Fragment Class Analysis for Testing of Polymorphism in Java Software

Atanas Rountev, Ana Milanova, and Barbara G. Ryder
Abstract

Testing of polymorphism in object-oriented software may require coverage of all possible bindings of receiver classes and target methods at call sites. Tools that measure this coverage need to use class analysis to compute the coverage requirements. However, traditional whole-program class analysis cannot be used when testing incomplete programs. To solve this problem, we present a general approach for adapting whole-program class analyses to operate on program fragments. Furthermore, since analysis precision is critical for coverage tools, we provide precision measurements for several analyses by determining which of the computed coverage requirements are actually feasible for a set of subject components. Our work enables the use of whole-program class analyses for testing of polymorphism in partial programs, and identifies analyses that potentially are good candidates for use in coverage tools.

Index Terms

Test coverage, object-oriented software, program analysis, class analysis

I. INTRODUCTION

Testing of object-oriented software presents a variety of new challenges due to features such as inheritance, polymorphism, dynamic binding, and object state [1]. Programs contain complex interactions among sets of collaborating objects from different classes. These interactions are greatly complicated by object-oriented features such as polymorphism, which allows the binding of an object reference to objects of different classes. While this is a powerful mechanism for producing compact and extensible code, it creates numerous fault opportunities [1].

Polymorphism is common in object-oriented software—for example, polymorphic bindings are often used instead of case statements [2], [3]. However, code that uses polymorphism can be hard to understand and therefore fault-prone. For example, understanding all possible interactions between a message sender object and a message receiver object under all possible bindings for these objects can be challenging for programmers. The sender object of a message may fail to meet all preconditions for all possible bindings of the receiver object [3]. A subclass in an inheritance hierarchy may violate the contract of its superclasses; clients that send polymorphic messages to this hierarchy may experience inconsistent behavior. For example, an inherited method may be incorrect in the context of the subclass [4], or an overriding method may have preconditions and postconditions different from the ones for the overridden method [1]. In deep
inheritance hierarchies, it is easy to forget to override methods for lower-level subclasses [5]; clients of such hierarchies may experience incorrect behavior for some receiver classes. Changes in server classes may cause tested and unchanged client code to fail [3].

A. Coverage Criteria for Polymorphism

Various techniques for testing of polymorphic interactions have been proposed in previous work [3], [6]–[12]. These approaches require testing that exercises all possible polymorphic bindings for certain elements of the tested software. For example, Binder points out that “just as we would not have high confidence in code for which only a small fraction of the statements or branches have been exercised, high confidence is not warranted for a client of a polymorphic server unless all the message bindings generated by the client are exercised” [3]. These requirements can be encoded as coverage criteria for testing of polymorphism. There is existing evidence that such criteria are better suited for detecting object-oriented faults than the traditional statement and branch coverage criteria [10].

A program-based coverage criterion is a structural test adequacy criterion that defines testing requirements in terms of the coverage of particular elements in the structure of the tested software [13]. Such coverage criteria can be used to evaluate the adequacy of the performed testing and can also provide valuable guidelines for additional testing. In this paper we focus on two program-based coverage criteria for testing of polymorphism. The all-receiver-classes criterion (denoted by RC) requires exercising of all possible classes of the receiver object at a call site. The all-target-methods criterion (denoted by TM) requires exercising of all possible bindings between a call site and the methods that may be invoked by that site. Some existing approaches explicitly define coverage requirements based on these criteria [3], [6], [8], while in other approaches the coverage of receiver classes and/or target methods is part of more general coverage requirements that take into account polymorphism [7], [9]–[12]. For example, in addition to RC, [7] proposes coverage of all possible classes for the senders and the parameters of a message.

B. Class Analysis for Coverage Tools

The use of coverage criteria is essentially impossible without tools that automatically measure the coverage achieved during testing. A coverage tool analyzes the tested software to determine which elements need to be covered, inserts instrumentation for run-time tracking, executes the
test suite, and reports the degree of coverage and the elements that have not been covered. To determine which software elements need to be covered, a coverage tool has to use some form of *source code analysis*. Such an analysis computes the elements for which coverage should be tracked and determines the kind and location of the necessary code instrumentation.

For simple criteria such as statement and branch coverage, the necessary source code analysis is trivial; however, the *RC* and *TM* criteria require more complex analysis. To compute the *RC* and *TM* coverage requirements, a tool needs to determine the possible classes of the receiver object and the possible target methods for each call site. In the simplest case, this can be done by examining the class hierarchy—i.e., by considering all classes in the subtree rooted at the declared type of the receiver object. It appears that previous work on testing of polymorphism [3], [6]–[12] uses this approach (or minor variations of it) to determine the possible receiver classes and target methods at polymorphic calls.

Some of the existing work on static analysis for object-oriented languages (e.g. [14]–[18]) shows that using the class hierarchy to determine possible receiver classes may be overly conservative—i.e., not all subclasses may be actually feasible. Such imprecision has serious consequences for coverage tools. Because of infeasible coverage requirements, high coverage can never be achieved regardless of the testing effort. In this case the coverage metrics become hard to interpret: is the low coverage due to inadequate testing, or is it due to infeasible coverage requirements? This problem seriously compromises the usefulness of the coverage metrics. In addition, the person who creates new test cases may spend significant time and effort trying to determine the appropriate test cases, before realizing that it is impossible to achieve the required coverage. This situation is unacceptable because the time and attention of a human tester can be very costly compared to computing time.

To address these problems, we propose to use *class analysis* to compute the coverage requirements. Class analysis is a static analysis that determines an overestimate of the classes of all objects to which a given reference variable may point. While initially developed in the context of optimizing compilers for object-oriented languages, class analysis also has a variety of applications in software engineering tools. In a coverage tool for testing of polymorphism, class analysis can be used to determine which are the classes of objects that variable *x* may refer to at call site *x.m()*; from this information it is trivial to compute the *RC* and *TM* criteria for the call site. There is a large body of work on various class analyses with different tradeoffs
between cost and precision [14]–[31]; however, there has been no previous work on using these analyses for the purposes of testing of polymorphism.

C. Fragment Class Analysis

The existing body of work on class analysis cannot be used directly to compute the RC and TM coverage requirements in a coverage tool. The key problem is that the vast majority of existing class analyses are designed as whole-program analyses—i.e., analyses that process complete programs. In contrast, testing is rarely done only on complete programs, and many testing activities are performed on partial programs. Any realistic coverage tool should be able to work on partial programs, and therefore needs analysis techniques beyond traditional whole-program class analyses.

To solve this problem, we need a class analysis that can operate on fragments of programs rather than on complete programs. We refer to such an analysis as a fragment class analysis. The first contribution of this paper is a general method for constructing fragment class analyses for the purposes of testing of polymorphism in Java. Using this method, fragment class analyses can be derived from a wide variety of flow-insensitive whole-program class analyses [14]–[18], [20], [22], [24], [26]–[29], [31]. The significance of this technique is that it allows tool designers to adapt available technology for whole-program class analysis to be used in coverage tools for testing of polymorphism in partial programs.

D. Absolute Analysis Precision

Analysis precision is a critical issue for the use of class analysis in coverage tools. Less precise analyses compute less precise coverage criteria—i.e., some of the coverage requirements may be impossible to achieve. As discussed earlier, infeasible coverage requirements present a serious problem for coverage tools: the coverage metrics become hard to interpret, and tool users may waste time and effort trying to achieve higher coverage. Previous work on class analysis only addresses the issue of relative analysis precision: how does the solution computed by analysis \(Y \) compare to the solution computed by analysis \(X \)? While such comparisons provide useful insights about the relationships between different analyses, they do not address the important question of absolute analysis precision: which parts of an analysis solution are infeasible? The second contribution of this paper is an empirical evaluation of the relative and absolute precision of
four fragment class analyses. These analyses are based on four well-known whole-program class analyses: Class Hierarchy Analysis (CHA) [32], Rapid Type Analysis (RTA) [14], 0-CFA [29], [33], and Andersen-style points-to analysis [17], [26], [28], [31], [34]. In our experiments we determined manually which parts of the analysis solution were actually infeasible. This information is essential for deciding which analysis to use in a coverage tool; however, to the best of our knowledge, such measurements of absolute precision are not available in any previous work on class analysis.

Our results indicate that simpler analyses such as CHA and RTA tend to report spurious receiver classes and target methods, while more advanced analyses such as 0-CFA and Andersen-style points-to analysis have the potential to achieve very good precision. These findings lead to two important conclusions. First, our evaluation of CHA and RTA shows that analysis imprecision can be a serious problem, and it should be a primary concern when designing coverage tools. Second, our results indicate that analyses such as 0-CFA and Andersen’s analysis have the potential to achieve high absolute precision, which makes them good candidates for further investigation and possible inclusion in coverage tools.

E. Outline

The rest of the paper is organized as follows. Section II describes our coverage tool for testing of polymorphism in Java. Section III presents the method for constructing fragment class analyses. The experimental results are described in Section IV. Section V discusses related work, and Section VI presents conclusions and future work. Appendix I describes some aspects of the theoretical foundations of our approach.

II. A COVERAGE TOOL FOR JAVA

We have built a test coverage tool for Java that supports the RC and TM coverage criteria. In the context of this tool we have implemented and evaluated several fragment class analyses. In the future we plan to use the tool as the basis for investigations of other problems related to the testing of polymorphism, and more generally, problems related to testing of object-oriented software.

To illustrate the two criteria, consider the Java classes in Figure 1. For the purpose of this example, suppose that reference variable a may refer to instances of classes A, B, or C. The
class A { public void m() { ... } }
class B extends A { public void m() { ... } }
class C extends A { ... }
A a;
......
ci: a.m(); // if a may refer to instances of A, B, or C, then \(RC(c_i) = \{ A, B, C \} \) and \(TM(c_i) = \{ A.m, B.m \} \)

Fig. 1. \(RC \) and \(TM \) coverage criteria.

\(RC \) criterion requires testing of call site \(a.m() \) with each of the three possible classes of the receiver object. Similarly, the \(TM \) criterion requires invocation of each of the two possible target methods (i.e., both \(A.m \) and the overriding \(B.m \)). For a polymorphic call site, each possible target method is invoked for at least one possible receiver class; thus, \(RC \) subsumes \(TM \).

A. Input and Output

The input of the tool contains a set \(Cls \) of Java classes and interfaces that will be tested.\(^1\) A subset of \(Cls \) is designated as the set of accessed classes. Intuitively, an accessed class has methods and fields that may be accessed by future clients of the particular functionality that is currently being tested. If a class is not public [35, Sect. 6.6], it is accessible only within its declaring package; such a class may still be considered an accessed class if it is possible to have in this package some future clients of the tested functionality. For each accessed class \(C \), some of its methods and fields (declared in \(C \) or inherited from \(C \)'s superclasses and superinterfaces) are defined as interface members. The set of accessed classes and their interface members will be denoted by \(Int \); this set defines the interface to the tested functionality. In general, \(Int \) could contain a small subset of all classes, fields and methods from \(Cls \), which corresponds to the case when the user is interested in testing only a specific subset of the functionality provided by the classes from \(Cls \). Set \(Int \) may be obtained in several different ways: a user can manually list its elements; an existing test suite can be analyzed automatically to infer the classes, methods,

\(^1\)Unless stated otherwise, in the rest of the paper we will use “classes” to refer to both classes and interfaces, since in most cases the distinction between the two is irrelevant. For brevity, we will also use “methods” to refer to both methods and constructors even though strictly speaking constructors are not methods [35].
and fields that constitute the interface to the tested functionality; or the tool can include all non-private members for a user-defined “interesting” set of accessed classes. An interface member may potentially have public, protected, or package accessibility.

For the purposes of this paper, a test suite for \textit{Int} is a Java class that contains a set of test cases that exercise \textit{Int}. Without loss of generality, we assume that all test cases are part of a single class which also serves as a test driver, and this class only references classes from \textit{Cls} and accesses methods and fields from \textit{Int}. Let \textit{AllSuites(Int)} denote the set of all such possible test suites for \textit{Int}; clearly, this set is infinite. We assume that \textit{Cls} is closed with respect to \textit{Int}: for any arbitrary suite \(S \in \text{AllSuites(Int)} \), all classes, methods, and fields that could be referenced during the execution of \(S \) are in \textit{Cls}. In other words, we consider test suites that only test interactions among classes from the given set \textit{Cls}. In general, classes from \textit{Cls} could potentially interact with unknown classes from outside of \textit{Cls}. For example, unknown future subclasses of classes from \textit{Cls} may override inherited methods, and therefore instance calls inside \textit{Cls} may potentially be “redirected” to external code. However, at the time the testing is performed, such unknown classes are not available and interactions with them cannot be exercised; therefore, we do not consider test suites whose execution involves such unknown classes. If stub classes have been created to simulate unknown external classes during testing, the stubs should be included in \textit{Cls}. In addition to \textit{Cls} and \textit{Int}, the tool takes as input one particular test suite \(T \), and reports the coverage achieved by \(T \) with respect to the \textit{RC} and \textit{TM} criteria.

\textbf{B. Components}

The tool contains four components. The \textit{analysis component} processes the classes in \textit{Cls} and computes the requirements according the \textit{RC} and \textit{TM} criteria—that is, for each call site \(c \), it produces sets \(RC(c) \) and \(TM(c) \). More precisely, the analysis answers the following question: for each call site in \textit{Cls}, what is the set of possible receiver classes and target methods with respect to all possible \(S \in \text{AllSuites(Int)} \)? If it is possible to write some test suite that tests \textit{Int} and exercises a call site \(c \) with some receiver class \(X \) or some target method \(m \), the analysis includes \(X \) in \(RC(c) \) and \(m \) in \(TM(c) \).

The computed coverage requirements are provided to the \textit{instrumentation component}, which inserts instrumentation at call sites to record the classes of the receiver objects at run time using the reflection mechanism in Java. Instrumentation is only inserted at polymorphic call
package station;

public abstract class Link { public abstract void transmit(String message); }

class NormalLink extends Link { ... }

class PriorityLink extends Link { ... }

class SecureLink extends Link { ... }

class LoggingLink extends Link { ... }

public class Station {
 private Link link = new NormalLink();
 private int msg_id = 0;
 public void sendMessage(String m) {
 c1: link.transmit(msg_id++ + " " + m);
 if (msg_id==10) link = new PriorityLink();
 }
 public void report(Link l) {
 c2: l.transmit("id = "+msg_id);
 }
}

public class Factory {
 private boolean secure = false;
 public Link getLink() {
 if (secure) return new SecureLink(); else return new NormalLink();
 }
 public void makeSecure() { secure = true; }
}

Fig. 2. Package station with two polymorphic call sites c1 and c2.

sites—i.e., sites c for which \(RC(c) \) is not a singleton set. The instrumented code is supplied to the execution component which automatically runs the given test suite \(T \). The results of the execution are processed by the reporting component, which determines the actual coverage achieved at call sites.

C. Example

Consider package station in Figure 2. Class Station models a station that connects to the rest of the system using a variety of links. Initially, messages are transmitted using a normal-priority link. After a certain number of messages have been processed, the station starts using a high-priority link. In addition, the station may be required to report its current state on some link provided from the outside. External code may use class Factory to gain access to normal or secure links.

Suppose we are interested in testing the functionality provided by package station to non-package client code. In this case all public classes (i.e., Link, Station, and Factory)
package harness;
public abstract class Suite { public abstract void run(); }
package stationtest;
import station.*;
public class StationTests extends harness.Suite {
 public void run() {
 Station s = new Station();
 Factory f = new Factory();
 Link l;
 for (int i = 0; i < 10; i++) {
 s.sendMessage("message " + i);
 l = f.getLink();
 s.report(l);
 }
 }
}

Fig. 3. Simplified test suite.

should be considered accessed classes. Set Int contains all public methods in accessed classes: Link.transmit, Station.sendMessage, Station.report, Factory.getLink, Factory.makeSecure, and the constructors of Station and Factory. (For the purpose of this example, we assume that methods inherited from Object are not relevant.) Given the package and Int, the tool computes sets $RC(c_i)$ and $TM(c_i)$ for the call sites in Station. For example, using Andersen’s fragment class analysis (presented in Section III-E), the computed sets are $RC(c_1) = \{\text{NormalLink, PriorityLink}\}$ and $RC(c_2) = \{\text{NormalLink, SecureLink}\}$ with the corresponding $TM(c_i)$. Given this information, the instrumentation component inserts instrumentation at the two call sites. At run time this instrumentation records the receiver classes using Object.getClass.

Suppose that the tool is used to evaluate test suite StationTests shown in Figure 3. This suite achieves 50% RC coverage for call site c_1 because the site is never executed with receiver class PriorityLink. Similarly, the RC coverage for c_2 is 50% because receiver class SecureLink is not exercised. Note that the suite achieves 100% statement and branch coverage for class Station, but this is not enough to achieve the necessary coverage of the polymorphic calls inside the class. To achieve 100% coverage for c_1 and c_2, we need to add at least one more iteration to the loop in run, and we also need to introduce a call f.makeSecure().
III. FRAGMENT CLASS ANALYSIS

As discussed in Section I-C, whole-program class analyses cannot be used directly in our coverage tool because they cannot be applied to partial programs. In this context, we need fragment class analysis—that is, analysis that can be used to analyze fragments of programs rather than complete programs. In this section we describe a general method for constructing fragment class analyses for the purposes of testing of polymorphism in Java. The method allows these fragment analyses to be derived from whole-program class analyses. The resulting analyses can be used in coverage tools to compute the RC and TM coverage requirements.

Our approach is designed to be used with existing (and future) whole-program flow-insensitive class analyses. Flow-insensitive analyses do not take into account the flow of control within a method, which makes them less costly than flow-sensitive analyses. The approach is applicable both to context-insensitive and to context-sensitive analyses. Context-insensitive analyses do not attempt to distinguish among the different invocation contexts of a method. This category includes Rapid Type Analysis (RTA) by Bacon and Sweeney [14], the XTA/MTA/FTA/CTA family of analyses by Tip and Palsberg [27], Declared Type Analysis and Variable Type Analysis by Sundaresan et al. [16], the p-bounded and p-bounded-linear-edge families of class analyses due to DeFouw et al. [22], [29], 0-CFA [29], [33], 0-1-CFA [15], Steensgaard-style points-to analyses [24], [28], and Andersen-style points-to analyses [17], [26], [28], [31]. Our approach can be applied to all of these context-insensitive whole-program class analyses.

Context-sensitive analyses attempt to distinguish among different invocation contexts of a method. As a result, such analyses are potentially more precise and more expensive than context-insensitive analyses. In parameter-based context-sensitive class analyses, calling context is modeled by using some abstraction of the values of the actual parameters at a call site. Call-chain-based context-sensitive class analyses represent calling context with a vector of call sites for the methods that are currently active on the run-time call stack. Our approach can be applied to several parameter-based analyses (the Cartesian Product algorithm due to Agesen [20], the Simple Class Set algorithm by Grove et al. [15], and the parameterized object-sensitive analyses by Milanova et al. [18]) and call-chain-based analyses (the standard k-CFA analyses [29], [33], and the k-1-CFA analyses by Grove et al. [15], [29]).
A. Structure of Fragment Class Analysis

Recall from Section II-A that the input to the tool contains a set of classes \(Cls \), as well as a set \(Int \) of methods and fields from \(Cls \) that define the interface to the particular functionality that is being tested. In addition, \(Int \) may contain information about array types that are potentially used in test suites. In general, there is an unbounded number of such array types (e.g., \(X[] \), \(X[][] \), \(X[][][] \), \ldots for some \(X \) from \(Cls \)). To determine which ones are relevant for the tested functionality, we assume that \(Int \) contains a list of potentially instantiated array types (i.e., types that may occur in \texttt{new} expressions) and another list of potentially accessed array types (i.e., types that may occur in array access expressions \(x[i] \)). Knowing that an array type is potentially instantiated is analogous to knowing that some class is potentially instantiated (i.e., \(Int \) contains a constructor for the class)—in both cases, this information describes the objects that may be created by test suites. For the purposes of class analysis, knowing that an array type may be accessed by an expression \(x[i] \) is conceptually similar to knowing that a field in a class is potentially accessed. For example, a statement “\(x[i] = y \)”, where the type of \(x \) is an accessed array type, is similar to a statement “\(x.f = y \)” where the type of \(x \) is an accessed class type. Intuitively, reading or writing an element of an array object is analogous to reading or writing an instance field of a “normal” object.

\(AllSuites(Int) \) is the infinite set of possible test suites for \(Int \), as defined in Section II-A. The tool needs to compute the coverage requirements according to the \(RC \) and \(TM \) criteria—that is, for each method call site, to determine the set of possible receiver classes and target methods with respect to all \(S \in AllSuites(Int) \). More precisely, if it is possible to write some test suite for \(Int \) that exercises a call site \(c \) with some receiver class \(X \) or some target method \(m \), \(X \) should be included in \(RC(c) \) and \(m \) should be included in \(TM(c) \).

To compute \(RC(c) \) and \(TM(c) \), the tool needs to use fragment class analysis. We define an entire family of such analyses in the following manner: first, we create placeholders that serve as representatives for various elements of the unknown code from all possible test suites \(S \in AllSuites(Int) \). During the analysis, the placeholders simulate the potential effects of this unknown code. After creating the appropriate placeholders, the fragment analysis adds them to the tested classes, treats the result as a complete program, and analyzes it using some whole-program class analysis. It is important to note that the created placeholders are \textit{not} designed to
be executed as an actual test suite; they are only used for the purposes of the fragment class analysis. Given the information in Int supplied by the tester, the placeholders can be easily constructed automatically by the analysis component of a coverage tool.

There are two categories of placeholders: placeholder variables and placeholder statements. Both kinds are located inside a placeholder main method. Subsequent sections describe the structure of these placeholders and their role in the fragment analysis.

B. Placeholder Variables

The placeholder variables serve as representatives for unknown external reference variables (i.e., reference variables that may occur in some test suite). A reference variable is a variable of reference type. In Java, a reference type is a class type, an interface type, or an array type [35, Sect. 4.3]. For the purposes of the fragment analysis, an array type with a primitive element type (e.g., int []) is irrelevant. We will use the term pure reference type to refer to class types, interface types, and array types whose element types are class/interface types.\(^2\)

The placeholder variables correspond to types that are relevant for possible test suites. We formalize this notion by defining a set RelevantTypes(Int) of pure reference types that are relevant with respect to the tested interface Int. For each type \(t \in \text{RelevantTypes}(\text{Int}) \), our approach creates a placeholder variable \(ph_t \) that serves as a representative for all unknown external variables of type \(t \). The set of relevant types is defined as follows:

- If the type \(t \) of a formal for a method \(m \in \text{Int} \) is a pure reference type, \(t \) is relevant
- If the return type \(t \) for a method \(m \in \text{Int} \) is a pure reference type, \(t \) is relevant
- If the type \(t \) of a field \(f \in \text{Int} \) is a pure reference type, \(t \) is relevant
- For each accessed class \(C \) such that \(\text{Int} \) contains at least one instance method/field for \(C \) (declared in \(C \) or inherited from \(C \)'s superclasses), the class type \(C \) is relevant.
- If an instantiated array type \(t \) is a pure reference type, \(t \) is relevant
- If an accessed array type \(t \) is a pure reference type, \(t \) and the component type of \(t \) are relevant

\(^2\)As defined in the language specification [35, Chapter 10], the component type of an array type \(t \) is the type of the variables contained in the array; this type may itself be an array type. The element type of \(t \) is obtained by considering the component types until a non-array type is encountered; e.g., for int [], the component type is int [] and the element type is int.
• java.lang.String and java.lang.Throwable are relevant

Intuitively, this definition lists the types of all reference variables that may occur in test suites and may affect the flow of reference values in CIs—by being, for example, parameters of calls to methods from Int. The inclusion of String and Throwable is necessary for handling of string literals and exceptions, as described shortly. For each relevant type, we create a placeholder variable that represents the effect of variables of that type. All placeholder variables are declared as local variables of the placeholder main method.

Example. For the definition of Int from Section II-C, the set of relevant types contains Station, Factory, Link, String, and Throwable. Figure 4 shows the declarations of the corresponding placeholder variables.

C. Placeholder Statements

In addition to the placeholder variables, main contains a set of placeholder statements. These statements represent different kinds of statements that could occur in the unknown code from some test suite. Intuitively, the role of the placeholder statements during the class analysis is to “simulate” the possible effects of unknown external code on the flow of reference values. Figure 4 shows the placeholder statements for the example from Section II-C. It is important to note that since we are targeting flow-insensitive class analyses, the ordering of placeholder statements is irrelevant.

1) *Method Calls:* Consider an accessed class C and one of its (declared or inherited) methods \(m \in \text{Int} \). There is a single placeholder statement that invokes \(m \). If \(m \) is an instance method, the placeholder variable for \(C \) is used for the receiver expression. The parameters of the call are placeholder variables matching the parameter types of \(m \). For example, method report in Figure 2 has a formal parameter of type Link, and the corresponding placeholder statement in Figure 4 uses \(\text{ph.Link} \) as an actual parameter. If a parameter type is not a pure reference type (e.g., int), a “dummy” value of that type is used at the call; such values have no effect on the subsequent class analysis.

If the return type of \(m \) is a pure reference type, the placeholder statement contains an assignment to the placeholder variable that matches that type. For example, Factory.getLink in Figure 2 has return type Link, and therefore the placeholder statement in Figure 4 assigns
import station.*;
main() {
 // Placeholder variables
 Station ph_Station;
 Factory ph_Factory;
 Link ph_Link;
 String ph_String;
 Throwable ph_Throwable;
 // Placeholder statements
 try {
 ph_Station = new Station();
 ph_Factory = new Factory();
 ph_Station.sendMessage(ph_String);
 ph_Station.report(ph_Link);
 ph_Link = ph_Factory.getLink();
 ph_Factory.makeSecure();
 ph_Link.transmit(ph_String);
 ph_String = "abc";
 } catch (Throwable e) {
 ph_Throwable = e;
 }
}

Fig. 4. Placeholders for package station.

the return value of the call to ph_Link. In the case when m is a constructor, a new expression
in introduced, and the result is assigned to the appropriate placeholder variable.

2) Field Accesses: Consider an accessed class C and one of its declared or inherited fields
f ∈ Int. There are placeholder statements that read and/or write the field. If f is an instance
field with pure reference type t, we create a statement “ph_t = ph_C.f”. In case f is not declared
final, a statement “ph_C.f = ph_t” is also created. If f is a static field of pure reference type t
and is declared in class X, the two placeholder statements are “ph_t = X.f” and “X.f = ph_t”.

3) Array Creation and Accesses: For each relevant instantiated n-dimensional array type
t = X[]][..][with element type X, there is a placeholder statement that creates an array of
type t. The statement has the form “ph_t = new X[1][]..[]”. The array creation expression in
the statement produces an array with size 1 and with component type either \(X \) (if \(n = 1 \)) or the \((n-1)\)-dimensional array type \(X[]\ldots[] \) (if \(n > 1 \)). Since the subsequent class analysis does not distinguish among array indices, the array size is irrelevant. This placeholder statement ensures that the class analysis will take into account arrays that may be created in test suites.

For each relevant accessed array type \(t \) from \(Int \), there are also statements representing accesses of array elements. More precisely, if \(w \) is the component type of \(t \), \(\text{main} \) contains statements “\(ph_w = ph_t[0] \)” and “\(ph_t[0] = ph_w \)”; the index is irrelevant for the class analysis.

4) **String Literals:** There is a placeholder statement that assigns to \(ph_String \) a string literal (e.g., "abc"). This literal represents instances of \(String \) that correspond to string literals occurring in test suites.

5) **Type Conversions:** The Java language defines a set of rules for *compile-time assignment conversions* [35, Sect. 5.2]. These rules identify pairs \((t_1, t_2)\) of types such that an expression of type \(t_1 \) can be treated at compile time as if it had type \(t_2 \) instead. For example, if \(Y \) is a subclass of \(X \), there is an assignment conversion from the type corresponding to \(Y \) to the type corresponding to \(X \). Similarly, there is an assignment conversion from \(Y \) to each interface that \(Y \) implements. Such conversions are implicitly performed at assignment statements and at parameter passing.

To represent the potential effects of these conversions, we consider all pairs of types from \(\text{RelevantTypes}(Int) \) for which the language defines an assignment conversion. For each such pair \((t_1, t_2)\), \(\text{main} \) contains a placeholder statement of the form “\(ph_{t_2} = ph_{t_1} \)”.

5) **Type Conversions:** The Java language defines a set of rules for *compile-time casting conversions* [35, Sect. 5.5]. For example, if \(Y \) is a subclass of \(X \), there is a casting conversion from the type corresponding to \(X \) to the type corresponding to \(Y \). By definition, all assignment conversions are also valid casting conversions. A casting conversion that is not an assignment conversion requires run-time tests to determine whether the actual reference value is a legitimate value of the new type; if not, a \texttt{CastException} is thrown. At compile time, such conversions are achieved through cast expressions. To model the possible effects of these conversions, we consider all pairs of relevant types for which the language defines a casting conversion that is not an assignment conversion. For each such pair \((t_1, t_2)\), we create a placeholder statement “\(ph_{t_2} = (t_2) \ ph_{t_1} \)”
which contains a cast expression. The complete set of language rules for casting conversions is described in [35, Sect. 5.5].

6) Exceptions: Since some of the invoked methods may throw checked or unchecked exceptions, all placeholder statements are located inside a try statement of the form try { ... } catch (Throwable e) { ph_Throwable = e; }. This construct represents the fact that code from test suites may catch exceptions thrown by the tested classes. Throwable is the most general type for objects that may be caught by catch clauses. Placeholder variable ph_Throwable serves as a representative for all reference variables in test suites that may refer to exception objects. Since such variables may be used, for example, as actuals of calls to methods from Int, assignment ph_Throwable = e enables the potential propagation of caught exceptions.

D. Analysis Correctness

The previous sections describe our approach for creating a main method containing various placeholders. This main method is added to the tested classes, and the result is analyzed using some whole-program class analysis. Section III-E presents examples of the solutions computed by two such whole-program analyses. In this section we discuss the correctness of the resulting fragment analysis; more details are presented in Appendix I.

A fragment class analysis is correct if and only if the following property holds: if there exists a test suite $S \in AllSuites(Int)$ whose execution exercises a call site c with some receiver class X, the analysis should report that X is a possible receiver class for c. This implies correctness both with respect to the RC criterion and the weaker TM criterion. We have proven this property for all fragment analyses derived from the whole-program flow-insensitive analyses listed in the beginning of Section III. This result enables the use of a large body of existing work on whole-program class analysis for the purposes of testing of polymorphism.

The proof of this claim is based on a general framework for whole-program class analysis proposed by Grove et al. [15], [29]. We first define two particular whole-program analyses that are instantiations of this framework. The first analysis, denoted by A_p, is a parameter-based context-sensitive analysis similar to Agesen’s Cartesian Product algorithm [20]. The second analysis, denoted by A_c, is a call-chain-based context-sensitive analysis similar to the k-1-CFA analysis from [15]. These two analyses are relatively precise instantiations of the framework from [15].
and they represent two points at the high end of the precision spectrum for context-sensitive class analysis (with parameter-based sensitivity in A_p and call-chain-based sensitivity in A_c). Both analyses are described in more detail in Appendix I.

Let A_p' be the fragment class analysis built on top of A_p. Similarly, let A_c' be the fragment class analysis that is based on A_c. We have proven the correctness of these two fragment analyses; an outline of the proof is presented in Appendix I. The proof is described with a substantial level of detail because we believe that the techniques it employs may be generalized for other analyses—for example, for fragment side-effect and def-use analyses built on top of existing whole-program analyses.

Consider an arbitrary whole-program class analysis A that is less precise than A_p or A_c. Analysis A always computes a solution that is a superset of the solution computed by A_p or by A_c. Based on the correctness of A_p' and A_c', it is easy to see that the fragment analysis based on A is also correct. Because of the properties of the framework from [15], [29], each of the whole-program analyses listed in the beginning of Section III is either less precise than A_p, or less precise than A_c; this implies the correctness of our approach for all of these analyses. Furthermore, this result applies to any future framework instance that is less precise than A_p or A_c, and therefore correctness is also guaranteed with respect to a large class of future analyses.

E. Analysis Precision

Consider package `station` in Figure 2. If we simply examine the class hierarchy to determine the possible receiver objects at call sites, we would have to conclude that $RC(c_i)$ contains all four subclasses of `Link`, which is too conservative and will result in infeasible testing requirements. In this case, the tool will never report that more than 50% coverage has been achieved for each of the two call sites in `Station`, even if in reality the achieved coverage is 100%.

Now suppose that we add the placeholders from Figure 4 and we run Rapid Type Analysis (RTA) [14]. RTA is a popular whole-program class analysis that performs class analysis and call graph construction in parallel. It maintains a set of methods reachable from `main`, and a set of classes instantiated in reachable methods. In the final solution, the set of classes for a variable v is the set of all instantiated subclasses of the declared type of v. In this example, RTA determines that class `Factory` is instantiated in `main`. This implies that call site `ph.Factory.getLink()` may be executed with an instance of `Factory`, which means that
method \texttt{getLink} is reachable from \texttt{main}. While processing the body of \texttt{getLink}, the analysis determines that \texttt{NormalLink} and \texttt{SecureLink} are instantiated. Similarly, because \texttt{Station} is instantiated in \texttt{main}, \texttt{sendMessage} is determined to be reachable, which implies that \texttt{PriorityLink} may also be instantiated. At the end, RTA determines that the only instantiated subclasses of \texttt{Link} are \texttt{NormalLink}, \texttt{PriorityLink}, and \texttt{SecureLink}, and therefore \(RC(c_1) \) contains only these three classes. Unlike analysis of the class hierarchy, RTA is capable of filtering out the infeasible receiver class \texttt{LoggingLink}. Still, some imprecision remains because infeasible class \texttt{SecureLink} is reported for \(c_1 \) and infeasible class \texttt{PriorityLink} is reported for \(c_2 \).

As another example, suppose that the fragment analysis uses Andersen’s whole-program points-to analysis for Java [17], [26], [28], [31]. This analysis constructs a \textit{points-to graph} in which nodes represent reference variables and objects, and edges represent points-to relationships between the nodes. Figure 5 shows some of the edges in the points-to graph computed for our example. Each name \(o_i \) represent the run-time objects allocated by a particular \texttt{new} expression. The graph shows that field \texttt{link} may only refer to instances of \texttt{NormalLink} and \texttt{PriorityLink}, and therefore these two classes are included in \(RC(c_1) \). Similarly, the graph shows that \(RC(c_2) \) contains \texttt{NormalLink} and \texttt{SecureLink}.

Any class analysis could potentially compute infeasible classes. In this particular case, every receiver class reported by Andersen’s analysis is feasible, but in general this need not be true. As discussed in Section I-D, only analyses that report few infeasible classes should be
used in coverage tools. Thus, in order to construct high-quality coverage tools for testing of polymorphism, it is necessary to have information about the imprecision of different analyses (i.e., how many infeasible classes they report). Unfortunately, measurements of absolute precision are not available in previous work on class analysis. One goal of our work was to obtain such measurements for several different class analyses. These results are presented in the next section.

IV. Empirical Study

This study focuses on several fragment class analysis techniques derived from popular whole-program class analyses. The purpose of the study is to evaluate these techniques as potential candidates for computing RC and TM coverage requirements in coverage tools. In particular, the key question we want to answer is the following: How precise are the coverage requirements computed by these techniques? In other words, how many infeasible receiver classes and infeasible target methods are included in the computed requirements? Our goal is to evaluate both the relative precision of the techniques with respect to each other, and the absolute precision with respect to a “perfect” baseline. Thus, the manipulated independent variable in our experiments is the class analysis algorithm, and the measured dependent variable is the precision of the coverage requirements.

A. Analysis Techniques

Our study considers four different choices for the fragment class analysis. Each analysis is derived from a corresponding whole-program analysis, using the approach presented in Section III. The first analysis, denoted by CHA\textsubscript{f}, is based on Class Hierarchy Analysis (CHA) [32]. This approach includes in the coverage requirements each subtype and each overriding method defined in the class hierarchy; therefore, this is the simplest and potentially most imprecise technique. The second fragment class analysis (denoted by RTA\textsubscript{f}) is derived from Rapid Type Analysis (RTA) [14]. As discussed in Section III-E, RTA is a whole-program class analysis that computes an overestimate of the set of classes that are instantiated in methods that are reachable from main. This analysis belongs at the lower end of the cost/precision spectrum of class analysis.

The third fragment analysis, denoted by 0-CFA\textsubscript{f}, is based on the popular whole-program 0-CFA class analysis [22], [29], [33]. The fourth fragment analysis (denoted by AND\textsubscript{f}) is derived
from a whole-program points-to analysis for Java [17] which is based on Andersen’s points-
to analysis for C [34]. (An example illustrating the Andersen-style analysis is presented in
Section III-E.) Both 0-CFA and Andersen-style analysis represent points at the high end of the
cost/precision spectrum for flow- and context-insensitive class analysis. The difference between
the two is that 0-CFA does not attempt to distinguish among different instances of the same
class, while Andersen-style analysis makes such a distinction in order to improve precision. We
used a version of 0-CFA that is a modification of the analysis from [17]. In this modification, the
analysis creates a single object name for all object allocation sites for a given class—i.e., instead
of having a separate object name \(o_i \) for each \(\texttt{new} \) expression as in [17], there is a single object
name \(o_C \) for all expressions “\(\texttt{new} \ C \)”. This analysis is essentially equivalent to the standard
0-CFA class analysis [22], [29], [33]; the only difference is that our analysis distinguishes among
occurrences of the same instance field in different subclasses that inherit that field, while 0-CFA
does not make this distinction.

B. Subject Components

For our experimental evaluation we used a set of publicly available Java packages, from a
wide range of sources and application domains. We then defined several testing tasks. Each task
was defined with respect to a particular functionality provided by a package. For example, one
task was to exercise the functionality for identifying boundaries in text (i.e., word boundaries,
line boundaries, etc.), as provided by a set of classes from \texttt{java.text}. As another example,
a task was defined to exercise the functionality from \texttt{java.util.zip} related to ZIP files.
Columns (1)-(3) in Table I briefly describe the testing tasks and the functionalities they exercise.

For each task, we determined the set \(\texttt{Int} \) for the tested functionality, as well as the set of
classes containing the code which implements the functionality. (This was straightforward to do
by examining the documentation and the source code.) This set of classes will be referred to
as the component under test (CUT) for the corresponding task. Column (4a) in Table I shows
the number of CUT classes, and (5a) shows the number of methods in these classes. Any class
that is directly or transitively referenced by a CUT class could potentially affect the receiver
classes and target methods at polymorphic calls inside the CUT. Thus, these classes should also
be included in the scope of the class analyses. Column (4b) shows the number of such classes,
including the CUT classes. The number of methods in classes from (4b) is shown in (5b).
Table I

Description of Testing Tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>Package</th>
<th>Functionality</th>
<th>(4) #Classes</th>
<th>(5) #Methods</th>
<th>(6) #PolySites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>java.text</td>
<td>boundaries in text</td>
<td>12</td>
<td>199</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>java.text</td>
<td>formatting of numbers/dates</td>
<td>13</td>
<td>205</td>
<td>266</td>
</tr>
<tr>
<td>3</td>
<td>java.text</td>
<td>text collation</td>
<td>12</td>
<td>203</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>java.util.zip</td>
<td>ZIP files</td>
<td>8</td>
<td>196</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>java.util.zip</td>
<td>ZIP output streams</td>
<td>8</td>
<td>194</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>java.util.zip</td>
<td>GZIP I/O streams</td>
<td>6</td>
<td>199</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>gnu.math</td>
<td>complex numbers</td>
<td>8</td>
<td>205</td>
<td>248</td>
</tr>
<tr>
<td>8</td>
<td>com.lowagie.text</td>
<td>paragraphs in PDF docs</td>
<td>24</td>
<td>233</td>
<td>345</td>
</tr>
<tr>
<td>9</td>
<td>com.lowagie.text</td>
<td>lists in PDF docs</td>
<td>24</td>
<td>232</td>
<td>347</td>
</tr>
<tr>
<td>10</td>
<td>mindbright.ssh</td>
<td>SSH client</td>
<td>60</td>
<td>278</td>
<td>551</td>
</tr>
<tr>
<td>11</td>
<td>java.sql</td>
<td>SQL access</td>
<td>18</td>
<td>206</td>
<td>354</td>
</tr>
<tr>
<td>12</td>
<td>gnu.regexp</td>
<td>regular expressions engine</td>
<td>23</td>
<td>211</td>
<td>144</td>
</tr>
<tr>
<td>13</td>
<td>com.quiotix.html</td>
<td>HTML manipulation</td>
<td>30</td>
<td>218</td>
<td>299</td>
</tr>
<tr>
<td>14</td>
<td>jess</td>
<td>expert system engine</td>
<td>146</td>
<td>502</td>
<td>646</td>
</tr>
<tr>
<td>15</td>
<td>socks</td>
<td>proxy for SOCKS protocol</td>
<td>23</td>
<td>228</td>
<td>232</td>
</tr>
<tr>
<td>16</td>
<td>jtar.io</td>
<td>manipulation of tar archives</td>
<td>21</td>
<td>232</td>
<td>110</td>
</tr>
<tr>
<td>17</td>
<td>jflex</td>
<td>generation of lexical analyzers</td>
<td>34</td>
<td>392</td>
<td>316</td>
</tr>
<tr>
<td>18</td>
<td>gnu.bytecode</td>
<td>bytecode manipulation</td>
<td>44</td>
<td>246</td>
<td>636</td>
</tr>
</tbody>
</table>

In all CUT classes, we considered the call sites for which CHA_f reports more than one possible receiver class. Let PolySites denote the set of all such polymorphic call sites. For each element of this set, our tool computes RC and TM requirements, and reports their run-time coverage. The last column in Table I shows the size of PolySites for each component.

C. Measurements of Relative Precision

To measure the precision of the coverage requirements, we defined several metrics. Let \(N_{RC}(c, A) \) be the number of possible receiver classes computed by analysis \(A \) for call site \(c \in \text{PolySites} \). Similarly, let \(N_{TM}(c, A) \) be the corresponding number of possible target methods. We define

\[
N_{RC}(A) = \frac{\sum_{c \in \text{PolySites}} N_{RC}(c, A)}{\text{PolySites}} \quad \quad \quad N_{TM}(A) = \frac{\sum_{c \in \text{PolySites}} N_{TM}(c, A)}{\text{PolySites}}
\]
as metrics of the size of the coverage requirements computed by analysis A, normalized by the number of polymorphic sites in the component. For any pair of analyses A and A', we can define the metric $N_{RC}(A, A') = N_{RC}(A) - N_{RC}(A')$, and the corresponding metric $N_{TM}(A, A')$. These two metrics represent the relative precision of A compared to A'. For the 18 components shown in Table I, we obtained the following metrics:

- $N_{RC}(CHA_f, AND_f)$ and $N_{TM}(CHA_f, AND_f)$
- $N_{RC}(RTA_f, AND_f)$ and $N_{TM}(RTA_f, AND_f)$
- $N_{RC}(0-CFA_f, AND_f)$ and $N_{TM}(0-CFA_f, AND_f)$

These metrics compare the theoretically most precise of the four techniques (AND_f) with the remaining three techniques. The analysis of these measurements involved computing some standard descriptive statistics over the set of components: median, arithmetic mean, variation interval, and standard deviation. Since the metrics are based on an absolute scale [36], all of these statistics are meaningful.

Additional analysis of the measurements was performed to allow inferences with some degree of statistical significance. Hypotheses of the form “the probability of $M > x$ is greater than the probability of $M < x$” were formulated and tested statistically for different values of x and for all metrics M listed above. The employed statistical test was the one-tailed paired sign test, with the typical significance level of $\alpha = 0.05$ [37]. The paired sign test is appropriate because it makes no assumptions about the population distribution, and can be applied to small samples.

For each metric M, we defined a null hypothesis “the probability of $M > x$ is the same as the probability of $M < x$” and tested it against the alternative hypothesis “the probability of $M > x$ is greater than the probability of $M < x$” for different values of x. We then computed the largest value of x for which the null hypothesis can be rejected with significance level $\alpha = 0.05$. Let $\lambda(M)$ denote this largest value. Essentially, $\lambda(M)$ is the greatest lower bound on the median of M that can be inferred at this degree of statistical significance. For example, if $\lambda(N_{RC}(RTA_f, AND_f)) = 1.23$, the measurements strongly support the hypothesis that the number of additional receiver classes per polymorphic call site reported by RTA_f compared to AND_f will be greater than 1.23 more often than it will be less than 1.23.

Hypotheses of the form “the probability of $M < x$ is greater than the probability of $M > x$” were also tested statistically in a similar manner. Let $\lambda'(M)$ denote the smallest value of x for which this hypothesis has statistical significance $\alpha = 0.05$ in the one-tailed paired sign test. This
value is the least upper bound on the median of M that can be inferred from the measurements. The interval $(\lambda(M), \lambda'(M))$ characterizes the median value of M.

D. Measurements of Absolute Precision

In order to define a metric for absolute precision, we consider a “perfect” RC/TM solution which contains all and only feasible receiver classes and target methods. For such a solution, metrics $N_{RC}(Prec)$ and $N_{TM}(Prec)$ can be defined similarly to the definitions of $N_{RC}(A)$ and $N_{TM}(A)$ presented earlier. For any analysis A, $N_{RC}(A, Prec) = N_{RC}(A) - N_{RC}(Prec)$ is a metric of the absolute precision of A with respect to the RC criterion. A similar metric $N_{TM}(A, Prec)$ can be defined as $N_{TM}(A) - N_{TM}(Prec)$.

In general, measurements of absolute precision cannot be obtained automatically through static analysis because any such analysis makes necessarily conservative approximations. To produce such measurements, we performed a set of experiments for tasks t_1 through t_9 from Table I. For each task we wrote a test suite that exercised the tested functionality and covered all feasible receiver classes for each call site from PolySites. Substantial effort was made to ensure that the test suites did in fact achieve the highest possible coverage. For each task, two of the authors (working independently of each other) thoroughly examined the code and wrote tests that exercised each feasible receiver class. For each call site, the sets of exercised receiver classes obtained by the two people were carefully compared to ensure that there were no differences. The tests were merged into a single test suite that exercised all feasible receiver classes and target methods for each call site in PolySites. The run-time coverage achieved by this suite provided a baseline for measuring the absolute precision (i.e., $N_{RC}(A, Prec)$ and $N_{TM}(A, Prec)$) of the four fragment analyses used in the experiments. Similarly to the metrics of relative precision, additional statistical analysis was performed on the metrics of absolute precision. Using the approach described earlier, an interval $(\lambda(M), \lambda'(M))$ was computed for each absolute precision metric M. The endpoints of this interval are the greatest lower bound and the least upper bound on the median of M that can be inferred from the measurements for tasks t_1 through t_9.

The kind of experiment described above is somewhat unusual for program analysis research, for two reasons. First, a threat to the validity of the results is the possibility of human error in determining which parts of the analysis solution are feasible. Even though this factor is partially controlled by having two experimenters working independently, in general it is not possible
to completely eliminate this threat. Second, the experiments are labor-intensive and thus hard
to scale to a large number of subjects, or to subjects with heavy use of polymorphism. This
substantial amount of effort was the reason to obtain absolute precision measurements only for
half of the tasks in Table I. Despite these drawbacks, we believe that such experiments provide
essential insights for analysis designers and tool builders. Section IV-G discusses this issue in
more detail.

E. Threats to Validity

As with any empirical study, there are various threats to the validity of our study including
threats to conclusion validity, internal validity, external validity, and construct validity [38].
Threats to conclusion validity and internal validity are factors that may invalidate the conclusions
about the relationship between independent and dependent variables for the experiment subjects.
In our study, the implementation of the analyses is an experiment artifact that may introduce such
threats: if the implementation is incorrect, the results of the study may be partially invalid. The
probability of this threat is reduced by the extensive testing of the implementation in the context
of this project and several other projects over the last few years. Another threat is possible human
error in deciding which receiver classes are feasible, in order to obtain measurements of absolute
precision. By having two experimenters obtain these measurements independently, we partially
control for this factor. The employed statistical test (the paired sign test) is another potential
validity threat. This test is relatively weak, and therefore has limited ability to reveal patterns in
the data. In particular, the lower bounds λ and the upper bounds λ' may be too conservative—
that is, they may provide imprecise characterization of the corresponding metrics. More powerful
tests such as the paired t-test and the Wilcoxon test [38] require certain assumptions to be true
(e.g., the t-test assumes normal distribution). At present, there is no existing evidence to support
such assumptions.

Threats to external validity affect the ability to generalize the results of an experiment. In
our study the source of such threats is the set of subject components. Ideally, the sample of the
population should be representative for the entire population to which we want to generalize.
In particular, for any factor that may affect the dependent variables (i.e., the precision metrics),
the subjects should provide a representative sample with respect to this factor. Examples of such
factors are the programming style (in particular, the use of polymorphism) and the application
domain. Another potential factor is the size of the subject, even though some anecdotal evidence (e.g., [17], [18]) suggests that there is little correlation between subject size and relative precision. Unfortunately, the factors that affect analysis precision have not been identified or quantified in existing work on program analysis. Therefore, at present it is impossible to argue that the subjects used in this study (or in any similar study in previous work) constitute a representative sample. To address this threat, we used subjects produced by different developers, presumably using a variety of programming styles, and from different application domains. For the measurements of relative precision, the size of the sample \((n = 18)\) is larger and therefore somewhat stronger conclusions can be drawn from these results. The measurements of absolute precision use a smaller sample \((n = 9)\) and present a weaker basis for generalizations.

Threats to construct validity concern the generalization of the experiment to the concept behind the experiment. In our study, the precision metrics may not necessarily account for all aspects of the costs and benefits faced by tool users. For example, \(N_{RC}(A_1, Prec) = 2 \times N_{RC}(A_2, Prec)\) does not imply that a tool user will take twice as long to identify the infeasible RC requirements produced by analysis \(A_1\), compared to identifying the infeasible RC requirements produced by analysis \(A_2\). Ultimately, experiments with human subjects will be necessary to gain better understanding of the effects of analysis precision on tester productivity.

F. Results and Interpretation

Table II shows the metrics for coverage requirement size, as computed by the different analyses. For tasks \(t_1\) through \(t_9\), columns \(Prec\) also show the metrics for the feasible coverage requirements. Table III shows the maximum possible coverage that may be reported by the tool if it were to use analysis \(A\) to compute the coverage requirements. For example, for task \(t_5\), \(N_{RC}(CHA_f) = 7\) but the best possible RC coverage that may be achieved is \(N_{RC}(Prec) = 1.28\) which is 18\% of \(N_{RC}(CHA_f)\); this means that 82\% of the receiver classes reported by \(CHA_f\) are infeasible. For tasks \(t_{10}\) through \(t_{18}\), upper bounds on the maximum reported coverage can be obtained by using \(N_{RC}(AND_f)/N_{RC}(A)\) and \(N_{TM}(AND_f)/N_{TM}(A)\). The bottom half of Table III shows these upper bounds; if only the trivial bound \(\leq 100\%\) could be inferred, it is not shown in the table. The top part of Table IV shows the standard descriptive statistics and the median bounds for the relative precision metrics for all tasks. The bottom part of the table contains the same information for the absolute precision metrics for \(t_1\) through \(t_9\).
The results presented in Tables II–IV should be interpreted in the context of the validity threats discussed in Section IV-E. In particular, the external validity of the study—that is, how the results can be generalized to other subjects—cannot be easily estimated. This problem is common for essentially all program analysis research, where the sample size is typically small (usually $n < 20$), and the subject properties that affect analysis precision are rarely identified and quantified. Our study should be considered as a step in a long-term process of gathering data to support conclusions with some degree of statistical significance.

For the evaluation of relative precision, the results indicate that CHA$_f$ has the tendency to report spurious receiver classes. For $N_{RC}(CHA_f, AND_f)$, the median value is 3.34 over the eighteen tasks, and the lower bound on the median is 1.63. Since $N_{RC}(CHA_f, Prec) \geq N_{RC}(CHA_f, AND_f)$, this data strongly suggests that CHA$_f$ should not be used to compute the

Table II

<table>
<thead>
<tr>
<th>Task</th>
<th>$N_{RC}(A)$</th>
<th>$N_{TM}(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHA$_f$</td>
<td>RTA$_f$</td>
</tr>
<tr>
<td>t_1</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>t_2</td>
<td>2.86</td>
<td>2.86</td>
</tr>
<tr>
<td>t_3</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>t_4</td>
<td>3.20</td>
<td>2.20</td>
</tr>
<tr>
<td>t_5</td>
<td>7.00</td>
<td>1.44</td>
</tr>
<tr>
<td>t_6</td>
<td>14.4</td>
<td>4.32</td>
</tr>
<tr>
<td>t_7</td>
<td>3.76</td>
<td>3.76</td>
</tr>
<tr>
<td>t_8</td>
<td>6.17</td>
<td>1.91</td>
</tr>
<tr>
<td>t_9</td>
<td>6.42</td>
<td>1.77</td>
</tr>
<tr>
<td>t_{10}</td>
<td>14.32</td>
<td>6.60</td>
</tr>
<tr>
<td>t_{11}</td>
<td>2.77</td>
<td>1.55</td>
</tr>
<tr>
<td>t_{12}</td>
<td>5.73</td>
<td>4.73</td>
</tr>
<tr>
<td>t_{13}</td>
<td>6.07</td>
<td>3.95</td>
</tr>
<tr>
<td>t_{14}</td>
<td>5.53</td>
<td>4.41</td>
</tr>
<tr>
<td>t_{15}</td>
<td>7.20</td>
<td>3.48</td>
</tr>
<tr>
<td>t_{16}</td>
<td>4.00</td>
<td>2.36</td>
</tr>
<tr>
<td>t_{17}</td>
<td>10.02</td>
<td>4.22</td>
</tr>
<tr>
<td>t_{18}</td>
<td>14.4</td>
<td>7.37</td>
</tr>
</tbody>
</table>
TABLE III
MAXIMUM REPORTED COVERAGE.

<table>
<thead>
<tr>
<th>Task</th>
<th>$N_{RC}(\text{Prec})/N_{RC}(A)$</th>
<th>$N_{TM}(\text{Prec})/N_{TM}(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHA$_f$ RTA$_f$ 0-CFA$_f$ AND$_f$</td>
<td>CHA$_f$ RTA$_f$ 0-CFA$_f$ AND$_f$</td>
</tr>
<tr>
<td>t_1</td>
<td>100% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>t_2</td>
<td>67% 67% 76% 76%</td>
<td>63% 63% 72% 72%</td>
</tr>
<tr>
<td>t_3</td>
<td>50% 50% 100% 100%</td>
<td>100% 100% 100% 100%</td>
</tr>
<tr>
<td>t_4</td>
<td>31% 45% 100% 100%</td>
<td>63% 71% 100% 100%</td>
</tr>
<tr>
<td>t_5</td>
<td>18% 88% 100% 100%</td>
<td>21% 92% 100% 100%</td>
</tr>
<tr>
<td>t_6</td>
<td>17% 58% 95% 95%</td>
<td>23% 69% 95% 95%</td>
</tr>
<tr>
<td>t_7</td>
<td>76% 76% 97% 98%</td>
<td>85% 85% 98% 98%</td>
</tr>
<tr>
<td>t_8</td>
<td>10% 32% 82% 87%</td>
<td>15% 48% 93% 93%</td>
</tr>
<tr>
<td>t_9</td>
<td>5% 18% 62% 62%</td>
<td>9% 29% 62% 62%</td>
</tr>
<tr>
<td>t_{10}</td>
<td>≤ 13% ≤ 28% — —</td>
<td>≤ 79% ≤ 87% — —</td>
</tr>
<tr>
<td>t_{11}</td>
<td>≤ 48% ≤ 85% — —</td>
<td>— — — —</td>
</tr>
<tr>
<td>t_{12}</td>
<td>≤ 72% ≤ 87% — —</td>
<td>≤ 92% ≤ 92% — —</td>
</tr>
<tr>
<td>t_{13}</td>
<td>≤ 33% ≤ 50% — —</td>
<td>≤ 69% ≤ 77% — —</td>
</tr>
<tr>
<td>t_{14}</td>
<td>≤ 53% ≤ 67% — —</td>
<td>≤ 80% ≤ 86% — —</td>
</tr>
<tr>
<td>t_{15}</td>
<td>≤ 23% ≤ 49% — —</td>
<td>≤ 44% ≤ 64% — —</td>
</tr>
<tr>
<td>t_{16}</td>
<td>≤ 47% ≤ 79% — —</td>
<td>≤ 68% ≤ 93% — —</td>
</tr>
<tr>
<td>t_{17}</td>
<td>≤ 12% ≤ 27% — —</td>
<td>≤ 37% ≤ 55% — —</td>
</tr>
<tr>
<td>t_{18}</td>
<td>≤ 29% ≤ 57% — —</td>
<td>≤ 70% ≤ 86% — —</td>
</tr>
</tbody>
</table>

RC requirements in coverage tools. The results for $N_{RC}(\text{RTA}_f,\text{AND}_f)$, with a median of 1.2 and a lower bound of 0.63, indicate that RTA may also be a poor candidate for computing RC requirements. To a lesser degree, the results for TM coverage suggest similar conclusions. Somewhat surprisingly, the measurements for 0-CFA$_f$ strongly indicate that negligible precision improvement should be expected if using AND$_f$ instead of 0-CFA$_f$.

The evaluation of absolute precision is performed on a smaller sample, and therefore conclusions based on these results are weaker than the conclusions based on the relative precision metrics. For $N_{RC}(0-\text{CFA}_f, \text{Prec})$, the median value is 0.07 and the maximum value is 0.61. The median values are slightly smaller for TM coverage and for AND$_f$. For four of the nine tasks, both 0-CFA$_f$ and AND$_f$ achieve perfect precision. These results indicate that these two analyses may be good candidates for future investigation and for potential inclusion in coverage tools for
TABLE IV

PRECISION METRICS: DESCRIPTIVE STATISTICS AND MEDIAN BOUNDS.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Median</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>StdDev</th>
<th>Lower bound λ</th>
<th>Upper bound λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{RC}(CHA_f,AND_f)$</td>
<td>3.34</td>
<td>4.58</td>
<td>0</td>
<td>12.5</td>
<td>3.99</td>
<td>1.63</td>
<td>5.73</td>
</tr>
<tr>
<td>$N_{TM}(CHA_f,AND_f)$</td>
<td>0.7</td>
<td>1.54</td>
<td>0</td>
<td>8.41</td>
<td>2.17</td>
<td>0.32</td>
<td>1.17</td>
</tr>
<tr>
<td>$N_{RC}(RTA_f,AND_f)$</td>
<td>1.2</td>
<td>1.41</td>
<td>0</td>
<td>4.78</td>
<td>1.24</td>
<td>0.63</td>
<td>1.8</td>
</tr>
<tr>
<td>$N_{TM}(RTA_f,AND_f)$</td>
<td>0.3</td>
<td>0.37</td>
<td>0</td>
<td>1.14</td>
<td>0.31</td>
<td>0.2</td>
<td>0.52</td>
</tr>
<tr>
<td>$N_{RC}(0-CFA_f,AND_f)$</td>
<td>0</td>
<td>0.003</td>
<td>0</td>
<td>0.04</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>$N_{TM}(0-CFA_f,AND_f)$</td>
<td>0</td>
<td>0.0006</td>
<td>0</td>
<td>0.01</td>
<td>0.002</td>
<td>0</td>
<td>0.01</td>
</tr>
<tr>
<td>$N_{RC}(CHA_f,Prec)$</td>
<td>2.2</td>
<td>3.83</td>
<td>0</td>
<td>12.05</td>
<td>3.9</td>
<td>0.9</td>
<td>6.11</td>
</tr>
<tr>
<td>$N_{TM}(CHA_f,Prec)$</td>
<td>0.91</td>
<td>2.4</td>
<td>0</td>
<td>8.55</td>
<td>2.88</td>
<td>0</td>
<td>4.89</td>
</tr>
<tr>
<td>$N_{RC}(RTA_f,Prec)$</td>
<td>1</td>
<td>0.99</td>
<td>0</td>
<td>1.96</td>
<td>0.61</td>
<td>0.15</td>
<td>1.46</td>
</tr>
<tr>
<td>$N_{TM}(RTA_f,Prec)$</td>
<td>0.4</td>
<td>0.49</td>
<td>0</td>
<td>1.28</td>
<td>0.44</td>
<td>0</td>
<td>0.91</td>
</tr>
<tr>
<td>$N_{RC}(0-CFA_f,Prec)$</td>
<td>0.07</td>
<td>0.13</td>
<td>0</td>
<td>0.61</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>$N_{TM}(0-CFA_f,Prec)$</td>
<td>0.04</td>
<td>0.12</td>
<td>0</td>
<td>0.61</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>$N_{RC}(AND_f,Prec)$</td>
<td>0.06</td>
<td>0.12</td>
<td>0</td>
<td>0.61</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>$N_{TM}(AND_f,Prec)$</td>
<td>0.04</td>
<td>0.12</td>
<td>0</td>
<td>0.61</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

testing of polymorphism.

For completeness, we also measured the cost of computing the coverage requirements. All measurements were performed on a 900MHz Sun Fire-280R machine with 3GB memory. The reported times are the median values out of three runs. Using CHA_f and RTA_f has negligible cost (less than 2 seconds). The cost of performing $0-CFA_f$ and AND_f is shown in Table V. This cost includes the time to analyze all methods that are directly or transitively reachable from the interface methods, both in classes that implement the tested functionality, and in their server classes (i.e., in classes that are used by the code that implements the functionality). The number of these analyzed methods for AND_f is shown in the last column of Table V; for $0-CFA_f$, the number of analyzed methods is almost the same.

These results should not be interpreted as cost comparison between $0-CFA_f$ and AND_f, because the differences may be due to properties of our particular implementation. Rather, the results provide an upper bound on the cost of these analyses for the subject components. The primary factor affecting analysis cost is the implementation of the underlying Andersen-style whole-program analysis. Recent work [31] presents efficient techniques for implementing this
TABLE V
ANALYSIS RUNNING TIMES.

<table>
<thead>
<tr>
<th>Task</th>
<th>0-CFA _f (sec)</th>
<th>AND _f (sec)</th>
<th>#Methods</th>
<th>Task</th>
<th>0-CFA _f (sec)</th>
<th>AND _f (sec)</th>
<th>#Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_1)</td>
<td>2.0</td>
<td>4.0</td>
<td>325</td>
<td>t(_{10})</td>
<td>11.1</td>
<td>21.2</td>
<td>1161</td>
</tr>
<tr>
<td>t(_2)</td>
<td>5.0</td>
<td>11.5</td>
<td>752</td>
<td>t(_{11})</td>
<td>4.9</td>
<td>8.9</td>
<td>702</td>
</tr>
<tr>
<td>t(_3)</td>
<td>1.5</td>
<td>2.5</td>
<td>282</td>
<td>t(_{12})</td>
<td>1.9</td>
<td>2.6</td>
<td>348</td>
</tr>
<tr>
<td>t(_4)</td>
<td>2.3</td>
<td>2.8</td>
<td>401</td>
<td>t(_{13})</td>
<td>3.6</td>
<td>4.7</td>
<td>652</td>
</tr>
<tr>
<td>t(_5)</td>
<td>1.9</td>
<td>2.1</td>
<td>280</td>
<td>t(_{14})</td>
<td>21.6</td>
<td>51.3</td>
<td>1638</td>
</tr>
<tr>
<td>t(_6)</td>
<td>1.3</td>
<td>1.4</td>
<td>286</td>
<td>t(_{15})</td>
<td>4.0</td>
<td>10.2</td>
<td>748</td>
</tr>
<tr>
<td>t(_7)</td>
<td>5.1</td>
<td>13.6</td>
<td>386</td>
<td>t(_{16})</td>
<td>2.9</td>
<td>3.2</td>
<td>486</td>
</tr>
<tr>
<td>t(_8)</td>
<td>5.6</td>
<td>8.1</td>
<td>833</td>
<td>t(_{17})</td>
<td>14.8</td>
<td>52.9</td>
<td>1055</td>
</tr>
<tr>
<td>t(_9)</td>
<td>5.9</td>
<td>8.5</td>
<td>810</td>
<td>t(_{18})</td>
<td>10.5</td>
<td>18.6</td>
<td>1336</td>
</tr>
</tbody>
</table>

analysis, with running times in the order of a minute per ten thousand analyzed methods.

G. Discussion and Conclusions

The goal of our study is to gain insights about the precision of several fragment class analyses. This is important not only for coverage tools, but also for tools for understanding and transformation of object-oriented software. Various approaches for precision evaluation can be employed to provide such insights. Relative precision comparisons can identify analyses that are consistently imprecise, and therefore may be poor choices for software tools. For example, the results presented earlier indicate that CHA\(_f\) and RTA\(_f\) may be such poor choices. Thus, relative precision comparisons can provide valuable information for tool designers.

The disadvantage of relative precision evaluations is that they can identify only analyses that have high degree of imprecision, but not analyses that have low degree of imprecision. For example, even though 0-CFA\(_f\) and AND\(_f\) are more precise than CHA\(_f\) and RTA\(_f\), this information by itself does not indicate how far away they are from the “perfect” solution. Eventually, this question must be addressed by some form of absolute precision evaluation. One possible approach is to perform studies similar to the one presented in this work. To the best of our knowledge, these are the first available results that evaluate the absolute precision of class analysis. The study indicates that 0-CFA\(_f\) and AND\(_f\) are promising candidates for future investigation. Clearly, long-term gathering of data by us and by other researchers is necessary
to obtain conclusive results about the absolute precision of these and other class analyses. We consider our study to be a first step in these investigations.

The absolute precision evaluation in this work is performed through a manual “brute-force” approach. Over a longer period of time and with the participation of more researchers, this can yield a significant body of data. However, it is also necessary to attempt to reduce the cost of this process. One possibility is to define approaches that provide estimates of absolute precision, and to evaluate the possible error in these estimates using studies similar to ours. Such techniques may require investigation of the sources of class analysis imprecision; for example, certain commonly-used object-oriented idioms are a potential source of imprecision [18]. It may be necessary to define metrics that quantify these sources, to build models of their impact on the analysis solution, and to evaluate these models empirically.

V. RELATED WORK

Various authors have recognized the need to test polymorphic relationships by exercising all possible polymorphic bindings [3], [6]–[12]. The coverage of receiver classes and/or target methods is either needed as an explicit testing goal, or as part of more general coverage criteria—for example, criteria based on object-level def-use coverage that takes into account polymorphism [10]–[12]. An implicit assumption in this previous work appears to be that the bindings will be determined by examining the class hierarchy—for example, that the possible receiver classes at \(x.m() \) are the subclasses of the declared type of \(x \). One key point of our work is that this approach could be overly conservative, and as a result coverage tools may introduce infeasible coverage requirements. Fortunately, there exists a large body of work on class analysis that can be used to produce more precise coverage requirements. Our work is the first investigation of the use of class analyses more complicated than CHA for the purposes of testing of polymorphism.

One key problem is that class analyses are typically designed as whole-program analyses, and therefore cannot be used directly for testing of partial programs. Some whole-program class analyses have been adapted to analyze program fragments rather than whole programs. Chatterjee and Ryder [39] present a flow- and context-sensitive points-to analysis for library modules in object-oriented software. The analysis is an adaptation of an earlier whole-program analysis [23]. Tip et al. [40], [41] describe analyses and optimizations for the removal of unused
functionality in Java modules. Their work presents a method for performing RTA [14] and XTA [27] on program fragments. Although the approaches from [39] and [40] can be used to compute coverage requirements in tools for testing of polymorphism in partial programs, our technique for constructing fragment class analyses (presented in Section III) is more general and can be applied to a large number of existing whole-program analyses [14]–[18], [20], [22], [24], [26]–[29], [31].

Harrold and Rothermel [42] present a method for performing def-use analysis of a given class for the purposes of dataflow-based unit testing in object-oriented languages. Their approach constructs a placeholder driver that represents all possible sequences of method invocations initiated by client code; however, the driver does not take into account the effects of aliasing, polymorphism, and dynamic binding. The placeholder main method presented in Section III is essentially a placeholder driver that models these features. Thus, in addition to testing of polymorphism, our approach could potentially be useful in tools for dataflow-based testing of individual classes and collections of classes.

In previous work, analysis precision is typically evaluated in three ways. One approach is to compare the solutions computed by two or more analyses, in order to determine the relative precision of these analyses—i.e., how analysis X compares with analysis Y. Another approach is to compare the analysis results with the behavior of the program during a particular set of test runs (e.g., [43], [44]). A third approach is to evaluate the effect of the analysis on a particular client application—for example, the impact on performance due to compiler optimizations. However, in the context of software engineering tools, another important issue is absolute precision: how close is the analysis solution to the set of all run-time relationships that are actually possible? Imprecision may lead to waste of tester’s time and effort, which ultimately may result in tool rejection. This observation applies not only to coverage tools, but also to other software engineering tools (e.g., for program understanding and verification). Previous work does not contain information about the absolute precision of class analysis, which in our view is a serious problem. The study from Section IV is a step toward investigating this issue and gaining insights needed by designers of tools that employ class analysis.

VI. CONCLUSIONS AND FUTURE WORK

In order to construct high-quality coverage tools for testing of polymorphism, it is necessary to use class analysis to compute the coverage requirements. We have developed a general approach
that allows tool designers to adapt a wide variety of existing and future whole-program class analyses to be used for testing of partial programs. We also present the first empirical evaluation of the absolute precision of several analyses. Our results lead to two conclusions. First, analysis imprecision can be a serious problem for simpler analyses, and it should be an important concern for tool designers. Second, more advanced analyses (such as 0-CFA and Andersen’s analysis) are capable of achieving high absolute precision, which makes them good candidates for more investigation and potentially for subsequent inclusion in coverage tools.

In our future work we will evaluate the absolute precision of analyses that are even more precise than 0-CFA and Andersen’s analysis. To choose the appropriate analyses, we plan to examine the sources of analysis imprecision. This investigation may suggest the use of existing analyses, or may guide the design of new techniques that target these sources of imprecision. We also plan to obtain additional datapoints for our current analyses, and to evaluate more precise analyses using this extended dataset. Additional studies by us and by other investigators will be necessary to obtain conclusive results about the absolute precision of different class analyses. Furthermore, it is important to develop techniques for reducing the cost of absolute precision evaluations, and to consider approaches for obtaining absolute precision estimates.

It would be interesting to generalize our approach to flow-sensitive class analyses. Intuitively, it will be necessary to change the structure of our placeholder main method to encode all possible sequences of placeholder statements by placing the statements in a switch statement surrounded by a loop. We also plan to investigate other applications for which fragment analysis is needed (e.g., program understanding), and to consider other categories of analyses such as side-effect analysis and def-use analysis using the theoretical techniques presented in Appendix I.

REFERENCES

APPENDIX I

ANALYSIS CORRECTNESS

As described in Section III-D, we show the correctness of our approach by defining two whole-program context-sensitive class analyses and then proving that the corresponding fragment analyses are correct. The proofs are based on a general theoretical technique for fragment analysis described in [45].

A. Whole-program Analyses A_p and A_c

The whole-program class analyses are defined in terms of three sets. Set V contains all reference variables in the analyzed program (i.e., formals, locals, and static fields with reference types). Set O contains names for all objects created at object allocation sites, as well as names for string literals. For each allocation site and string literal we use a separate name $o_i \in O$. Set F contains all reference instance fields in the program.

The analyses consider different abstractions of the calling context of a method. Analysis A_p defines and uses a set of contexts $C = \{\epsilon\} \cup O \cup O^2 \cup O^3 \cup \ldots$. Each context is a tuple of object names. For a method that has formal parameters f_1, f_2, \ldots, f_n (where f_1 is the implicit parameter this), context $(o_1, o_2, \ldots, o_n) \in C$ represents invocations of the method when formal parameter f_i points to o_i. The empty context ϵ represents the invocation of main, as well as invocations of static methods that have no parameters.

Analysis A_c represents calling context with a vector of at most k call sites. Let CallSites be the set of all call sites in the program. The set of contexts is defined as $C = \{\epsilon\} \cup \text{CallSites} \cup \text{CallSites}^2 \cup \ldots \cup \text{CallSites}^k$. For any method m, context $(s_1, s_2, \ldots, s_n) \in C$ represents invocations of m from call site s_1 when the method containing s_1 is invoked from call site s_2, etc. The empty context ϵ represents the invocation of main.

To distinguish among invocations of the same method under different contexts, the analyses create multiple copies of formal parameters and local variables. Each variable $v \in V$ is replicated for each of the possible contexts of the method that declares v. We will use v^c to denote the replica of v for context $c \in C$.

The analyses construct points-to graphs with two kinds of edges. Edge $(v^c, o) \in (V \times C) \times O$ shows that variable v may point to object o when the method declaring v is invoked with context c. Edge $(o_i, f, o_j) \in (O \times F) \times O$ shows that field f of object o_i may point to object o_j. For
If \(o_i \in O \) represents an array object, edge \((o_i, \text{arr}_\text{elem}, o_j)\) shows that some element of \(o_i \) may point to object \(o_j \).\(^3\) The elements of the analysis lattices \(L \) are points-to graphs; the partial order is the \(\supseteq \) relation, and the meet operation is set union.

The analyses associate a transfer function \(f: L \rightarrow L \) with each statement in the program; this function encodes the semantics of the statement. In addition, for each method \(m \) the analyses maintain a set \(\mathcal{C}_m \subseteq \mathcal{C} \) of contexts that have been observed at calls to \(m \). The list below shows some examples of transfer functions for different kinds of statements in method \(m \). For other statements, the functions can be defined in a similar manner.

- for \(p = \text{new } C() \): \(f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{(p^c, o_i)\}; o_i \) is the object name for the statement
- for \(p = q \): \(f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{(p^c, o) \mid (q^c, o) \in G\}
- for \(p = q.f \): \(f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{(p^c, o) \mid (q^c, o_2) \in G \land (o_2.f, o) \in G\}
- for \(p.f = q \): \(f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{(o_1.f, o_2) \mid (p^c, o_1) \in G \land (q^c, o_2) \in G\}
- for \(p = (T)q \): \(f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{(p^c, o) \mid (q^c, o) \in G \land \text{compatible}(o, T)\}

Each transfer function considers all contexts that have been observed at calls to the method \(m \) containing the statement. For each such context \(c \in \mathcal{C}_m \), the corresponding context replicas of formal parameters and local variables are processed according to the semantics of the statement. A statement of the form “\(p = \text{new } C() \)” creates a new edge \((p^c, o_i)\), where \(o_i \) is a unique object name corresponding to this particular object allocation site. Other assignment statements have similar effects by creating new edges. For the last statement, an edge \((p^c, o)\) is created only if object \(o \) could be casted to type \(T \) according to the casting rules in the Java language. The transfer function for a call statement “\(r = p.m(q_1, \ldots, q_n) \)” encodes the context-sensitivity of the analysis. For the parameter-based analysis \(A_p \), the transfer function has the form

\[
f(G) = G \cup \bigcup_{c \in \mathcal{C}_m} \{\text{resolve}(G, m, o_{\text{rev}}, o_1, o_2, \ldots, o_n, r^c) \mid (p^c, o_{\text{rev}}) \in G \land (q_i^c, o_i) \in G\}
\]

where \(\text{resolve} \) is defined as follows:

\[
\text{resolve}(G, m, o_{\text{rev}}, o_1, o_2, \ldots, o_n, r^c) \\
\text{let } o_2 = (o_{\text{rev}}, o_1, o_2, \ldots, o_n)
\]

\(^3\)More precisely, edge \((v^c, o_i)\) shows that at run time \(v^c \) may point to some object created at allocation site \(s_i \). Similarly, \((o_i.f, o_j)\) shows that the \(f \) field of some object created at \(s_i \) may point to some object created at \(s_j \).
let \(m_j(this, f_1, \ldots, f_n, \text{ret}) = \text{dispatch}(o_{rcv}, m) \)

add \(c_2 \) to \(C_{m_j} \)

return \(\{(this^{c_2}, o_{rcv}), (f_1^{c_2}, o_1), \ldots, (f_n^{c_2}, o_n)\} \cup \{(r^c, o)|(\text{ret}^{c_2}, o) \in G\} \)

At the call site, the analysis considers all possible tuples of objects that are pointed to by \(p \) and \(q_i \); each tuple creates a separate calling context. For each context, \(\text{resolve} \) determines the method \(m_j \) that is actually invoked at run time for receiver object \(o_{rcv} \). The analysis then updates \(C_{m_j} \) and processes the necessary context copies of \(this \) and the formal parameters \(f_i \). Finally, the return value of \(m_j \) (stored in auxiliary variable \(\text{ret} \)) is propagated back to the call site.

The transfer function used by the call-chain-based analysis \(A_c \) has the form

\[
f(G) = G \cup \bigcup_{c \in C_m} \{\text{resolve}(G, m, c, s, o_{rcv}, q_1^c, q_2^c, \ldots, q_n^c, r^c) \mid (p^c, o_{rcv}) \in G\}
\]

where \(s \in \text{CallSites} \) is the call site. Function \(\text{resolve} \) is defined as follows:

\[
\text{resolve}(G, m, c, s, o_{rcv}, q_1^c, q_2^c, \ldots, q_n^c, r^c)
\]

let \(c_2 = \text{prepend}_k(s, c) \)

let \(m_j(this, f_1, \ldots, f_n, \text{ret}) = \text{dispatch}(o_{rcv}, m) \)

add \(c_2 \) to \(C_{m_j} \)

return \(\{(this^{c_2}, o_{rcv})\} \cup \{(f_i^{c_2}, o)|(q_i^c, o) \in G\} \cup \{(r^c, o)|(\text{ret}^{c_2}, o) \in G\} \)

At the call site, the analysis processes each of the possible receiver objects and determines the method \(m_j \) invoked for each \(o_{rcv} \). Function \(\text{prepend}_k(s, c) \) creates a new context by adding call site \(s \) to the beginning of call chain \(c \). If the resulting call chain has \(k + 1 \) elements (where \(k \) is a parameter of the analysis), the last element of the chain is removed. This is a standard approach for ensuring that the analysis only considers call chains with length at most \(k \).

Both \(A_p \) and \(A_c \) maintain a points-to graph as well as a call graph annotated with sets \(C_m \) for reachable methods. The analyses start with an empty points-to graph and a call graph containing \(\text{main} \) and static initializer methods, with \(C_m = \{\epsilon\} \) for these start methods. The analyses apply the transfer functions for all statements in reachable methods (with the corresponding updates to the call graph) until a fixed point is reached. For any \(v \in V \), the solution is

\[
\text{Solution}(v) = \{ X \mid \text{DeclMethod}(v) = m \land c \in C_m \land (v^c, o) \in G_{\text{final}} \land \text{Type}(o) = X \}
\]
B. Correctness of Fragment Analyses A_p' and A_c'

Let A_p' and A_c' be the fragment analyses based on A_p and A_c, respectively. Consider an arbitrary test suite $S \in AllSuites(\text{Int})$. By definition, S only references classes from Cls and accesses methods and fields from Int. Since S does not call methods outside of Int, we can assume that S only contains method main. Without loss of generality, we also assume that any pure reference type occurring in S is relevant, as defined by set $\text{RelevantTypes}(\text{Int})$ from Section III-B; if this is not the case, it is easy to construct $S' \in AllSuites(\text{Int})$ that only has relevant types and for which whole-program analyses A_p and A_c compute solutions that are supersets of the corresponding solutions computed for S.

For any variable v declared in Cls with pure reference type, let $\text{Solution}_{A_p}(v)$ be the solution for v computed by A_p for the whole program containing Cls and S. It can be proven that each class from this set is also an element of the set $\text{Solution}_{A_p'}(v)$ computed by A_p'. A similar property can be proven for $\text{Solution}_{A_c}(v)$ and $\text{Solution}_{A_c'}(v)$. Clearly, these results guarantee the correctness of the two fragment analyses. The next two sections present outlines of these proofs.

C. Parameter-based Fragment Analysis A_p'

Let V_{Cls} be the set of variables in Cls with pure reference types, and V' be V_{Cls} together with the placeholder variables. Similarly, let V be the set of pure reference variables in the whole program containing S and Cls. We can define an abstraction function $\alpha : V \rightarrow V'$ as follows:

- $\alpha(v) = v$ for any $v \in V_{\text{Cls}}$
- $\alpha(v) = \text{ph}_t$ for any $v \in (V - V_{\text{Cls}})$ of type t

Let O_{Cls} be the set of object names corresponding to allocation sites from Cls that instantiate pure reference types, and O' be O_{Cls} together with the object names from placeholder statements. Similarly, let O be the set of all object names corresponding to allocation sites from S or Cls that instantiate pure reference types. We can define a similar abstraction function $\alpha : O \rightarrow O'$:

- $\alpha(o) = o$ for any $o \in O_{\text{Cls}}$
- If $o \in (O - O_{\text{Cls}})$ instantiates a class, $\alpha(o)$ is the object corresponding to the placeholder statement that invokes the same constructor
- If $o \in (O - O_{\text{Cls}})$ is an array object, $\alpha(o)$ is the placeholder array object of the same type
• If \(o \in (O - O_{Cls}) \) is a string literal, \(\alpha(o) \) is the placeholder string literal.

Intuitively, these definitions show that in \(A'p \) variables and object names from \(Cls \) are represented by themselves, while all external variables and object names are represented by placeholder variables and object names. This abstraction is generalized in a straightforward manner to contexts, context replicas of variables, points-to edges, and points-to graphs. For example, if \(c = (o_1, \ldots, o_n) \in C \) is a context in the whole-program analysis, \(\alpha(c) = (\alpha(o_1), \ldots, \alpha(o_n)) \).

Our goal is to prove that \(\alpha(G) \subseteq G' \) for the final points-to graphs computed by \(A_p \) and \(A'_p \) respectively, and that each method in \(Cls \) that is in the call graph for \(A_p \) is also in the call graph for \(A'_p \). This implies the desired relationship between \(Solution_{A_p}(v) \) and \(Solution_{A'_p}(v) \) for any \(v \in V_{Cls} \). For this, it is sufficient to prove a particular property that relates the transfer functions in \(A_p \) to the transfer functions in \(A'_p \). This property has the following form: suppose that

- \(\alpha(G) \subseteq G' \) for some points-to graphs \(G \) and \(G' \)
- The current call graph in \(A_p \) is a subgraph of the current call graph in \(A'_p \)
- For each reaching context \(c \in C_m \) in \(A_p \), context \(\alpha(c) \in C'_m \) in \(A'_p \)

Then, for every transfer function \(f \) in the whole-program analysis, there exists a set of transfer functions \(\{f'_1, \ldots, f'_k\} \) in the fragment analysis such that

- \(\alpha(f(G)) \subseteq (f'_1 \circ \ldots \circ f'_k)(G') \)
- After the functions are applied, any new call graph edge added in \(A_p \) is also added in \(A'_p \), and for any new reaching context \(c \) added to some \(C_m \), context \(\alpha(c) \) is added to \(C'_m \)

Intuitively, this property ensures that the effects of any transfer function application in the whole-program analysis can be “simulated” by the fragment analysis, in terms of creating new points-to edges, call edges, and reaching contexts. The proof distinguishes two cases. First, consider a statement in \(Cls \) with transfer functions \(f \) in \(A_p \) and \(f' \) in \(A'_p \). It is straightforward to show that \(\alpha(f(G)) \subseteq f'(G') \) and that new call edges and reaching contexts in the whole-program analysis are matched by the fragment analysis. Next, consider a statement that is located in \(S \). In the fragment analysis there exists a set of placeholder statements that simulate the effects of this statement. For example, suppose that \(Cls \) contains a class \(A \) and a subclass \(B \), and that the statement in \(S \) is “\(a = new B() \)”, where \(a \) is some external variable of type \(A \). The effects of this statement are represented by the sequence of placeholder statements “\(ph_B = new B(); ph_A = ph_B; \)”.
D. Call-chain-based Fragment Analysis \mathcal{A}_c'

The correctness proof for \mathcal{A}_c' is very similar to the proof for \mathcal{A}_p'. The whole-program analysis uses a set of contexts $\mathcal{C} = \{\epsilon\} \cup \text{CallSites} \cup \text{CallSites}^2 \cup \ldots \cup \text{CallSites}^k$. The abstraction function maps a call site $s \in \text{Cls}$ to itself and a call site $s \notin \text{Cls}$ to the corresponding placeholder call site. More precisely,

- $\alpha(s) = s$ for any call site $s \in \text{Cls}$
- $\alpha(s) = s'$ iff call site $s \notin \text{Cls}$ and s' is a placeholder call site with the same static target method as site s
- $\alpha(c) = (\alpha(s_1), \ldots, \alpha(s_n))$ for a context $c = (s_1, \ldots, s_n) \in \mathcal{C}$
- $\alpha(\epsilon) = \epsilon$

The abstraction functions for other analysis entities (variables, object names, etc.) are the same as for \mathcal{A}_p'. The correctness proof is also similar: we prove the same property relating the transfer functions in \mathcal{A}_c and \mathcal{A}_c', which implies the desired relationship between $\text{Classes}_{\mathcal{A}_c}(v)$ and $\text{Classes}_{\mathcal{A}_c'}(v)$ for any $v \in V_{\text{Cls}}$.