only after the buffer is

flushed out of the cache is the DMA write request allowed
to proceed. We’ll see in the next couple of steps that the
socket buffer will be fetched to the cache so that the data
be copied into the application buffer. So for all subsequent
iterations, during the NIC DMA write, the socket buffer can
be expected to be in the cache. Also, since it is only being
used to copy data into the application buffer, it will not be
dirtied. Thus, the DMA write request would be allowed to
proceed as soon as the socket buffer in the cache is invali-
dated by the North Bridge (Figure 6), i.e., the socket buffer
does not need to be flushed out of cache for the subsequent
iterations. This sums up to one transaction to the memory
during this step.
CPU reads the socket buffer: At this point, the socket

buffer is not present in cache (even if the buffer was present
in the cache before the iteration, it has to be evicted for the
previous step). So, the CPU needs to read the socket buffer
into memory. This requires one transaction to the memory
during this step.
CPU writes to application buffer: Since the application

buffer fits into cache, there is no additional memory traffic
during this operation (again, we assume that the cache pol-
icy is efficient enough to avoid cache misses due to cache
line mappings in set associative caches).
Based on these three steps, we can expect 2 bytes of mem-

ory traffic for every byte transferred over the network.
For the case when the application buffer does not fit into

the cache, the following steps are involved on the receive
path:
NIC does a DMA write into the socket buffer: Since

this step involves writing data directly to memory, it is not
affected by the cache size or policy and would be similar to
the case when the application buffer fits into cache. Thus,
this step would create one transaction to the memory.

7

CPU reads the socket buffer: Again, at this point the
socket buffer is not present in cache, and has to be fetched,
requiring one transaction from the memory.
CPU writes to application buffer: Since the application

buffer does not fit into cache entirely, it has to be fetched
in parts, data copied to it, and written back to memory to
make room for the rest of the application buffer. Thus, there
would be two transactions to and from the memory for this
step (one to fetch the application buffer from memory and
one to write it back).
This sums up to 4 bytes of memory transactions for ev-

ery byte transferred on the network for this case. It is to be
noted that for this case, the number of memory transactions
does not depend on the cache policy. Table 1 gives a sum-
mary of the memory transactions expected for each of the
above described cases. Theoretical refers to the possibility
of cache misses due to inefficiencies in the cache policy, set
associativity, etc. Practical assumes that the cache policy
is efficient enough to avoid cache misses due to memory to
cache mappings.

Table 1. Memory to Network traffic ratio
fits in cache does not fit in cache

Transmit (Theoretical) 1-4 2-4
Transmit (Practical) 1 2-4
Receive (Theoretical) 2-4 4
Receive (Practical) 2 4

4 Tools, Benchmarks and Limitations

Ideally, we would have liked to perform all experiments
on the same set of hardware, Operating Systems (OS), etc.
However, due to limitations imposed by hardware, avail-
ability of tools, etc., we had to diverse to similar, but not-
exactly-alike hardware configurations. We will highlight
the different configurations of the hardware we used and the
Operating System on which the different tools were used
etc. through the course of this paper.

4.1 Tools and Benchmarks

This section deals with the tools we had used for attain-
ing application and system information on Linux and Win-
dows operating systems. We also briefly present some of
the benchmark utilities we used for evaluation purposes.
Most of the evaluation on the Linux Operating System was

done using standard system calls such as getrusage()
which allow applications to collect resource usage informa-
tion from the operating system. For the evaluation on Win-
dows, we used the Intel VTune

���

Performance Analyzer

which allows for all measurements related to the pareto
analysis of the TCP/IP protocol stack, CPI measurements,
etc. For measurements related to CPU Utilization, we used
the Perfmon utility provided with Windows distributions
and the data was re-verified using the Intel VTune

���

Per-
formance Analyzer. Measurements pertaining to the mem-
ory traffic, Front Side Bus (FSB) analysis, Direct Memory
Access (DMA), cache misses, etc. were obtained using the
Intel EMon performance tool.
The VTune

���

sampler interrupts the processor at speci-
fied events (ex: every ‘n’ clock ticks) and records its exe-
cution context at that sample. Given enough samples, the
result is a statistical profile of the ratio of the time spent
in a particular routine. The EMon event monitoring tool is
used to collect information on the processor and the chipset
performance counters.
For the single stream throughput analysis, we used the ttcp

micro-benchmark test for Linux and the equivalent NTttcp
test for Windows. For multi-stream analysis, we used the
Chariot benchmark test. Details regarding each of these
benchmarks are provided in Section 5.

4.2 Limitations

The micro-benchmarks used in this paper are mainly data
transfer oriented and do not exercise some of the other com-
ponents of the TCP protocol stack such as connection man-
agement, etc. However, these benchmarks serve as ideal
case estimates for the peak performance provided by the
network and protocol stack combination. For measurement
of the memory traffic, cache misses, etc., we used the EMon
performance tool. However, at the time of the data collec-
tion, EMon was only available for Windows and for the Intel
82450NX chipsets; the chipset we used in our experiments
(E7501) was not supported. Due to this limitation, we could
measure only the memory transactions that were initiated
by the CPU using EMon. For other memory transactions,
such as DMA read and write operations, we have made an
estimate of the memory traffic based on the CPU initiated
memory transactions and the details provided in Section 3.

5 Experimental Results

In this section, we present some of the experiments we
have conducted over 10 Gigabit Ethernet and InfiniBand.
The test-bed used for evaluating the 10-Gigabit Ethernet

stack consisted of two clusters.
Cluster 1: Two Dell2600 Xeon 2.4 GHz 2-way SMP

nodes, each with 1GB main memory (333MHz, DDR), In-
tel E7501 chipset, 32Kbyte L1-Cache, 512Kbyte L2-Cache,
400MHz/64-bit Front Side Bus, PCI-X 133MHz/64bit I/O
bus, Intel 10GbE/Pro 10-Gigabit Ethernet adapters.
Cluster 2: Eight P4 2.4 GHz IBM xSeries 305 nodes, each

8

with 256Kbyte main memory and connected using the Intel
Pro/1000 MT Server Gigabit Ethernet adapters. We used
Windows Server 2003 and Linux kernel 2.4.18-14smp for
our evaluations. The multi-stream tests were conducted us-
ing a FoundryNet 10-Gigabit Ethernet switch.
The test-bed used for evaluating the InfiniBand stack con-

sisted of the following cluster.
Cluster 3: Eight nodes built around SuperMicro SUPER

P4DL6 motherboards and GC chipsets which include 64-
bit 133 MHz PCI-X interfaces. Each node has two Intel
Xeon 2.4GHz processors with a 512Kbyte L2 cache and a
400MHz front side bus. The machines are connected with
Mellanox InfiniHost MT23108 DualPort 4x HCA adapter
through an InfiniScale MT43132 Eight 4x Port InfiniBand
Switch. The Mellanox InfiniHost HCA SDK version is
thca-x86-0.2.0-build-001. The adapter firmware version
is fw-23108-rel-1 17 0000-rc12-build-001. We used the
Linux 2.4.7-10smp kernel version.

5.1 10-Gigabit Ethernet

In this section, we evaluate the performance of the host
TCP/IP stack over 10 Gigabit Ethernet. We have carried
out tests in three broad directions: (1) Study of the perfor-
mance of the TCP/IP stack in the form of micro-benchmark
tests, both for single stream as well as multi-stream cases,
(2) Study of the overall CPU requirements of the TCP/IP
stack and the module wise analysis (pareto analysis) of the
observed CPU usage and (3) Study of the memory traffic
associated with the TCP/IP network traffic.

5.1.1 Single Stream Micro-Benchmarks

Figure 7a shows the one-way ping-pong latency achieved by
10-Gigabit Ethernet. We can see that 10-Gigabit Ethernet is
able to achieve a latency of about 37 � s for a message size of
256bytes on the Windows Server 2003 platform. The figure
also shows the average CPU utilization for the test. We can
see that the test requires about 50% CPU on each side. Fig-
ure 8a shows the equivalent experiment on the Linux plat-
form. We can see that 10-Gigabit Ethernet is able to achieve
a latency of about 20.5 � s on Linux with a CPU utilization
of about 45% on each side.
Figure 7b shows the throughput achieved by 10-Gigabit

Ethernet. The parameter settings used for the experiment
were a socket buffer size of 64Kbytes (both send and receive
on each node), MTU of 16Kbytes, checksum offloaded on
to the network card and the PCI burst size set to 4Kbytes.
10-Gigabit Ethernet achieves a peak throughput of about
2.5Gbps with a CPU usage of about 110% (dual processor
system). We can see that the amount of CPU used gets satu-
rated at about 100% though we are using dual processor sys-
tems. This is attributed to the interrupt routing mechanism

for the x86 architecture. The x86 architecture routes all in-
terrupts to the first processor. For interrupt based protocols
such as TCP, this becomes a huge bottleneck, since this es-
sentially restricts the transmission side to about one CPU.
This behavior is also seen in the multi-stream transmission
tests (in particular the fan-out test) which is provided in the
later sections. The results for the linux platform (Figure 8b)
are similar.
Figure 9 shows the impact of MTU size on the throughput

achieved by 10-Gigabit Ethernet. In general, we observe an
improvement in the throughput with the MTU size. This
is attributed to the per-packet overhead associated with the
TCP/IP stack such as per-packet interrupts, etc. An increase
in the MTU size results in a lesser number of packets to be
transmitted, thus leading to a lesser per-packet overhead.

����������	
�	�����	���

������	�����	���	�	����	��	��������

 !"	�����	���	�	#$%&'��(

�

���

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�

�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�&'��(

�
�
��
�
�
�
�
�
�	
��
&
�
�
(

������	
����	
����	
�����	

Figure 9. Impact of MTU on throughput (Win-
dows)

Figure 10 shows the impact of the socket buffer size on
the throughput achieved by 10-Gigabit Ethernet. We can
observe that an increase in the receive buffer size results in
an improvement in the performance while an increase in the
send buffer size results in a drop in performance. We believe
that this is due to the Silly Window Syndrome of TCP/IP. It
is to be noted that the receiver side has a higher overhead
in the TCP/IP stack than the sender side. So, if the sender
window is larger than the receiver window (e.g., when the
send socket buffer is 64Kbytes and the receive socket buffer
is 128Kbytes), the sender pushes out some data and as soon
as it receives an acknowledgment, which is not completely
as large as the MTU, it sends out the next data segment and
so on. This results in an inefficient usage of the available
bandwidth. This trend is similar to the one observed by
Feng, et. al, in [20].
Figure 11 shows the impact of checksum and segmentation

offloads on the performance achieved by 10-Gigabit Ether-
net. It is to be noted that the segmentation legend refers
to both checksum and segmentation offloading while the

9

Latency Vs Message Size
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

5

10

15

20

25

30

35

40

45

50

256 512 768 1024 1280 1460

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

0

10

20

30

40

50

60

Send CPU Recv CPU Latency

Throughput Vs Message Size
(Socket Buffer Size = 64K; MTU = 16K;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

Send CPU Recv CPU Throughput

Figure 7. Micro-Benchmarks for the host TCP/IP stack over 10-Gigabit Ethernet on Windows: (a)
One-Way Latency (MTU 1.5K); (b) Throughput (MTU 16K)

��������	
���

�������

�����������������������������������

� ���
�!�"��#��$�$��%�&����
����������'

�

�

��

��

��

��

��

��� ��� ��� ���	 ���� �	��

��

���������(���
'

�
�
��
�
�
�
��
�

�
�
'

��

��

	�

	�

		

	�

	�

��

������ �������� �������

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�������	 ��!��""�	#�$	�����	���	�	��%

�

���

����

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�&'��%

�
�
��
�
�
�
�
�
�	
��
&
�
�
%

�

��

��

��

��

���

���

���

������ �������� ���������

Figure 8. Micro-Benchmarks for the host TCP/IP stack over 10-Gigabit Ethernet (Linux): (a) One-Way
Latency (MTU 1.5K); (b) Throughput (MTU 16K)

10

����������	
�	�����	���

����	�	����	��	��������	�� 	!����	���	�	"�#$%��&

�

���

����

����

����

����

����

� � � � �� �� �� ��
�
��
�
��
�

�	 �	 �	 �	 ��
	
��
	
��
	

��
�	

��
�	

�����	���	�$%��&

�
�

��
�

�
�

�
�

�	
��

$
�

�
&

����	������	
�����	������	
����	�������	
�����	�������	

Figure 10. Impact of Socket buffer size on
throughput (Windows)

checksum legend refers to the checksum offloading alone.
We can see that checksum offload leads to a slight improve-
ment in the performance. Also, we observe that segmen-
tation offload leads to a drop in the performance for large
messages. This is due to the entire message DMA carried
out by the adapter. The adapter performs a DMA for a large
chunk of the data and transmits one segment at a time. This
results in some loss of pipelining for the message transmis-
sion. For small and moderate messages, the benefit due to
segmentation offload overshadows the degradation due to
the loss of pipelining, but for large messages this becomes
observable.

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�� 	�����	���	�	!�"#$��%

�

���

����

����

����

����

����

� � � � �� �� �� ��
�
��
�
��
�

�	 �	 �	 �	 ��
	
��
	
��
	

��
�	

��
�	

�����	���	�#$��%

�
�

��
�

�
�

�
�

�	
��

#
�

�
%

�������� ����������� �����������

Figure 11. Impact of Offload on throughput
(Windows)

Figure 12 shows the impact of the PCI burst size on the
throughput achieved by 10-Gigabit Ethernet. A larger PCI
burst size refers to the DMA engine performing DMA oper-
ations for larger segments of data. The 10-Gigabit Ethernet
adapter we used supports PCI burst sizes of 512bytes and
4Kbytes. It is to be noted that though a large PCI burst

size leads to lesser DMA operations, it could result in loss
of pipelining between the DMA operation and the trans-
mission operation (more detailed studies about the DMA
operation and transmission pipelining are present in [22]).
However, for fast networks such as 10-Gigabit Ethernet, the
benefit from the number of DMA operations is more desir-
able due to the lesser speed of the I/O bus (PCI-X in our
case) compared to the network speed.

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�������	 ��!��""�	#�$	�����	���	�	��%

�

���

����

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�

�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�&'��%

�
�
��
�
�
�
�
�
�	
��
&
�
�
%

������
����	

Figure 12. Impact of PCI Burst Size on
throughput (Windows)

Figures 13 to 15 show a similar analysis for the Linux plat-
form. We see that the trends are similar to the Windows
platform.

����������	
�	�����	���

������	�����	���	�	����	��	��������

 !"	�����	���	�	#$%&'��(

�

���

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�

�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�&'��(

�
�
��
�
�
�
�
�
�	
��
&
�
�
(

������	
����	
����	
�����	

Figure 13. Impact of MTU on throughput
(Linux)

5.1.2 Single Stream CPU Pareto Analysis

In this section we present a module wise break-up (Pareto
Analysis) for the CPU overhead of the host TCP/IP stack
over 10-Gigabit Ethernet. We used the NTttcp throughput
test as a benchmark program to analyze this. Like other

11

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�� 	�����	���	�	!�"#$��%

�

���

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�

�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�#$��%

�
�

��
�

�
�

�
�

�	
��

#
�

�
%

�������� �����������

Figure 14. Impact of Offload on throughput
(Linux)

����������	
�	�����	���

������	�����	���	�	����	���	�	����

�������	 ��!��""#

�

���

����

����

����

����

����

� � � �
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�

�
	

�
	

�
	

�
	
�
�
	
�
�
	
�
�
	

�
�
�
	

�
�
�
	

�����	���	�$%��#

�
�
��
�
�
�
�
�
�	
��
$
�
�
#

������
����	

Figure 15. Impact of PCI Burst Size on
throughput (Linux)

micro-benchmarks, the NTttcp test uses the same buffer for
all iterations of the data transmission. So, the pareto anal-
ysis presented here is for the ideal case with the maximum
number of cache hits.
Figures 16 and 17 present the CPU break-up for both the

sender as well as the receiver for small messages (64bytes)
and large messages (16Kbytes) respectively. It can be seen
that in all the cases, the kernel and the protocol stack add
up to about 80% of the CPU overhead. For small messages,
the overhead is mainly due to the per-message interrupts.
These interrupts are charged into the kernel usage, which
accounts for the high percentage of CPU used by the kernel
for small messages. For larger messages, on the other hand,
the overhead is mainly due to the data touching portions in
the TCP/IP protocol suite such as checksum, copy, etc.
As it can be seen in the pareto analysis, in cases where the

cache hits are high, most of the overhead of TCP/IP based
communication is due to the TCP/IP protocol processing
itself or due to other kernel overheads. This shows the po-
tential benefits of having TCP Offload Engines in such sce-
narios where these components are optimized by pushing
the processing to the hardware. However, the per-packet
overheads for small messages such as interrupts for sending
and receiving data segments would still be present inspite
of a protocol offload. Further, as we’ll see in the mem-
ory traffic analysis (the next section), for cases where the
cache hit rate is not very high, the memory traffic associ-
ated with the sockets layer becomes very significant form-
ing a fundamental bottleneck for all implementations which
support the sockets layer, including high performance user-
level sockets as well as TCP Offload Engines.

5.1.3 Single Stream Memory Traffic

Figure 18 shows the memory traffic associated with the data
being transferred on the network for the sender and the re-
ceiver sides. As discussed in Section 3, for small message
sizes (messages which fit in the L2-cache), we can expect
about 1 byte of memory traffic per network byte on the
sender side and about 2 bytes of memory traffic per net-
work byte on the receiver side. However, the amount of
memory traffic seems to be large for very small messages.
The reason for this is the TCP control traffic and other noise
traffic on the memory bus. Such traffic would significantly
affect the smaller message sizes due to the less amount of
memory traffic associated with them. However, when the
message size becomes moderately large (and still fits in L2-
cache), we can see that the message traffic follows the trend
predicted.
For large message sizes (messages which do not fit in the

L2-cache), we can expect between 2 and 4 bytes of mem-
ory traffic per network byte on the sender side and about
4 bytes of memory traffic per network byte on the receiver

12

Kernel
44%

Sockets Driver
6%

TCP/IP
8%

Others
7%

Kernel Libraries
32%

Sockets Libraries
1%

10Gig Drivers
1%

NDIS Drivers
1%

Kernel
43%

Kernel Libraries
28%

Sockets Driver
15%

TCP/IP
2%

NDIS Drivers
1%

10Gig Drivers
2%

Sockets Libraries
4%

Others
5%

Figure 16. Throughput Test: CPU Pareto Analysis for small messages (64bytes): (a) Transmit Side,
(b) Receive Side

Kernel
16%

Kernel Libraries
37%Sockets Driver

17%

TCP/IP
5%

NDIS Drivers
4%

10Gig Drivers
9%

Others
11%

Sockets Libraries
1%

Kernel
25%

Kernel Libraries
12%

Sockets Driver
11%

Sockets Libraries
1%

TCP/IP
43%

NDIS Drivers
2%

10Gig Drivers
5%

Others
1%

Figure 17. Throughput Test: CPU Pareto Analysis for large messages (16Kbytes): (a) Transmit Size,
(b) Receive Side

13

side. We can see that the actual memory to network traffic
ratio follows this trend.

Network bytes/Memory bytes
(Socket Buffer Size = 64K; MTU = 9K;

Checksum Offloaded; PCI Burst Size = 4K)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

64 1024 16384 65536 262144 1048576 4194304

Message Size (Bytes)

M
em

 b
yt

e
p

er
 N

et
w

o
rk

 b
yt

e Receive
Send

Figure 18. Single Stream Throughput Test:
Memory Traffic Analysis

These results show that even without considering the host
CPU requirements for the TCP/IP protocol stack, the mem-
ory copies associated with the sockets layer can generate
up to 4 bytes of memory traffic per network byte for traffic
in each direction, forming what we call the memory-traffic
bottleneck. It is to be noted that while some TCP Offload
Engines try to avoid the memory copies in certain scenarios,
the sockets API can not force a zero copy implementation
for all cases (e.g., transactional protocols such as RPC, File
I/O, etc. first read the data header and decide the size of the
buffer to be posted). This forces the memory-traffic bottle-
neck to be associated with the sockets API.

5.1.4 Multi Stream Micro-Benchmarks

In this section, we study the performance of the host TCP/IP
stack in the presence of multiple data streams flowing from
or into the node. The environment used for the multi-
stream tests consisted of one node with a 10-Gigabit Eth-
ernet adapter and several other nodes connected to the same
switch using a 1-Gigabit Ethernet adapter.
Three main experiments were conducted in this category.

The first test was a Fan-in test, where all the 1-Gigabit
Ethernet nodes push data to the 10-Gigabit Ethernet node
through the common switch they are connected to. The sec-
ond test was a Fan-out test, where the 10-Gigabit Ethernet
node pushes data to all the 1-Gigabit Ethernet nodes through
the common switch. The third test was Dual test, where the
10-Gigabit Ethernet node performs the fan-in test with half
the 1-Gigabit Ethernet nodes and the fan-out test with the
other half. It is to be noted that the Dual test is quite differ-
ent from a multi-stream bi-directional bandwidth test where
the server node (10-Gigabit Ethernet node) does both a fan-
in and a fan-out test with each client node (1-Gigabit Eth-

ernet node). The message size used for these experiments
is 10Mbytes. This forces the message not to be in L2-cache
during subsequent iterations.
Figures 19a and 19b show the performance of the host

TCP/IP stack over 10-Gigabit Ethernet for the Fan-in and
the Fan-out tests. We can see that we are able to achieve a
throughput of about 3.5Gbps with a 120% CPU utilization
(dual CPU) for the Fan-in test and about 4.5Gbps with a
100% CPU utilization (dual CPU) for the Fan-out test. Fur-
ther, it is to be noted that the server gets saturated in the
Fan-in test for 4 clients. However, in the fan-out test, the
throughput continues to increase from 4 clients to 8 clients.
This again shows that with 10-Gigabit Ethernet, the receiver
is becoming a bottleneck in performance mainly due to the
high CPU overhead involved on the receiver side.
Figure 19c shows the performance achieved by the host

TCP/IP stack over 10-Gigabit Ethernet for the Dual test.
The host TCP/IP stack is able to achieve a throughput of
about 4.2Gbps with a 140% CPU utilization (dual CPU).

5.1.5 Multi Stream Memory Traffic

Figure 20 shows the actual memory traffic associated with
the network data transfer during the multi-stream tests. It is
to be noted that the message size used for the experiments
is 10Mbytes, so subsequent transfers of the message need
the buffer to be fetched from memory to L2-cache.
The first two legends in the figure show the amount of

bytes transferred on the network and the bytes transferred
on the memory bus per second respectively. The third leg-
end shows 65% of the peak bandwidth achievable by the
memory bus. 65% of the peak memory bandwidth is a gen-
eral rule of thumb used by most computer companies to es-
timate the peak practically sustainable memory bandwidth
on a memory bus when the requested physical pages are
non-contiguous and are randomly placed. It is to be noted
that though the virtual address space could be contiguous,
this doesn’t enforce any policy on the allocation of the phys-
ical address pages and they can be assumed to be randomly
placed.
It can be seen that the amount of memory bandwidth re-

quired is significantly larger than the actual network band-
width. Further, for the Dual test, it can be seen that the
memory bandwidth actually reaches within 5% of the peak
practically sustainable bandwidth.

5.2 InfiniBand Architecture

In this section, we evaluate the various communication
models over the InfiniBand network with respect to ideal
case Performance, CPU Utilization and Memory traffic as-
sociated with network traffic.

14

Fan-in Test
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

CPU Fan-in

Fan-out Test
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

CPU Fan-out

Dual (Fan-in/Fan-out)
(128K Socket Buffer Size; 9K MTU;

Checksum Offloaded; PCI Burst Size = 4K)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8

Number of Clients

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

20

40

60

80

100

120

140

160

CPU Dual

Figure 19. Multi-Stream Micro-Benchmarks: (a) Fan-in, (b) Fan-out, (c) Dual (Fan-in/Fan-out)

Multi-Stream Memory Traffic
(Socket Buffer 64K; MTU = 9K;

Checksum Offloaded; PCI Burst Size = 4K)

0

8524.8

17049.6

25574.4

34099.2

42624

Fan-in Fan-out Bi-dir

B
an

d
w

id
th

 (
M

b
p

s)

Network BW Memory BW Sustain Memory Bandwidth (65%)

Multi-Stream Memory Traffic
(Socket Buffer 128K; MTU = 9K;

Checksum Offloaded; PCI Burst Size = 4K)

0

8,525

17,050

25,574

34,099

42,624

Fan-in Fan-out Bi-dir

B
an

d
w

id
th

 (
M

b
p

s)

Network BW Memory BW Sustain Memory Bandwidth (65%)

Figure 20. Multi Stream Throughput Test: Memory Traffic Analysis: (a) Socket Buffer Size = 64Kbytes;
(b) Socket Buffer Size = 128Kbytes

15

5.2.1 One-Way Latency

Figures 21a to 24a show the one-way latencies achieved by
the different communication models of the InfiniBand stack
for a polling based approach for completion as well as an
event based approach. In the polling approach, the appli-
cation continuously monitors the completion of the mes-
sage by checking the completion descriptor. This activity
makes the polling based approach CPU intensive resulting
in a 100% CPU utilization. In the event based approach, the
application goes to sleep after posting the descriptor. The
network adapter raises an interrupt for the application once
the message arrives. This results in a lesser CPU utilization
for the event based scheme.
As seen in Figure 21a, the Send/Receive communication

model of the InfiniBand stack both for a polling based ap-
proach for completion as well as an event based approach.
The polling based approach gives a latency of about 7.5 � s
as compared to a 20.5 � s latency achieved by the event-
based approach. However, the polling based approach re-
quires a 100% CPU utilization (not shown in the figure) as
compared to a 25% CPU utilization for the event-based ap-
proach.
Further, we see that RDMA Write achieves a latency of

about 5.5 � s for both the polling based scheme as well as the
event based scheme (Figure 22a). The reason for both the
event based scheme ans the polling based scheme perform-
ing alike is the receiver transparency for RDMA Write oper-
ations. Since, the RDMA Write operation is completely re-
ceiver transparent, the only way the receiver can know that
the data has arrived into its buffer is by polling on the last
byte. So, in an event-based approach only the sender would
be block on send completion using a notification event; the
notification overhead at the sender is however parallelized
with the data transmission and reception. Due to this the
time taken by RDMA write for the event-based approach
is similar to that of the polling based approach. Due to the
same reason, the CPU overhead in the event-based approach
is 100% (similar to the polling based approach). The CPU
results have been skipped in this figure because of this be-
havior of the event-based approach of the RDMA Write op-
eration.
Figure 23a also shows the one-way latency achieved by

the RDMA Write with Immediate Data communication
model of InfiniBand. Again, results for both the polling
based model and the event-based model are provided. The
latencies achieved by the two models are similar to the
send-receive model, i.e., about 7.5 � s for the polling based
scheme and about 20.5 � s for the event based scheme.
RDMA Read on the other hand achieves a latency of about

12.5 � s for the polling based scheme and about 24.5 � s for
the event based scheme (Figure 24a). The higher latency for
the RDMA Read scheme compared to the other schemes is
due to round-trip semantics of the RDMA read operation,

i.e., the local network adapter has to send the initiation mes-
sage to the remote network adapter, which in turn returns
the required data, thus requiring a round-trip latency.

5.2.2 Single Stream Throughput

Figures 21b to 24b show the throughputs achieved by the
different communication models of the InfiniBand stack for
a polling based approach for completion as well as an event
based approach. All approaches seem to perform very close
to each other giving a peak throughput of about 6.6Gbps.
The peak throughput is limited by the sustainable band-
width on the PCI-X bus. The way the event-based scheme
works is that, it first checks the completion queue for any
completion entries present. If there are no completion en-
tries present, it requests a notification from the network
adapter and blocks while waiting for the data to arrive. In
a throughput test, data messages are sent one after the other
continuously. So, the notification overhead can be expected
to be overlapped with the data transmission overhead for
the consecutive messages. This results in a similar perfor-
mance for the event-based approach as well as the polling
based approach.
The CPU utilization values are only presented for the

event-based approach; those for the polling based approach
stay close to 100% and are not of any particular interest.
The interesting thing to note is that for RDMA, there is
nearly zero CPU utilization for the data sink especially for
large messages.

5.3 10-Gigabit Ethernet/InfiniBand Comparisons

Figures 25a and 25b show the latency and throughput com-
parisons between IBA and 10-Gigabit Ethernet respectively.
In this figure we have skipped the event based scheme and
shown just the polling based scheme. The reason for this
is the software stack overhead in InfiniBand. The perfor-
mance of the event based scheme depends on the perfor-
mance of the software stack to handle the events generated
by the network adapter and hence would be specific to the
implementation we are using. Hence, to get an idea of the
peak performance achievable by InfiniBand, we restrict our-
selves to the polling based approach.
We can see that InfiniBand is able to achieve a signifi-

cantly higher performance than the host TCP/IP stack on
10-Gigabit Ethernet; a factor of three improvement in the
latency and a up to a 3.5 times improvement in the through-
put. This improvement in performance is mainly due to the
offload of the network protocol, direct access to the NIC and
direct placement of data into the memory.
Figures 26a and 26b show the CPU requirements and the

memory traffic generated by the host TCP/IP stack over 10-
Gigabit Ethernet and the InfiniBand stack. We can see that
the memory traffic generated by the host TCP/IP stack is

16

Latency (Send/Receive)

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

T
im

e
(u

s)

0

5

10

15

20

25

30

CPU Utilization Latency (Poll) Latency (Event)

Throughput (Send/Receive)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

5

10

15

20

25

30

35

Send CPU

Recv CPU

Throughput (Poll)

Throughput (Event)

Figure 21. IBA Micro-Benchmarks for Send-Receive: (a) Latency and (b) Throughput

Latency (RDMA Write)

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

T
im

e
(u

s)

100

100.1

100.2

100.3

100.4

100.5

100.6

100.7

CPU Utilization Latency (Poll) Latency (Event)

Throughput (RDMA Write)

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

5

10

15

20

25

30

35

40

45

50

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)

Figure 22. IBA Micro-Benchmarks for RDMA Write: (a) Latency and (b) Throughput

Latency (RDMA Write Imm)

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

T
im

e
(u

s)

0

5

10

15

20

25

30

CPU Utilization Latency (Poll) Latency (Event)

Throughput (RDMA Write Imm)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

2

4

6

8

10

12

14

16

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)

Figure 23. IBA Micro-Benchmarks for RDMA Write with Immediate Data: (a) Latency and (b) Through-
put

17

Latency (RDMA Read)

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 128 256 512 1K 2K 4K

Message Size (bytes)

T
im

e
(u

s)

0

5

10

15

20

25

CPU Utilization Latency (Poll) Latency (Event)

Throughput (RDMA Read)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K

Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0

5

10

15

20

25

Send CPU Recv CPU

Throughput (Poll) Throughput (Event)

Figure 24. IBA Micro-Benchmarks for RDMA Read: (a) Latency and (b) Throughput

Latency Comparison
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128 256 512 1K

Message Size (bytes)

L
at

en
cy

 (
u

se
c)

Sockets
RW (Poll)
RR (Poll)

Throughput Comparison
(Socket Buffer Size = 64K; MTU = 1.5K;

Checksum Offloaded; PCI Burst Size = 4K)

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K
Message Size (bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Sockets
RW
RR

Figure 25. Latency and Throughput Comparison: Host TCP/IP over 10-Gigabit Ethernet Vs InfiniBand

CPU Requirement

0

20

40

60

80

100

120

Send (64) Send (64K) Recv (64) Recv (64K)

P
er

ce
n

ta
g

e
C

P
U

Sockets RW RR

Memory Traffic Comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

64 1K 16K 64K 256K 1M 4M

Message Size (bytes)

M
em

o
ry

 t
o

 N
et

w
o

rk
 T

ra
ff

ic

R
at

io

Sockets (Send) RDMA (Send) Sockets (Recv) RDMA (Recv)

Figure 26. CPU Requirement and Memory Traffic Comparisons: Host TCP/IP over 10-Gigabit Ethernet
Vs InfiniBand

18

much higher (more than 4 times in some cases) as compared
to InfiniBand; this difference is mainly attributed to the
copies involved in the sockets layer for the TCP/IP stack.
This result points to the fact that inspite of the possibility of
an offload of the TCP/IP stack on to the 10-Gigabit Ethernet
network adapter, TCP’s scalability would still be restricted
by the sockets layer and its associated copies. On the other
hand, having an RDMA interface over IP together with the
offloaded TCP stack can be expected to achieve all the ad-
vantages seen by InfiniBand.
Some of the expected benefits are (1) Low overhead inter-

face to the network, (2) Direct Data Placement (significantly
reducing intermediate buffering), (3) Support for RDMA
semantics, i.e., the sender can handle the buffers allocated
on the receiver node and (4) Most importantly, the amount
of memory traffic generated for the network communication
will be equal to the number of bytes going out to or coming
in from the network, thus improving scalability.

6 Related Work

Several researchers have worked on implementing high
performance user-level sockets implementations over high
performance networks. Balaji, Shah, and several others
have worked on such pseudo sockets layers over Gigabit
Ethernet, GigaNet cLAN [33] and InfiniBand [6]. How-
ever, these implementations try to maintain the sockets API
in order to allow compatibility for existing applications and
hence still face the memory traffic bottlenecks discussed in
this paper.
There has been some previous work done by Foong et.

al. [17] which does a similar analysis of the bottlenecks
associated by the TCP/IP stack and the sockets interface.
This research is notable in the sense that this was the one
of the first to show the implications of the memory traffic
associated with the TCP/IP stack. However, this analysis
was done using much slower networks, in particular Giga-
bit Ethernet adapters following which the memory traffic
did not show up as a fundamental bottleneck and the con-
clusions of the work were quite different from ours.
We would also like to mention some previous research to

optimize the TCP stack [13, 21, 26, 23]. However, in this
paper, we question the sockets API itself and propose issues
associated with this API. Further, we believe that most of
the previously proposed techniques would still be valid for
the proposed RDMA interface over TCP/IP and can be used
in a complementary manner.

7 Concluding Remarks and Future Work

The compute requirements associated with the TCP/IP
protocol suite have been previously studied by a number

of researchers. However, the recently developed 10 Giga-
bit networks such as 10-Gigabit Ethernet and InfiniBand
have added a new dimension of complexity to this problem,
Memory Traffic. While there have been previous studies
which show the implications of the memory traffic bottle-
neck, to the best of our knowledge, there has been no study
which shows the actual impact of the memory accesses gen-
erated by TCP/IP for 10-Gigabit networks.
In this paper, we first do a detailed evaluation of vari-

ous aspects of the host-based TCP/IP protocol stack over
10-Gigabit Ethernet including performance, memory traf-
fic and CPU requirements. Next, we compare these with
RDMA capable network adapters, using InfiniBand as an
example network. Our measurements show that while the
host based TCP/IP stack has a high CPU requirement, up
to 80% of this overhead is associated with the core protocol
implementation especially for large messages and is poten-
tially offloadable using the recently proposed TCP Offload
Engines. However, the current host based TCP/IP stack also
requires multiple transactions of the data (up to a factor of
four in some cases) over the current moderately fast mem-
ory buses, curbing their scalability to faster networks; for
10-Gigabit networks, the host based TCP/IP stack generates
enough memory traffic to saturate a 333MHz/64bit DDR
memory bandwidth even before 35% of the available net-
work bandwidth is used.
Our evaluation of the RDMA interface over the InfiniBand

network tries to nail down some of the benefits achievable
by providing an RDMA interface over IP. In particular, we
try to compare the RDMA interface over InfiniBand not
only in performance, but also in other resource requirements
such as CPU usage, memory traffic, etc. Our results show
that the RDMA interface requires up to four times lesser
memory traffic and has almost zero CPU requirement for
the data sink. These measurements show the potential im-
pacts of having an RDMA interface over IP on 10-Gigabit
networks.
As a part of the future work, we would like to do a de-

tailed memory traffic analysis of the 10-Gigabit Ethernet
adapter on 64-bit systems and for various applications such
as SpecWeb and multimedia streaming servers.

8 Acknowledgments

We would like to thank Annie Foong for all the help she
provided while using the VTune and EMon performance
tools. We would also like to thank Gary Tsao, Gilari Ja-
narthanan and J. L. Gray for the valuable discussions we
had during the course of the project.

References

[1] 10 Gigabit Ethernet Alliance. http://www.10gea.org/.

19

[2] InfiniBand Trade Association Specifications.
http://www.infinibandta.org/estore.html.

[3] M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/research/FTG/via.

[4] Quadrics Supercomputers World Ltd. http://www.
quadrics.com/.

[5] InfiniBand Trade Association. http://www.
infinibandta.org.

[6] Pavan Balaji, Sundeep Narravula, Karthikeyan
Vaidyanathan, Savitha Krishnamoorthy, Jiesheng Wu,
and Dhabaleswar K. Panda. Sockets Direct Protocol
over InfiniBand in Clusters: Is it Beneficial? In the
Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software
(ISPASS), Austin, Texas, March 10-12 2004.

[7] Pavan Balaji, Piyush Shivam, Pete Wyckoff, and Dha-
baleswar K. Panda. High Performance User Level
Sockets over Gigabit Ethernet. In the Proceedings of
the IEEE International Conference on Cluster Com-
puting, pages 179–186, Chicago, Illinois, September
23-26 2002.

[8] Pavan Balaji, Jiesheng Wu, Tahsin Kurc, Umit
Catalyurek, Dhabaleswar K. Panda, and Joel Saltz.
Impact of High Performance Sockets on Data Inten-
sive Applications. In the Proceedings of the IEEE
International Conference on High Performance Dis-
tributed Computing (HPDC), pages 24–33, Seattle,
Washington, June 22-24 2003.

[9] M. Banikazemi, B. Abali, L. Herger, and D. K.
Panda. Design Alternatives for VIA and an Imple-
mentation on IBM Netfinity NT Cluster. Special Issue
of the Journal of Parallel and Distributed Computing
(JPDC), Vol. 61, No. 11, pp. 1512-1545, November
2001.

[10] M. Banikazemi, V. Moorthy, L. Hereger, D. K. Panda,
and B. Abali. Efficient Virtual Interface Architecture
Support for IBM SP switch-connected NT clusters. In
Proceedings of International Parallel and Distributed
Processing Symposium (IPDPS), 2000.

[11] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[12] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Inter-
face Architecture. In Proceedings of Supercomputing,
1998.

[13] D. Clark, V. Jacobson, J. Romkey, and H.Salwen. An
Analysis of TCP processing overhead. IEEE Commu-
nications, June 1989.

[14] GigaNet Corporations. cLAN for Linux: Software
Users’ Guide.

[15] Myricom Corporations. The GM Message Passing
System.

[16] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cot-
trell, O. Martin, F. Coccetti, C. Jin, D. Wei, and
S. Low. Optimizing 10-Gigabit Ethernet for Networks
of Workstations, Clusters and Grids: A Case Study. In
Proceedings of the IEEE International Conference on
Supercomputing, Phoenix, Arizona, November 2003.

[17] Annie Foong, Herbet Hum, Tom Huff, Jaidev Pat-
wardhan, and Greg Regnier. TCP Performance Revis-
ited. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Soft-
ware (ISPASS), Austin, Texas, 2003.

[18] H. Frazier and H. Johnson. Gigabit Ethernet: From
100 to 1000Mbps.

[19] G. Herrin. Linux IP Networking: A Guide to
the Implementation and Modification of the Linux
Protocol Stack. http://kernelnewbies.org/documents/
ipnetworking, May 2000.

[20] J. Hurwitz and W. Feng. End-to-End Performance of
10-Gigabit Ethernet on Commodity Systems. IEEE
Micro, January 2004.

[21] V. Jacobson. 4BSD Header Prediction. In ACM SIG-
COMM, pages 13–15, April 1990.

[22] Hyun-Wook Jin, Pavan Balaji, Chuck Yoo, Jin-Yong
Choi, and Dhabaleswar K. Panda. Exploiting NIC
Architectural Support for Enhancing IP based Proto-
cols on High Performance Networks. Technical report,
Ohio State University, Columbus, Ohio, May 2004.

[23] J. Kay and J. Pasquale. The Importance of Non-Data
Touching Processing Overheads in TCP/IP. In ACM
SIGCOMM, San Francisco, September 1993.

[24] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. Build-
ing a High-Performance Communication Layer over
Virtual Interface Architecture on Linux Clusters. In
the Proceedings of the IEEE International Conference
on Supercomputing (ICS), pages 335–347, Naples,
Italy, June 16-21 2001.

20

[25] Jin-Soo Kim, Kangho Kim, and Sung-In Jung. SO-
VIA: A User-level Sockets Layer Over Virtual Inter-
face Architecture. In the Proceedings of the IEEE In-
ternational Conference on Cluster Computing, pages
399–408, California, USA, October 8-11 2001.

[26] P. E. McKenney and K. F. Dove. Efficient De-
multiplexing of Incoming TCP Packets. In ACM
SIGCOMM, pages 269–280, Baltimore, MD, August
1992.

[27] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM). In Proceedings of Supercomputing, 1995.

[28] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network (QsNet):
High-Performance Clustering Technology. In the Pro-
ceedings of the IEEE International Conference on Hot
Interconnects, August 2001.

[29] Quadrics Supercomputers World Ltd. Elan Program-
ming Manual. 1999.

[30] Quadrics Supercomputers World Ltd. Elan Reference
Manual. 1999.

[31] Quadrics Supercomputers World Ltd. Elite Reference
Manual. 1999.

[32] A. Rubini and J. Corbet. Linux Device Drivers.
O’reilly, 2001.

[33] Hemal V. Shah, Calton Pu, and Rajesh S. Madukkaru-
mukumana. High Performance Sockets and RPC over
Virtual Interface (VI) Architecture. In the Proceedings
of the CANPC workshop (held in conjunction with
HPCA Conference), pages 91–107, 1999.

[34] Piyush Shivam, Pete Wyckoff, and Dhabaleswar K.
Panda. EMP: Zero-copy OS-bypass NIC-driven Giga-
bit Ethernet Message Passing. In the Proceedings of
the IEEE International Conference on Supercomput-
ing, pages 57–64, Denver, Colorado, November 10-16
2001.

[35] Piyush Shivam, Pete Wyckoff, and Dhabaleswar K.
Panda. Can User-Level Protocols Take Advantage of
Multi-CPU NICs? In the Proceedings of the IEEE In-
ternational Parallel and Distributed Processing Sym-
posium, Fort Lauderdale, Florida, April 15-19 2002.

[36] W. Richard Stevens. TCP/IP Illustrated, Volume I: The
Protocols. Addison Wesley, 2nd edition, 2000.

[37] Gary R. Wright and W. Richard Stevens. TCP/IP Il-
lustrated, Volume II: The Implementation. Addison
Wesley, 2nd edition, 2000.

[38] Eric Yeh, Herman Chao, Venu Mannem, Joe Gervais,
and Bradley Booth. Introduction to TCP/IP Offload
Engine (TOE). http://www.10gea.org, May 2002.

21

