A SCHEMA-BASED MODEL FOR PHONEMIC RESTORATION

Soundararajan Srinivasana,1, DeLiang Wangb

aBiomedical Engineering Center
The Ohio State University
Columbus, OH 43210, USA
srinivasan.36@osu.edu

bDepartment of Computer and Information Science & Center for Cognitive Science
The Ohio State University
Columbus, OH 43210, USA
dwang@cis.ohio-state.edu

Abstract

Phonemic restoration is the perceptual synthesis of phonemes when masked by appropriate replacement sounds by utilizing lexical context. Current models for phonemic restoration however, use only temporal continuity. These models poorly restore unvoiced phonemes and are limited in their ability to restore voiced phonemes too.

We present a schema-based model for phonemic restoration. The model employs a missing data speech recognition system to decode speech based on intact portions and activates word templates corresponding to the words containing the masked phonemes. An activated template is dynamically time warped to the noisy word and is then used to restore the speech frames corresponding to the masked phoneme, thereby synthesizing it. The model is able to restore both voiced and unvoiced phonemes with a high degree of naturalness. Systematic testing shows that this model outperforms a Kalman-filter based model.

\textit{Key words:} Phonemic restoration, Top-down model, Speech schemas, Computational auditory scene analysis, Prediction, Missing data ASR, Dynamic time warping.
1 Introduction

Listening in everyday acoustic environments is subject to various noise interference and other distortions. The human auditory system is robust to these effects. According to Bregman (1990), this is accomplished via a process termed auditory scene analysis (ASA). ASA involves two types of organization, primitive and schema-driven. Primitive ASA is considered to be an innate mechanism based on bottom-up cues such as pitch, and spatial location of a sound source. Schema-based ASA use stored knowledge, say about speech, to supplement primitive analysis and sometimes provides the dominant basis for auditory organization. This frequently occurs when parts of speech are severely corrupted by other sound sources.

Phonemic restoration refers to the perceptual synthesis of missing phonemes in speech when masked by appropriate intruding sounds on the basis of contextual knowledge about word sequences. In 1970, Warren discovered that when a masker fully replaced the first “s” of the word “legislatures” in the sentence, “The state governors met with their respective legislatures convening in the capital city,” listeners reported the hearing of the masked phoneme (Warren, 1970). When phonemic restoration happens, subjects are unable to localize the masking sound within a sentence accurately; that is, they cannot identify the position of the masking sound in the sentence. Subsequent studies have shown that phonemic restoration is dependent on the linguistic skills of the listeners, the characteristics of the masking sound and temporal continuity of speech (Bashford et al., 1992; Samuel, 1981, 1997; Warren and Sherman, 1974).

Auditory organization can also be classified as simultaneous and sequential (Bregman, 1990). Simultaneous organization involves grouping of acoustic components that belong to a sound source at a particular time. Sequential organization refers to grouping of acoustic components of a sound source across time. Phonemic restoration may be viewed as a sequential integration process involving top-down (schema-based) and bottom-up (primitive) continuity. Monaural computational auditory scene analysis (CASA) systems employ harmonicity as the primary cue for simultaneous grouping of acoustic components corresponding to the respective sound sources (Brown and Cooke, 1994; Wang and Brown, 1999; Hu and Wang, 2003). These systems do not perform in those time-frequency regions that are dominated by aperiodic components of noise. Phonemic restoration is therefore a natural way to introduce other sequential integration cues. Monaural CASA systems currently also lack an effective cue for grouping unvoiced speech. Schema-based grouping in particular, may provide a strong grouping cue for integration across unvoiced
consonants. Schemas can be used to generate expectations for verification by existing bottom-up grouping algorithms and may provide a cue for resolving competition among different primitive organization principles. Schema-based features also inherently bring up top-down aspects like memory and attention into CASA. Additionally, phonemic restoration helps to restore lost packets in speech transmission systems (Perkins et al., 1998; Hassan et al., 2000) and increase the performance of speech enhancement (Nakatani and Okuno, 1999).

Previous attempts to model phonemic restoration have been only partly successful. Cooke and Brown (1993) use a weighted linear interpolation of the harmonics preceding and succeeding the masker for restoration. The later work of Masuda-Katsuse and Kawahara (1999) uses Kalman filtering to predict and track spectral trajectories in those time-frequency regions that are dominated by noise. In its use of temporal continuity for restoration, the Masuda-Katsuse and Kawahara model is similar to that of Cooke and Brown. The biggest problem for a filtering/interpolation system for predicting missing speech segments is that temporal continuity of speech frames can be weak or even absent. This typically occurs with unvoiced speech. In the absence of co-articulation cues, it is impossible to restore the missing portions; in such cases it seems that lexical knowledge must be employed.

![Spectrogram](image)

Fig. 1. (a) The spectrogram of the word ‘Eight’. (b) The spectrogram obtained from (a) when the stop /t/ is masked by white noise.

Fig. 1 depicts one such situation. In Fig. 1(a), the phoneme /t/ in the coda position of the word ‘Eight’ possesses no temporal continuity with the preceding phoneme. Thus, when white noise masks the final stop (Fig. 1(b)), this phoneme cannot be recovered by extrapolating the spectrum at the end of the preceding phoneme, /eI/. An automatic speech recognizer (ASR) though
could be used to hypothesize the noisy word based on its vocabulary. This hypothesis could then be used to predict the masked phoneme. Ellis (1999) proposes a prediction-driven architecture to hypothesize the information in the missing regions using an ASR. Though the direction is promising, the proposed system is incomplete with few results obtained; in particular, recognition of corrupted speech and resynthesis of speech from the ASR output are largely unaddressed.

In this paper, we present a predominantly top-down model for phonemic restoration, which employs lexical knowledge in the form of a speech recognizer and a sub-lexical representation in word templates realizing the role of speech schemas. First, reliable regions of the corrupted speech are identified using a perceptron classifier and a spectral continuity tracker. A missing data speech recognizer based on hidden Markov model (HMM) (Cooke et al., 2001) is used to recognize the input sounds as words based on the reliable portions of the speech signal. The word template corresponding to the recognized word is then used to “induce” relevant acoustic signal in the spectro-temporal regions previously occupied by noise. Phonemic restoration is typically interpreted as induction based on intact portions of the speech signal and then followed by synthesis of masked phonemes. Template representations should embody this understanding. Hence the templates are formed by averaging, along a dynamic time warped path, tokens of each word with sufficient spectral detail to permit phonemic synthesis. Finally the induced information is pitch synchronized with the rest of the utterance to maintain the naturalness of restored speech.

The rest of the paper is organized as follows. Section 2 outlines our model. We then describe the details of feature extraction and identification of corrupted regions of the speech signal in Section 3. Section 4 describes the core of our model: the missing data recognizer, word templates and pitch synchronization. The model has been tested on both voiced and unvoiced phonemes and the test results are presented in Section 5. In Section 6, we compare the performance of our model with the Kalman filter based model of Masuda-Katsuse and Kawahara (1999). Finally, conclusion and future work are given in Section 7.

2 Model Overview

Our model for phonemic restoration is a multi-stage system as shown in Fig. 2. The input to the model is utterances with words containing masked phonemes. The maskers used in our experiments are broadband sound sources. Phonemes are masked by adding a noise source to the signal waveform. In the first stage input waveform with masked phonemes, sampled at 20kHz with
16 bit resolution, is converted into a spectrogram by Fourier analysis. A binary mask for the spectrogram is generated in this stage to identify reliable and unreliable parts. If a time-frequency unit in the spectrogram contains predominantly speech energy, it is labeled reliable; it is labeled unreliable otherwise. We then identify the spectro-temporal regions which predominantly contain energy from speech in a two step process. In the first step, two features are calculated at each frame, spectral flatness and normalized energy. Masked, unvoiced and silent frames, all have high spectral flatness, but the energy in masked frames is higher than that in unvoiced and silent frames. These features are then fed to a perceptron classifier which labels each frame as being either clean (reliable) or noisy (unreliable). In the second step, the frequency units in a noisy frame are further analyzed for possible temporal continuity with neighboring clean frames using a Kalman filter. Spectral regions in the noisy frames which exhibit strong continuity with the spectral regions of the neighboring clean frames are also labeled clean.
The second stage is the missing data ASR, which provides word level recognition of the input signal by utilizing only the reliable spectro-temporal regions. Thus, the input to the missing data ASR is the spectrogram of the input signal along with a corresponding binary mask. Cooke et al. (2001) suggest that for restoration, one can use the maximum likelihood estimate of the output distribution of the winning states. Winning states are obtained during recognition by Viterbi decoding in an HMM-based speech recognizer. We find that such a restoration does not work well and degrades with increasing number of frames that need to be restored. This is not surprising as the missing data ASR has only 10 states to model each word (Section 4.1) and hence state-based imputation is an ill-posed one-to-many projection problem.

On the other hand, template-based speech recognizers use spectral templates to model each word. These templates could be used as a base for restoration. We train a word-level template corresponding to each HMM model in the missing data ASR. During training, signals are converted into a cepstral representation and then time normalized by dynamic time warping (DTW). We then compute their average. Two sets of templates are considered, speaker-independent and speaker-dependent. The speaker-independent template is derived from utterances of 50 speakers different from the test speaker. The speaker-dependent template is derived from those utterances of the test speaker which are not utilized for testing.

Based on the results of recognition, word templates corresponding to the noisy words are selected. A template thus activated is warped to be of the same duration as the noisy word using DTW. The time-frequency units of the template corresponding to the unreliable time-frequency units then replace the unreliable units of the noisy word. Hence, our restoration is based on top-down lexical knowledge.

A template is an average representation of each word. Thus, the restored phoneme may not be in consonance with the speaking style of the remaining utterance. In order to maintain the overall naturalness of the utterance, we perform pitch based smoothing. The pitch information from neighboring frames is used to interpolate a plausible pitch for the restored frames. The restored frames are then pitch synchronized with rest of the frames, to maintain the overall intonational structure of the utterance. The last stage of the model is the overlap and add method of resynthesis. Resynthesized waveforms are used for informal listening and performance evaluation.
3 Feature Extraction and Mask Generation

The first stage of our model is a front-end for the missing data recognition and the phonemic synthesis stages. The input signal is transformed into a time-frequency (T-F) representation (a spectrogram). A binary missing data mask is generated with each time-frequency unit labeled as either speech dominant (reliable) or noise dominant (unreliable).

3.1 Feature Extraction

The acoustic input is analyzed by the feature extraction stage which generates 512 DFT coefficients every frame. Each frame is 20ms long with 10 ms frame shift. Frames are extracted by applying a running Hamming window to the signal. Finally, log compression is applied to the power spectrum. Thus the input signal is converted into a time-frequency representation, suitable for use by the missing data ASR and subsequent restoration by the synthesis stage. Additionally, the spectral coefficients are converted to cepstral coefficients via the discrete cosine transform (Oppenheim et al., 1999). The cepstral coefficients are sent to the mask generation stage and also to the masked frame synthesis stage.

3.2 Missing Data Mask Generation

The missing data recognizer and the phonemic synthesis stage, both require information about which T-F regions are reliable and which are unreliable. Thus a binary mask, corresponding to the spectrogram, needs to be generated. A T-F unit is deemed reliable and labeled 1 if in this unit, the speech energy is greater than noise energy and otherwise deemed unreliable and labeled 0. Spectral subtraction is frequently used to generate such binary masks in missing data applications (Cooke et al., 2001; Drygajlo and El-Maliki, 1998). Noise is assumed to be long-term stationary and its spectrum estimated from frames that do not contain speech (silent frames containing background noise). In phonemic restoration, noise is usually short-term stationary at best and masks frames containing speech (corresponding to one or more phonemes). Hence, for phonemic restoration, estimation of noise spectrum followed by spectral subtraction cannot be used to generate the binary mask.

We propose a two-step process for generation of the mask. In all our experiments, we use broadband noise sources as maskers (see Section 5). Hence, as a
first step, only a frame-level decision of reliability is made. A frame is labeled 1
if it is dominated by speech, else labeled 0. The individual T-F units of a frame
labeled 0 are further analyzed in the second step. The spectral trajectory of
the noisy speech signal is tracked using a Kalman filter. We compare the spec-
tral coefficients of the noisy and the filtered signals. If the difference between
them is small, we treat these coefficients as reliable and label them 1 and 0
otherwise. Figure 3(a) shows the spectrogram of the word ‘Five’. White noise
is used to mask the approximant /j/ in the diphthong /aj/ and the resulting
spectrogram is shown in Figure 3(b). From the figure, we can see that there
is a strong spectral continuity (especially for the formants) from the /a/ part
to the /j/ part. We seek to recover these regions of spectral continuity and
label them 1. Accurate estimation of pitch is difficult, if not impossible, due
to the low SNR in the masked frames. Under these conditions, the harmonics
of speech in the masked frames may not be reliably recovered through pitch
based simultaneous grouping. Hence, the spectral continuity cue is needed to
recover the harmonics. Spectral continuity can be tracked and recovered using
a Kalman filter (Masuda-Katsuse and Kawahara, 1999).

As the first step, at each frame, we generate 2 features for classification by
assuming noise to be broadband and short-term stationary. The first feature is
a spectral flatness measure (SFM) (Jayant and Noll, 1984), defined as the ra-
tio of geometric mean to arithmetic mean of the power spectral density (PSD)
coefficients:

$$SF M = \left[\frac{\prod_{k=1}^{N} S_{xx}(k, n)}{\frac{1}{N} \sum_{k=1}^{N} S_{xx}(k, n)} \right]^{\frac{1}{N}},$$

(1)

where $S_{xx}(k, n)$ is the k^{th} power spectral density coefficient of the noisy speech
signal in a frame ‘n’. Consistent with the feature extraction stage, N is set
to 512. This measure is known to provide good discrimination between voiced
frames and other frames (unvoiced and silent), across various speakers in clean
speech (Yantorno et al., 2001). Additionally, SFM is related to predictability
of speech (Herre et al., 2001; Jayant and Noll, 1984). Specifically, low values of
SFM imply high predictability. This property is indirectly used in the second
step to refine the mask generated at the frame-level.

The second feature used is the normalized energy (NE). It is defined as

$$NE = 10 \log \left(\frac{\sum_{k=1}^{N} S_{xx}(k, n)}{\max_{n} \sum_{k=1}^{N} S_{xx}(k, n)} \right).$$

(2)

As in (1), N is set to 512. Normalization is done to make the energy value
Fig. 3. (a) The spectrogram of the word ‘Five’. (b) The spectrogram obtained from (a) when white noise masks the approximant part /j/ in the diphthong /aj/. (c) The distribution of frame-level features and frame-level labels for this utterance (1 - reliable and 0 - unreliable). Spectral flatness measure (SFM) and normalized energy (NE) are used to generate the frame-level labels. (d) The spectrogram obtained from (b) with only reliable frames. (e) The labels of each T-F unit in the spectrogram. (f) The spectrogram with only reliable T-F units. Unreliable units are marked white.

independent of the overall signal energy. The log operation is used to expand the range of NE to provide better discriminability amongst frames. Unvoiced,
silent and masked frames have high values of SFM but unvoiced and silent frames have low values of NE. Thus, SFM and NE are sufficient to classify a frame as being masked or clean. We use 2 tokens of isolated word utterances from each of the 50 randomly chosen speakers in the training portion of the TIDigits corpus (Leonard, 1984) to train a perceptron classifier. One phoneme in each utterance is masked by mixing with white noise to yield a local SNR of -1 dB on average. Due to the large variability in the values of SFM and NE in clean speech and distortion in noise, the two classes are found to be linearly inseparable. Hence, we train a one-hidden-layer (2-2-1) perceptron classifier (Principe et al., 2000). The inputs are SFM and NE and outputs are two class labels: 1 (reliable) and 0 (unreliable). The ratio in (1), by definition, is constrained as $0 \leq SFM \leq 1$. NE, as defined in (2), is in the range -80 dB to 0 dB. The transfer functions of all the neurons are log-sigmoid. The network is trained using backpropagation, optimized by the Levenberg-Marquardt algorithm (Principe et al., 2000). The network is trained for 1000 epochs. Figure 3(c) shows how the two features, SFM and NE, are distributed for the utterance ‘Five’ with the masked phoneme /aj/. For the purpose of comparison with SFM, NE is shown without the application of the log operation and the multiplication factor. The spectral flatness measure is high for masked frames, silent frames and frames corresponding to the fricatives /f/ and /v/. The normalized energy though is high only for frames corresponding to the masked phoneme /aj/. Since the masked phoneme is a vowel, the energy in the masked frames is reliably high and we get a perfect frame-level labels of reliability. The resulting spectrogram with only reliable frames is shown in Figure 3(d).

As the second step, we use Kalman filtering to further analyze the spectral regions in frames labeled 0 by the first stage. For this we adapt the Kalman filter model of Masuda-Katsuse and Kawahara (1999). Kalman filtering is used to predict the spectral coefficients in the unreliable frames from the spectral trajectories of the reliable frames. In the frames labeled as 0 by the first step, we compare the spectral values of the filtered and original noisy signal. If there is true spectral continuity, the magnitude of the difference between the spectral values of the filtered and original signal will be small. This can be restated as a local SNR criterion. Let $S_{ff}(k,n)$ denote the k^{th} power spectral density coefficient of the filtered signal in a frame ‘n’. Then each T-F region can be labeled using a threshold δ as

$$label = \begin{cases} 1 & \text{if } 10 \log \frac{S_{ff}(k,n)}{S_{xx}(k,n)-S_{ff}(k,n)} \geq \delta \\ 0 & \text{otherwise} \end{cases}$$

The choice of δ represents a trade-off between providing more T-F units with reliable labels to the missing data ASR (Section 4.1) and preventing wrong labeling of T-F units (Renevey and Drygajlo, 2001). The optimal value of δ is
also dependent on the local SNR (Renevey and Drygajlo, 2001; Seltzer et al., 2003). For simplicity we set δ to be a constant. The value of $\delta = 5$ dB is found to give the best recognition performance on the training data and is used for all the data during testing.

Cepstral coefficients in each order are regarded as a time series and are modeled as a second order auto-regressive (AR) process as suggested by Masuda-Katsuse and Kawahara (1999). This process is predicted and tracked by a Kalman filter and thus used to interpolate the cepstral coefficients in the masked frames from clean frames. The state space model of this system is

\[
x(n) = F(n) x(n-1) + Gv(n),
\]

\[
y(n) = Hx(n) + w(n).
\]

In the equations above, $y(n)$ is the observed cepstral coefficient at time-frame n and the filtering problem is to find the information about the state of the system, $x(n)$ (the true value of the cepstral coefficient) at this time. Since the cepstral coefficients follow a 2\(^{nd}\) order AR model,

\[
F(n) = \begin{bmatrix} a_1(n) & a_2(n) \\ 1 & 0 \end{bmatrix},
\]

where $a_1(n)$ and $a_2(n)$ are the first and second order AR coefficients at time-frame n. We let $G = [1 \ 0]^T$ and $H = [1 \ 0]$ as suggested by Masuda-Katsuse and Kawahara (1999). The system white noise $v(n)$ is zero mean with covariance $Q(n)$. The observation white noise $w(n)$ is zero mean with covariance $R(n)$. Hence, the model in (4), (5) and (6), has 4 unknown parameters that need to be estimated at each frame, $a_1(n)$, $a_2(n)$, $Q(n)$ and $R(n)$.

Let $\theta = (a_1(n), a_2(n), Q(n))$. The log likelihood of the model given θ and initial state mean vector $\overline{x(0)}$ is as follows:

\[
l(\theta, \overline{x(0)}) = \sum_{n=1}^{N} \log f(y(n) \mid Y(n-1), \theta, \overline{x(0)}).
\]

\[
f(y(n) \mid Y(n-1), \theta, \overline{x(0)}) = \mathcal{N}(Hx(n|n-1), HV(n|n-1)H^T + R(n)),
\]

where $Y(n-1) = (y(1), y(2), \ldots, y(n-1))$ (Kato and Kawahara, 1998). The conditional state mean $x(n|n-1)$ and the error covariance $V(n|n-1)$
are estimated by the Kalman predictor:

\[
x(n|n-1) = F(n-1) x(n-1|n-1),
\]
\[
V(n|n-1) = F(n-1) V(n-1|n-1) F^T(n-1) + GQ(n-1) G^T.
\]

The filtered estimates are computed by the Kalman filter:

\[
x(n|n) = x(n|n-1) + K(n) (y(n) - H x(n|n-1)),
\]
\[
V(n|n) = (I - K(n) H) V(n|n-1),
\]

where \(K(n) \) is the Kalman gain computed as

\[
K(n) = V(n|n-1) H^T \left(H V(n|n-1) H^T + R(n) \right)^{-1}.
\]

The parameter \(\theta \) is updated at each frame by the maximum likelihood estimate conditioned on the present and past observed cepstral values. We use a numerical subroutine, DALL (Ishiguro and Akaike, 1999) to estimate \(\theta \) by maximizing (7). The variance of the noise in the observation model, \(R(n) \), is set to 1.0, if the cepstral coefficients belong to a frame previously labeled 1. It is set to a high value otherwise. Hence, \(R(n) \) acts as a factor that balances the tracking and predicting roles of the Kalman filter. The discrete change in the value of \(R(n) \) causes the Kalman filter to switch from a predominantly tracking phase to a predominantly predicting one.

Since processing is performed off-line, the cepstral coefficients at all times are available for processing, enabling a smoothing operation. To mitigate the effects of binary transition in the variance of the observation noise, we perform one step backward Kalman smoothing (Anderson and Moore, 1979). As smoothing additionally uses the cepstral coefficients of the reliable frames, available after the masked frames, it results in a more accurate estimation of the coefficients in the masked frames. Finally, the cepstral coefficients are converted back to spectral coefficients \(S_{ff}(k,n) \), via inverse discrete cosine transform (Oppenheim et al., 1999) and exponentiation. The spectral coefficients are used in (3) to generate the labels for each frequency unit. Figure 3(e) shows the labels generated for the noisy utterance ‘Five’. The spectrogram with only the reliable T-F units is shown in Figure 3(f). It is seen that using Kalman filtering, most formant regions corresponding to the masked part of the diphthong /aj/ are recovered and labeled 1. The regions exhibiting no strong spectral continuity are labeled 0.
4 Recognition and Synthesis of masked phonemes

A missing data speech recognizer is used to recognize the input utterance as words based on the T-F units labeled 1 during mask generation. The word template corresponding to the noisy word in the input is then dynamically time warped to the noisy word. The T-F units of the noisy signal labeled 0 (previously corrupted by noise) are then replaced by the corresponding T-F units of this template. Finally, the restored frames are pitch synchronized with rest of the utterance by using interpolated pitch information.

4.1 The Missing Data Speech Recognizer

The performance of conventional ASR systems in the presence of acoustic interference is very poor. The missing data ASR (Cooke et al., 2001) makes use of the spectro-temporal redundancy in speech to make optimal decisions about lexical output units. Given a speech observation vector \(x \), the problem of word recognition is to maximize the posterior \(P(\omega_i| x) \), where \(\omega_i \) is a valid word sequence. When parts of \(x \) are masked by noise or other distortions, \(x \) can be partitioned into its reliable and unreliable constituents as \(x_r \) and \(x_u \), where \(x = x_r \cup x_u \). The missing data ASR treats the T-F regions labeled 0 as unreliable data during recognition. One can then seek a Bayesian decision given the reliable features. In the marginalization method, the posterior probability using only the reliable features is computed by integrating over the unreliable constituents. In missing data methods, recognition is typically performed using spectral energy as feature vectors. If \(x \) represents spectral magnitude and sound sources being additive, the unreliable parts can be constrained as \(0 \leq x_u^2 \leq x^2 \). This bounded marginalization method is shown to have a better recognition score than the simple marginalization method (Cooke et al., 2001).

We use the 10-state continuous density HMM as suggested by Cooke et al. (2001). The task domain is recognition of connected digits. Thirteen (1-9, a silence, very short pause between words, zero and oh) word level models are trained. All except the short pause model have 10 states. The short pause model has only three states. The emission probability in each state is modeled as a mixture of 10 gaussians with a diagonal covariance structure. Training and testing are performed on the male speaker dataset in the TIDigits database. Note that recognition is performed in the spectral domain. A HMM toolkit, HTK (Young et al., 2000) is used for training. During testing, the decoder is modified to use the missing data mask for marginalizing the unreliable spectrographic features. The decoded output from ASR represents the lexical knowledge in our model.
Fig. 4. (a) and (b) The speaker-independent templates of the words ‘Five’ and ‘Eight’, respectively. (c) and (d) The corresponding speaker-dependent templates.

4.2 Word Template Training by Dynamic Time Warping

A template corresponding to each of the HMMs is trained using DTW. From the training portion of the TIDigits corpus, we randomly select 50 speakers (Section 3.2). Two tokens of isolated word utterances from each of the speakers are used to train each speaker-independent (SI) word template. Assuming all tokens are consistent, we find their warped cepstral average. For this purpose, these tokens are time normalized by DTW. The distortion measure used in the dynamic programming cost function is the cepstral distance. The local continuity constraint used is the Itakura constraint (Rabiner and Juang, 1999). Isolated word utterances corresponding to one test speaker in the test database are used to train a speaker-dependent (SD) template. Utterances of this speaker can then be used for testing. Together the two sets of templates form word schemas. Figure 4 shows the SI and SD templates for two words in the lexicon, ‘Five’ and ‘Eight’. The templates in Figures 4(a) and 4(c) show good representation of formants and frication, including formant transitions.
into the fricatives. In addition to the formants, the onset and spectra of the burst (corresponding to the stop, /t/) are also adequately represented (Figures 4(b) and 4(d)). Also note that the SI templates possess sufficient spectral details, though not as detailed and clean as the SD templates.

4.3 Phonemic Synthesis

A maximum of 2 phonemes are masked in each utterance by mixing with noise to yield a local SNR of -1 dB on average. We use 3 broadband noise sources: White noise, clicks and coughs. Consistent with experiments on phonemic restoration, all transitions into and out of the phoneme are masked too. The signal and the mask are sent to the missing data recognizer which provides the most likely word sequence. Additionally the recognizer provides time end points of the recognized words in the signal. We then choose the word templates corresponding to the noisy word and warp them to the noisy word segment in the input signal by DTW. Specifically, the word template is normalized to span the time end points of the noisy word. The T-F units of the template corresponding to the masked T-F units (with label 0) then replace the masked units. Our restoration in this stage is thus a top-down schema-based process. Recall that some T-F units which exhibit good (bottom-up) spectro-temporal continuity have already been recovered during the mask generation process (Section 3.2). Figures 5(a) and 5(b) show the restoration of the masked phoneme /t/ using SI and SD templates respectively. The phoneme is clearly seen to be restored with good spectral quality. Notice that the lack of spectral continuity of the masked phoneme /t/ with the preceding phoneme, has not prevented its effective restoration.

After spectral restoration, the utterance is resynthesized from the spectral coefficients using the overlap and add method (Oppenheim et al., 1999). Since we used a Hamming window during the analysis stage (Section 3.1), we use a rectangular window during the synthesis stage. Also, note that the spectral restoration is performed only in the power or magnitude domain. The phase information in the corrupted frames is not restored. Hence, we use noisy phase information during resynthesis.

The word templates are average representation of each word. Hence, the restored information is generally not attuned to the speaking style and the speaking rate of the test utterance. The use of DTW for restoration helps to prevent any significant change in the speaking rate after restoration. To explicitly compensate for co-articulation, the restored frames are manipulated by pitch synchronous overlap and add (PSOLA) techniques, which use interpolated
pitch information. In particular, we consider PSOLA (Moulines and Charpentier, 1990) and linear prediction coding (LPC) PSOLA (Moulines and Charpentier, 1988), which are speech synthesis techniques that modify the prosody by manipulating the pitch of the speech signal as required. The former works directly on the speech waveform while the latter on excitation signal of the linear prediction analysis. Praat (Boersma and Weenink, 2002) and a local spectral smoother are used for synchronization.

Figure 6 shows the pitch track formed by the resynthesized utterance ‘Five’ after two different stages of restoration. The pitch track formed by the SI restoration after the use of PSOLA is continuous and relatively smooth, indicating the naturalness of the restored phoneme. Restoration without the use of PSOLA yields only a discontinuous pitch track. For comparison, the pitch track of the clean speech signal (before masking of the vowel /aj/) is also shown. We can see that the pitch track after the use of PSOLA is close to the pitch track of the clean speech signal. The LPC-PSOLA technique improves the listening experience compared to PSOLA, but is not better than PSOLA as measured by the objective criteria discussed in Section 5. Consequently only the results of synchronization using the PSOLA technique are used in the assessment of the results. The pitch synchronized utterances are used for informal listening tests and in measuring the performance using the objective criteria outlined in Section 5.
Fig. 6. Comparison of pitch information under various methods of restoration of the diphthong /aj/ in the word ‘Five’. (a) and (b) The pitch information extracted from the resynthesized signal using speaker-independent restoration, with and without pitch synchronization using the PSOLA technique described in Section 4.3 respectively. For comparison, the pitch information corresponding to the original clean speech utterance is also shown in (c).

5 Evaluation Results

Informal listening to the restored signals shows that masked voiced and unvoiced phonemes are clearly restored. To evaluate the performance of the proposed model objectively, two measures are used. The rms log spectra model the speech spectra very well, but are hard to compute. The related cepstral and the COSH distances are much easier to compute (Gray and Markel, 1976). The cepstral distance is the most commonly used distortion measure in speech recognition (Rabiner and Juang, 1999). The COSH distance provides the most accurate estimate of spectral envelope of real speech (Wei and Gibson, 2000).
Additionally the cepstral distance bounds the rms log spectral distance from below and the COSH distance from above (Gray and Markel, 1976). Hence we employ both cepstral and COSH distances for our quantitative evaluation.

The cepstral distance measures the log spectral distance between the original clean signal and the phonemically restored signal:

\[
d_C = \sqrt{\left(C_{1,0} - C_{2,0} \right)^2 + 2 \sum_{n=1}^{K} (C_{1,n} - C_{2,n})^2 } ,
\]

(8)

where \(C_{1,n}\) are the cepstral coefficients derived from AR coefficients of the original signal and \(C_{2,n}\) are the corresponding coefficients of the phonemically restored signal. We set \(K = 20\). Additionally, the COSH distance (Gray and Markel, 1976) between the power spectra of the two signals is computed. Specifically, let \(p_{s1}\) and \(p_{s2}\) denote the power spectra of the original signal and the phonemically restored signal respectively. The COSH distance is defined as

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ \cosh \left(\log \left(\frac{p_{s1}}{p_{s2}} \right) \right) - 1 \right\} d\theta.
\]

The distance can be calculated conveniently in its discrete form as

\[
\frac{1}{2N} \sum_{n=1}^{N} \left(\frac{p_{s1}(\omega_n)}{p_{s2}(\omega_n)} + \frac{p_{s2}(\omega_n)}{p_{s1}(\omega_n)} - 2 \right).
\]

(9)

Consistent with the feature extraction stage, \(N\) is set to 512.

Three different classes of phonemes are considered for restoration: Vowels, voiced and unvoiced consonants. The vowels possess strong temporal continuity. The spectral continuity of some voiced consonants, e.g. /l/, changes smoothly but faster than vowels. Unvoiced consonants, especially stops, do not have good temporal continuity (Stevens, 1998). We use 100 tokens of isolated word utterances from the training portion of the TIDigits corpus to train each speaker-independent word template. The 2 isolated word utterances (for each word) of the test speaker are used to train each speaker-dependent template. The remaining 55 utterances of the test speaker form the test set. The noise sources used for masking are white noise, clicks and coughs. As stated previously, phonemes are masked by overlaying them with each noise source at a local SNR of -1 dB. The length of burst in each noise source is varied to yield the desired masking of the phoneme.

Figure 7 shows the performance of our model as measured by the aforementioned objective criteria with white noise as the masker, using the speaker-dependent and the speaker-independent templates. The left column shows the average cepstral distance and the right column shows the average COSH spectral distance between the original and the phonemically restored signals.
Fig. 7. Performance of the proposed method for phonemic restoration, with white noise as the masker. N refers to the distance of the noisy speech signal from the clean signal. SD refers to the performance of our model with speaker-dependent templates and SI with speaker-independent templates. The left column shows the average cepstral distance and the right column the average COSH spectral distance. The top row shows the results corresponding to vowels, the middle row voiced consonants, and the bottom row unvoiced consonants. For comparison, the results of the Kalman filter model (KF) described in Section 6, are also shown.

For comparison, the distances between the clean and the noisy signals are also shown. In the top row we display the results of restoration for vowels. The middle row gives the results for voiced consonants, and the bottom row for unvoiced consonants. The results shown are the average of all signals in each class in the test set. The data exclude those signals which are incorrectly recognized by the missing data ASR; recognition accuracy is 89.9%. To amplify the differences between various methods of restoration, the distance measures in Fig. 7 are plotted to different scales for the three different classes of phonemes. If a phoneme is perfectly restored, the distances of the restored
signal from the original clean signal are 0 in both measures. Low values of the distance measures after the restoration of voiced phonemes indicate high quality synthesis. The restoration of the unvoiced consonants, especially with the use of speaker-dependent templates, is also good. Note that the performance is similar across both the measures. As evident from the figure, the overall performance of the model with speaker-independent template is not significantly worse than that with speaker-dependent template. Improved listening experience, though, is observed with the use of speaker-dependent template.

Figure 8 shows the corresponding performance with clicks as the masker. With the use of clicks as the masker, restoration of vowels is slightly better compared to that with white noise but the restoration of voiced consonants is slightly worse. The performance in restoring unvoiced consonants is similar to that with white noise. From Fig. 8, we can also see that clicks are less effective in masking phonemes than white noise, as is evident from the corresponding distances of the noisy speech signals from the original clean signals. The

Fig. 8. Phonemic restoration results with clicks as the masker. See Figure 7 caption for notations.
accuracy of the missing data recognizer is 89.2% with clicks as the masker.

Figure 9 shows the corresponding performance of our model with cough as the masker. Vowels are restored to very high quality. The performance in restoring consonants is similar to that with clicks. Comparing Fig. 8 and Fig. 9, we can see that cough is a weaker masker than clicks, especially for voiced phonemes. The accuracy of the missing data recognizer is 92.9% with cough as the masker.

The results also indicate that the performance in restoring consonants is best when white noise acts as the masker. This is not surprising; the perceptron classifier used for frame-level labeling of reliability is trained with white noise as the masker (Section 3.2) and hence performs best on the subset of the test signals which use white noise for masking too. As indicated by the COSH spectral distance, the performance in restoring vowels is better when clicks and cough are the maskers than when white noise is the masker. This indicates that
the spectral tracking and smoothing operations are most effective for clicks and cough. This also illustrates that the distance in (9) is more sensitive to the smoothing action than that in (8). Finally, the performance is better when cough is used as the masker than when clicks are used. This might be due to cough being a weaker masker of speech than clicks, especially for voiced phonemes. In summary, the results indicate that the model is able to restore all classes of phonemes, with a spectral quality close to that of the original signal.

5.1 Contribution of spectro-temporal continuity and PSOLA to restoration

Our model of phonemic restoration has three contributing parts; bottom-up spectro-temporal continuity based restoration, top-down schema-based restoration, and pitch synchronization using PSOLA. In order to examine the contribution of each part in detail, we evaluate the performance of our system without one of these parts. First, the use of T-F masks of reliability based on spectro-temporal continuity results in an increase in the accuracy of recognition. Accuracy with only frame-level labels is 86.2% with white noise as the masker, 89.1% with cough as the masker and 86.3% with clicks as the masker. This is because the missing data ASR when using frame-level masks for decoding (Section 4.1), treats all frequency units in a frame labeled 0 as unreliable. The additional recovery of reliable T-F units in a frame labeled 0 increases the accuracy by 3.46% on average, or decreases the error rate by 27.6%. Since PSOLA is applied on the restored frames, it does not affect the recognition results.

We next examine the effects of spectro-temporal continuity and PSOLA on the distance measures of (8) and (9). We select one of the masking noise sources, white noise, for illustration. Fig. 10 shows the influence of spectro-temporal continuity on the performance of our model. Similar to Fig. 7, the two distances in Fig. 10 are plotted to different scales for different classes of phonemes. This helps to amplify the differences in the performance of our model with and without the use of spectro-temporal continuity. Restoration of all classes is almost always better with the use of T-F masks of reliability based on spectro-temporal continuity. The biggest gain occurs in the case of restoration of vowels. This is as expected because the vowels possess the strongest spectro-temporal continuity.

We next examine the effect of PSOLA. Though our explicit motivation for using PSOLA is to provide pitch synchronization, it also affects the spectrum of the synchronized frames and hence affects the two distance measures. Fig. 11 shows the influence of PSOLA on the performance of our model. The performance is almost always better with the use of PSOLA. As observed with
Fig. 10. Influence of spectro-temporal continuity (CO) on the performance of the proposed method in restoring phonemes masked by white noise. “-CO” refers to the performance of our model without the use of spectro-temporal continuity.

the use of spectro-temporal continuity, the biggest gain occurs in the case of restoration of vowels. The periodicity property of vowels is less corrupted by the addition of masking sources, compared to properties of consonants. Hence the use of PSOLA, which utilizes interpolated pitch information, works best for vowels. We also evaluate the performance without the use of either PSOLA or spectro-temporal continuity to examine the contribution of schema-based restoration alone. Note that the effects of PSOLA and spectro-temporalk continuity are not always additive. Fig. 12 shows the combined influence of PSOLA and spectro-temporal continuity on the performance of our model. The performance is always better with the use of both spectro-temporal continuity and PSOLA. The biggest gain occurs in the case of restoration of vowels due to the aforementioned reasons. Figures 10, 11 and 12 together show that the contribution of spectro-temporal continuity and PSOLA to restoration are much smaller compared to the contribution of schema-based restoration.
5.2 Results with ideal binary masks

To reveal the full potential of the proposed model and additionally evaluate our mask generation methods, we test our model with the use of ideal frame-level and T-F binary masks. We again use white noise as the masker for illustration. The performance with ideal frame-level binary masks is shown in an earlier study (Srinivasan and Wang, 2003). An ideal frame-level mask assigns 1 to those frames that have stronger speech energy and assigns 0 otherwise. Recognition accuracy is 87.5% with ideal frame-level masks, a reduction in error rate of 9.4%. Fig. 13 shows the performance of our model using the estimated and ideal frame-level masks. Notice that the performance with the use of estimated masks is close to that with the use of ideal masks in the case of unvoiced consonants while the difference is higher for the restoration of voiced phonemes. This is probably due to SFM of noisy frames not being consistently high enough at the SNR considered in this study.
We now consider the performance with the use of ideal T-F binary masks. An ideal T-F binary mask is obtained from (3) by substituting the power spectral density coefficient of the clean speech signal for the power spectral density coefficient of the filtered signal. Recognition accuracy is 92.6% with ideal T-F masks, a reduction in error rate of 26.7%. Fig. 14 shows the performance of our model using the estimated and ideal frame T-F masks. As shown by the reduction in error rate, the performance improvement is significant with the use of ideal T-F masks when compared to the performance with the use of estimated T-F masks. This is probably due to a number of factors, including tracking by Kalman filtering not being perfect and the use of a constant value for δ. Also note that all classes of phonemes are restored to a very high quality, when using the ideal T-F masks, highlighting the potential of our approach.
Fig. 13. Results with ideal frame-level masks. The above figure compares the restoration performance of the proposed method using estimated and ideal frame-level (IF) masks. “+IF” refers to the performance of our model using ideal frame-level masks.

6 Comparison with a Kalman Filter Model

We compare the performance of our model with the Kalman filter based model of Masuda-Katsuse and Kawahara (1999), which is a systematic study on phonemic restoration and produces good results. They use cepstral tracking with Kalman filtering according to the model in (4) and (5) to predict and restore the masked frames. The variance of the noise in the observation model of (5) is estimated to be proportional to the reliability of results from a previous simultaneous grouping process (based on the harmonicity cue) for the voiced speech signal. This strategy can not be employed when speech additionally contains unvoiced components. For the purpose of comparison with our model, we therefore use the same values for this variable as described in Section 3.2. Additionally, as described in our mask generation stage, we perform one step backward Kalman smoothing. Figures 7, 8 and 9 show the performance of the
Fig. 14. Results with ideal time-frequency masks. The above figure compares the performance of the proposed method in restoring phonemes using estimated and ideal time-frequency (ITF) masks. “+ITF” refers to the performance of our model using ideal time-frequency masks.

Kalman filter for various classes of restored phonemes.

Under both objective criteria discussed in Section 5, our method outperforms the Kalman filtering model significantly. Notice that except in restoring vowels, our model outperforms the Kalman filter model even without the use of PSOLA (Figures 7 and 11). Similarly, except in restoring vowels, the performance of our model is better with the use of frame-level masks alone (Figures 7 and 13). Note that vowels are effectively restored by the Kalman filter with sufficient spectral quality, but the restoration may not be very natural. Figure 15 (a) shows the resulting pitch track after restoration of the approximant part /j/ in the diphthong /aj/ in the utterance ‘Five’, using the Kalman filter model. The pitch track is discontinuous. This illustrates that the spectral magnitude restoration by Kalman filtering alone may reduce the naturalness of speech, just as the spectral magnitude restoration by our model without
the use of PSOLA (see Section 4.3).

Unvoiced consonants have weak spectro-temporal continuity with neighboring phonemes and need prior knowledge for their restoration. Hence, our method performs substantially better than the Kalman filter model in restoring them. Figure 16 (a) shows the results of restoration of the unvoiced stop consonant /t/ using the Kalman filter model. As there is no spectro-temporal continuity between this phoneme and the preceding phoneme, the Kalman filter model is unable to restore the stop consonant. The rapid change in the spectrum causes inaccurate estimation of the AR parameters and hence tracking by the Kalman filter breaks down. The performance of our method in restoring voiced consonants is also superior to that of the Kalman filter. The performance of the Kalman filter model improves when clicks and cough are used as maskers (Figures 8 and 9). This shows that errors in the identification of the noisy regions affects our model slightly more than it does the Kalman filter model. Our model restores only those frames which are labeled unreliable in the mask generation stage (Section 3.2). Kalman filter affects the information in not only the frames marked 0 but also the neighbors of such frames. This is due to the smoothing action of the Kalman filter. Thus, if the neighbor of an unreliable frame is noisy and the mask generation stage mislabels it as 1, then the backward Kalman smoothing reduces the noise in this frame too.
Fig. 16. (a) The restoration of the masked phoneme /t/ in the word ‘Eight’ by the Kalman filter model. For comparison, the restoration using the speaker-independent (SI) template, is also shown in (b).

7 Discussion

We have presented a schema-based model for phonemic restoration, which performs significantly better than a Kalman filtering model. As stated earlier, the problem for any filtering/interpolation method occurs when the speech spectrum changes rapidly. Hence, such methods perform best for voiced phonemes (especially vowels) and worst for unvoiced consonants. Models based on temporal continuity cannot restore a phoneme that lacks continuity with its neighboring phonemes. Our model is able to restore such phonemes by top-down use of word schemas. Hence, for phoneme reconstruction, we suggest that learned schemas should be employed. Such schemas represent prior information for restoration.

Our model also considers bottom-up continuity in restoration by tracking and filtering the cepstral coefficients. This is similar to the sequential grouping process in the model of Masuda-Katsuse and Kawahara (1999). The difference primarily is in the use of filtered output. Specifically, their model uses the filtered output in all frequency units of a noisy frame. Their approach works well when speech is fully voiced. When speech additionally contains unvoiced consonants, the filtered output may be significantly different from the desired output. In contrast, our model predicts which frequency units in a noisy frame, after filtering, might be close to the desired output and uses only those units for bottom-up restoration.
A system using a speech recognizer for restoration has been described previously by Ellis (1999). His study, however, does not address key issues concerning recognition of masked speech, identification of dominant speech regions in the noisy speech input and resynthesis of speech (from ASR output labels) for restoration of noisy speech regions. Our model utilizes bottom-up properties of noise to identify the noisy regions in the input signal and applies missing data techniques for recognition based on reliable regions. The use of missing data ASR results in high accuracy of recognition, critical for any system using a speech recognizer for restoration. The use of dynamically time warped templates (based on results of recognition) for restoration followed by pitch synchronization results in high fidelity of the resynthesized phonemes.

Our model of phonemic restoration addresses sequential integration using both bottom-up spectral continuity and top-down schemas. We have shown that the use of bottom-up spectral continuity increases the recognition accuracy and given the recognition results, the top-down use of schemas enhances the original noisy signal for possible use in the following applications. The model can be used in conjunction with existing, predominantly bottom-up, CASA systems to recover masked data and, especially, to group unvoiced speech with voiced speech. Schemas, when activated, can provide top-down construction in these systems. The model may also be used for restoring lost packets in mobile and internet telephonic applications. Though the motivation behind masking entire phonemes is to be consistent with experiments on phonemic restoration (Warren, 1999), real-world noise may corrupt only parts of a phoneme or several phonemes at the same time. Our model can handle these conditions well as long as the masking of the speech data does not cause recognition errors. This is because the system neither makes use of the knowledge that a complete phoneme is masked nor knows the number of masked phonemes.

The distribution of spectral tokens in words such as “Eight” may have more than one mode. Robust training of templates may not be adequate for such words. Template training by clustering should further enhance the ability of the generated templates to handle the variability in speaking style. Our model currently considers only a limited role of bottom-up cues for phonemic restoration. The energy in the unreliable T-F units plays an important role in phonemic restoration (Samuel, 1981). The spectral shape of the noise is related to its ability to mask a phoneme. There is also an optimal level of noise energy which results in most effective phonemic restoration (Bashford et al., 1992; Warren, 1999). However, the missing data ASR treats all these information merely as counter-evidence for recognition of certain models. Effective use of the information in the masked regions could help to increase the accuracy of the ASR. Our method of estimating the mask for missing data recognition is relatively simple, as it is based on only 2 frame-level and 1 intra-frame features, and masks may be more accurately estimated using a large number of
features (Seltzer et al., 2000). How to generate a binary mask for missing data recognition, when maskers are non-broadband sound sources, also needs to be addressed. Future work will attempt to alleviate these problems by integrating the model with existing CASA systems (see e.g., Hu and Wang, 2003). Also, our model is based on recognition and hence not applicable when recognition fails. Combining recognition with top-down restoration and bottom-up cues should help address this problem. With online detection of recognition failures (Huang et al., 2003), bottom-up processing may be solely applied for phonemic restoration when recognition fails.

Acknowledgements

This research was supported in part by an NSF grant (IIS-0081058) and an AFOSR grant (F49620-01-1-0027). We thank M. Cooke, H. Kawahara and I. Masuda-Katsuse for their assistance in helping us implement their models. A preliminary version of this work was presented in 2003 EUROSPeeCH.

References

