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Abstract

The advent of networking technologies and high perfor-
mance transport protocols facilitates the service of stor-
age over networks. However, they pose challenges in in-
tegration and interaction among storage server application
components and system components. In this paper, we put
forward a component, called Unifier, to provide more effi-
cient integration and better interaction among these com-
ponents. Unifier has three notable features. (1) Unifier
integrates cache management and communication buffer
management. It offers a single copy data sharing among
all components in a server application safely and concur-
rently. (2) It reduces memory registration and deregistra-
tion costs to enable applications to take full advantage of
RDMA operations. (3) It provides means to achieve adap-
tation, application-specific optimization, and better cooper-
ation among different components.
This paper presents the design and implementation of Uni-

fier. This component has been deployed and evaluated in a
version of PVFS1 implementation over InfiniBand. Exper-
imental results show performance improvements between
30% and 70% over other approaches. Better scalability is
also achieved by the PVFS I/O servers.
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1 Introduction
Network storage systems are increasingly becoming a

mainstream solution for I/O intensive applications in vari-
ous domains, such as data-centers, high performance com-
puting systems, and the corporate computing environments.
Network storage systems provide potentials to achieve
high performance, scalability, reliability, and manageabil-
ity. However, performance of network storage systems is
often limited by the low performance of network subsys-
tem [1, 2, 22, 28, 29].
The advent of networking technologies and high perfor-

mance transport protocols facilitates the service of stor-
age over networks. Emerging network architectures such
as Virtual Interface (VI) Architecture [15] and InfiniBand
Architecture [21] (IBA) provide two key features, namely
user-level networking and remote direct memory access
(RDMA), to offer low latency, high throughput, and low
CPU overhead communication in network storage systems.
These enabling technologies eliminate or reduce costs of
memory copy, network access, interrupt, and protocol pro-
cessing in the network subsystem. However, there are a
number of challenges to be addressed [39, 23, 16, 36, 37].
One of the most significant issues is efficient communica-
tion buffer management to reduce memory registration and
deregistration costs.
Another source of performance limitation in network stor-

age systems is the lack of integration among various sys-
tem components (the file cache, the file system, and the
network subsystem) and the storage server applications in
the general-purpose operating system [18, 25, 4]. This of-
ten results in redundant data copying, multiple buffering,
and other performance degradation [25]. Redundant mem-
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ory copying leads to high CPU overhead and limited server
throughput. In networks such as IBA that provides compa-
rable performance to the memory system, this can be the
primary performance bottleneck. Multiple buffering of data
wastes memory. Consequently, the effective size of cache
space is reduced, increasing cache miss rates and disk ac-
cesses. In addition, the narrow interface [18, 4, 3, 19, 31]
between system components and applications becomes a
barrier to achieving efficient cooperation.
In this paper, we present the design, implementation, and

evaluation of Unifier. Unifier is a component in server ap-
plications such as network storage system servers and other
I/O serving applications (e.g., Web servers). It attempts to
enable efficient interaction and integration among all com-
ponents of the server application. Unifier is designed to im-
prove the performance of server applications. In particular,
Unifier has three main goals. First, Unifier eliminates re-
dundant data copying in the I/O path. Each data object can
have only one copy in the whole system which is shared by
all application components and system subsystems safely
and concurrently. Unifier also eliminates multiple buffering
of data, thus the cache size is effectively increased. Sec-
ond, Unifier serves as a buffer manager to provide buffers
to RDMA operations in the emerging network technologies.
Unifier tries to manage these communication buffers in a
manner to reduce memory registration and deregistration
costs as much as possible. Therefore, the server application
can take full advantage of RDMA-capable networks such
as InfiniBand. Third, Unifier provides an application-level
cache to achieve cache adaptivity and application-specific
cache optimization. It provides expressive interfaces to
achieve better cooperation among components.
A prototype of Unifier was implemented as a stand-alone

component. It has well-defined interfaces. It also allows
flexible accesses to the underlying file and storage systems
via various interfaces. This component can be deployed in
a wide range of server applications as both an application-
level cache manager and a communication buffer manager
for RDMA operations. In this paper, we focus on the de-
sign of Unifier over InfiniBand network and its deployment
in an implementation of PVFS1 over InfiniBand [36, 37].
Our central performance results are the performance of the
PVFS1 implementation with Unifier, in addition to other
micro-benchmarks to measure the cache performance itself.
Experimental results show that the Unifier can offer a fac-

tor of improvement between 1.3 and 2.7 over the existing
approaches in a simple client/server architecture. The Uni-
fier method also increases the effective cache size due to the
integration of communication buffers and the cache buffers,
leading to increased performance. Performance results of
PVFS1 with Unifier show performance improvements be-
tween 30% and 70% over two other methods often used in
the PVFS I/O server implementation. Better scalability is
also achieved by the PVFS I/O servers.
The rest of the paper is organized as follows. We first intro-

duce PVFS and InfiniBand in Section 2. Section 3 describes
our motivation. Section 4 presents the design of Unifier, in-
cluding its architecture, API, potential benefits, and design
issues. Sections 5 gives an overview of the prototype imple-
mentation of Unifier. The performance results are presented
in Section 6. We examine related work in Section 7 and
draw our conclusions and discuss future work in Section 8.

2 Overview of PVFS and InfiniBand
In this section, we give a brief overview of both PVFS and

InfiniBand.

2.1 Overview of PVFS
PVFS is a leading parallel file system for Linux cluster

systems. It was designed to meet increasing I/O demands
of parallel applications in cluster systems. As of this writ-
ing, PVFS Version 2 (PVFS2) [27] has just been released.
The PVFS overview in this section is about PVFS1, though
some basic concepts may be applied to PVFS2 as well.
As shown in Figure 1, a number of nodes in a cluster sys-

tem can be configured as I/O servers and one of them is also
configured to be the metadata manager. It is possible for a
node to host computations while serving as an I/O node.
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Figure 1. Typical PVFS setup.
PVFS achieves high performance by striping files across

a set of I/O server nodes to achieve parallel accesses and
aggregate performance. An I/O daemon runs on each I/O
node and services requests from compute nodes, particu-
larly read and write requests. Thus, data is transferred di-
rectly between I/O servers and compute nodes. PVFS uses
the native file system on the I/O servers to store individual
file stripes. A manager daemon runs on a metadata man-
ager node. It handles metadata operations involving file
permissions, truncation, file stripe characteristics, and so
on. Metadata is also stored in the local file system. The
metadata manager provides a clusterwide consistent name
space to applications. In PVFS, the metadata manager does
not participate in read/write operations.

2.2 Overview of InfiniBand
The InfiniBand Architecture [21] defines a System Area

Network for interconnecting both processing nodes and I/O
nodes. It provides a communication and management in-
frastructure for inter-processor communication and I/O.
Both channel and memory semantics are available for

transferring data. In channel semantics, send/receive oper-
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ations are used for communication. In memory semantics,
Remote Direct Memory Access (RDMA) write and read op-
erations are used. A basic requirement in the current SDK
of InifniBand is that data buffers should be registered before
any communication.

3 Motivation

In this section, we first discuss three data transfer methods
in PVFS over TCP/IP. Then, we analyze issues with these
methods when we design and implement PVFS over Infini-
Band. This analysis serves as our motivation.

3.1 PVFS Data Transfer over TCP/IP

The I/O path in a PVFS I/O server combines both network
I/O operations and file I/O operations. Therefore, the effi-
ciency of PVFS I/O servers relies on performance of both
operations, as well as the interaction between their associ-
ated subsystems: the network subsystem and the file sys-
tem. In the implementation of PVFS over TCP/IP, three
data transfer methods can be provided, reflecting different
interactions.

Normal: In the Normal method, a PVFS server translates
a PVFS read request into two separate calls: a file read call
and a network write call. Similarly for a PVFS write re-
quest, it is translated to a network read call and a file write
call. As analyzed in [32], there are usually four context
switches. There are at least two data copies: copy between
the user buffer and the file cache, and copy between the user
buffer and the network buffer.

Mmap: The Mmap method maps the requested part of a
file into the application user space using the system call
mmap(2). Then an application read or write on the mapped
buffers results in a file read or write. This avoids data copy
between the user buffer and the file cache. But the context
switches remain same. The improvement comes at the cost
of several constraints, complicated memory management,
and error-prone pitfalls [32].

Sendfile: sendfile(2) is a system call providing direct
data transfer between two file descriptors, including a TCP
socket descriptor. Using sendfile, a PVFS server can do the
file read and the network write together in one call. This
reduces not only context switches, but also two data copies
as mentioned in the Normal method. Over networks with
Zero-copy TCP/IP implementation, the Sendfile method en-
ables Zero-copy I/O path for transmitting data from the
file to the network [32]. However, there is no support for
recvfile-like semantics. That is, to serve a PVFS write re-
quest, the I/O server should follow either the Normal or the
Mmap method.
Note that in the PVFS implementation, PVFS write uses

the Normal method. PVFS read uses the Mmap method or
the Sendfile method. Users can choose one of them when
they compile PVFS.

3.2 Data Transfer Issues in PVFS over InfiniBand

In [36], we designed and implemented a version of PVFS
(PVFS 1.5.6) over InfiniBand. Our results show that re-
designing PVFS over the InfiniBand native transport layer
is worthy with up to 3 times improvement over TCP/IP on
the same IBA network when performance of the local file
system is well balanced compared to the network system.
The Normal and Mmap methods can be applied to PVFS
over InfiniBand when we use the InfiniBand native transport
layer, while we cannot use the Sendfile method directly. In
addition, there are several issues to be addressed to further
improve PVFS performance.

Data copying between different components: I/O data is
copied between the file cache and PVFS server communica-
tion buffers. This happens when the Normal method is used.
It also happens when we want to avoid dynamic memory
registration and deregistration in the Mmap method. Data
copying incurs high per-byte overhead for PVFS read and
write operations.

Explicit communication buffer pool: To avoid expensive
dynamic memory registration and deregistration, an often
used solution is to pre-register a list of buffers and to keep
using them for all communication. To serve a large num-
ber of requests concurrently, a significant amount of mem-
ory space should be allocated. Since these buffers are not
swappable, they actually reduce the effective size of main
memory, and thus the size and hit rate of the server’s file
cache.

Data duplication in communication buffers: When we
use an explicit communication buffer pool, same data object
may be in multiple communication buffers to serve different
requests which access the same data object. This duplica-
tion reduces the efficiency of the communication buffers,
leading to a possible increase of the communication buffers
and service stalls.

Dynamic memory registration and deregistration: This
happens when we use the Mmap method. As shown in [36],
up to 35% performance can be degraded due to the costs of
memory registration and deregistration.
These issues have a root in the lack of integration and in-

teraction among the PVFS transport layer over InfiniBand,
the file/storage component, and the underlying I/O subsys-
tem. To solve these issues, we propose a component to unify
the communication buffer space and the cache space. We
deploy an application-level cache in this component. The
cache space is directly used for communication. We call this
component Unifier, working as both a cache manager and a
communication buffer manager. It provides pre-registered
communication buffers without reducing the effective cache
size. It also offers other features to enable better coopera-
tion with related components. We describe the detailed de-
sign of Unifier in Section 4 and a prototype implementation
in Section 5.
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4 The Design of Unifier
In this section, we present the design of Unifier. We start

with its basic software architecture and its application pro-
gramming interface (API), followed by its potential benefits
and design issues.

4.1 Basic Software Architecture
Unifier is designed to provide efficient interaction between

components in PVFS I/O servers. The basic architecture
and its interaction with other components are shown in Fig-
ure 2.
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Figure 2. Basic software architecture of Uni-
fier.

The control flow is shown by the dotted lines in Figure 2.
Unifier, as a central hub, interacts with the request man-
ager, the transport component, and the storage component.
First, it receives requests from the request manger. Second,
it provides cache buffers to serve these requests. Lastly, for
a read request, it first talks to the storage component to read
the requested data into its cache buffer if data is not cached.
Then, it provides the same buffer to the transport component
to transmit data to the client. For a write request, it first asks
the transport component to receive data into its cache buffer.
These data then is cached in the Unifier’s cache buffer and
flushed to the storage component at appropriate time.
The data flow is shown by the solid line. The data flow

is simple. All data is placed in the Unifier’s cache buffers.
The cache buffers are also used by the transport component
for communication, as well as the storage component for
file and storage I/O operation. Given a data object, there is
only one copy in the Unifier’s cache buffers shared by all
components safely and concurrently.
Unifier provides two main functionality. First, it acts as a

cache manager, maintaining an application-level cache. It
also hides the details of the storage component. Second, it
acts as a buffer manager, providing buffers to the transport
component. The cache buffer pool is managed in a way to

enable efficient RDMA operations. Further, it intends to op-
timize cache management for better network performance,
such as buffer coalescing and variable cache units.

4.2 Unifier Interface
The underlying observation that shapes our design of the

Unifier API is that a high-performance API should adopt
the lessons learned from the design of the high-performance
server architectures. As a result, we provide the following
features in the Unifier API.

Supporting structured data access: Structured data ac-
cess is a common access pattern in many applications. Na-
tive structured data access support in each component is a
key for high performance [33, 37, 13]. The Unifier API
should cater to this requirement and enable possible opti-
mizations for structured data access.

Supporting asynchronous operations: Asynchronous op-
erations provide opportunities to overlap I/O operations
with other processing. Network I/O operations in IBA are
asynchronous. File and storage systems have been evolv-
ing to provide asynchronous I/O support [6]. Unifier API
should provide an interface to support asynchronous opera-
tions and to take advantage of the advances in both network
and storage I/O.

A more expressive interface: Significant research work
has pointed out that narrow interfaces in the existing sys-
tems have become a barrier for different subsystems to ex-
change their semantic information to improve system per-
formance [19, 31, 4]. A more expressive interface is ex-
pected, which allows more cross-subsystem optimizations
and more flexible extended services.
Recognizing the importance of these features, we define a

simple yet powerful Unifier’s interface. This section briefly
describes its interface. A complete discussion of the whole
interface can be found in the PVFS2 document [27]. Cur-
rently, the interface includes five types of calls: 1) Post a
request; 2) Check the request completion; 3) Query cache
information; 4) Completion notification; 5) Release re-
sources. As an example, we use Unifier post read
to show how we achieve the aforementioned features in the
Unifier API.

Unifier post read(int fd,
ACCESS Agg * access info ,
BUFFER Agg * buffer info,
INFO Agg * semantic info,
COMP Info * comp info)

In Unifier post read, ACCESS Agg aggregates in-
formation of a structured access. This aggregate structure
can be easily represented by an MPI Datatype if other com-
ponents accept Datatype directly [13], or a representation
of structured access. INFO Agg contains semantic infor-
mation the caller wants to pass to the Unifier. Currently,
we only support cache policy selection and the cache unit
size. We intend to extend this to convey more informa-
tion to Unifier for optimization and for differential services.
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COMP Info guides Unifier to set up the completion notifica-
tion. The Unifier post read operation returns buffers which
hold the requested data. We use BUFFER Agg to aggre-
gate a list of buffers. These buffers will be provided to the
transport component for communication.

4.3 Potential Benefits
The primary goal of Unifier is to improve the performance

of PVFS I/O servers. It offers the following potential bene-
fits.

1. Zero-copy I/O serving: Unifier eliminates data copy-
ing between PVFS server components in the I/O path.
Further, it maintains an application-level cache which
enables the storage component to bypass the operating
system file/storage cache without losing performance.
Therefore, Unifier can achieve the minimal number
of data copies to the extent permitted by the hard-
ware. Zero-copy I/O serving path is easily achieved
in a typical I/O server hardware setup over InfiniBand,
as shown in Figure 2.

2. Increased cache size: Unifier eliminates all multiple
buffering. Each object can have only one single copy
in the Unifier’s cache buffer. This actually increases
the effective cache size, and thus the cache hit rate.
Considering the increasing gap between the memory
system and the disk system and the increasing gap be-
tween the network system and the disk system, a small
increase in the cache hit rate can improve the perfor-
mance of I/O intensive applications significantly.

3. Reduced memory registration and deregistration
costs: A part if not all of the cache buffers in Uni-
fier can be pre-registered for communication without
any memory registration or deregistration cost on these
buffers.

4. Native structured data access support: We kept the
structured data access support in mind from the begin-
ning when we designed Unifier. This support not only
fits application common access patterns well, but also
provides tremendous optimization potential in both
Unifier and other components. For example, the stor-
age component can perform optimizations such as ac-
tive sieving on a structured data access [38].

In this paper, we focus on the above benefits. Many
other potential benefits, such as providing cache informa-
tion to the request scheduler for cache-aware scheduling,
application-controlled caching policies, and moving hot
data into the memory of the IBA Channel Adapter, are not
discussed.

4.4 Design Issues
Unifier and the Unifier-based I/O server software architec-

ture show very attractive potential benefits, however, several

issues need to be addressed for this architecture to be used
in real systems to achieve high performance. We consider
the following three important issues, namely adaptive PVFS
I/O server cache, buffer sharing, and the size of registered
cache buffers.

4.4.1 Adaptive PVFS I/O server Cache
Application-level cache has been popularly used in many
server applications, such as database management ap-
plications, web server applications [34], and Grid data
servers [5], We could borrow these designs into the design
of PVFS I/O server cache. We could also reuse the design
of the system cache for general-purpose systems. However,
the reason why we consider the design of PVFS I/O server
cache is an issue is that applications using PVFS have differ-
ent I/O workload characteristics and I/O requirements from
that on other systems [35]. Compared to database applica-
tions, PVFS applications may have more diversified access
patterns. On the other hand, compared to applications on
general-purpose systems, PVFS applications may have less
variation in access patterns. Therefore, the design of PVFS
I/O server cache should reflect these differences and provide
high performance in general. An adaptive cache to cater to
various requirements is expected.
There is no “one size fits all” solution for a cache with

fixed policies [30]. In our design, we attempt to increase
the cache adaptivity from two aspects. First, we explicitly
expose cache information to other components. Research
work in [8, 4] has shown that applications can adapt their
own behavior to that of the OS for improved performance
with cache information. Unifier provides explicit cache in-
formation queries to enable adaptation. Second, we allow
applications to specify their cache requirements. These re-
quirements are passed down to Unifier. Consequently, dif-
ferent cache policies can be applied, different cache units
can be used. Note that Unifier only provides best-effort ser-
vices to these requirements. It is possible that some of them
may be overruled [10].

4.4.2 Buffer Sharing
In Unifier, network read and write and file/storage read and
write all share a single copy of a given data object. This
results in problems of synchronization and consistency in
buffer sharing. Techniques such as immutable buffers used
in IO-Lite [25] can be used to solve these problems. Im-
mutable buffers provide read-only buffer sharing to elimi-
nate synchronization and consistency problems. However,
it comes with a price that that data can not generally be
modified in place. As also mentioned in IO-Lite, immutable
buffers are not suitable for scientific applications where in-
place modification is a must.
Because scientific applications are the main target of

PVFS, we propose other means to solve the buffer shar-
ing problems. We use an allocate-release model to manage
and control sharing on the cache buffers. The main design
points are as follows:
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Single owner: The only owner of all cache buffers is Uni-
fier. This implies that Unifier has control on all buffer shar-
ing. This method reduces the design complexity signifi-
cantly.

Allocate: Unifier allocates the cache buffers to each opera-
tion. When a conflict sharing occurs, the allocation will be
deferred. When there is no conflict sharing, the same cache
buffers may be allocated to several concurrent operations.
This enables safe and concurrent sharing.

Release: When an operation is granted with the cache
buffers, it should release these buffers to Unifier when it
completes.
With this design, Unifier supports both read-only sharing

as well as write sharing. I/O data can be modified in place
if it is not currently shared. Therefore, Unifier provides
the sendfile semantics over InfiniBand transport protocols,
which transmits data in the cache buffers directly to the net-
work without any copy. It also provides a recvfile-like sup-
port that data received by the network is placed directly into
the cache buffers which are associated with a data object in
file/storage systems.
There are three reasons why we support the recvfile-like

semantics which is not supported by the operating system
on the traditional network protocols. First, the IBA network
performance is comparable to the system memory system.
Second, RDMA operations provide a “shared-memory il-
lusion”. To some extent, a process on a remote machine
could be equally considered as a local process running on
the same machine. Third, write sharing is very little in par-
allel applications [35]. A PVFS write can be done without
affecting others. Therefore, providing recvfile-like support
over InfiniBand can improve performance of PVFS writes
without costs in common cases. Even when write sharing
does occur, since the network performance is high, the cost
to maintain writing sharing is low.

4.4.3 The Size of Registered Cache Buffers
Another main goal of Unifier is to reduce memory registra-
tion and deregistration cost imposed by RDMA operations.
Ideally, a part if not all cache buffers can be registered and
be always ready for RDMA operations. However, there are
several tradeoffs to be addressed to achieve this objective.
First, the size of Unifier’s cache should be as large as pos-
sible. Unifier should use all free memory as cache to in-
crease cache hit rate. Due to dynamic memory demands,
a static size may cause virtual memory penalties. Second,
as many cache buffers as possible should be registered dur-
ing the cache initialization. However, the size of registered
cache buffers should be limited not to degrade the system
performance. Because registered buffers are pinned and not
swappable, the effective size of physical memory used for
other purposes is reduced.
In our design, the cache buffers are divided into two

groups: Ready and Raw. Ready buffers are registered and
resident in the system during the Unifier’s life time. Raw

buffers are allocated during the cache initialization, but
not registered. Communication on these buffers needs on-
the-fly registration and deregistration. The size of Ready
buffers is projected conservatively according to the estimate
of memory needed by a PVFS server application with its
maximum support of outstanding requests. The size of raw
buffers is the total physical memory size subtracted by the
size of Ready buffers and the size of memory needed by a
PVFS server application with a light load. With this design,
we can achieve a good tradeoff between the cost of mem-
ory registration and deregistration and the cost of potential
virtual memory activities.

5 Implementation
This section gives an overview of the implementation of

the Unifier component and its deployment in PVFS over
InfiniBand.
Unifier is implemented as a user-level component in PVFS

software architecture [27, 36]. As a prototype implemen-
tation, the cache implementation is mostly based on the
file cache implementation in Linux 2.6. Our implementa-
tion supports variable cache unit sizes from 4 KBytes to
64 KBytes. Applications can advise Unifier to choose a
cache unit size for a file when the file is first opened. Unifier
uses the O DIRECT support to read and write file data with
bypass of the system cache. Unifier provides both polling
and callback completion notification. The callback comple-
tion notification depends on the support of callback comple-
tion notification provided by the underlying storage compo-
nent. To support structured data access, our current imple-
mentation uses a list of � offset, length � pairs to represent a
structured data access and cache buffers. This is compliant
with both PVFS1 and PVFS2 implementations where the
request manager interprets the high-level abstraction (e.g.
MPI Datatype) of structured data access.
The deployment of Unifier in PVFS is straightforward, as

shown in Figure 2. In the current implementation, Unifier
provides explicit information queries to the request man-
ager. However, how to make use of the cache information
is under study. We are also working on the adaptive cache
management.

6 Experimental Results
In this section, we provide three sets of results. First

we show the basic results of the network, the file system,
and the memory system. Next, we compare the micro-
benchmark level performance of Unifier with the Normal
and Mmap methods. Lastly, we analyze the performance of
a PVFS implementation over InfiniBand with the deploy-
ment of Unifier. The PVFS implementation over InfiniBand
is based on the PVFS 1.5.6 release. Details can be found
in [36].
All our experiments used the following experimental

testbed. A cluster system consisting of 8 nodes built around
SuperMicro SUPER P4DL6 motherboards and GC chipsets
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which include 64-bit 133 MHz PCI-X interfaces. Each
node has two Intel Xeon 2.4 GHz processors with a 512 kB
L2 cache and a 400 MHz front side bus. The machines
are connected with Mellanox InfiniHost MT23108 Dual-
Port 4x HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The Mellanox Infini-
Host HCA SDK version is thca-x86-0.2.0-build-001. The
adapter firmware version is fw-23108-rel-1 18 0000. Each
node has a Seagate ST340016A, ATA 100 40 GB disk. We
used the Linux 2.4.7-10 kernel. Unless stated otherwise, the
unit megabytes (MB) in this paper is an abbreviation for 2

���

bytes.

6.1 Basic System Performance Results

Performance realized by PVFS applications depends on
the performance of three main subsystems: the network, the
memory, and the file system. Table 1 compares the through-
puts of IBA VAPI Send/Recv, RDMA Write, RDMA Read,
memory copy, file read and write with and without cache. In
the IBA throughput tests, memory registration and deregis-
tration costs are not included. In the memory copying test,
the amount of data copied is 20 MBytes, much larger than
L1 and L2 caches to eliminate cache effect. The bonnie [20]
file-system benchmark is used to test the file system perfor-
mance .

Table 1. Throughput of different subsystems
Subsystem Throughput (MB/s)

VAPI Send/Recv 830
VAPI RDMA Write 830
VAPI RDMA Read 826
Memory Copying 596

File Read w/o cache 20
File Write w/o cache 25
File Read w/i cache 590
File Write w/i cache 476

Memory registration and deregistration costs are crucial
for us to leverage InfiniBand features. Figure 3 shows these
costs with different buffer sizes using Mellanox fast mem-
ory registration extension in VAPI [24]. Note that much
higher costs should be paid if we use VAPI regular memory
registration facilities. We show two types of deregistration.
One is single deregistration, labeled by Dereg. Another is
batched deregistration. Multiple deregistration operations
are done in one call. The batched number is 60. The av-
erage cost of each operation is reported by Batched Dereg.
We can see that the total registration and deregistration costs
are significantly high. This is the reason why we make great
effort in Unifier to reduce these costs.
It can be seen that there is a large difference in bandwidth

realizable over the network and the memory system com-
pared to that which can be obtained to a disk-based file
system without cache effect. However, applications can
still benefit from fast networks for many reasons in spite
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Figure 3. Costs of Memory Registration and
Deregistration.

of this disparity. Data is frequently in server memory due
to file caching and read-ahead when a request arrives. Also,
in large disk array systems, the aggregate performance of
many disks can approach network speeds. Caches on disk
arrays and on individual disks also serve to speed up trans-
fers. Therefore, the following experiments are designed to
stress the network data transfer and independent of any disk
activities. We consider data is cached. The results are rep-
resentative of workloads with sequential I/O on large disk
arrays or random-access loads on servers which are capable
of delivering data at network speeds from a well-balanced
storage system.

6.2 Performance of Micro-benchmarks

In this section, we designed several micro-benchmarks to
show the performance of Unifier. We put Unifier in a sim-
ple client-server environment, which is similar to the PVFS
architecture but simpler. In these tests, a client sends one
or more read or write requests to a server. The server then
serves these requests using three different methods: Nor-
mal, Mmap, and Unifier, respectively. Details of Normal
and Mmap methods are discussed Section in 3.1.

Cached read performance: We first measured the cached
read performance of these three methods. In this test,
all data is in the system cache in the Normal and Mmap
method. All data is also in the Ready cache buffer in the
Unifier method. We used this test to show the best case per-
formance of all methods.
Figure 4 shows the results. The Normal method gives a

peak bandwidth of 324 MBytes/sec. We see a small drop
when the access sizes are larger than 128 KBytes, probably
this is because the increase of the memory footprints affects
the memory copy performance.
In the Mmap method, the memory registration and deregis-

tration costs have a significant impact, particularly for small
access sizes. When the access size increases, the costs of
memory registration and deregistration become less than the
cost of memory copy, this method performs better than the
Normal method.
In the Unifier method, data is cached in the Unifier Ready
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Figure 4. Cached read bandwidth.

cache buffers. Thus, the server can RDMA write data di-
rectly to the client buffer from its Unifier’s cache buffers.
Unifier achieves an improvement of a factor of 2.1 over
the Normal method, a factor of 1.3 over the Mmap method
when the access size is large, a factor of up to 2.7 over the
Mmap method when the access size is small.

Effects of cache size: As discussed earlier, the effective
cache size in each method is different. Given a system with
512 MBytes physical memory, the maximum size of mem-
ory which can be used for cache is around 420 MBytes.
In our test, the server application consumes around 60
MBytes. Then around 360 MBytes memory can contribute
to cache data. The Mmap and Unifier methods can make
full use of these 360 MBytes for caching. However, since
we need some pre-registered communication buffers in the
Normal method, we allocate 20 MBytes for this use, thus,
the effective cache size is around 340 MBytes. Note that
to allow the server to serve a large number of concurrent
requests in a real PVFS configuration, even a larger buffer
pool may be needed. In the Unifier method, the maximum
size of Ready buffers allowed by the system is around 200
MBytes. So that around 160 MBytes Raw buffers are in
the Unifier cache, which requires dynamic registration and
deregistration.
We used a re-read test to show the effects of cache size.

In this test, the client reads a file whose size varies from
300 MBytes to 400 MBytes. This test reads a file sequen-
tially with the block size of 128 KBytes. Then, it reads the
same file again sequentially. The bandwidth achieved by
the second read is reported in Figure 5. We can see that
both the Mmap and the Unifier methods can still hold the
entire file in the cache when its size is not larger than 360
MBytes, while the Normal method can not. When the file
size increases to 380 MBytes, all methods suffer due to the
disk-bound access on a normal IDE disk which can offer a
read bandwidth of 20 MBytes/sec. All methods are compa-
rable. This also shows that the Unifier cache can provide
comparable performance to the system cache with the se-
quential workload.
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Figure 5. Effects of cache size.
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Figure 6. PVFS cached read performance.

6.3 Performance of PVFS1 with Unifier
The test program used is pvfs-test, which is included in the

PVFS release package. We followed the same test method
as described in [11]. That is, each compute node writes and
reads a single contiguous region of size

���
MB, where

�

is the number of I/O nodes in use. The number of I/O nodes
was fixed at four, and the number of compute nodes was
varied from one to four.
Figure 6 shows the cached read performance with differ-

ent methods deployed in an implementation of PVFS over
InfiniBand VAPI from our group. The aggregate bandwidth
realized by all clients is reported. There are two observa-
tions. First, PVFS with Unifier scales better than other two
methods. This is due to the lower CPU overhead needed to
server each request in the Unifier method. In other methods,
either memory copying or memory registration and deregis-
tration consumes significant CPU cycles. Second, in terms
of the peak bandwidth, the Unifier achieves an improvement
of a factor of 1.7 over the Normal method, a factor of 1.3
over the Mmap method.

7 Related Work
There are three main areas which are related to our

work, namely Copy avoidance techniques, Information
techniques, and Networked file and storage systems over

8



RDMA. The literature on each area is large and rich, so we
only cite a few representative samples.

Copy avoidance techniques: Techniques such as
Fbuf [17], Zero-Copy TCP [14], Emulated copy [7], and
Page remapping [2] were mainly proposed to eliminate the
user-kernel data copy. Our work has its roots in these re-
search aimed at reducing memory copy operations. How-
ever, as compared to these research, Unifier is designed to
eliminate all the data copies along the data path includ-
ing the network subsystem, server applications, and the
file/storage subsystem. Perhaps the closest work to ours
in spirit is IO-Lite [25]. IO-Lite is a unified I/O buffer-
ing and caching system for general-purpose operating sys-
tems. It allows applications, IPC, the filesystem, the file
cache, and the network subsystem to share a single phys-
ical copy of the data safely and concurrently. Significant
changes are required for all subsystems to leverage the ad-
vantages of IO-Lite. In contrast, our work has three im-
portant differences. First, our work focuses on specific
server applications for I/O serving, such as PVFS, net-
work storage systems, and web servers. Little intrusion is
made to existing kernel components. Second, Unifier takes
a different approach to provide in-place modification for
write-sharing over RDMA-capable networks. Third, Uni-
fier deploys an application-level cache. Another work close
to ours is network-centric buffer cache organization [26].
Network-centric buffer cache organization avoids redundant
data copying in a pass-through server which acts as a data
conduits over the network for remotely stored data. It also
caches data in a network-ready form for TCP/IP networks.
The network-centric buffer cache is a secondary cache to
the system cache, which requires a copy between them.
Compared to this work, Unifier has its own cache and by-
passes the system cache. No data copying is in the data
path. Also, we make great effort to deal with issues as-
sociated with user-level networking and RDMA operations
which are generally different from TCP/IP protocols.

Information techniques: The idea of exposing OS infor-
mation to enable adaptation has been stated in a rich set
of work. Different approaches have been taken. Exoker-
nel [18] eliminates all fixed, high-level abstractions and ex-
poses all information directly. A library operating system
sits on the Exokernel to provide standard interfaces. In-
fokernel [4] explores kernel information by adding extra
code into a commodity operating system. Gray-box sys-
tems [3] infers OS information by benchmarks and finger-
printing tools without modification of OS itself. The design
and the interface of Unifier reflect the same idea. How-
ever, we provide expressive interface for interaction among
components. We also focus on specific server applications,
instead of general-purpose operating systems.

Networked file/storage systems over RDMA: Direct Ac-
cess File System (DAFS) [23, 16], PVFS over Infini-
Band [36], NFS over RDMA [9], iSCSI extension for
RDMA [12], and many others have leveraged emerging net-

work technologies to design high performance networked
file/storage systems. These work mostly focuses on us-
ing RDMA operations to redesign the transport protocols
and to make transition from traditional TCP/IP networks
to RDMA-capable networks. In contrast, our work centers
around integration and interaction among different compo-
nents in network storage servers over RDMA-capable net-
works.

8 Conclusions and Future Work

Unifier is designed to improve the performance of net-
work storage server applications. It provides three notable
features. First, Unifier eliminates redundant data copying
and multiple buffering in the I/O path. It provide a sin-
gle data sharing among all components in a server appli-
cation safely and concurrently over high performance net-
works such as InfiniBand. Second, the integration of com-
munication buffer management and cache management re-
duces memory registration and deregistration costs as much
as possible. This enables applications to take full advan-
tage of RDMA operations. Third, Unifier provides means to
achieve adaptation, application-specific optimization, and
better cooperation among different components in a server
application.
This paper presents the design and implementation of Uni-

fier. We also deployed and evaluated this component in
a version of PVFS1 implementation over InfiniBand. Ex-
perimental results from a prototype implementation show
performance improvements between 30 and 70% over two
other methods often used in the PVFS I/O server imple-
mentation. Better scalabilty is achieved by the PVFS I/O
servers. The Unifier method also increases the effective
cache size due to the integration of communication buffers
and the cache buffers, leading to increased performance.
Unifier was started as a research component in the design

of PVFS2 [27]. The integration of Unifier with other PVFS2
components, testing, and optimization are underway. We
are also working on exploring other potential benefits, such
as cache-aware request scheduling and variable cache poli-
cies and cache page sizes. The architecture as such could
be used in other server applications such as DAFS, iSCSI
storage servers, and data-center servers. We plan to have
these case studies as our future work.
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