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Abstract

Phonemic restoration is the perceptual synthesis of phonemes when masked by ap-
propriate replacement sounds by utilizing lexical context. Current models for phone-
mic restoration however, use only temporal continuity. These models poorly restore
unvoiced phonemes and are limited in their ability to restore voiced phonemes too.
We present a schema-based model for phonemic restoration. The model employs a
missing data speech recognition system to decode speech based on intact portions
and activates word templates corresponding to the words containing the masked
phonemes. An activated template is dynamically time warped to the noisy word and
is then used to restore the speech frames corresponding to the masked phoneme,
thereby synthesizing it. The model is able to restore both voiced and unvoiced
phonemes with a high degree of naturalness. Systematic testing shows that this
model outperforms a Kalman-filter based model.

Key words: Phonemic restoration, Top-down model, Speech schemas,
Computational auditory scene analysis, Prediction, Missing data ASR, Dynamic
time warping.



1 Introduction

Listening in everyday acoustic environments is subject to various noise in-
terference and other distortions. The human auditory system is robust to
these effects. According to Bregman (1990), this is accomplished via a process
termed auditory scene analysis (ASA). ASA involves two types of organiza-
tion, primitive and schema-driven. Primitive ASA is considered to be an innate
mechanism based on bottom-up cues such as pitch, and spatial location of a
sound source. Schema-based ASA use stored knowledge, say about speech,
to supplement primitive analysis and sometimes provides the dominant basis
for auditory organization. This frequently occurs when parts of speech are
severely corrupted by other sound sources.

Phonemic restoration refers to the perceptual synthesis of missing phonemes
in speech when masked by appropriate intruding sounds on the basis of contex-
tual knowledge about word sequences. In 1970, Warren discovered that when
a masker fully replaced the first “s” of the word “legislatures” in the sentence,
“The state governors met with their respective legislatures convening in the
capital city,” listeners reported the hearing of the masked phoneme (Warren,
1970). When phonemic restoration happens, subjects are unable to localize
the masking sound within a sentence accurately; that is, they cannot identify
the position of the masking sound in the sentence. Subsequent studies have
shown that phonemic restoration is dependent on the linguistic skills of the
listeners, the characteristics of the masking sound and temporal continuity
of speech (Bashford et al., 1992; Samuel, 1981, 1997; Warren and Sherman,
1974).

Auditory organization can also be classified as simultaneous and sequential
(Bregman, 1990). Simultaneous organization involves grouping of acoustic
components that belong to a sound source at a particular time. Sequential or-
ganization refers to grouping of acoustic components of a sound source across
time. Phonemic restoration may be viewed as a sequential integration pro-
cess involving top-down (schema-based) and bottom-up (primitive) continu-
ity. Monaural computational auditory scene analysis (CASA) systems employ
harmonicity as the primary cue for simultaneous grouping of acoustic compo-
nents corresponding to the respective sound sources (Brown and Cooke, 1994;
Wang and Brown, 1999; Hu and Wang, 2003). These systems do not perform
in those time-frequency regions that are dominated by aperiodic components
of noise. Phonemic restoration is therefore a natural way to introduce other
sequential integration cues. Monaural CASA systems currently also lack an
effective cue for grouping unvoiced speech. Schema-based grouping in par-
ticular, may provide a strong grouping cue for integration across unvoiced
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consonants. Schemas can be used to generate expectations for verification by
existing bottom-up grouping algorithms and may provide a cue for resolving
competition among different primitive organization principles. Schema-based
features also inherently bring up top-down aspects like memory and attention
into CASA. Additionally, phonemic restoration helps to restore lost packets
in speech transmission systems (Perkins et al., 1998; Hassan et al., 2000) and
increase the performance of speech enhancement (Nakatani and Okuno, 1999).

Previous attempts to model phonemic restoration have been only partly
successful. Cooke and Brown (1993) use a weighted linear interpolation of the
harmonics preceding and succeeding the masker for restoration. The later work
of Masuda-Katsuse and Kawahara (1999) uses Kalman filtering to predict and
track spectral trajectories in those time-frequency regions that are dominated
by noise. In its use of temporal continuity for restoration, the Masuda-Katsuse
and Kawahara model is similar to that of Cooke and Brown. The biggest prob-
lem for a filtering/interpolation system for predicting missing speech segments
is that temporal continuity of speech frames can be weak or even absent. This
typically occurs with unvoiced speech. In the absence of co-articulation cues,
it is impossible to restore the missing portions; in such cases it seems that
lexical knowledge must be employed.
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Fig. 1. (a) The spectrogram of the word ‘Eight’. (b) The spectrogram obtained from
(a) when the stop /t/ is masked by white noise.

Fig. 1 depicts one such situation. In Fig. 1(a), the phoneme /t/ in the coda
position of the word ‘Eight’ possesses no temporal continuity with the preced-
ing phoneme. Thus, when white noise masks the final stop (Fig. 1(b)), this
phoneme cannot be recovered by extrapolating the spectrum at the end of
the preceding phoneme, /eI/. An automatic speech recognizer (ASR) though
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could be used to hypothesize the noisy word based on its vocabulary. This
hypothesis could then be used to predict the masked phoneme. Ellis (1999)
proposes a prediction-driven architecture to hypothesize the information in
the missing regions using an ASR. Though the direction is promising, the
proposed system is incomplete with few results obtained; in particular, recog-
nition of corrupted speech and resynthesis of speech from the ASR output are
largely unaddressed.

In this paper, we present a predominantly top-down model for phonemic
restoration, which employs lexical knowledge in the form of a speech recognizer
and a sub-lexical representation in word templates realizing the role of speech
schemas. First, reliable regions of the corrupted speech are identified using a
perceptron classifier and a spectral continuity tracker. A missing data speech
recognizer based on hidden Markov model (HMM) (Cooke et al., 2001) is used
to recognize the input sounds as words based on the reliable portions of the
speech signal. The word template corresponding to the recognized word is
then used to “induce” relevant acoustic signal in the spectro-temporal regions
previously occupied by noise. Phonemic restoration is typically interpreted as
induction based on intact portions of the speech signal and then followed by
synthesis of masked phonemes. Template representations should embody this
understanding. Hence the templates are formed by averaging, along a dynamic
time warped path, tokens of each word with sufficient spectral detail to permit
phonemic synthesis. Finally the induced information is pitch synchronized
with the rest of the utterance to maintain the naturalness of restored speech.

The rest of the paper is organized as follows. Section 2 outlines our model.
We then describe the details of feature extraction and identification of cor-
rupted regions of the speech signal in Section 3. Section 4 describes the core
of our model: The missing data recognizer, word templates and pitch synchro-
nization. The model has been tested on both voiced and unvoiced phonemes
and the test results are presented in Section 5. In Section 6, we compare the
performance of our model with the Kalman filter based model of Masuda-
Katsuse and Kawahara (1999). Finally, conclusion and future work are given
in Section 7.

2 Model Overview

Our model for phonemic restoration is a multi-stage system as shown in
Fig. 2. The input to the model is utterances with words containing masked
phonemes. The maskers used in our experiments are broadband sound sources.
Phonemes are masked by adding a noise source to the signal waveform. In the
first stage input waveform with masked phonemes, sampled at 20kHz with
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Fig. 2. Block Diagram of the proposed system. The input signal with masked
phonemes is converted into a spectrogram. A binary mask is generated to parti-
tion the spectrogram into its clean and noisy parts. The spectrogram and the mask
are fed to the missing data ASR. Based on recognition results, trained word tem-
plates are activated corresponding to the words whose phonemes are masked. The
masked frames are synthesized by dynamically time warping the templates to the
noisy words. These frames are then pitch synchronized with the rest of the utter-
ance. Notice that the information flows bottom-up leading to recognition and then
top-down leading to restoration.

16 bit resolution, is converted into a spectrogram by Fourier analysis. A binary
mask for the spectrogram is generated in this stage to identify reliable and
unreliable parts. If a time-frequency unit in the spectrogram contains predom-
inantly speech energy, it is labeled reliable; it is labeled unreliable otherwise.
We then identify the spectro-temporal regions which predominantly contain
energy from speech in a two step process. In the first step, two features are
calculated at each frame, spectral flatness and normalized energy. Masked,
unvoiced and silent frames, all have high spectral flatness, but the energy in
masked frames is higher than that in unvoiced and silent frames. These fea-
tures are then fed to a perceptron classifier which labels each frame as being
either clean (reliable) or noisy (unreliable). In the second step, the frequency
units in a noisy frame are further analyzed for possible temporal continuity
with neighboring clean frames using a Kalman filter. Spectral regions in the
noisy frames which exhibit strong continuity with the spectral regions of the
neighboring clean frames are also labeled clean.
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The second stage is the missing data ASR, which provides word level recogni-
tion of the input signal by utilizing only the reliable spectro-temporal regions.
Thus, the input to the missing data ASR is the spectrogram of the input sig-
nal along with a corresponding binary mask. Cooke et al. (2001) suggest that
for restoration, one can use the maximum likelihood estimate of the output
distribution of the winning states. Winning states are obtained during recog-
nition by Viterbi decoding in an HMM-based speech recognizer. We find that
such a restoration does not work well and degrades with increasing number
of frames that need to be restored. This is not surprising as the missing data
ASR has only 10 states to model each word (Section 4.1) and hence state-based
imputation is an ill-posed one-to-many projection problem.

On the other hand, template-based speech recognizers use spectral templates
to model each word. These templates could be used as a base for restoration.
We train a word-level template corresponding to each HMM model in the
missing data ASR. During training, signals are converted into a cepstral rep-
resentation and then time normalized by dynamic time warping (DTW). We
then compute their average. Two sets of templates are considered, speaker-
independent and speaker-dependent. The speaker-independent template is
derived from utterances of 50 speakers different from the test speaker. The
speaker-dependent template is derived from those utterances of the test speaker
which are not utilized for testing.

Based on the results of recognition, word templates corresponding to the
noisy words are selected . A template thus activated is warped to be of the
same duration as the noisy word using DTW. The time-frequency units of the
template corresponding to the unreliable time-frequency units then replace the
unreliable units of the noisy word. Hence, our restoration is based on top-down
lexical knowledge.

A template is an average representation of each word. Thus, the restored
phoneme may not be in consonance with the speaking style of the remain-
ing utterance. In order to maintain the overall naturalness of the utterance,
we perform pitch based smoothing. The pitch information from neighboring
frames is used to interpolate a plausible pitch for the restored frames. The
restored frames are then pitch synchronized with rest of the frames, to main-
tain the overall intonational structure of the utterance. The last stage of the
model is the overlap and add method of resynthesis. Resynthesized waveforms
are used for informal listening and performance evaluation.
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3 Feature Extraction and Mask Generation

The first stage of our model is a front-end for the missing data recognition
and the phonemic synthesis stages. The input signal is transformed into a time-
frequency (T-F) representation (a spectrogram). A binary missing data mask
is generated with each time-frequency unit labeled as either speech dominant
(reliable) or noise dominant (unreliable).

3.1 Feature Extraction

The acoustic input is analyzed by the feature extraction stage which gen-
erates 512 DFT coefficients every frame. Each frame is 20ms long with 10 ms
frame shift. Frames are extracted by applying a running Hamming window to
the signal. Finally, log compression is applied to the power spectrum. Thus the
input signal is converted into a time-frequency representation, suitable for use
by the missing data ASR and subsequent restoration by the synthesis stage.
Additionally, the spectral coefficients are converted to cepstral coefficients via
the discrete cosine transform (Oppenheim et al., 1999). The cepstral coeffi-
cients are sent to the mask generation stage and also to the masked frame
synthesis stage.

3.2 Missing Data Mask Generation

The missing data recognizer and the phonemic synthesis stage, both require
information about which T-F regions are reliable and which are unreliable.
Thus a binary mask, corresponding to the spectrogram, needs to be generated.
A T-F unit is deemed reliable and labeled 1 if in this unit, the speech energy
is greater than noise energy and otherwise deemed unreliable and labeled
0. Spectral subtraction is frequently used to generate such binary masks in
missing data applications (Cooke et al., 2001; Drygajlo and El-Maliki, 1998).
Noise is assumed to be long-term stationary and its spectrum estimated from
frames that do not contain speech (silent frames containing background noise).
In phonemic restoration, noise is usually short-term stationary at best and
masks frames containing speech (corresponding to one or more phonemes).
Hence, for phonemic restoration, estimation of noise spectrum followed by
spectral subtraction cannot be used to generate the binary mask.

We propose a two-step process for generation of the mask. In all our experi-
ments, we use broadband noise sources as maskers (see Section 5). Hence, as a
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first step, only a frame-level decision of reliability is made. A frame is labeled 1
if it is dominated by speech, else labeled 0. The individual T-F units of a frame
labeled 0 are further analyzed in the second step. The spectral trajectory of
the noisy speech signal is tracked using a Kalman filter. We compare the spec-
tral coefficients of the noisy and the filtered signals. If the difference between
them is small, we treat these coefficients as reliable and label them 1 and 0
otherwise. Figure 3(a) shows the spectrogram of the word ‘Five’. White noise
is used to mask the approximant /j/ in the diphthong /aj/ and the resulting
spectrogram is shown in Figure 3(b). From the figure, we can see that there
is a strong spectral continuity (especially for the formants) from the /a/ part
to the /j/ part. We seek to recover these regions of spectral continuity and
label them 1. Accurate estimation of pitch is difficult, if not impossible, due
to the low SNR in the masked frames. Under these conditions, the harmonics
of speech in the masked frames may not be reliably recovered through pitch
based simultaneous grouping. Hence, the spectral continuity cue is needed to
recover the harmonics. Spectral continuity can be tracked and recovered using
a Kalman filter (Masuda-Katsuse and Kawahara, 1999).

As the first step, at each frame, we generate 2 features for classification by
assuming noise to be broadband and short-term stationary. The first feature is
a spectral flatness measure (SFM) (Jayant and Noll, 1984), defined as the ra-
tio of geometric mean to arithmetic mean of the power spectral density (PSD)
coefficients:

SFM =

[

N
∏

k=1
Sxx (k, n)

] 1

N

1
N

N
∑

k=1
Sxx (k, n)

, (1)

where Sxx (k, n) is the kth power spectral density coefficient of the noisy speech
signal in a frame ‘n’. Consistent with the feature extraction stage, N is set
to 512. This measure is known to provide good discrimination between voiced
frames and other frames (unvoiced and silent), across various speakers in clean
speech (Yantorno et al., 2001). Additionally, SFM is related to predictability
of speech (Herre et al., 2001; Jayant and Noll, 1984). Specifically, low values of
SFM imply high predictability. This property is indirectly used in the second
step to refine the mask generated at the frame-level.

The second feature used is the normalized energy (NE). It is defined as

NE = 10 log











N
∑

k=1
Sxx (k, n)

max
n

N
∑

k=1
Sxx (k, n)











. (2)

As in (1), N is set to 512. Normalization is done to make the energy value
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Fig. 3. (a) The spectrogram of the word ‘Five’. (b) The spectrogram obtained from
(a) when white noise masks the approximant part /j/ in the diphthong /aj/. (c)
The distribution of frame-level features and frame-level labels for this utterance (1 -
reliable and 0 - unreliable). Spectral flatness measure (SFM) and normalized energy
(NE) are used to generate the frame-level labels. (d) The spectrogram obtained from
(b) with only reliable frames. (e) The labels of each T-F unit in the spectrogram. (f)
The spectrogram with only reliable T-F units. Unreliable units are marked white.

independent of the overall signal energy. The log operation is used to expand
the range of NE to provide better discriminability amongst frames. Unvoiced,
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silent and masked frames have high values of SFM but unvoiced and silent
frames have low values of NE. Thus, SFM and NE are sufficient to classify a
frame as being masked or clean. We use 2 tokens of isolated word utterances
from each of the 50 randomly chosen speakers in the training portion of the
TIDigits corpus (Leonard, 1984) to train a perceptron classifier. One phoneme
in each utterance is masked by mixing with white noise to yield a local SNR
of -1 dB on average. Due to the large variability in the values of SFM and
NE in clean speech and distortion in noise, the two classes are found to be
linearly inseparable. Hence, we train a one-hidden-layer (2-2-1) perceptron
classifier (Principe et al., 2000). The inputs are SFM and NE and outputs are
two class labels: 1 (reliable) and 0 (unreliable). The ratio in (1), by defini-
tion, is constrained as 0 ≤ SFM ≤ 1. NE, as defined in (2), is in the range
−80 dB to 0 dB. The transfer functions of all the neurons are log-sigmoid.
The network is trained using backpropagation, optimized by the Levenberg-
Marquardt algorithm (Principe et al., 2000). The network is trained for 1000
epochs. Figure 3(c) shows how the two features, SFM and NE, are distributed
for the utterance ‘Five’ with the masked phoneme /aj/. For the purpose of
comparison with SFM, NE is shown without the application of the log oper-
ation and the multiplication factor. The spectral flatness measure is high for
masked frames, silent frames and frames corresponding to the fricatives /f/
and /v/. The normalized energy though is high only for frames corresponding
to the masked phoneme /aj/. Since the masked phoneme is a vowel, the energy
in the masked frames is reliably high and we get a perfect frame-level labels
of reliability. The resulting spectrogram with only reliable frames is shown in
Figure 3(d).

As the second step, we use Kalman filtering to further analyze the spectral
regions in frames labeled 0 by the first stage. For this we adapt the Kalman
filter model of Masuda-Katsuse and Kawahara (1999). Kalman filtering is used
to predict the spectral coefficients in the unreliable frames from the spectral
trajectories of the reliable frames. In the frames labeled as 0 by the first step,
we compare the spectral values of the filtered and original noisy signal. If
there is true spectral continuity, the magnitude of the difference between the
spectral values of the filtered and original signal will be small. This can be
restated as a local SNR criterion. Let Sff (k, n) denote the kth power spectral
density coefficient of the filtered signal in a frame ‘n’. Then each T-F region
can be labeled using a threshold δ as

label =











1 if 10 log
Sff (k,n)

Sxx(k,n)−Sff (k,n)
≥ δ

0 otherwise
(3)

The choice of δ represents a trade-off between providing more T-F units with
reliable labels to the missing data ASR (Section 4.1) and preventing wrong
labeling of T-F units (Renevey and Drygajlo, 2001). The optimal value of δ is
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also dependent on the local SNR (Renevey and Drygajlo, 2001; Seltzer et al.,
2003). For simplicity we set δ to be a constant. The value of δ = 5 dB is found
to give the best recognition performance on the training data and is used for
all the data during testing.

Cepstral coefficients in each order are regarded as a time series and are mod-
eled as a second order auto-regressive (AR) process as suggested by Masuda-
Katsuse and Kawahara (1999). This process is predicted and tracked by a
Kalman filter and thus used to interpolate the cepstral coefficients in the
masked frames from clean frames. The state space model of this system is

x (n) = F (n) x (n − 1) + Gv (n) , (4)

y (n) = Hx (n) + w (n) . (5)

In the equations above, y (n) is the observed cepstral coefficient at time-frame
n and the filtering problem is to find the information about the state of the
system, x (n) (the true value of the cepstral coefficient) at this time. Since the
cepstral coefficients follow a 2nd order AR model,

F (n) =







a1 (n) a2

1 0





 , (6)

where a1 (n) and a2 (n) are the first and second order AR coefficients at time-
frame n. We let G = [1 0]T and H = [1 0] as suggested by Masuda-Katsuse and
Kawahara (1999). The system white noise v (n) is zero mean with covariance
Q (n). The observation white noise w (n) is zero mean with covariance R (n).
Hence, the model in (4), (5) and (6), has 4 unknown parameters that need to
be estimated at each frame, a1 (n), a2 (n), Q (n) and R (n).

Let θ = (a1 (n) , a2 (n) , Q (n)). The log likelihood of the model given θ and
initial state mean vector x (0) is as follows:

l
(

θ, x (0)
)

=
N

∑

n=1

log f
(

y (n) | Y (n − 1) , θ, x (0)
)

. (7)

f
(

y (n) | Y (n − 1) , θ, x (0)
)

= N
(

Hx (n|n − 1) , HV (n|n − 1) HT + R (n)
)

,

where Y (n − 1) = (y (1) , y (2) , . . . , y (n − 1)) (Kato and Kawahara, 1998).
The conditional state mean x (n|n − 1) and the error covariance V (n|n − 1)
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are estimated by the Kalman predictor:

x (n|n − 1) = F (n − 1) x (n − 1|n − 1) ,

V (n|n − 1) = F (n − 1) V (n − 1|n − 1) F T (n − 1) + GQ (n − 1) GT .

The filtered estimates are computed by the Kalman filter.

x (n|n) = x (n|n − 1) + K (n) (y (n) − Hx (n|n − 1)) ,

V (n|n) = (I − K (n) H) V (n|n − 1) ,

where K (n) is the Kalman gain computed as

K (n) = V (n|n − 1) HT
(

HV (n|n − 1) HT + R (n)
)

−1
.

The parameter θ is updated at each frame by the maximum likelihood esti-
mate conditioned on the present and past observed cepstral values. We use
a numerical subroutine, DALL (Ishiguro and Akaike, 1999) to estimate θ by
maximizing (7). The variance of the noise in the observation model, R (n), is
set to 1.0, if the cepstral coefficients belong to a frame previously labeled 1.
It is set to a high value otherwise. Hence, R (n) acts as a factor that balances
the tracking and predicting roles of the Kalman filter. The discrete change in
the value of R (n) causes the Kalman filter to switch from a predominantly
tracking phase to a predominantly predicting one.

Since processing is performed off-line, the cepstral coefficients at all times
are available for processing, enabling a smoothing operation. To mitigate the
effects of binary transition in the variance of the observation noise, we per-
form one step backward Kalman smoothing (Anderson and Moore, 1979). As
smoothing additionally uses the cepstral coefficients of the reliable frames,
available after the masked frames, it results in a more accurate estimation
of the coefficients in the masked frames. Finally, the cepstral coefficients are
converted back to spectral coefficients Sff (k, n), via inverse discrete cosine
transform (Oppenheim et al., 1999) and exponentiation. The spectral coeffi-
cients are used in (3) to generate the labels for each frequency unit. Figure 3(e)
shows the labels generated for the noisy utterance ‘Five’. The spectrogram
with only the reliable T-F units is shown in Figure 3(f). It is seen that using
Kalman filtering, most formant regions corresponding to the masked part of
the diphthong /aj/ are recovered and labeled 1. The regions exhibiting no
strong spectral continuity are labeled 0.
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4 Recognition and Synthesis of masked phonemes

A missing data speech recognizer is used to recognize the input utterance
as words based on the T-F units labeled 1 during mask generation. The word
template corresponding to the noisy word in the input is then dynamically
time warped to the noisy word. The T-F units of the noisy signal labeled 0
(previously corrupted by noise) are then replaced by the corresponding T-F
units of this template. Finally, the restored frames are pitch synchronized with
rest of the utterance by using interpolated pitch information.

4.1 The Missing Data Speech Recognizer

The performance of conventional ASR systems in the presence of acoustic
interference is very poor. The missing data ASR (Cooke et al., 2001) makes
use of the spectro-temporal redundancy in speech to make optimal decisions
about lexical output units. Given a speech observation vector x, the problem
of word recognition is to maximize the posterior P (ωi|x), where ωi is a valid
word sequence. When parts of x are masked by noise or other distortions, x can
be partitioned into its reliable and unreliable constituents as xr and xu, where
x = xr ∪ xu. The missing data ASR treats the T-F regions labeled 0 as un-
reliable data during recognition. One can then seek a Bayesian decision given
the reliable features. In the marginalization method, the posterior probability
using only the reliable features is computed by integrating over the unreli-
able constituents. In missing data methods, recognition is typically performed
using spectral energy as feature vectors. If x represents spectral magnitude
and sound sources being additive, the unreliable parts can be constrained as
0 ≤ x2

u ≤ x2. This bounded marginalization method is shown to have a better
recognition score than the simple marginalization method (Cooke et al., 2001).

We use the 10-state continuous density HMM as suggested by Cooke et al.
(2001). The task domain is recognition of connected digits. Thirteen (1-9, a
silence, very short pause between words, zero and oh) word level models are
trained. All except the short pause model have 10 states. The short pause
model has only three states. The emission probability in each state is modeled
as a mixture of 10 gaussians with a diagonal covariance structure. Training and
testing are performed on the male speaker dataset in the TIDigits database.
Note that recognition is performed in the spectral domain. A HMM toolkit,
HTK (Young et al., 2000) is used for training. During testing, the decoder is
modified to use the missing data mask for marginalizing the unreliable spec-
trograhic features. The decoded output from ASR represents the lexical knowl-
edge in our model.
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Fig. 4. (a) and (b) The speaker-independent templates of the words ‘Five’ and
‘Eight’, respectively. (c) and (d) The corresponding speaker-dependent templates.

4.2 Word Template Training by Dynamic Time Warping

A template corresponding to each of the HMMs is trained using DTW. From
the training portion of the TIDigits corpus, we randomly select 50 speakers
(Section 3.2). Two tokens of isolated word utterances from each of the speak-
ers are used to train each speaker-independent (SI) word template. Assuming
all tokens are consistent, we find their warped cepstral average. For this pur-
pose, these tokens are time normalized by DTW. The distortion measure used
in the dynamic programming cost function is the cepstral distance. The lo-
cal continuity constraint used is the Itakura constraint (Rabiner and Juang,
1999). Isolated word utterances corresponding to one test speaker in the test
database are used to train a speaker-dependent (SD) template. Utterances of
this speaker can then be used for testing. Together the two sets of templates
form word schemas. Figure 4 shows the SI and SD templates for two words in
the lexicon, ‘Five’ and ‘Eight’. The templates in Figures 4(a) and 4(c) show
good representation of formants and frication, including formant transitions
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into the fricatives. In addition to the formants, the onset and spectra of the
burst (corresponding to the stop, /t/) are also adequately represented (Fig-
ures 4(b) and 4(d)). Also note that the SI templates possess sufficient spectral
details, though not as detailed and clean as the SD templates.

4.3 Phonemic Synthesis

A maximum of 2 phonemes are masked in each utterance by mixing with
noise to yield a local SNR of -1 dB on average. We use 3 broadband noise
sources: White noise, clicks and coughs. Consistent with experiments on phone-
mic restoration, all transitions into and out of the phoneme are masked too.
The signal and the mask are sent to the missing data recognizer which provides
the most likely word sequence. Additionally the recognizer provides time end
points of the recognized words in the signal. We then choose the word tem-
plates corresponding to the noisy word and warp them to the noisy word
segment in the input signal by DTW. Specifically, the word template is nor-
malized to span the time end points of the noisy word. The T-F units of the
template corresponding to the masked T-F units (with label 0) then replace
the masked units. Our restoration in this stage is thus a top-down schema-
based process. Recall that some T-F units which exhibit good (bottom-up)
spectro-temporal continuity have already been recovered during the mask gen-
eration process (Section 3.2). Figures 5(a) and 5(b) show the restoration of the
masked phoneme /t/ using SI and SD templates respectively. The phoneme is
clearly seen to be restored with good spectral quality. Notice that the lack of
spectral continuity of the masked phoneme /t/ with the preceding phoneme,
has not prevented its effective restoration.

After spectral restoration, the utterance is resynthesized from the spectral
coefficients using the overlap and add method (Oppenheim et al., 1999). Since
we used a Hamming window during the analysis stage (Section 3.1), we use
a rectangular window during the synthesis stage. Also, note that the spectral
restoration is performed only in the power or magnitude domain. The phase
information in the corrupted frames is not restored. Hence, we use noisy phase
information during resynthesis.

The word templates are average representation of each word. Hence, the re-
stored information is generally not attuned to the speaking style and the speak-
ing rate of the test utterance. The use of DTW for restoration helps to pre-
vent any significant change in the speaking rate after restoration. To explicitly
compensate for co-articulation, the restored frames are manipulated by pitch
synchronous overlap and add (PSOLA) techniques, which use interpolated
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Fig. 5. (a) The restoration of the masked phoneme /t/ in the word ‘Eight’ using
the speaker-independent template. (b) The restoration using the speaker-dependent
template.

pitch information. In particular, we consider PSOLA (Moulines and Charpen-
tier, 1990) and linear prediction coding (LPC) PSOLA (Moulines and Charp-
entier, 1988), which are speech synthesis techniques that modify the prosody
by manipulating the pitch of the speech signal as required. The former works
directly on the speech waveform while the latter on excitation signal of the
linear prediction analysis. Praat (Boersma and Weenink, 2002) and a local
spectral smoother are used for synchronization.

Figure 6 shows the pitch track formed by the resynthesized utterance ‘Five’
after two different stages of restoration. The pitch track formed by the SI
restoration after the use of PSOLA is continuous and relatively smooth, indi-
cating the naturalness of the restored phoneme. Restoration without the use
of PSOLA yields only a discontinuous pitch track. For comparison, the pitch
track of the clean speech signal (before masking of the vowel /aj/) is also
shown. We can see that the pitch track after the use of PSOLA is close to the
pitch track of the clean speech signal. The LPC-PSOLA technique improves
the listening experience compared to PSOLA, but is not better than PSOLA
as measured by the objective criteria discussed in Section 5. Consequently
only the results of synchronization using the PSOLA technique are used in the
assessment of the results. The pitch synchronized utterances are used for infor-
mal listening tests and in measuring the performance using the objective crite-
ria outlined in Section 5.
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Fig. 6. Comparison of pitch information under various methods of restoration of the
diphthong /aj/ in the word ‘Five’. (a) and (b) The pitch information extracted from
the resynthesized signal using speaker-independent restoration, with and without
pitch synchronization using the PSOLA technique described in Section 4.3 respec-
tively. For comparison, the pitch information corresponding to the original clean
speech utterance is also shown in (c).

5 Evaluation Results

Informal listening to the restored signals shows that masked voiced and
unvoiced phonemes are clearly restored. To evaluate the performance of the
proposed model objectively, two measures are used. The rms log spectra model
the speech spectra very well, but are hard to compute. The related cepstral
and the COSH distances are much easier to compute (Gray and Markel, 1976).
The cepstral distance is the most commonly used distortion measure in speech
recognition (Rabiner and Juang, 1999). The COSH distance provides the most
accurate estimate of spectral envelope of real speech (Wei and Gibson, 2000).
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Additionally the cepstral distance bounds the rms log spectral distance from
below and the COSH distance from above (Gray and Markel, 1976). Hence we
employ both cepstral and COSH distances for our quantitative evaluation.

The cepstral distance measures the log spectral distance between the origi-
nal clean signal and the phonemically restored signal:

dC =

√

√

√

√

[

(C1,0 − C2,0)
2 + 2

K
∑

n=1

(C1,n − C2,n)2

]

, (8)

where C1,n are the cepstral coefficients derived from AR coefficients of the
original signal and C2,n are the corresponding coefficients of the phonemi-
cally restored signal. We set K = 20. Additionally, the COSH distance (Gray
and Markel, 1976) between the power spectra of the two signals is computed.
Specifically, let ps1 and ps2 denote the power spectra of the original signal and
the phonemically restored signal respectively. The COSH distance is defined as

1

2π

∫ π

−π

{

cosh

(

log

(

ps1

ps2

))

− 1

}

dθ.

The distance can be calculated conveniently in its discrete form as

1

2N

N
∑

n=1

(

ps1 (ωn)

ps2 (ωn)
+

ps2 (ωn)

ps1 (ωn)
− 2

)

. (9)

Consistent with the feature extraction stage, N is set to 512.

Three different classes of phonemes are considered for restoration: Vowels,
voiced and unvoiced consonants. The vowels possess strong temporal conti-
nuity. The spectral continuity of some voiced consonants, e.g. /l/, changes
smoothly but faster than vowels. Unvoiced consonants, especially stops, do
not have good temporal continuity (Stevens, 1998). We use 100 tokens of iso-
lated word utterances from the training portion of the TIDigits corpus to train
each speaker-independent word template. The 2 isolated word utterances (for
each word) of the test speaker are used to train each speaker-dependent tem-
plate. The remaining 55 utterances of the test speaker form the test set. The
noise sources used for masking are white noise, clicks and coughs. As stated
previously, phonemes are masked by overlaying them with each noise source
at a local SNR of -1 dB. The length of burst in each noise source is varied to
yield the desired masking of the phoneme.

Figure 7 shows the performance of our model as measured by the aforemen-
tioned objective criteria with white noise as the masker, using the speaker-
dependent and the speaker-independent templates. The left column shows
the average cepstral distance and the right column shows the average COSH
spectral distance between the original and the phonemically restored signals.
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Fig. 7. Performance of the proposed method for phonemic restoration, with white
noise as the masker. N refers to the distance of the noisy speech signal from the
clean signal. SD refers to the performance of our model with speaker-dependent
templates and SI with speaker-independent templates. The left column shows the
average cepstral distance and the right column the average COSH spectral distance.
The top row shows the results corresponding to vowels, the middle row voiced
consonants, and the bottom row unvoiced consonants. For comparison, the results
of the Kalman filter model (KF) described in Section 6, are also shown.

For comparison, the distances between the clean and the noisy signals are
also shown. In the top row we display the results of restoration for vowels.
The middle row gives the results for voiced consonants, and the bottom row
for unvoiced consonants. The results shown are the average of all signals in
each class in the test set. The data exclude those signals which are incor-
rectly recognized by the missing data ASR; recognition accuracy is 89.9%. To
amplify the differences between various methods of restoration, the distance
measures in Fig. 7 are plotted to different scales for the three different classes
of phonemes. If a phoneme is perfectly restored, the distances of the restored
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Fig. 8. Phonemic restoration results with clicks as the masker. See Figure 7 caption
for notations.

signal from the original clean signal are 0 in both measures. Low values of the
distance measures after the restoration of voiced phonemes indicate high qual-
ity synthesis. The restoration of the unvoiced consonants, especially with the
use of speaker-dependent templates, is also good. Note that the performance
is similar across both the measures. As evident from the figure, the overall
performance of the model with speaker-independent template is not signifi-
cantly worse than that with speaker-dependent template. Improved listening
experience, though, is observed with the use of speaker-dependent template.

Figure 8 shows the corresponding performance with clicks as the masker.
With the use of clicks as the masker, restoration of vowels is slightly better
compared to that with white noise but the restoration of voiced consonants is
slightly worse. The performance in restoring unvoiced consonants is similar to
that with white noise. From Fig. 8, we can also see that clicks are less effective
in masking phonemes than white noise, as is evident from the correspond-
ing distances of the noisy speech signals from the original clean signals. The
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Fig. 9. Phonemic restoration results with cough as the masker. See Figure 7 caption
for notations.

accuracy of the missing data recognizer is 89.2% with clicks as the masker.

Figure 9 shows the corresponding performance of our model with cough
as the masker. Vowels are restored to very high quality. The performance
in restoring consonants is similar to that with clicks. Comparing Fig. 8 and
Fig. 9, we can see that cough is a weaker masker than clicks, especially for
voiced phonemes. The accuracy of the missing data recognizer is 92.9% with
cough as the masker.

The results also indicate that the performance in restoring consonants is best
when white noise acts as the masker. This is not surprising; the perceptron
classifier used for frame-level labeling of reliability is trained with white noise
as the masker (Section 3.2) and hence performs best on the subset of the
test signals which use white noise for masking too. As indicated by the COSH
spectral distance, the performance in restoring vowels is better when clicks and
cough are the maskers than when white noise is the masker. This indicates that
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the spectral tracking and smoothing operations are most effective for clicks and
cough. This also illustrates that the distance in (9) is more sensitive to the
smoothing action than that in (8). Finally, the performance is better when
cough is used as the masker than when clicks are used. This might be due
to cough being a weaker masker of speech than clicks, especially for voiced
phonemes. In summary, the results indicate that the model is able to restore
all classes of phonemes, with a spectral quality close to that of the original
signal.

5.1 Contribution of spectro-temporal continuity and PSOLA to restoration

Our model of phonemic restoration has three contributing parts; bottom-up
spectro-temporal continuity based restoration, top-down schema-based restora-
tion, and pitch synchronization using PSOLA. In order to examine the con-
tribution of each part in detail, we evaluate the performance of our system
without one of these parts. First, the use of T-F masks of reliability based on
spectro-temporal continuity results in an increase in the accuracy of recogni-
tion. Accuracy with only frame-level labels is 86.2% with white noise as the
masker, 89.1% with cough as the masker and 86.3% with clicks as the masker.
This is because the missing data ASR when using frame-level masks for decod-
ing (Section 4.1), treats all frequency units in a frame labeled 0 as unreliable.
The additional recovery of reliable T-F units in a frame labeled 0 increases
the accuracy by 3.46% on average, or decreases the error rate by 27.6%. Since
PSOLA is applied on the restored frames, it does not affect the recognition
results.

We next examine the effects of spectro-temporal continuity and PSOLA
on the distance measures of (8) and (9). We select one of the masking noise
sources, white noise, for illustration. Fig. 10 shows the influence of spectro-
temporal continuity on the performance of our model. Similar to Fig. 7, the
two distances in Fig. 10 are plotted to different scales for different classes of
phonemes. This helps to amplify the differences in the performance of our
model with and without the use of spectro-temporal continuity. Restoration
of all classes is almost always better with the use of T-F masks of reliability
based on spectro-temporal continuity. The biggest gain occurs in the case
of restoration of vowels. This is as expected because the vowels possess the
strongest spectro-temporal continuity.

We next examine the effect of PSOLA. Though our explicit motivation for
using PSOLA is to provide pitch synchronization, it also affects the spec-
trum of the synchronized frames and hence affects the two distance measures.
Fig. 11 shows the influence of PSOLA on the performance of our model. The
performance is almost always better with the use of PSOLA. As observed with
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Fig. 10. Influence of spectro-temporal continuity (CO) on the performance of the
proposed method in restoring phonemes masked by white noise. “-CO” refers to the
performance of our model without the use of spectro-temporal continuity.

the use of spectro-temporal continuity, the biggest gain occurs in the case
of restoration of vowels. The periodicity property of vowels is less corrupted
by the addition of masking sources, compared to properties of consonants.
Hence the use of PSOLA, which utilizes interpolated pitch information, works
best for vowels. We also evaluate the performance without the use of either
PSOLA or spectro-temporal continuity to examine the contribution of schema-
based restoration alone. Note that the effects of PSOLA and spectro-temporalk
continuity are not always additive. Fig. 12 shows the combined influence of
PSOLA and spectro-temporal continuity on the performance of our model.
The performance is always better with the use of both spectro-temporal con-
tinuity and PSOLA. The biggest gain occurs in the case of restoration of vowels
due to the aforementioned reasons. Figures 10, 11 and 12 together show that
the contribution of spectro-temporal continuity and PSOLA to restoration
are much smaller compared to the contribution of schema-based restoration.
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Fig. 11. Results of excluding PSOLA (PS) after restoration. “-PS” refers to the
performance of our model without the use of PSOLA.

5.2 Results with ideal binary masks

To reveal the full potential of the proposed model and additionally eval-
uate our mask generation methods, we test our model with the use of ideal
frame-level and T-F binary masks. We again use white noise as the masker
for illustration. The performance with ideal frame-level binary masks is shown
in an earlier study (Srinivasan and Wang, 2003). An ideal frame-level mask
assigns 1 to those frames that have stronger speech energy and assigns 0 other-
wise. Recognition accuracy is 87.5% with ideal frame-level masks, a reduction
in error rate of 9.4%. Fig. 13 shows the performance of our model using the
estimated and ideal frame-level masks. Notice that the performance with the
use of estimated masks is close to that with the use of ideal masks in the
case of unvoiced consonants while the difference is higher for the restoration
of voiced phonemes. This is probably due to SFM of noisy frames not being
consistently high enough at the SNR considered in this study.
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Fig. 12. Results with only schema-based restoration of phonemes masked by white
noise. “-PS-CO” refers to the performance our model without the use of either
PSOLA or spectro-temporal continuity.

We now consider the performance with the use of ideal T-F binary masks.
An ideal T-F binary mask is obtained from (3) by substituting the power
spectral density coefficient of the clean speech signal for the power spectral
density coefficient of the filtered signal. Recognition accuracy is 92.6% with
ideal T-F masks, a reduction in error rate of 26.7%. Fig. 14 shows the perfor-
mance of our model using the estimated and ideal frame T-F masks. As shown
by the reduction in error rate, the performance improvement is significant with
the use of ideal T-F masks when compared to the performance with the use of
estimated T-F masks. This is probably due to a number of factors, including
tracking by Kalman filtering not being perfect and the use of a constant value
for δ. Also note that all classes of phonemes are restored to a very high quality,
when using the ideal T-F masks, highlighting the potential of our approach.
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Fig. 13. Results with ideal frame-level masks. The above figure compares the restora-
tion performance of the proposed method using estimated and ideal frame-level (IF)
masks. “+IF” refers to the performance of our model using ideal frame-level masks.

6 Comparison with a Kalman Filter Model

We compare the performance of our model with the Kalman filter based
model of Masuda-Katsuse and Kawahara (1999), which is a systematic study
on phonemic restoration and produces good results. They use cepstral track-
ing with Kalman filtering according to the model in (4) and (5) to predict and
restore the masked frames. The variance of the noise in the observation model
of (5) is estimated to be proportional to the reliability of results from a previous
simultaneous grouping process (based on the harmonicity cue) for the voiced
speech signal. This strategy can not be employed when speech additionally
contains unvoiced components. For the purpose of comparison with our model,
we therefore use the same values for this variable as described in Section 3.2.
Additionally, as described in our mask generation stage, we perform one step
backward Kalman smoothing. Figures 7, 8 and 9 show the performance of the
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Fig. 14. Results with ideal time-frequency masks. The above figure compares the
performance of the proposed method in restoring phonemes using estimated and
ideal time-frequency (ITF) masks. “+ITF” refers to the performance of our model
using ideal time-frequency masks.

Kalman filter for various classes of restored phonemes.

Under both objective criteria discussed in Section 5, our method outper-
forms the Kalman filtering model significantly. Notice that except in restoring
vowels, our model outperforms the Kalman filter model even without the use
of PSOLA (Figures 7 and 11). Similarly, except in restoring vowels, the perfor-
mance of our model is better with the use of frame-level masks alone (Figures 7
and 13). Note that vowels are effectively restored by the Kalman filter with
sufficient spectral quality, but the restoration may not be very natural. Fig-
ure 15 (a) shows the resulting pitch track after restoration of the approximant
part /j/ in the diphthong /aj/ in the utterance ‘Five’, using the Kalman fil-
ter model. The pitch track is discontinuous. This illustrates that the spectral
magnitude restoration by Kalman filtering alone may reduce the naturalness
of speech, just as the spectral magnitude restoration by our model without
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the use of PSOLA (see Section 4.3).
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Fig. 15. Resulting pitch information after the restoration of the approximant part
/j/ in the diphthong /aj/ in the word ‘Five’. (a) The pitch information extracted
from the resynthesized signal using the Kalman filter model. For comparison, the
pitch information extracted from the resynthesized signal using speaker-independent
restoration, with pitch synchronization using PSOLA is also shown in (b).

Unvoiced consonants have weak spectro-temporal continuity with neighboring
phonemes and need prior knowledge for their restoration. Hence, our method
performs substantially better than the Kalman filter model in restoring them.
Figure 16 (a) shows the results of restoration of the unvoiced stop consonant
/t/ using the Kalman filter model. As there is no spectro-temporal continuity
between this phoneme and the preceding phoneme, the Kalman filter model
is unable to restore the stop consonant. The rapid change in the spectrum
causes inaccurate estimation of the AR parameters and hence tracking by
the Kalman filter breaks down. The performance of our method in restoring
voiced consonants is also superior to that of the Kalman filter. The perfor-
mance of the Kalman filter model improves when clicks and cough are used as
maskers (Figures 8 and 9). This shows that errors in the identification of the
noisy regions affects our model slightly more than it does the Kalman filter
model. Our model restores only those frames which are labeled unreliable in
the mask generation stage (Section 3.2). Kalman filter affects the information
in not only the frames marked 0 but also the neighbors of such frames. This
is due to the smoothing action of the Kalman filter. Thus, if the neighbor of
an unreliable frame is noisy and the mask generation stage mislabels it as 1,
then the backward Kalman smoothing reduces the noise in this frame too.
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Fig. 16. (a) The restoration of the masked phoneme /t/ in the word ‘Eight’ by the
Kalman filter model. For comparison, the restoration using the speaker-independent
(SI) template, is also shown in (b).

7 Discussion

We have presented a schema-based model for phonemic restoration, which
performs significantly better than a Kalman filtering model. As stated earlier,
the problem for any filtering/interpolation method occurs when the speech
spectrum changes rapidly. Hence, such methods perform best for voiced pho-
nemes (especially vowels) and worst for unvoiced consonants. Models based
on temporal continuity cannot restore a phoneme that lacks continuity with
its neighboring phonemes. Our model is able to restore such phonemes by
top-down use of word schemas. Hence, for phoneme reconstruction, we sug-
gest that learned schemas should be employed. Such schemas represent prior
information for restoration.

Our model also considers bottom-up continuity in restoration by tracking
and filtering the cepstral coefficients. This is similar to the sequential grouping
process in the model of Masuda-Katsuse and Kawahara (1999). The difference
primarily is in the use of filtered output. Specifically, their model uses the
filtered output in all frequency units of a noisy frame. Their approach works
well when speech is fully voiced. When speech additionally contains unvoiced
consonants, the filtered output may be significantly different from the desired
output. In contrast, our model predicts which frequency units in a noisy frame,
after filtering, might be close to the desired output and uses only those units
for bottom-up restoration.
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A system using a speech recognizer for restoration has been described previ-
ously by Ellis (1999). His study, however, does not address key issues concern-
ing recognition of masked speech, identification of dominant speech regions in
the noisy speech input and resynthesis of speech (from ASR output labels) for
restoration of noisy speech regions. Our model utilizes bottom-up properties
of noise to identify the noisy regions in the input signal and applies missing
data techniques for recognition based on reliable regions. The use of missing
data ASR results in high accuracy of recognition, critical for any system us-
ing a speech recognizer for restoration. The use of dynamically time warped
templates (based on results of recognition) for restoration followed by pitch
synchronization results in high fidelity of the resynthesized phonemes.

Our model of phonemic restoration addresses sequential integration using
both bottom-up spectral continuity and top-down schemas. We have shown
that the use of bottom-up spectral continuity increases the recognition accu-
racy and given the recognition results, the top-down use of schemas enhances
the original noisy signal for possible use in the following applications. The
model can be used in conjunction with existing, predominantly bottom-up,
CASA systems to recover masked data and, especially, to group unvoiced
speech with voiced speech. Schemas, when activated, can provide top-down
construction in these systems. The model may also be used for restoring lost
packets in mobile and internet telephonic applications. Though the motiva-
tion behind masking entire phonemes is to be consistent with experiments on
phonemic restoration (Warren, 1999), real-world noise may corrupt only parts
of a phoneme or several phonemes at the same time. Our model can handle
these conditions well as long as the masking of the speech data does not cause
recognition errors. This is because the system neither makes use of the knowl-
edge that a complete phoneme is masked nor knows the number of masked
phonemes.

The distribution of spectral tokens in words such as “Eight” may have more
than one mode. Robust training of templates may not be adequate for such
words. Template training by clustering should further enhance the ability of
the generated templates to handle the variability in speaking style. Our model
currently considers only a limited role of bottom-up cues for phonemic restora-
tion. The energy in the unreliable T-F units plays an important role in phone-
mic restoration (Samuel, 1981). The spectral shape of the noise is related to
its ability to mask a phoneme. There is also an optimal level of noise energy
which results in most effective phonemic restoration (Bashford et al., 1992;
Warren, 1999). However, the missing data ASR treats all these information
merely as counter-evidence for recognition of certain models. Effective use of
the information in the masked regions could help to increase the accuracy of
the ASR. Our method of estimating the mask for missing data recognition is
relatively simple, as it is based on only 2 frame-level and 1 intra-frame fea-
tures, and masks may be more accurately estimated using a large number of
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features (Seltzer et al., 2000). How to generate a binary mask for missing data
recognition, when maskers are non-broadband sound sources, also needs to be
addressed. Future work will attempt to alleviate these problems by integrat-
ing the model with existing CASA systems (see e.g., Hu and Wang, 2003).
Also, our model is based on recognition and hence not applicable when recog-
nition fails. Combining recognition with top-down restoration and bottom-up
cues should help address this problem. With online detection of recognition
failures (Huang et al., 2003), bottom-up processing may be solely applied for
phonemic restoration when recognition fails.
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