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Abstract

Testing of polymorphism in object-oriented software may require coverage of all possible bindings

of receiver classes and target methods at call sites. Tools that measure this coverage need to use class

analysis to compute the coverage requirements. However, traditional whole-program class analysis cannot

be used when testing incomplete programs. To solve this problem, we present a general approach for

adapting whole-program class analyses to operate on program fragments. Furthermore, since analysis

precision is critical for coverage tools, we provide precision measurements for several analyses by

determining which of the computed coverage requirements are actually feasible for a set of subject

components. Our work enables the use of whole-program class analyses for testing of polymorphism in

partial programs, and identifies analyses that potentially are good candidates for use in coverage tools.

Index Terms

Test coverage, object-oriented software, program analysis, class analysis

I. INTRODUCTION

Testing of object-oriented software presents a variety of new challenges due to features such

as inheritance, polymorphism, dynamic binding, and object state [1]. Programs contain complex

interactions among sets of collaborating objects from different classes. These interactions are

greatly complicated by object-oriented features such as polymorphism, which allows the binding

of an object reference to objects of different classes. While this is a powerful mechanism for

producing compact and extensible code, it creates numerous fault opportunities [1].

Polymorphism is common in object-oriented software—for example, polymorphic bindings are

often used instead of case statements [2], [3]. However, code that uses polymorphism can be

hard to understand and therefore fault-prone. For example, understanding all possible interactions

between a message sender object and a message receiver object under all possible bindings for

these objects can be challenging for programmers. The sender object of a message may fail

to meet all preconditions for all possible bindings of the receiver object [3]. A subclass in an

inheritance hierarchy may violate the contract of its superclasses; clients that send polymorphic

messages to this hierarchy may experience inconsistent behavior. For example, an inherited

method may be incorrect in the context of the subclass [4], or an overriding method may have

preconditions and postconditions different from the ones for the overridden method [1]. In deep
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inheritance hierarchies, it is easy to forget to override methods for lower-level subclasses [5];

clients of such hierarchies may experience incorrect behavior for some receiver classes. Changes

in server classes may cause tested and unchanged client code to fail [3].

A. Coverage Criteria for Polymorphism

Various techniques for testing of polymorphic interactions have been proposed in previous

work [3], [6]–[12]. These approaches require testing that exercises all possible polymorphic

bindings for certain elements of the tested software. For example, Binder points out that “just

as we would not have high confidence in code for which only a small fraction of the statements

or branches have been exercised, high confidence is not warranted for a client of a polymor-

phic server unless all the message bindings generated by the client are exercised” [3]. These

requirements can be encoded as coverage criteria for testing of polymorphism. There is existing

evidence that such criteria are better suited for detecting object-oriented faults than the traditional

statement and branch coverage criteria [10].

A program-based coverage criterion is a structural test adequacy criterion that defines testing

requirements in terms of the coverage of particular elements in the structure of the tested software

[13]. Such coverage criteria can be used to evaluate the adequacy of the performed testing and can

also provide valuable guidelines for additional testing. In this paper we focus on two program-

based coverage criteria for testing of polymorphism. The all-receiver-classes criterion (denoted

by RC) requires exercising of all possible classes of the receiver object at a call site. The all-

target-methods criterion (denoted by TM) requires exercising of all possible bindings between a

call site and the methods that may be invoked by that site. Some existing approaches explicitly

define coverage requirements based on these criteria [3], [6], [8], while in other approaches the

coverage of receiver classes and/or target methods is part of more general coverage requirements

that take into account polymorphism [7], [9]–[12]. For example, in addition to RC, [7] proposes

coverage of all possible classes for the senders and the parameters of a message.

B. Class Analysis for Coverage Tools

The use of coverage criteria is essentially impossible without tools that automatically measure

the coverage achieved during testing. A coverage tool analyzes the tested software to determine

which elements need to be covered, inserts instrumentation for run-time tracking, executes the
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test suite, and reports the degree of coverage and the elements that have not been covered. To

determine which software elements need to be covered, a coverage tool has to use some form

of source code analysis. Such an analysis computes the elements for which coverage should be

tracked and determines the kind and location of the necessary code instrumentation.

For simple criteria such as statement and branch coverage, the necessary source code analysis

is trivial; however, the RC and TM criteria require more complex analysis. To compute the RC

and TM coverage requirements, a tool needs to determine the possible classes of the receiver

object and the possible target methods for each call site. In the simplest case, this can be done

by examining the class hierarchy—i.e., by considering all classes in the subtree rooted at the

declared type of the receiver object. It appears that previous work on testing of polymorphism

[3], [6]–[12] uses this approach (or minor variations of it) to determine the possible receiver

classes and target methods at polymorphic calls.

Some of the existing work on static analysis for object-oriented languages (e.g. [14]–[18])

shows that using the class hierarchy to determine possible receiver classes may be overly

conservative—i.e., not all subclasses may be actually feasible. Such imprecision has serious

consequences for coverage tools. Because of infeasible coverage requirements, high coverage

can never be achieved regardless of the testing effort. In this case the coverage metrics become

hard to interpret: is the low coverage due to inadequate testing, or is it due to infeasible coverage

requirements? This problem seriously compromises the usefulness of the coverage metrics. In

addition, the person who creates new test cases may spend significant time and effort trying to

determine the appropriate test cases, before realizing that it is impossible to achieve the required

coverage. This situation is unacceptable because the time and attention of a human tester can

be very costly compared to computing time.

To address these problems, we propose to use class analysis to compute the coverage re-

quirements. Class analysis is a static analysis that determines an overestimate of the classes

of all objects to which a given reference variable may point. While initially developed in the

context of optimizing compilers for object-oriented languages, class analysis also has a variety

of applications in software engineering tools. In a coverage tool for testing of polymorphism,

class analysis can be used to determine which are the classes of objects that variable x may

refer to at call site x.m(); from this information it is trivial to compute the RC and TM criteria

for the call site. There is a large body of work on various class analyses with different tradeoffs
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between cost and precision [14]–[31]; however, there has been no previous work on using these

analyses for the purposes of testing of polymorphism.

C. Fragment Class Analysis

The existing body of work on class analysis cannot be used directly to compute the RC

and TM coverage requirements in a coverage tool. The key problem is that the vast majority

of existing class analyses are designed as whole-program analyses—i.e., analyses that process

complete programs. In contrast, testing is rarely done only on complete programs, and many

testing activities are performed on partial programs. Any realistic coverage tool should be able

to work on partial programs, and therefore needs analysis techniques beyond traditional whole-

program class analyses.

To solve this problem, we need a class analysis that can operate on fragments of programs

rather than on complete programs. We refer to such an analysis as a fragment class analysis.

The first contribution of this paper is a general method for constructing fragment class analyses

for the purposes of testing of polymorphism in Java. Using this method, fragment class analyses

can be derived from a wide variety of flow-insensitive whole-program class analyses [14]–[18],

[20], [22], [24], [26]–[29], [31]. The significance of this technique is that it allows tool designers

to adapt available technology for whole-program class analysis to be used in coverage tools for

testing of polymorphism in partial programs.

D. Absolute Analysis Precision

Analysis precision is a critical issue for the use of class analysis in coverage tools. Less precise

analyses compute less precise coverage criteria—i.e., some of the coverage requirements may be

impossible to achieve. As discussed earlier, infeasible coverage requirements present a serious

problem for coverage tools: the coverage metrics become hard to interpret, and tool users may

waste time and effort trying to achieve higher coverage. Previous work on class analysis only

addresses the issue of relative analysis precision: how does the solution computed by analysis Y

compare to the solution computed by analysis X? While such comparisons provide useful insights

about the relationships between different analyses, they do not address the important question

of absolute analysis precision: which parts of an analysis solution are infeasible? The second

contribution of this paper is an empirical evaluation of the relative and absolute precision of
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four fragment class analyses. These analyses are based on four well-known whole-program class

analyses: Class Hierarchy Analysis (CHA) [32], Rapid Type Analysis (RTA) [14], 0-CFA [29],

[33], and Andersen-style points-to analysis [17], [26], [28], [31], [34]. In our experiments

we determined manually which parts of the analysis solution were actually infeasible. This

information is essential for deciding which analysis to use in a coverage tool; however, to the

best of our knowledge, such measurements of absolute precision are not available in any previous

work on class analysis.

Our results indicate that simpler analyses such as CHA and RTA tend to report spurious

receiver classes and target methods, while more advanced analyses such as 0-CFA and Andersen-

style points-to analysis have the potential to achieve very good precision. These findings lead to

two important conclusions. First, our evaluation of CHA and RTA shows that analysis imprecision

can be a serious problem, and it should be a primary concern when designing coverage tools.

Second, our results indicate that analyses such as 0-CFA and Andersen’s analysis have the

potential to achieve high absolute precision, which makes them good candidates for further

investigation and possible inclusion in coverage tools.

E. Outline

The rest of the paper is organized as follows. Section II describes our coverage tool for

testing of polymorphism in Java. Section III presents the method for constructing fragment class

analyses. The experimental results are described in Section IV. Section V discusses related work,

and Section VI presents conclusions and future work. Appendix I describes some aspects of the

theoretical foundations of our approach.

II. A COVERAGE TOOL FOR JAVA

We have built a test coverage tool for Java that supports the RC and TM coverage criteria.

In the context of this tool we have implemented and evaluated several fragment class analyses.

In the future we plan to use the tool as the basis for investigations of other problems related to

the testing of polymorphism, and more generally, problems related to testing of object-oriented

software.

To illustrate the two criteria, consider the Java classes in Figure 1. For the purpose of this

example, suppose that reference variable a may refer to instances of classes A, B, or C. The
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class A { public void m() {...} }
class B extends A { public void m() {...} }
class C extends A {...}
A a;

.....

ci: a.m(); // if a may refer to instances of A, B, or C, then RC(ci) = {A,B,C} and TM(ci) = {A.m,B.m}

Fig. 1. RC and TM coverage criteria.

RC criterion requires testing of call site a.m() with each of the three possible classes of the

receiver object. Similarly, the TM criterion requires invocation of each of the two possible target

methods (i.e., both A.m and the overriding B.m). For a polymorphic call site, each possible

target method is invoked for at least one possible receiver class; thus, RC subsumes TM.

A. Input and Output

The input of the tool contains a set Cls of Java classes and interfaces that will be tested.1

A subset of Cls is designated as the set of accessed classes. Intuitively, an accessed class has

methods and fields that may be accessed by future clients of the particular functionality that

is currently being tested. If a class is not public [35, Sect. 6.6], it is accessible only within its

declaring package; such a class may still be considered an accessed class if it is possible to have

in this package some future clients of the tested functionality. For each accessed class C, some

of its methods and fields (declared in C or inherited from C’s superclasses and superinterfaces)

are defined as interface members. The set of accessed classes and their interface members will

be denoted by Int ; this set defines the interface to the tested functionality. In general, Int could

contain a small subset of all classes, fields and methods from Cls , which corresponds to the case

when the user is interested in testing only a specific subset of the functionality provided by the

classes from Cls . Set Int may be obtained in several different ways: a user can manually list

its elements; an existing test suite can be analyzed automatically to infer the classes, methods,

1Unless stated otherwise, in the rest of the paper we will use “classes” to refer to both classes and interfaces, since in

most cases the distinction between the two is irrelevant. For brevity, we will also use “methods” to refer to both methods and

constructors even though strictly speaking constructors are not methods [35].
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and fields that constitute the interface to the tested functionality; or the tool can include all non-

private members for a user-defined “interesting” set of accessed classes. An interface member

may potentially have public, protected, or package accessibility.

For the purposes of this paper, a test suite for Int is a Java class that contains a set of test

cases that exercise Int . Without loss of generality, we assume that all test cases are part of a

single class which also serves as a test driver, and this class only references classes from Cls and

accesses methods and fields from Int . Let AllSuites(Int) denote the set of all such possible test

suites for Int ; clearly, this set is infinite. We assume that Cls is closed with respect to Int : for

any arbitrary suite S ∈ AllSuites(Int), all classes, methods, and fields that could be referenced

during the execution of S are in Cls . In other words, we consider test suites that only test

interactions among classes from the given set Cls . In general, classes from Cls could potentially

interact with unknown classes from outside of Cls . For example, unknown future subclasses of

classes from Cls may override inherited methods, and therefore instance calls inside Cls may

potentially be “redirected” to external code. However, at the time the testing is performed, such

unknown classes are not available and interactions with them cannot be exercised; therefore, we

do not consider test suites whose execution involves such unknown classes. If stub classes have

been created to simulate unknown external classes during testing, the stubs should be included

in Cls . In addition to Cls and Int , the tool takes as input one particular test suite T , and reports

the coverage achieved by T with respect to the RC and TM criteria.

B. Components

The tool contains four components. The analysis component processes the classes in Cls and

computes the requirements according the RC and TM criteria—that is, for each call site c, it

produces sets RC(c) and TM(c). More precisely, the analysis answers the following question:

for each call site in Cls, what is the set of possible receiver classes and target methods with

respect to all possible S ∈ AllSuites(Int)? If it is possible to write some test suite that tests Int

and exercises a call site c with some receiver class X or some target method m, the analysis

includes X in RC(c) and m in TM(c).

The computed coverage requirements are provided to the instrumentation component, which

inserts instrumentation at call sites to record the classes of the receiver objects at run time

using the reflection mechanism in Java. Instrumentation is only inserted at polymorphic call
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package station;

public abstract class Link { public abstract void transmit(String message); }
class NormalLink extends Link { ... }
class PriorityLink extends Link { ... }
class SecureLink extends Link { ... }
class LoggingLink extends Link { ... }
public class Station {

private Link link = new NormalLink();

private int msg id = 0;

public void sendMessage(String m) {
c1: link.transmit(msg id++ + " " + m);

if (msg id==10) link = new PriorityLink(); }
public void report(Link l) { c2: l.transmit("id = " + msg id);} }

public class Factory {
private boolean secure = false;

public Link getLink() {
if (secure) return new SecureLink(); else return new NormalLink(); }

public void makeSecure() { secure = true; } }

Fig. 2. Package station with two polymorphic call sites c1 and c2.

sites—i.e., sites c for which RC(c) is not a singleton set. The instrumented code is supplied

to the execution component which automatically runs the given test suite T . The results of

the execution are processed by the reporting component, which determines the actual coverage

achieved at call sites.

C. Example

Consider package station in Figure 2. Class Station models a station that connects to

the rest of the system using a variety of links. Initially, messages are transmitted using a normal-

priority link. After a certain number of messages have been processed, the station starts using

a high-priority link. In addition, the station may be required to report its current state on some

link provided from the outside. External code may use class Factory to gain access to normal

or secure links.

Suppose we are interested in testing the functionality provided by package station to

non-package client code. In this case all public classes (i.e., Link, Station, and Factory)
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package harness;

public abstract class Suite { public abstract void run(); }
package stationtest;

import station.*;

public class StationTests extends harness.Suite {
public void run() {

Station s = new Station();

Factory f = new Factory();

Link l;

for (int i = 0; i < 10; i++) {
s.sendMessage("message " + i);

l = f.getLink();

s.report(l); } } }

Fig. 3. Simplified test suite.

should be considered accessed classes. Set Int contains all public methods in accessed classes:

Link.transmit, Station.sendMessage, Station.report, Factory.getLink,

Factory.makeSecure, and the constructors of Station and Factory. (For the purpose of

this example, we assume that methods inherited from Object are not relevant.) Given the pack-

age and Int , the tool computes sets RC(ci) and TM(ci) for the call sites in Station. For exam-

ple, using Andersen’s fragment class analysis (presented in Section III-E), the computed sets are

RC(c1) = {NormalLink,PriorityLink} and RC(c2) = {NormalLink,SecureLink}
with the corresponding TM(ci). Given this information, the instrumentation component inserts

instrumentation at the two call sites. At run time this instrumentation records the receiver classes

using Object.getClass.

Suppose that the tool is used to evaluate test suite StationTests shown in Figure 3.

This suite achieves 50% RC coverage for call site c1 because the site is never executed with

receiver class PriorityLink. Similarly, the RC coverage for c2 is 50% because receiver class

SecureLink is not exercised. Note that the suite achieves 100% statement and branch coverage

for class Station, but this is not enough to achieve the necessary coverage of the polymorphic

calls inside the class. To achieve 100% coverage for c1 and c2, we need to add at least one more

iteration to the loop in run, and we also need to introduce a call f.makeSecure().
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III. FRAGMENT CLASS ANALYSIS

As discussed in Section I-C, whole-program class analyses cannot be used directly in our

coverage tool because they cannot be applied to partial programs. In this context, we need

fragment class analysis—that is, analysis that can be used to analyze fragments of programs

rather than complete programs. In this section we describe a general method for constructing

fragment class analyses for the purposes of testing of polymorphism in Java. The method allows

these fragment analyses to be derived from whole-program class analyses. The resulting analyses

can be used in coverage tools to compute the RC and TM coverage requirements.

Our approach is designed to be used with existing (and future) whole-program flow-insensitive

class analyses. Flow-insensitive analyses do not take into account the flow of control within a

method, which makes them less costly than flow-sensitive analyses. The approach is applicable

both to context-insensitive and to context-sensitive analyses. Context-insensitive analyses do

not attempt to distinguish among the different invocation contexts of a method. This category

includes Rapid Type Analysis (RTA) by Bacon and Sweeney [14], the XTA/MTA/FTA/CTA

family of analyses by Tip and Palsberg [27], Declared Type Analysis and Variable Type Analysis

by Sundaresan et al. [16], the p-bounded and p-bounded-linear-edge families of class analyses

due to DeFouw et al. [22], [29], 0-CFA [29], [33], 0-1-CFA [15], Steensgaard-style points-to

analyses [24], [28], and Andersen-style points-to analyses [17], [26], [28], [31]. Our approach

can be applied to all of these context-insensitive whole-program class analyses.

Context-sensitive analyses attempt to distinguish among different invocation contexts of a

method. As a result, such analyses are potentially more precise and more expensive than context-

insensitive analyses. In parameter-based context-sensitive class analyses, calling context is mod-

eled by using some abstraction of the values of the actual parameters at a call site. Call-chain-

based context-sensitive class analyses represent calling context with a vector of call sites for

the methods that are currently active on the run-time call stack. Our approach can be applied

to several parameter-based analyses (the Cartesian Product algorithm due to Agesen [20], the

Simple Class Set algorithm by Grove et al. [15], and the parameterized object-sensitive analyses

by Milanova et al. [18]) and call-chain-based analyses (the standard k-CFA analyses [29], [33],

and the k-1-CFA analyses by Grove et al. [15], [29]).
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A. Structure of Fragment Class Analysis

Recall from Section II-A that the input to the tool contains a set of classes Cls, as well as a

set Int of methods and fields from Cls that define the interface to the particular functionality that

is being tested. In addition, Int may contain information about array types that are potentially

used in test suites. In general, there is an unbounded number of such array types (e.g., X[ ],

X[ ][ ], X[ ][ ][ ], . . . for some X from Cls). To determine which ones are relevant for the tested

functionality, we assume that Int contains a list of potentially instantiated array types (i.e.,

types that may occur in new expressions) and another list of potentially accessed array types

(i.e., types that may occur in array access expressions x[i]). Knowing that an array type is

potentially instantiated is analogous to knowing that some class is potentially instantiated (i.e.,

Int contains a constructor for the class)—in both cases, this information describes the objects

that may be created by test suites. For the purposes of class analysis, knowing that an array type

may be accessed by an expression x[i] is conceptually similar to knowing that a field in a

class is potentially accessed. For example, a statement “x[i] = y”, where the type of x is an

accessed array type, is similar to a statement “x.f = y” where the type of x is an accessed

class type. Intuitively, reading or writing an element of an array object is analogous to reading

or writing an instance field of a “normal” object.

AllSuites(Int) is the infinite set of possible test suites for Int , as defined in Section II-A. The

tool needs to compute the coverage requirements according to the RC and TM criteria—that is,

for each method call site, to determine the set of possible receiver classes and target methods

with respect to all S ∈ AllSuites(Int). More precisely, if it is possible to write some test suite

for Int that exercises a call site c with some receiver class X or some target method m, X

should be included in RC(c) and m should be included in TM(c).

To compute RC(c) and TM(c), the tool needs to use fragment class analysis. We define

an entire family of such analyses in the following manner: first, we create placeholders that

serve as representatives for various elements of the unknown code from all possible test suites

S ∈ AllSuites(Int). During the analysis, the placeholders simulate the potential effects of this

unknown code. After creating the appropriate placeholders, the fragment analysis adds them to

the tested classes, treats the result as a complete program, and analyzes it using some whole-

program class analysis. It is important to note that the created placeholders are not designed to
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be executed as an actual test suite; they are only used for the purposes of the fragment class

analysis. Given the information in Int supplied by the tester, the placeholders can be easily

constructed automatically by the analysis component of a coverage tool.

There are two categories of placeholders: placeholder variables and placeholder statements.

Both kinds are located inside a placeholder main method. Subsequent sections describe the

structure of these placeholders and their role in the fragment analysis.

B. Placeholder Variables

The placeholder variables serve as representatives for unknown external reference variables

(i.e., reference variables that may occur in some test suite). A reference variable is a variable

of reference type. In Java, a reference type is a class type, an interface type, or an array type

[35, Sect. 4.3]. For the purposes of the fragment analysis, an array type with a primitive element

type (e.g., int[]) is irrelevant. We will use the term pure reference type to refer to class types,

interface types, and array types whose element types are class/interface types.2

The placeholder variables correspond to types that are relevant for possible test suites. We

formalize this notion by defining a set RelevantTypes(Int) of pure reference types that are

relevant with respect to the tested interface Int . For each type t ∈ RelevantTypes(Int), our

approach creates a placeholder variable pht that serves as a representative for all unknown

external variables of type t. The set of relevant types is defined as follows:

• If the type t of a formal for a method m ∈ Int is a pure reference type, t is relevant

• If the return type t for a method m ∈ Int is a pure reference type, t is relevant

• If the type t of a field f ∈ Int is a pure reference type, t is relevant

• For each accessed class C such that Int contains at least one instance method/field for C

(declared in C or inherited from C’s superclasses), the class type C is relevant.

• If an instantiated array type t is a pure reference type, t is relevant

• If an accessed array type t is a pure reference type, t and the component type of t are

relevant

2As defined in the language specification [35, Chapter 10], the component type of an array type t is the type of the variables

contained in the array; this type may itself be an array type. The element type of t is obtained by considering the component

types until a non-array type is encountered; e.g., for int[][], the component type is int[] and the element type is int.
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• java.lang.String and java.lang.Throwable are relevant

Intuitively, this definition lists the types of all reference variables that may occur in test suites

and may affect the flow of reference values in Cls—by being, for example, parameters of calls

to methods from Int . The inclusion of String and Throwable is necessary for handling of

string literals and exceptions, as described shortly. For each relevant type, we create a placeholder

variable that represents the effect of variables of that type. All placeholder variables are declared

as local variables of the placeholder main method.

Example. For the definition of Int from Section II-C, the set of relevant types contains

Station, Factory, Link, String, and Throwable. Figure 4 shows the declarations of

the corresponding placeholder variables.

C. Placeholder Statements

In addition to the placeholder variables, main contains a set of placeholder statements. These

statements represent different kinds of statements that could occur in the unknown code from

some test suite. Intuitively, the role of the placeholder statements during the class analysis is

to “simulate” the possible effects of unknown external code on the flow of reference values.

Figure 4 shows the placeholder statements for the example from Section II-C. It is important

to note that since we are targeting flow-insensitive class analyses, the ordering of placeholder

statements is irrelevant.

1) Method Calls: Consider an accessed class C and one of its (declared or inherited) methods

m ∈ Int . There is a single placeholder statement that invokes m. If m is an instance method,

the placeholder variable for C is used for the receiver expression. The parameters of the call

are placeholder variables matching the parameter types of m. For example, method report in

Figure 2 has a formal parameter of type Link, and the corresponding placeholder statement in

Figure 4 uses ph Link as an actual parameter. If a parameter type is not a pure reference type

(e.g., int), a “dummy” value of that type is used at the call; such values have no effect on the

subsequent class analysis.

If the return type of m is a pure reference type, the placeholder statement contains an

assignment to the placeholder variable that matches that type. For example, Factory.getLink

in Figure 2 has return type Link, and therefore the placeholder statement in Figure 4 assigns
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import station.*;

main() {
// Placeholder variables

Station ph Station;

Factory ph Factory;

Link ph Link;

String ph String;

Throwable ph Throwable;

// Placeholder statements

try {
ph Station = new Station();

ph Factory = new Factory();

ph Station.sendMessage(ph String);

ph Station.report(ph Link);

ph Link = ph Factory.getLink();

ph Factory.makeSecure();

ph Link.transmit(ph String);

ph String = "abc";

} catch (Throwable e) {
ph Throwable = e;

}
}

Fig. 4. Placeholders for package station.

the return value of the call to ph Link. In the case when m is a constructor, a new expression

in introduced, and the result is assigned to the appropriate placeholder variable.

2) Field Accesses: Consider an accessed class C and one of its declared or inherited fields

f ∈ Int . There are placeholder statements that read and/or write the field. If f is an instance

field with pure reference type t, we create a statement “pht = phC .f”. In case f is not declared

final, a statement “phC .f = pht” is also created. If f is a static field of pure reference type t

and is declared in class X , the two placeholder statements are “ph t = X.f” and “X.f = pht”.

3) Array Creation and Accesses: For each relevant instantiated n-dimensional array type

t = X[ ][ ]. . .[ ] with element type X , there is a placeholder statement that creates an array of

type t. The statement has the form “ph t = new X[1][ ]. . .[ ]”. The array creation expression in
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the statement produces an array with size 1 and with component type either X (if n = 1) or the

(n−1)-dimensional array type X[ ]. . .[ ] (if n > 1). Since the subsequent class analysis does not

distinguish among array indices, the array size is irrelevant. This placeholder statement ensures

that the class analysis will take into account arrays that may be created in test suites.

For each relevant accessed array type t from Int , there are also statements representing

accesses of array elements. More precisely, if w is the component type of t, main contains

statements “phw = pht[0]” and “ph t[0]= phw”; the index is irrelevant for the class analysis.

4) String Literals: There is a placeholder statement that assigns to ph String a string literal

(e.g., "abc"). This literal represents instances of String that correspond to string literals

occurring in test suites.

5) Type Conversions: The Java language defines a set of rules for compile-time assignment

conversions [35, Sect. 5.2]. These rules identify pairs (t1, t2) of types such that an expression

of type t1 can be treated at compile time as if it had type t2 instead. For example, if Y is

a subclass of X , there is an assignment conversion from the type corresponding to Y to the

type corresponding to X . Similarly, there is an assignment conversion from Y to each interface

that Y implements. Such conversions are implicitly performed at assignment statements and at

parameter passing.

To represent the potential effects of these conversions, we consider all pairs of types from

RelevantTypes(Int) for which the language defines an assignment conversion. For each such

pair (t1, t2), main contains a placeholder statement of the form “ph t2 = pht1”. For brevity, the

complete language rules for these conversions are not shown; a detailed description is available

in [35, Sect. 5.2].

The language also defines a set of rules for compile-time casting conversions [35, Sect. 5.5].

For example, if Y is a subclass of X , there is a casting conversion from the type corresponding

to X to the type corresponding to Y . By definition, all assignment conversions are also valid

casting conversions. A casting conversion that is not an assignment conversion requires run-time

tests to determine whether the actual reference value is a legitimate value of the new type; if not,

a ClassCastException is thrown. At compile time, such conversions are achieved through

cast expressions. To model the possible effects of these conversions, we consider all pairs of

relevant types for which the language defines a casting conversion that is not an assignment

conversion. For each such pair (t1, t2), we create a placeholder statement “pht2 = (t2) ph t1”
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which contains a cast expression. The complete set of language rules for casting conversions is

described in [35, Sect. 5.5].

6) Exceptions: Since some of the invoked methods may throw checked or unchecked excep-

tions, all placeholder statements are located inside a try statement of the form try { ... }
catch (Throwable e) { ph Throwable = e; }. This construct represents the fact

that code from test suites may catch exceptions thrown by the tested classes. Throwable

is the most general type for objects that may be caught by catch clauses. Placeholder variable

ph Throwable serves as a representative for all reference variables in test suites that may

refer to exception objects. Since such variables may be used, for example, as actuals of calls

to methods from Int , assignment ph Throwable = e enables the potential propagation of

caught exceptions.

D. Analysis Correctness

The previous sections describe our approach for creating a main method containing various

placeholders. This main method is added to the tested classes, and the result is analyzed using

some whole-program class analysis. Section III-E presents examples of the solutions computed

by two such whole-program analyses. In this section we discuss the correctness of the resulting

fragment analysis; more details are presented in Appendix I.

A fragment class analysis is correct if and only if the following property holds: if there exists

a test suite S ∈ AllSuites(Int) whose execution exercises a call site c with some receiver class

X , the analysis should report that X is a possible receiver class for c. This implies correctness

both with respect to the RC criterion and the weaker TM criterion. We have proven this property

for all fragment analyses derived from the whole-program flow-insensitive analyses listed in

the beginning of Section III. This result enables the use of a large body of existing work on

whole-program class analysis for the purposes of testing of polymorphism.

The proof of this claim is based on a general framework for whole-program class analysis

proposed by Grove et al. [15], [29]. We first define two particular whole-program analyses that are

instantiations of this framework. The first analysis, denoted by Ap, is a parameter-based context-

sensitive analysis similar to Agesen’s Cartesian Product algorithm [20]. The second analysis,

denoted by Ac, is a call-chain-based context-sensitive analysis similar to the k-1-CFA analysis

from [15]. These two analyses are relatively precise instantiations of the framework from [15],
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[29] and they represent two points at the high end of the precision spectrum for context-sensitive

class analysis (with parameter-based sensitivity in Ap and call-chain-based sensitivity in Ac).

Both analyses are described in more detail in Appendix I.

Let A′
p be the fragment class analysis built on top of Ap. Similarly, let A′

c be the fragment class

analysis that is based on Ac. We have proven the correctness of these two fragment analyses;

an outline of the proof is presented in Appendix I The proof is described with a substantial

level of detail because we believe that the techniques it employs may be generalized for other

analyses—for example, for fragment side-effect and def-use analyses built on top of existing

whole-program analyses.

Consider an arbitrary whole-program class analysis A that is less precise than Ap or Ac.

Analysis A always computes a solution that is a superset of the solution computed by Ap or by

Ac. Based on the correctness of A′
p and A′

c, it is easy to see that the fragment analysis based

on A is also correct. Because of the properties of the framework from [15], [29], each of the

whole-program analyses listed in the beginning of Section III is either less precise than Ap,

or less precise than Ac; this implies the correctness of our approach for all of these analyses.

Furthermore, this result applies to any future framework instance that is less precise than Ap or

Ac, and therefore correctness is also guaranteed with respect to a large class of future analyses.

E. Analysis Precision

Consider package station in Figure 2. If we simply examine the class hierarchy to determine

the possible receiver objects at call sites, we would have to conclude that RC(ci) contains all four

subclasses of Link, which is too conservative and will result in infeasible testing requirements.

In this case, the tool will never report that more than 50% coverage has been achieved for each

of the two call sites in Station, even if in reality the achieved coverage is 100%.

Now suppose that we add the placeholders from Figure 4 and we run Rapid Type Analysis

(RTA) [14]. RTA is a popular whole-program class analysis that performs class analysis and

call graph construction in parallel. It maintains a set of methods reachable from main, and

a set of classes instantiated in reachable methods. In the final solution, the set of classes

for a variable v is the set of all instantiated subclasses of the declared type of v. In this

example, RTA determines that class Factory is instantiated in main. This implies that call site

ph Factory.getLink() may be executed with an instance of Factory, which means that



19

ph Station

�
o1

� �
link link

o2 o3

ph Link

� �
o4 o5

� �
l

o1: new Station() in main

o2: new NormalLink()
in Station

o3: new PriorityLink()
in Station

o4: new SecureLink()
in Factory

o5: new NormalLink()
in Factory

Fig. 5. Some points-to edges computed by Andersen’s analysis.

method getLink is reachable from main. While processing the body of getLink, the analysis

determines that NormalLink and SecureLink are instantiated. Similarly, because Station

is instantiated in main, sendMessage is determined to be reachable, which implies that

PriorityLink may also be instantiated. At the end, RTA determines that the only instantiated

subclasses of Link are NormalLink, PriorityLink, and SecureLink, and therefore

RC(ci) contains only these three classes. Unlike analysis of the class hierarchy, RTA is capable

of filtering out the infeasible receiver class LoggingLink. Still, some imprecision remains

because infeasible class SecureLink is reported for c1 and infeasible class PriorityLink

is reported for c2.

As another example, suppose that the fragment analysis uses Andersen’s whole-program

points-to analysis for Java [17], [26], [28], [31]. This analysis constructs a points-to graph

in which nodes represent reference variables and objects, and edges represent points-to relation-

ships between the nodes. Figure 5 shows some of the edges in the points-to graph computed

for our example. Each name oi represent the run-time objects allocated by a particular new

expression. The graph shows that field link may only refer to instances of NormalLink and

PriorityLink, and therefore these two classes are included in RC(c1). Similarly, the graph

shows that RC(c2) contains NormalLink and SecureLink.

Any class analysis could potentially compute infeasible classes. In this particular case, every

receiver class reported by Andersen’s analysis is feasible, but in general this need not be

true. As discussed in Section I-D, only analyses that report few infeasible classes should be
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used in coverage tools. Thus, in order to construct high-quality coverage tools for testing of

polymorphism, it is necessary to have information about the imprecision of different analyses

(i.e., how many infeasible classes they report). Unfortunately, measurements of absolute precision

are not available in previous work on class analysis. One goal of our work was to obtain such

measurements for several different class analyses. These results are presented in the next section.

IV. EMPIRICAL STUDY

This study focuses on several fragment class analysis techniques derived from popular whole-

program class analyses. The purpose of the study is to evaluate these techniques as potential

candidates for computing RC and TM coverage requirements in coverage tools. In particular, the

key question we want to answer is the following: How precise are the coverage requirements

computed by these techniques? In other words, how many infeasible receiver classes and infea-

sible target methods are included in the computed requirements? Our goal is to evaluate both the

relative precision of the techniques with respect to each other, and the absolute precision with

respect to a “perfect” baseline. Thus, the manipulated independent variable in our experiments is

the class analysis algorithm, and the measured dependent variable is the precision of the coverage

requirements.

A. Analysis Techniques

Our study considers four different choices for the fragment class analysis. Each analysis is de-

rived from a corresponding whole-program analysis, using the approach presented in Section III.

The first analysis, denoted by CHAf , is based on Class Hierarchy Analysis (CHA) [32]. This

approach includes in the coverage requirements each subtype and each overriding method defined

in the class hierarchy; therefore, this is the simplest and potentially most imprecise technique.

The second fragment class analysis (denoted by RTAf ) is derived from Rapid Type Analysis

(RTA) [14]. As discussed in Section III-E, RTA is a whole-program class analysis that computes

an overestimate of the set of classes that are instantiated in methods that are reachable from

main. This analysis belongs at the lower end of the cost/precision spectrum of class analysis.

The third fragment analysis, denoted by 0-CFAf , is based on the popular whole-program

0-CFA class analysis [22], [29], [33]. The fourth fragment analysis (denoted by ANDf ) is derived
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from a whole-program points-to analysis for Java [17] which is based on Andersen’s points-

to analysis for C [34]. (An example illustrating the Andersen-style analysis is presented in

Section III-E.) Both 0-CFA and Andersen-style analysis represent points at the high end of the

cost/precision spectrum for flow- and context-insensitive class analysis. The difference between

the two is that 0-CFA does not attempt to distinguish among different instances of the same

class, while Andersen-style analysis makes such a distinction in order to improve precision. We

used a version of 0-CFA that is a modification of the analysis from [17]. In this modification, the

analysis creates a single object name for all object allocation sites for a given class—i.e., instead

of having a separate object name oi for each new expression as in [17], there is a single object

name oC for all expressions “new C”. This analysis is essentially equivalent to the standard

0-CFA class analysis [22], [29], [33]; the only difference is that our analysis distinguishes among

occurrences of the same instance field in different subclasses that inherit that field, while 0-CFA

does not make this distinction.

B. Subject Components

For our experimental evaluation we used a set of publicly available Java packages, from a

wide range of sources and application domains. We then defined several testing tasks. Each task

was defined with respect to a particular functionality provided by a package. For example, one

task was to exercise the functionality for identifying boundaries in text (i.e., word boundaries,

line boundaries, etc.), as provided by a set of classes from java.text. As another example,

a task was defined to exercise the functionality from java.util.zip related to ZIP files.

Columns (1)-(3) in Table I briefly describe the testing tasks and the functionalities they exercise.

For each task, we determined the set Int for the tested functionality, as well as the set of

classes containing the code which implements the functionality. (This was straightforward to do

by examining the documentation and the source code.) This set of classes will be referred to

as the component under test (CUT) for the corresponding task. Column (4a) in Table I shows

the number of CUT classes, and (5a) shows the number of methods in these classes. Any class

that is directly or transitively referenced by a CUT class could potentially affect the receiver

classes and target methods at polymorphic calls inside the CUT. Thus, these classes should also

be included in the scope of the class analyses. Column (4b) shows the number of such classes,

including the CUT classes. The number of methods in classes from (4b) is shown in (5b).
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TABLE I

DESCRIPTION OF TESTING TASKS.

(1) (2) (3) (4) #Classes (5) #Methods (6)

Task Package Functionality (a) CUT (b) All (a) CUT (b) All #PolySites

t1 java.text boundaries in text 12 199 96 2302 12

t2 java.text formatting of numbers/dates 13 205 266 2504 79

t3 java.text text collation 12 203 160 2394 2

t4 java.util.zip ZIP files 8 196 70 2317 5

t5 java.util.zip ZIP output streams 8 194 81 2284 18

t6 java.util.zip GZIP I/O streams 6 199 41 2316 22

t7 gnu.math complex numbers 8 205 248 2624 194

t8 com.lowagie.text paragraphs in PDF docs 24 233 345 2762 199

t9 com.lowagie.text lists in PDF docs 24 232 347 2762 169

t10 mindbright.ssh SSH client 60 278 551 3054 394

t11 java.sql SQL access 18 206 354 2592 22

t12 gnu.regexp regular expressions engine 23 211 144 2366 71

t13 com.quiotix.html HTML manipulation 30 218 299 2527 60

t14 jess expert system engine 146 502 646 4724 873

t15 socks proxy for SOCKS protocol 23 228 232 2636 241

t16 jtar.io manipulation of tar archives 21 232 110 2586 22

t17 jflex generation of lexical analyzers 34 392 316 4417 533

t18 gnu.bytecode bytecode manipulation 44 246 636 2982 257

In all CUT classes, we considered the call sites for which CHAf reports more than one possible

receiver class. Let PolySites denote the set of all such polymorphic call sites. For each element

of this set, our tool computes RC and TM requirements, and reports their run-time coverage.

The last column in Table I shows the size of PolySites for each component.

C. Measurements of Relative Precision

To measure the precision of the coverage requirements, we defined several metrics. Let

NRC (c, A) be the number of possible receiver classes computed by analysis A for call site

c ∈ PolySites . Similarly, let NTM (c, A) be the corresponding number of possible target methods.

We define

NRC (A) =

∑
c∈PolySites NRC (c, A)

|PolySites| NTM (A) =

∑
c∈PolySites NTM (c, A)

|PolySites|
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as metrics of the size of the coverage requirements computed by analysis A, normalized by the

number of polymorphic sites in the component. For any pair of analyses A and A ′, we can define

the metric NRC (A, A′) = NRC (A)−NRC (A′), and the corresponding metric NTM (A, A′). These

two metrics represent the relative precision of A compared to A′. For the 18 components shown

in Table I, we obtained the following metrics:

• NRC (CHAf ,ANDf ) and NTM (CHAf ,ANDf)

• NRC (RTAf ,ANDf) and NTM (RTAf ,ANDf )

• NRC (0-CFAf ,ANDf ) and NTM (0-CFAf ,ANDf)

These metrics compare the theoretically most precise of the four techniques (ANDf ) with

the remaining three techniques. The analysis of these measurements involved computing some

standard descriptive statistics over the set of components: median, arithmetic mean, variation

interval, and standard deviation. Since the metrics are based on an absolute scale [36], all of

these statistics are meaningful.

Additional analysis of the measurements was performed to allow inferences with some degree

of statistical significance. Hypotheses of the form “the probability of M > x is greater than

the probability of M < x” were formulated and tested statistically for different values of x and

for all metrics M listed above. The employed statistical test was the one-tailed paired sign test,

with the typical significance level of α = 0.05 [37]. The paired sign test is appropriate because

it makes no assumptions about the population distribution, and can be applied to small samples.

For each metric M , we defined a null hypothesis “the probability of M > x is the same as

the probability of M < x” and tested it against the alternative hypothesis “the probability of

M > x is greater than the probability of M < x” for different values of x. We then computed

the largest value of x for which the null hypothesis can be rejected with significance level

α = 0.05. Let λ(M) denote this largest value. Essentially, λ(M) is the greatest lower bound

on the median of M that can be inferred at this degree of statistical significance. For example,

if λ(NRC (RTAf ,ANDf)) = 1.23, the measurements strongly support the hypothesis that the

number of additional receiver classes per polymorphic call site reported by RTAf compared to

ANDf will be greater that 1.23 more often than it will be less than 1.23.

Hypotheses of the form “the probability of M < x is greater than the probability of M > x”

were also tested statistically in a similar manner. Let λ′(M) denote the smallest value of x for

which this hypothesis has statistical significance α = 0.05 in the one-tailed paired sign test. This
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value is the least upper bound on the median of M that can be inferred from the measurements.

The interval (λ(M), λ′(M)) characterizes the median value of M .

D. Measurements of Absolute Precision

In order to define a metric for absolute precision, we consider a “perfect” RC/TM solution

which contains all and only feasible receiver classes and target methods. For such a solution,

metrics NRC (Prec) and NTM (Prec) can be defined similarly to the definitions of NRC (A)

and NTM (A) presented earlier. For any analysis A, NRC (A,Prec) = NRC (A) − NRC (Prec)

is a metrics of the absolute precision of A with respect to the RC criterion. A similar metric

NTM (A,Prec) can be defined as NTM (A) − NTM (Prec) .

In general, measurements of absolute precision cannot be obtained automatically through static

analysis because any such analysis makes necessarily conservative approximations. To produce

such measurements, we performed a set of experiments for tasks t1 through t9 from Table I. For

each task we wrote a test suite that exercised the tested functionality and covered all feasible

receiver classes for each call site from PolySites . Substantial effort was made to ensure that

the test suites did in fact achieve the highest possible coverage. For each task, two of the

authors (working independently of each other) thoroughly examined the code and wrote tests

that exercised each feasible receiver class. For each call site, the sets of exercised receiver classes

obtained by the two people were carefully compared to ensure that there were no differences.

The tests were merged into a single test suite that exercised all feasible receiver classes and target

methods for each call site in PolySites . The run-time coverage achieved by this suite provided

a baseline for measuring the absolute precision (i.e., NRC (A,Prec) and NTM (A,Prec)) of the

four fragment analyses used in the experiments. Similarly to the metrics of relative precision,

additional statistical analysis was performed on the metrics of absolute precision. Using the

approach described earlier, an interval (λ(M), λ′(M)) was computed for each absolute precision

metric M . The endpoints of this interval are the greatest lower bound and the least upper bound

on the median of M that can be inferred from the measurements for tasks t1 through t9.

The kind of experiment described above is somewhat unusual for program analysis research,

for two reasons. First, a threat to the validity of the results is the possibility of human error in

determining which parts of the analysis solution are feasible. Even though this factor is partially

controlled by having two experimenters working independently, in general it is not possible
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to completely eliminate this threat. Second, the experiments are labor-intensive and thus hard

to scale to a large number of subjects, or to subjects with heavy use of polymorphism. This

substantial amount of effort was the reason to obtain absolute precision measurements only for

half of the tasks in Table I. Despite these drawbacks, we believe that such experiments provide

essential insights for analysis designers and tool builders. Section IV-G discusses this issue in

more detail.

E. Threats to Validity

As with any empirical study, there are various threats to the validity of our study including

threats to conclusion validity, internal validity, external validity, and construct validity [38].

Threats to conclusion validity and internal validity are factors that may invalidate the conclusions

about the relationship between independent and dependent variables for the experiment subjects.

In our study, the implementation of the analyses is an experiment artifact that may introduce such

threats: if the implementation is incorrect, the results of the study may be partially invalid. The

probability of this threat is reduced by the extensive testing of the implementation in the context

of this project and several other projects over the last few years. Another threat is possible human

error in deciding which receiver classes are feasible, in order to obtain measurements of absolute

precision. By having two experimenters obtain these measurements independently, we partially

control for this factor. The employed statistical test (the paired sign test) is another potential

validity threat. This test is relatively weak, and therefore has limited ability to reveal patterns in

the data. In particular, the lower bounds λ and the upper bounds λ′ may be too conservative—

that is, they may provide imprecise characterization of the corresponding metrics. More powerful

tests such as the paired t-test and the Wilcoxon test [38] require certain assumptions to be true

(e.g., the t-test assumes normal distribution). At present, there is no existing evidence to support

such assumptions.

Threats to external validity affect the ability to generalize the results of an experiment. In

our study the source of such threats is the set of subject components. Ideally, the sample of the

population should be representative for the entire population to which we want to generalize.

In particular, for any factor that may affect the dependent variables (i.e., the precision metrics),

the subjects should provide a representative sample with respect to this factor. Examples of such

factors are the programming style (in particular, the use of polymorphism) and the application
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domain. Another potential factor is the size of the subject, even though some anecdotal evidence

(e.g., [17], [18]) suggests that there is little correlation between subject size and relative precision.

Unfortunately, the factors that affect analysis precision have not been identified or quantified in

existing work on program analysis. Therefore, at present it is impossible to argue that the subjects

used in this study (or in any similar study in previous work) constitute a representative sample.

To address this threat, we used subjects produced by different developers, presumably using a

variety of programming styles, and from different application domains. For the measurements

of relative precision, the size of the sample (n = 18) is larger and therefore somewhat stronger

conclusions can be drawn from these results. The measurements of absolute precision use a

smaller sample (n = 9) and present a weaker basis for generalizations.

Threats to construct validity concern the generalization of the experiment to the concept behind

the experiment. In our study, the precision metrics may not necessarily account for all aspects

of the costs and benefits faced by tool users. For example, NRC (A1,Prec) = 2×NRC (A2,Prec)

does not imply that a tool user will take twice as long to identify the infeasible RC requirements

produced by analysis A1, compared to identifying the infeasible RC requirements produced

by analysis A2. Ultimately, experiments with human subjects will be necessary to gain better

understanding of the effects of analysis precision on tester productivity.

F. Results and Interpretation

Table II shows the metrics for coverage requirement size, as computed by the different

analyses. For tasks t1 through t9, columns Prec also show the metrics for the feasible coverage

requirements. Table III shows the maximum possible coverage that may be reported by the tool

if it were to use analysis A to compute the coverage requirements. For example, for task t5,

NRC (CHAf ) = 7 but the best possible RC coverage that may be achieved is NRC (Prec) = 1.28

which is 18% of NRC (CHAf); this means that 82% of the receiver classes reported by CHAf

are infeasible. For tasks t10 through t18, upper bounds on the maximum reported coverage can

be obtained by using NRC (ANDf)/NRC (A) and NTM (ANDf)/NTM (A). The bottom half of

Table III shows these upper bounds; if only the trivial bound ≤ 100% could be inferred, it is

not shown in the table. The top part of Table IV shows the standard descriptive statistics and

the median bounds for the relative precision metrics for all tasks. The bottom part of the table

contains the same information for the absolute precision metrics for t1 through t9.
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TABLE II

COVERAGE REQUIREMENTS.

Task NRC (A) NTM (A)

CHAf RTAf 0-CFAf ANDf Prec CHAf RTAf 0-CFAf ANDf Prec

t1 4.00 4.00 4.00 4.00 4.00 3.50 3.50 3.50 3.50 3.50

t2 2.86 2.86 2.53 2.53 1.92 2.48 2.48 2.18 2.18 1.57

t3 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t4 3.20 2.20 1.00 1.00 1.00 1.60 1.40 1.00 1.00 1.00

t5 7.00 1.44 1.28 1.28 1.28 6.17 1.38 1.28 1.28 1.28

t6 14.4 4.32 2.50 2.50 2.36 10.91 3.64 2.50 2.50 2.36

t7 3.76 3.76 2.92 2.91 2.85 2.41 2.41 2.10 2.09 2.05

t8 6.17 1.91 0.75 0.71 0.62 3.55 1.07 0.56 0.56 0.52

t9 6.42 1.77 0.51 0.51 0.31 3.60 1.08 0.51 0.51 0.31

t10 14.32 6.60 1.82 1.82 — 1.82 1.64 1.43 1.43 —

t11 2.77 1.55 1.32 1.32 — 1.00 1.00 1.00 1.00 —

t12 5.73 4.73 4.10 4.10 — 3.58 3.58 3.28 3.28 —

t13 6.07 3.95 1.98 1.98 — 2.52 2.25 1.73 1.73 —

t14 5.53 4.41 2.94 2.94 — 2.04 1.89 1.63 1.63 —

t15 7.20 3.48 1.69 1.69 — 3.24 2.25 1.44 1.44 —

t16 4.00 2.36 1.86 1.86 — 2.55 1.86 1.73 1.73 —

t17 10.02 4.22 1.16 1.16 — 2.80 1.87 1.03 1.03 —

t18 14.4 7.37 4.20 4.20 — 2.67 2.16 1.86 1.86 —

The results presented in Tables II–IV should be interpreted in the context of the validity

threats discussed in Section IV-E. In particular, the external validity of the study—that is, how

the results can be generalized to other subjects—cannot be easily estimated. This problem is

common for essentially all program analysis research, where the sample size is typically small

(usually n < 20), and the subject properties that affect analysis precision are rarely identified

and quantified. Our study should be considered as a step in a long-term process of gathering

data to support conclusions with some degree of statistical significance.

For the evaluation of relative precision, the results indicate that CHAf has the tendency

to report spurious receiver classes. For NRC (CHAf ,ANDf), the median value is 3.34 over

the eighteen tasks, and the lower bound on the median is 1.63. Since NRC (CHAf ,Prec) ≥
NRC (CHAf ,ANDf), this data strongly suggests that CHAf should not be used to compute the
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TABLE III

MAXIMUM REPORTED COVERAGE.

Task NRC (Prec)/NRC (A) NTM (Prec)/NTM (A)

CHAf RTAf 0-CFAf ANDf CHAf RTAf 0-CFAf ANDf

t1 100% 100% 100% 100% 100% 100% 100% 100%

t2 67% 67% 76% 76% 63% 63% 72% 72%

t3 50% 50% 100% 100% 100% 100% 100% 100%

t4 31% 45% 100% 100% 63% 71% 100% 100%

t5 18% 88% 100% 100% 21% 92% 100% 100%

t6 17% 58% 95% 95% 23% 69% 95% 95%

t7 76% 76% 97% 98% 85% 85% 98% 98%

t8 10% 32% 82% 87% 15% 48% 93% 93%

t9 5% 18% 62% 62% 9% 29% 62% 62%

t10 ≤ 13% ≤ 28% — — ≤ 79% ≤ 87% — —

t11 ≤ 48% ≤ 85% — — — — — —

t12 ≤ 72% ≤ 87% — — ≤ 92% ≤ 92% — —

t13 ≤ 33% ≤ 50% — — ≤ 69% ≤ 77% — —

t14 ≤ 53% ≤ 67% — — ≤ 80% ≤ 86% — —

t15 ≤ 23% ≤ 49% — — ≤ 44% ≤ 64% — —

t16 ≤ 47% ≤ 79% — — ≤ 68% ≤ 93% — —

t17 ≤ 12% ≤ 27% — — ≤ 37% ≤ 55% — —

t18 ≤ 29% ≤ 57% — — ≤ 70% ≤ 86% — —

RC requirements in coverage tools. The results for NRC (RTAf ,ANDf), with a median of 1.2

and a lower bound of 0.63, indicate that RTA may also be a poor candidate for computing

RC requirements. To a lesser degree, the results for TM coverage suggest similar conclusions.

Somewhat surprisingly, the measurements for 0-CFAf strongly indicate that negligible precision

improvement should be expected if using ANDf instead of 0-CFAf .

The evaluation of absolute precision is performed on a smaller sample, and therefore con-

clusions based on these results are weaker than the conclusions based on the relative precision

metrics. For NRC (0-CFAf ,Prec), the median value is 0.07 and the maximum value is 0.61. The

median values are slightly smaller for TM coverage and for ANDf . For four of the nine tasks,

both 0-CFAf and ANDf achieve perfect precision. These results indicate that these two analyses

may be good candidates for future investigation and for potential inclusion in coverage tools for
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TABLE IV

PRECISION METRICS: DESCRIPTIVE STATISTICS AND MEDIAN BOUNDS.

Metric Median Mean Min Max StdDev Lower bound λ Upper bound λ′

NRC (CHAf ,ANDf ) 3.34 4.58 0 12.5 3.99 1.63 5.73

NTM (CHAf ,ANDf ) 0.7 1.54 0 8.41 2.17 0.32 1.17

NRC (RTAf ,ANDf ) 1.2 1.41 0 4.78 1.24 0.63 1.8

NTM (RTAf ,ANDf ) 0.3 0.37 0 1.14 0.31 0.2 0.52

NRC (0-CFAf ,ANDf ) 0 0.003 0 0.04 0.01 0 0.01

NTM (0-CFAf ,ANDf ) 0 0.0006 0 0.01 0.002 0 0.01

NRC (CHAf , Prec) 2.2 3.83 0 12.05 3.9 0.9 6.11

NTM (CHAf ,Prec) 0.91 2.4 0 8.55 2.88 0 4.89

NRC (RTAf ,Prec) 1 0.99 0 1.96 0.61 0.15 1.46

NTM (RTAf ,Prec) 0.4 0.49 0 1.28 0.44 0 0.91

NRC (0-CFAf ,Prec) 0.07 0.13 0 0.61 0.2 0 0.2

NTM (0-CFAf ,Prec) 0.04 0.12 0 0.61 0.2 0 0.2

NRC (ANDf ,Prec) 0.06 0.12 0 0.61 0.2 0 0.2

NTM (ANDf ,Prec) 0.04 0.12 0 0.61 0.2 0 0.2

testing of polymorphism.

For completeness, we also measured the cost of computing the coverage requirements. All

measurements were performed on a 900MHz Sun Fire-280R machine with 3GB memory. The

reported times are the median values out of three runs. Using CHAf and RTAf has negligible

cost (less than 2 seconds). The cost of performing 0-CFAf and ANDf is shown in Table V. This

cost includes the time to analyze all methods that are directly or transitively reachable from the

interface methods, both in classes that implement the tested functionality, and in their server

classes (i.e., in classes that are used by the code that implements the functionality). The number

of these analyzed methods for ANDf is shown in the last column of Table V; for 0-CFAf , the

number of analyzed methods is almost the same.

These results should not be interpreted as cost comparison between 0-CFAf and ANDf ,

because the differences may be due to properties of our particular implementation. Rather, the

results provide an upper bound on the cost of these analyses for the subject components. The

primary factor affecting analysis cost is the implementation of the underlying Andersen-style

whole-program analysis. Recent work [31] presents efficient techniques for implementing this
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TABLE V

ANALYSIS RUNNING TIMES.

Task 0-CFAf (sec) ANDf (sec) #Methods Task 0-CFAf (sec) ANDf (sec) #Methods

t1 2.0 4.0 325 t10 11.1 21.2 1161

t2 5.0 11.5 752 t11 4.9 8.9 702

t3 1.5 2.5 282 t12 1.9 2.6 348

t4 2.3 2.8 401 t13 3.6 4.7 652

t5 1.9 2.1 280 t14 21.6 51.3 1638

t6 1.3 1.4 286 t15 4.0 10.2 748

t7 5.1 13.6 386 t16 2.9 3.2 486

t8 5.6 8.1 833 t17 14.8 52.9 1055

t9 5.9 8.5 810 t18 10.5 18.6 1336

analysis, with running times in the order of a minute per ten thousand analyzed methods.

G. Discussion and Conclusions

The goal of our study is to gain insights about the precision of several fragment class

analyses. This is important not only for coverage tools, but also for tools for understanding

and transformation of object-oriented software. Various approaches for precision evaluation can

be employed to provide such insights. Relative precision comparisons can identify analyses that

are consistently imprecise, and therefore may be poor choices for software tools. For example,

the results presented earlier indicate that CHAf and RTAf may be such poor choices. Thus,

relative precision comparisons can provide valuable information for tool designers.

The disadvantage of relative precision evaluations is that they can identify only analyses

that have high degree of imprecision, but not analyses that have low degree of imprecision.

For example, even though 0-CFAf and ANDf are more precise than CHAf and RTAf , this

information by itself does not indicate how far away they are from the “perfect” solution.

Eventually, this question must be addressed by some form of absolute precision evaluation.

One possible approach is to perform studies similar to the one presented in this work. To the

best of our knowledge, these are the first available results that evaluate the absolute precision of

class analysis. The study indicates that 0-CFAf and ANDf are promising candidates for future

investigation. Clearly, long-term gathering of data by us and by other researchers is necessary
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to obtain conclusive results about the absolute precision of these and other class analyses. We

consider our study to be a first step in these investigations.

The absolute precision evaluation in this work is performed through a manual ‘brute-force”

approach. Over a longer period of time and with the participation of more researchers, this

can yield a significant body of data. However, it is also necessary to attempt to reduce the

cost of this process. One possibility is to define approaches that provide estimates of absolute

precision, and to evaluate the possible error in these estimates using studies similar to ours. Such

techniques may require investigation of the sources of class analysis imprecision; for example,

certain commonly-used object-oriented idioms are a potential source of imprecision [18]. It may

be necessary to define metrics that quantify these sources, to build models of their impact on

the analysis solution, and to evaluate these models empirically.

V. RELATED WORK

Various authors have recognized the need to test polymorphic relationships by exercising

all possible polymorphic bindings [3], [6]–[12]. The coverage of receiver classes and/or target

methods is either needed as an explicit testing goal, or as part of more general coverage

criteria—for example, criteria based on object-level def-use coverage that takes into account

polymorphism [10]–[12]. An implicit assumption in this previous work appears to be that the

bindings will be determined by examining the class hierarchy—for example, that the possible

receiver classes at x.m() are the subclasses of the declared type of x. One key point of our

work is that this approach could be overly conservative, and as a result coverage tools may

introduce infeasible coverage requirements. Fortunately, there exists a large body of work on

class analysis that can be used to produce more precise coverage requirements. Our work is the

first investigation of the use of class analyses more complicated than CHA for the purposes of

testing of polymorphism.

One key problem is that class analyses are typically designed as whole-program analyses,

and therefore cannot be used directly for testing of partial programs. Some whole-program

class analyses have been adapted to analyze program fragments rather than whole programs.

Chatterjee and Ryder [39] present a flow- and context-sensitive points-to analysis for library

modules in object-oriented software. The analysis is an adaptation of an earlier whole-program

analysis [23]. Tip et al. [40], [41] describe analyses and optimizations for the removal of unused
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functionality in Java modules. Their work presents a method for performing RTA [14] and XTA

[27] on program fragments. Although the approaches from [39] and [40] can be used to compute

coverage requirements in tools for testing of polymorphism in partial programs, our technique for

constructing fragment class analyses (presented in Section III) is more general and can be applied

to a large number of existing whole-program analyses [14]–[18], [20], [22], [24], [26]–[29], [31].

Harrold and Rothermel [42] present a method for performing def-use analysis of a given class

for the purposes of dataflow-based unit testing in object-oriented languages. Their approach

constructs a placeholder driver that represents all possible sequences of method invocations

initiated by client code; however, the driver does not take into account the effects of aliasing,

polymorphism, and dynamic binding. The placeholder main method presented in Section III

is essentially a placeholder driver that models these features. Thus, in addition to testing of

polymorphism, our approach could potentially be useful in tools for dataflow-based testing of

individual classes and collections of classes.

In previous work, analysis precision is typically evaluated in three ways. One approach is

to compare the solutions computed by two or more analyses, in order to determine the relative

precision of these analyses—i.e., how analysis X compares with analysis Y . Another approach is

to compare the analysis results with the behavior of the program during a particular set of test runs

(e.g., [43], [44]). A third approach is to evaluate the effect of the analysis on a particular client

application—for example, the impact on performance due to compiler optimizations. However,

in the context of software engineering tools, another important issue is absolute precision: how

close is the analysis solution to the set of all run-time relationships that are actually possible?

Imprecision may lead to waste of tester’s time and effort, which ultimately may result in

tool rejection. This observation applies not only to coverage tools, but also to other software

engineering tools (e.g., for program understanding and verification). Previous work does not

contain information about the absolute precision of class analysis, which in our view is a serious

problem. The study from Section IV is a step toward investigating this issue and gaining insights

needed by designers of tools that employ class analysis.

VI. CONCLUSIONS AND FUTURE WORK

In order to construct high-quality coverage tools for testing of polymorphism, it is necessary to

use class analysis to compute the coverage requirements. We have developed a general approach
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that allows tool designers to adapt a wide variety of existing and future whole-program class

analyses to be used for testing of partial programs. We also present the first empirical evaluation

of the absolute precision of several analyses. Our results lead to two conclusions. First, analysis

imprecision can be a serious problem for simpler analyses, and it should be an important concern

for tool designers. Second, more advanced analyses (such as 0-CFA and Andersen’s analysis)

are capable of achieving high absolute precision, which makes them good candidates for more

investigation and potentially for subsequent inclusion in coverage tools.

In our future work we will evaluate the absolute precision of analyses that are even more

precise than 0-CFA and Andersen’s analysis. To choose the appropriate analyses, we plan to

examine the sources of analysis imprecision. This investigation may suggest the use of existing

analyses, or may guide the design of new techniques that target these sources of imprecision. We

also plan to obtain additional datapoints for our current analyses, and to evaluate more precise

analyses using this extended dataset. Additional studies by us and by other investigators will be

necessary to obtain conclusive results about the absolute precision of different class analyses.

Furthermore, it is important to develop techniques for reducing the cost of absolute precision

evaluations, and to consider approaches for obtaining absolute precision estimates.

It would be interesting to generalize our approach to flow-sensitive class analyses. Intuitively, it

will be necessary to change the structure of our placeholder main method to encode all possible

sequences of placeholder statements by placing the statements in a switch statement surrounded

by a loop. We also plan to investigate other applications for which fragment analysis is needed

(e.g., program understanding), and to consider other categories of analyses such as side-effect

analysis and def-use analysis using the theoretical techniques presented in Appendix I.
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APPENDIX I

ANALYSIS CORRECTNESS

As described in Section III-D, we show the correctness of our approach by defining two

whole-program context-sensitive class analyses and then proving that the corresponding fragment

analyses are correct. The proofs are based on a general theoretical technique for fragment analysis

described in [45].

A. Whole-program Analyses Ap and Ac

The whole-program class analyses are defined in terms of three sets. Set V contains all

reference variables in the analyzed program (i.e., formals, locals, and static fields with reference

types). Set O contains names for all objects created at object allocation sites, as well as names

for string literals. For each allocation site and string literal we use a separate name oi ∈ O. Set

F contains all reference instance fields in the program.

The analyses consider different abstractions of the calling context of a method. Analysis Ap

defines and uses a set of contexts C = {ε} ∪ O ∪ O2 ∪ O3 ∪ . . .. Each context is a tuple of

object names. For a method that has formal parameters f1, f2, . . . , fn (where f1 is the implicit

parameter this), context (o1, o2, . . . , on)∈C represents invocations of the method when formal

parameter fi points to oi. The empty context ε represents the invocation of main, as well as

invocations of static methods that have no parameters.

Analysis Ac represents calling context with a vector of at most k call sites. Let CallSites be

the set of all call sites in the program. The set of contexts is defined as C = {ε} ∪ CallSites ∪
CallSites2∪. . .∪CallSitesk. For any method m, context (s1, s2, . . . , sn)∈C represents invocations

of m from call site s1 when the method containing s1 is invoked from call site s2, etc. The empty

context ε represents the invocation of main.

To distinguish among invocations of the same method under different contexts, the analyses

create multiple copies of formal parameters and local variables. Each variable v∈V is replicated

for each of the possible contexts of the method that declares v. We will use vc to denote the

replica of v for context c ∈ C.

The analyses construct points-to graphs with two kinds of edges. Edge (v c, o) ∈ (V ×C)×O

shows that variable v may point to object o when the method declaring v is invoked with context

c. Edge (oi.f, oj) ∈ (O × F ) × O shows that field f of object oi may point to object oj . For
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convenience, we add to F an auxiliary element arr elem to represent the elements of an array.

If oi ∈ O represents an array object, edge (oi.arr elem, oj) shows that some element of oi may

point to object oj . 3 The elements of the analysis lattices L are points-to graphs; the partial order

is the ⊇ relation, and the meet operation is set union.

The analyses associate a transfer function f : L → L with each statement in the program; this

function encodes the semantics of the statement. In addition, for each method m the analyses

maintain a set Cm ⊆ C of contexts that have been observed at calls to m. The list below shows

some examples of transfer functions for different kinds of statements in method m. For other

statements, the functions can be defined in a similar manner.

• for p = new C(): f(G) = G ∪ ⋃
c∈Cm

{(pc, oi)}; oi is the object name for the statement

• for p = q: f(G) = G ∪ ⋃
c∈Cm

{(pc, o) | (qc, o) ∈ G}
• for p = q.f : f(G) = G ∪ ⋃

c∈Cm
{(pc, o) | (qc, o2) ∈ G ∧ (o2.f, o) ∈ G}

• for p.f = q: f(G) = G ∪ ⋃
c∈Cm

{(o1.f, o2) | (pc, o1) ∈ G ∧ (qc, o2) ∈ G}
• for p = (T )q: f(G) = G ∪ ⋃

c∈Cm
{(pc, o) | (qc, o) ∈ G ∧ compatible(o, T )}

Each transfer function considers all contexts that have been observed at calls to the method

m containing the statement. For each such context c∈Cm, the corresponding context replicas of

formal parameters and local variables are processed according to the semantics of the statement.

A statement of the form “p = new C()” creates a new edge (pc, oi), where oi is a unique object

name corresponding to this particular object allocation site. Other assignment statements have

similar effects by creating new edges. For the last statement, an edge (pc, o) is created only

if object o could be casted to type T according to the casting rules in the Java language. The

transfer function for a call statement “r = p.m(q1, . . . , qn)” encodes the context-sensitivity of

the analysis. For the parameter-based analysis Ap, the transfer function has the form

f(G) = G ∪ ⋃

c∈Cm

{resolve(G, m, orcv , o1, o2, . . . , on, r
c) | (pc, orcv) ∈ G ∧ (qc

i , oi) ∈ G}

where resolve is defined as follows:

resolve(G, m, orcv , o1, o2, . . . , on, rc)

let c2 = (orcv , o1, o2, . . . , on)

3More precisely, edge (vc, oi) shows that at run time vc may point to some object created at allocation site si. Similarly,

(oi.f, oj) shows that the f field of some object created at si may point to some object created at sj .
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let mj(this , f1, . . . , fn, ret) = dispatch(orcv , m)

add c2 to Cmj

return {(thisc2, orcv), (f
c2
1 , o1), . . . , (f

c2
n , on)} ∪ {(rc, o)|(retc2, o) ∈ G}

At the call site, the analysis considers all possible tuples of objects that are pointed to by p

and qi; each tuple creates a separate calling context. For each context, resolve determines the

method mj that is actually invoked at run time for receiver object orcv . The analysis then updates

Cmj
and processes the necessary context copies of this and the formal parameters fi. Finally,

the return value of mj (stored in auxiliary variable ret) is propagated back to the call site.

The transfer function used by the call-chain-based analysis Ac has the form

f(G) = G ∪ ⋃

c∈Cm

{resolve(G, m, c, s, orcv , q
c
1, q

c
2, . . . , q

c
n, r

c) | (pc, orcv) ∈ G}

where s∈CallSites is the call site. Function resolve is defined as follows:

resolve(G, m, c, s, orcv , q
c
1, q

c
2, . . . , q

c
n, r

c)

let c2 = prependk(s, c)

let mj(this , f1, . . . , fn, ret) = dispatch(orcv , m)

add c2 to Cmj

return {(thisc2, orcv)} ∪ {(f c2
i , o)|(qc

i , o) ∈ G} ∪ {(rc, o)|(retc2, o) ∈ G}
At the call site, the analysis processes each of the possible receiver objects and determines

the method mj invoked for each orcv . Function prependk(s, c) creates a new context by adding

call site s to the beginning of call chain c. If the resulting call chain has k + 1 elements (where

k is a parameter of the analysis), the last element of the chain is removed. This is a standard

approach for ensuring that the analysis only considers call chains with length at most k.

Both Ap and Ac maintain a points-to graph as well as a call graph annotated with sets Cm for

reachable methods. The analyses start with an empty points-to graph and a call graph containing

main and static initializer methods, with Cm = {ε} for these start methods. The analyses apply

the transfer functions for all statements in reachable methods (with the corresponding updates

to the call graph) until a fixed point is reached. For any v∈V , the solution is

Solution(v) = {X | DeclMethod(v) = m ∧ c ∈ Cm ∧ (vc, o) ∈ Gfinal ∧ Type(o) = X}
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B. Correctness of Fragment Analyses A′
p and A′

c

Let A′
p and A′

c be the fragment analyses based on Ap and Ac, respectively. Consider an

arbitrary test suite S ∈ AllSuites(Int). By definition, S only references classes from Cls and

accesses methods and fields from Int . Since S does not call methods outside of Int , we can

assume that S only contains method main. Without loss of generality, we also assume that

any pure reference type occurring in S is relevant, as defined by set RelevantTypes(Int) from

Section III-B; if this is not the case, it is easy to construct S ′ ∈ AllSuites(Int) that only has

relevant types and for which whole-program analyses Ap and Ac compute solutions that are

supersets of the corresponding solutions computed for S.

For any variable v declared in Cls with pure reference type, let SolutionAp(v) be the solution

for v computed by Ap for the whole program containing Cls and S. It can be proven that each

class from this set is also an element of the set SolutionA′
p(v) computed by A′

p. A similar

property can be proven for SolutionAc(v) and SolutionA′
c(v). Clearly, these results guarantee

the correctness of the two fragment analyses. The next two sections present outlines of these

proofs.

C. Parameter-based Fragment Analysis A′
p

Let VCls be the set of variables in Cls with pure reference types, and V ′ be VCls together with

the placeholder variables. Similarly, let V be the set of pure reference variables in the whole

program containing S and Cls . We can define an abstraction function α : V → V ′ as follows:

• α(v) = v for any v ∈ VCls

• α(v) = pht for any v ∈ (V − VCls) of type t

Let OCls be the set of object names corresponding to allocation sites from Cls that instantiate

pure reference types, and O′ be OCls together with the object names from placeholder statements.

Similarly, let O be the set of all object names corresponding to allocation sites from S or Cls

that instantiate pure reference types. We can define a similar abstraction function α : O → O ′:

• α(o) = o for any o ∈ OCls

• If o ∈ (O − OCls) instantiates a class, α(o) is the object corresponding to the placeholder

statement that invokes the same constructor

• If o ∈ (O − OCls) is an array object, α(o) is the placeholder array object of the same type
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• If o ∈ (O − OCls) is a string literal, α(o) is the placeholder string literal

Intuitively, these definitions show that in A′
p variables and object names from Cls are repre-

sented by themselves, while all external variables and object names are represented by place-

holder variables and object names. This abstraction is generalized in a straightforward manner

to contexts, context replicas of variables, points-to edges, and points-to graphs. For example, if

c = (o1, . . . , on) ∈ C is a context in the whole-program analysis, α(c) = (α(o1), . . . , α(on)).

Our goal is to prove that α(G) ⊆ G′ for the final points-to graphs computed by Ap and A′
p

respectively, and that each method in Cls that is in the call graph for Ap is also in the call graph

for A′
p. This implies the desired relationship between SolutionAp(v) and SolutionA′

p(v) for any

v ∈ VCls . For this, it is sufficient to prove a particular property that relates the transfer functions

in Ap to the transfer functions in A′
p. This property has the following form: suppose that

• α(G) ⊆ G′ for some points-to graphs G and G′

• The current call graph in Ap is a subgraph of the current call graph in A′
p

• For each reaching context c ∈ Cm in Ap, context α(c) ∈ C ′
m in A′

p

Then, for every transfer function f in the whole-program analysis, there exists a set of transfer

functions {f ′
1, . . . , f

′
k} in the fragment analysis such that

• α(f(G)) ⊆ (f ′
1 ◦ . . . ◦ f ′

k)(G
′)

• After the functions are applied, any new call graph edge added in Ap is also added in A′
p,

and for any new reaching context c added to some Cm, context α(c) is added to C ′
m

Intuitively, this property ensures that the effects of any transfer function application in the

whole-program analysis can be “simulated” by the fragment analysis, in terms of creating new

points-to edges, call edges, and reaching contexts. The proof distinguishes two cases. First,

consider a statement in Cls with transfer functions f in Ap and f ′ in A′
p. It is straightforward

to show that α(f(G)) ⊆ f ′(G′) and that new call edges and reaching contexts in the whole-

program analysis are matched by the fragment analysis. Next, consider a statement that is located

in S. In the fragment analysis there exists a set of placeholder statements that simulate the

effects of this statement. For example, suppose that Cls contains a class A and a subclass B,

and that the statement in S is “a = new B()”, where a is some external variable of type

A. The effects of this statement are represented by the sequence of placeholder statements

“phB = new B(); phA = phB ;”.
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D. Call-chain-based Fragment Analysis A′
c

The correctness proof for A′
c is very similar to the proof for A′

p. The whole-program analysis

uses a set of contexts C = {ε}∪CallSites∪CallSites2∪. . .∪CallSitesk. The abstraction function

maps a call site s ∈ Cls to itself and a call site s /∈ Cls to the corresponding placeholder call

site. More precisely,

• α(s) = s for any call site s ∈ Cls

• α(s) = s′ iff call site s /∈ Cls and s′ is a placeholder call site with the same static target

method as site s

• α(c) = (α(s1), . . . , α(sn)) for a context c = (s1, . . . , sn) ∈ C
• α(ε) = ε

The abstraction functions for other analysis entities (variables, object names, etc.) are the same

as for A′
p. The correctness proof is also similar: we prove the same property relating the

transfer functions in Ac and A′
c, which implies the desired relationship between ClassesAc(v)

and ClassesA′
c(v) for any v ∈ VCls .


