
Upper Bounds for Pursuer Speed
in Rectilinear Grids

Technical Report OSU-CISRC-1/04-TR01

Christopher A. Bohn Paolo A.G. Sivilotti
Department of Computer & Information Science

The Ohio State University
Columbus, Ohio 43210–1277

Email: {bohn,paolo}@cis.ohio-state.edu

Abstract

We define a pursuit-evasion game played on a finite grid and establish the speeds sufficient
for a pursuer to detect all evaders.

I. I NTRODUCTION

In recent years, the US Department of Defense has taken an ever-growing interest in the use
of unmanned aerial vehicles (UAVs) to perform potentially dangerous and potentially dull tasks
such as reconnaissance; the current generation of tactical UAVs, however, are hampered by a field
of view that has been compared to a soda-straw [1]. We therefore define a game of pursuers and
evaders in which the pursuers cannot ascertain any evader’s location except when the evaders fall
within a narrow field of view. In this paper we establish the sufficient speeds for a single pursuer
to detect all evaders in a simple form of the game. Establishing insufficiency is outside the scope
of this paper.

In Section II we formally define the game. In Section III we formally define a toy program-
ming language which we shall use to express algorithms describing the pursuer’s movements. In
Section IV, we algorithms to provide proofs of existence of pursuer-winning search patterns at
particular speeds. Finally, in Section V we express our conclusions.

II. GAME DESCRIPTION

The game is played on a board covered by a rectilinear grid ofm columns andn rows. The
pursuer’s objective is to occupy the same grid cell as the evader eventually, whereas the object
for the evader is to prevent colocation with the pursuer indefinitely. The columns are numbered
0 . .m − 1 starting at the leftmost column, and the rows are numbered0 . . n − 1 starting at the
bottom row. The pursuer has the advantage that it can moves spaces per turn (wheres > 1), but
the evader can move only one space per turn (Figure 1). On the other hand, the evader has the
advantage that it always knows the pursuer’s location, whereas the pursuer is unable to determine
the evader’s location unless it occupies the evader’s cell. They take turns moving: in each turn, the
pursuer moves up tos spaces, then the evader moves one space. Movements are from the current
cell to an adjacent cell. The four basic variations revolve around the definition of “adjacent”:
in all four variants, movement in the four cardinal directions are legal, and the variations are
the cross-product of whether the pursuer can move diagonally and whether the evader can move
diagonally.

The restriction on the pursuer’s knowledge suggests that if we wish to prove that the evader
can be caught (and how it can be caught!), then we need to consider something other than the
locations of the players. In this paper we shall consider the set of locations the evader cannot
occupy and how that set changes. We call this setClear , and its complement is the set of possible
locations the evader may occupy. Consider Figure 2. Suppose it is known in Figure 2(a) that the
shaded region cannot be occupied by the evader;i.e., the evader must be in some cell in the
unshaded region. In Figure 2(b), the pursuer makes the same move as in Figure 1(a). Observe
that the pursuer, having passed through some cells, either encountered the evader in one of those

The views expressed in this article are those of the authors and do not necessarily reflect the official policy of the Air
Force, the Department of Defense or the U.S. Government.

0 1 2 3 4 5

0

1

2

3

4

5

(a) Pursuer’s turn

0 1 2 3 4 5

0

1

2

3

4

5

(b) Evader’s turn

Fig. 1. Examples of movements by the pursuer and the evader. Solid circle is the pursuer; hollow circle is the evader.

0 1 2 3 4 5

0

1

2

3

4

5

(a) Before pur-
suer moves

0 1 2 3 4 5

0

1

2

3

4

5

(b) Pursuer’s turn

0 1 2 3 4 5

0

1

2

3

4

5

(c) Evader’s turn

Fig. 2. Examples of changes in the possible locations for the evader. Evader is known to be in unshaded region.

cells (hence, won the game) or established that the evader cannot occupy those cells — the cells
the pursuer visited are added to the setClear .

Now it is the evader’s turn to move. Since the pursuer does not know where the evader is
located (other than that the evader must be located in the unshaded region), the setClear must be
updated by all possible moves. If the evader is located in a cell that is not adjacent to a shaded
cell, then it cannot move into the shaded region; such possible moves will not affect the set.
If a shaded cell is adjacent only to other shaded cells, then it is not possible for the evader to
move into that cell, and that cell remains inClear . But, if a shaded cell and an unshaded cell are
adjacent, then the possibility exists that the evader is in the unshaded cell, and the possibility also
exists that the pursuer moves from the unshaded cell into the shaded cell; thus, that shaded cell
is removed fromClear . The one exception is that the evader cannot move into the cell occupied
by the pursuer, or the pursuer would know the evader’s location and would win the game. In this
scenario, the aggregate of all the ways in which the evader might move increases the size of the
region the evader may occupy (Figure 2(c)) and reduces the cardinality ofClear .

III. L ANGUAGE DEFINITION

A. Pseuocode Language

The algorithms presented in this paper use a statically-scoped, pass-by-value, Logo-like language
in which translations have a duration. Movement of the pursuer is specified by the following
commands:

move dir spaces Move the pursuer a distance ofspaces in the specified directiondir ∈
{N, NE, E, SE, S, SW,W, NW}

wait duration Do not move the pursuer for a duration equal to that ofmove d duration
evader-move Do not move the pursuer for the remainder of its turn (equivalent towait duration,

whereduration is the number of moves left in the pursuer’s turn), and then
do nothing for a duration equal to that ofwait 1 while the evader makes its
move

m Instantiation variable: the number of columns on the game board.m ≥ 2
n Instantiation variable: the number of rows on the game board.n ≥ 2
speed Instantiation variable: the maximum number of spaces the pursuer may move between

moves by the evader.speed ≥ 1
row The row on the game board occupied by the pursuer. Withcol , uniquely identifies the

pursuer’s location.0 ≤ row < n, rowinit = 0.
col The column on the game board occupied by the pursuer. Withrow , uniquely identifies

the pursuer’s location.0 ≤ col < m, colinit = 0
time The number of discrete units of time elapsed since the start of the game.time ≥

0, timeinit = 0.
Ψ The set of all cells on the game board.|Ψ | = m× n
Clear The set ofcleared cells, as defined in Section III-B.Clear ⊆ Ψ , Clear init = {(0, 0)}
cycle Constant value: the number of discrete clock ticks between the start of two consecutive

rounds of movent.cycle , speed +1

Fig. 3. Symbols used in Sections III and IV

More formally, using integer (non-modulus) arithmetic,

dir ∈ {SW, S, SE} ⇒ row = r + spaces ∧
dir ∈ {W, E} ⇒ row = r ∧
dir ∈ {NW, N, NE} ⇒ row = r − spaces ∧
dir ∈ {NW,W, SW} ⇒ col = c+ spaces ∧
dir ∈ {N, S} ⇒ col = c ∧
dir ∈ {NE, E, SE} ⇒ col = c− spaces ∧
time = t− spaces ∧
t div cycle = time div cycle

movedir spaces

 row = r ∧
col = c ∧
time = t

(1){

tdiv cycle = (time div cycle) + 1 ∧
tmod cycle = 0

}
evader-move{time = t} (2)

{
time = t− duration ∧
t div cycle = time div cycle

}
wait duration {time = t} (3)

B. Definitions

We now present some terms that we will use later in the paper when discussing the properties
of the game.

cell An ordered pair(r, c) is a unique location on the playing board located
in the rth row and thecth column. A cell may be unoccupied, occupied by the pursuer,
occupied by the evader, or occupied by both (if a cell is occupied by both, then the pursuer
has won the game). For example, in Figure 1(b), the pursuer occupies cell(4, 1).

move A player’s legal transition from one cell to another or the same cell.
turn A sequence of moves; the length of the sequence is determined by the

pursuer’s speed advantage over the evader. In each turn, the pursuer hasspeed moves,
and the evader has1 move, for a total ofcycle , speed +1 moves.

cleared(r, c) is TRUE if and only if no undetected evader can occupy cell(r, c). (pick
one)

cleared(r, c, t) is TRUE if and only if any evaders occupying cell(r, c) at time t must
have been detected at timeτ ≤ t. (pick one)

e-adjacent(C1, C2) Cell C1 is e-adjacent to cell C2 if and only if there is a legal move for
the evader to move fromC1 to C2 in a single move. The evader need not be inC1 for
C1 to be e-adjacent to C2, but it must be possible for the evader to occupyC1. For
example, in Figure 2,(4, 0) is e-adjancent to (3, 0), but there are no cellse-adjacent
to (0, 0).

CLEAR-BOARD

preconditions
1 col = 0
2 row = 0
3 time = 0

postconditions
1 ∀% < n, κ < m : (%, κ) ∈ Clear

Fig. 4. Specification for a winning pursuer algorithm.

p-adjacent(C1, C2)Cell C1 is p-adjacent to cell C2 if and only if there is a legal direction
dir such that the pursuer can move fromC1 to C2 by invokingmovedir 1. The pursuer
need not be inC1 for C1 to bep-adjacent to C2.

These definitions permit us to enrich the axiomatic semantics of our language, to describe the
effects of the pursuer’s and evader’s movements on the set ofcleared cells. Axiom (1) becomes:

dir ∈ {SW, S, SE} ⇒ row = r + spaces ∧
dir ∈ {W, E} ⇒ row = r ∧
dir ∈ {NW, N, NE} ⇒ row = r − spaces ∧
dir ∈ {NW,W, SW} ⇒ col = c+ spaces ∧
dir ∈ {N, S} ⇒ col = c ∧
dir ∈ {NE, E, SE} ⇒ col = c− spaces ∧
time = t− spaces ∧
t div cycle = time div cycle ∧
dir = N ⇒ F , {(r − s, c)|s ∈ [0 . . spaces]} ∧
dir = NE ⇒ F , {(r − s, c− s)|s ∈ [0 . . spaces]} ∧
dir = E ⇒ F , {(r, c− s)|s ∈ [0 . . spaces]} ∧
dir = SE ⇒ F , {(r + s, c− s)|s ∈ [0 . . spaces]} ∧
dir = S ⇒ F , {(r + s, c)|s ∈ [0 . . spaces]} ∧
dir = SW ⇒ F , {(r + s, c+ s)|s ∈ [0 . . spaces]} ∧
dir = W ⇒ F , {(r, c+ s)|s ∈ [0 . . spaces]} ∧
dir = NW ⇒ F , {(r − s, c+ s)|s ∈ [0 . . spaces]} ∧
Clear ∪F = C

movedir spaces

row = r ∧
col = c ∧
time = t ∧
Clear = C

(4)
And Axiom (2) becomes:

tdiv cycle = (time div cycle) + 1 ∧
t mod cycle = 0 ∧
F ,

{
(r, c)|∃(ρ, κ) ∈ Clear : e-adjacent ((ρ, κ), (r, c))

}
∧

(Clear \F) ∪ {(row , col)} = C

evader-move
{

time = t ∧
Clear = C

}
(5)

IV. PROPERTIES OF THEGAME

We begin by considering the specification of a winning algorithm for the pursuer, which is
independent of the variation of the game. All variables in this section may be assumed to be
natural numbers.

Theorem 1:If the pursuer follows an algorithm satisfying the specification in Figure 4, then
the pursuer and evader eventually will be colocated.

Proof: Since an evader must occupy some cell, then by the definition ofcleared, the
postcondition of CLEAR-BOARD’s specification can be true only if the pursuer was collocated
with each evader at least once before the algorithm terminated.

Now consider the implementation of CLEAR-BOARD in Figure 5. In each iteration of thewhile
loop, the algorithm clears all cells in columnx. The effect of the call to CLEAR-COLUMN in

CLEAR-BOARD

1 x← 0
2 while x < m− 1
3 do
4 CLEAR-COLUMN

5 x← x+ 1
6 end do
7 CLEAR-LAST-COLUMN

Fig. 5. Winning pursuer algorithm.

xx-1 x+1
0

1

2

n-3

n-2

n-1

......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) Before CLEAR-COLUMN

xx-1 x+1
0

1

2

n-3

n-2

n-1

......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) After CLEAR-COLUMN

Fig. 6. Effect of calling CLEAR-COLUMN during thexth iteration of the loop in Figure 5.

line 4 is depicted in Figure 6. After columns0 . .m− 2 are cleared in the loop, a call to CLEAR-
LAST-COLUMN clears the cells in columnm− 1.

Lemma 2:The loop in Figure 5 terminates.
Proof: Consider the variant functionf(x) = m− x. CLEAR-COLUMN does not alterx, and

line 5 incrementsx; therefore,f is strictly monotonically decreasing. When the loop test fails,
x ≥ m − 1, and f(x) ≤ 1. Sincef(0) > 1 and f decreases strictly monotonically, eventuallyx
must assume some value such thatf(x) ≤ 1, and the loop test fails.

Theorem 3:The algorithm in Figure 5 satisfies the specification of CLEAR-BOARD in Figure 4.
Proof: The derivation in Appendix B shows the partial correctness of the algorithm in

Figure 5. By Lemma 2, the algorithm must terminate. Therefore we have total correctness.

Now consider the implementation of CLEAR-COLUMN in Figure 9. In each iteration of the
while loop, the algorithm clears the cell in rowy in the current column. The effect of the call to

CLEAR-COLUMN

preconditions
1 0 < c < m
2 time mod cycle = 0
3 col = c− 1
4 row = 0
5 ∀% < n, κ < col : (%, κ) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row = 0
4 ∀% < n, κ < col : (%, κ) ∈ Clear

Fig. 7. Specification for an algorithm that guarantees the evader is not in a columncol < m− 1.

CLEAR-LAST-COLUMN

preconditions
1 time mod cycle = 0
2 col = m− 1
3 row = 0
4 ∀% < n, κ < m− 1 : (%, κ) ∈ Clear

postconditions
1 ∀% < n, κ < m : (%, κ) ∈ Clear

Fig. 8. Specification for an algorithm that guarantees the evader is not in the rightmost column.

CLEAR-COLUMN

1 y ← n− 1
2 while y > 0
3 do
4 CLEAR-CELL(y)
5 y ← y − 1
6 end do
7 CLEAR-LAST-CELL

Fig. 9. Algorithm that guarantees the evader is not in a columncol < m− 1.

CLEAR-CELL in line 4 is depicted in Figure 10. After cells(1, col) . . (n− 1, col) are cleared in
the loop, a call to CLEAR-LAST-CELL clears cell(0, col).

Lemma 4:The loop in Figure 9 terminates.
Proof: Consider the variant functionf(y) = y. CLEAR-CELL does not altery, and line 5

decrementsy; therefore,f is strictly monotonically decreasing. When the loop test fails,y ≤ 0,
andf(y) ≤ 0. Sincef(n−1) > 0 andf decreases strictly monotonically, eventuallyy must assume
some value such thatf(y) ≤ 0, and the loop test fails.

Theorem 5:The algorithm in Figure 9 satisfies the specification of CLEAR-COLUMN in Fig-
ure 7.

Proof: The derivation in Appendix C shows the partial correctness of the CLEAR-COLUMN

algorithm. By Lemma 4, the algorithm must terminate. Therefore we have total correctness.

(a) Before CLEAR-CELL (b) After CLEAR-CELL

Fig. 10. Effect of calling CLEAR-CELL during theyth iteration of the loop in Figure 9.

CLEAR-CELL(y)
preconditions

1 c < m− 1
2 0 < y < n
3 time mod cycle = 0
4 col = c
5 row = 0
6 ∀% < n, κ < col : (%, κ) ∈ Clear
7 ∀% : y + 1 ≤ % < n : (%, col) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row = 0
4 ∀% < n, κ < col : (%, κ) ∈ Clear
5 ∀% : y ≤ % < n : (%, col) ∈ Clear

Fig. 11. Specification for an algorithm that guarantees the evader is not in a cell.

CLEAR-LAST-CELL

preconditions
1 0 < c < m
2 time mod cycle = 0
3 col = c− 1
4 row = 0
5 ∀% < n, κ < col : (%, κ) ∈ Clear
6 ∀% : 1 ≤ % < n : (%, col) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row = 0
4 ∀% < n, κ < col : (%, κ) ∈ Clear

Fig. 12. Specification for an algorithm that guarantees the evader is not in the bottommost cell of a column.

So far, we have placed no restrictions on the pursuer’s speed. We now present two algorithms
which do require specific lower bounds on the value ofspeed . The first is an algorithm for
CLEAR-LAST-COLUMN in Figure 13, which requiresspeed ≥ n− 1. The second is an algorithm
for CLEAR-LAST-CELL in Figure 14, which requiresspeed ≥ n.

Theorem 6:If speed ≥ n − 1, then the algorithm in Figure 13 satisfies the specification of
CLEAR-LAST-COLUMN in Figure 8.

Proof: The proof follows directly from the semantics ofmove. The derivation in Appendix D
shows that if the preconditions are met, then after CLEAR-LAST-COLUNM has completed, the
postcondition will be satisfied.

Theorem 7:If speed ≥ n, then the algorithm in Figure 14 satisfies the specification of CLEAR-
LAST-CELL in Figure 12.

CLEAR-LAST-COLUMN

1 move N n− 1

Fig. 13. Algorithm that guarantees the evader is not in the rightmost column whenspeed ≥ n− 1.

CLEAR-LAST-CELL

1 move E 1
2 move N n− 1
3 evader-move
4 move S n− 1
5 evader-move

Fig. 14. Algorithm that guarantees the evader is not in the bottommost cell of a column whenspeed ≥ n.

CLEAR-CELL

1 move N y
2 move E 1
3 move N n− y − 1
4 evader-move
5 move S n− y − 1
6 move W 1
7 move S y
8 evader-move

Fig. 15. Algorithm that guarantees the evader is not in a cell when the evader cannot move diagonally andspeed ≥ n.

Proof: The derivation in Appendix E shows that if the preconditions are met, then after
CLEAR-LAST-CELL has completed, the postconditions will be satisfied.

We now consider the specific variants of the game.

A. Evader and pursuer cannot move diagonally

Lemma 8: If speed ≥ n, then when the evader cannot move diagonally (it can only use headings
∈ {N, E, S,W}), the algorithm in Figure 15 satisfies the specification of CLEAR-CELL in Figure 11.

Proof: The derivation in Appendix F shows that if the preconditions are met, then after
CLEAR-CELL has completed, the postconditions will be satisfied.

Theorem 9:If neither the pursuer nor the evader can move diagonally, then to catch the evader
the pursuer’s minimum speed is at mostmin(m,n) spaces/turn.

Proof: Assume without loss of generality thatmin(m,n) = n. By Theorem 7 and Lemma 8,
we have correct implementations of CLEAR-LAST-CELL and CLEAR-CELL that can be used
by the implementation of CLEAR-COLUMN when speed ≥ n. By Theorems 5 and 6, we have
correct implementations of CLEAR-COLUMN and CLEAR-LAST-COLUMN that can be used by the
implementation of CLEAR-BOARD. By Theorem 3, we have a correct implementation of CLEAR-
BOARD. Finally, by Theorem 1, that algorithm will assure that the pursuer will be collocated with
each evader eventually.

Conjecture 10:If neither the pursuer nor the evader can move diagonally, then to catch the
evader the pursuer’s speed must be at leastmin(m,n) spaces/turn.

Corollary 11: Assume neither the pursuer nor the evader can move diagonally. By Theorem 9,
and if Conjecture 10 holds, the pursuer can catch the evader if and only if the pursuer can catch
the evader when movingmin(m,n) spaces/turn.

B. Evader and pursuer can move diagonally

Lemma 12:If speed ≥ n+ 1, then when both the pursuer and the evader can move diagonally
(they can use all headings∈ {N, NE, E, SE, S, SW,W, NW}), the algorithm in Figure 17 satisfies
the specification of CLEAR-CELL in Figure 11.

Proof: The derivation in Appendix G shows that if the preconditions are met, then after
CLEAR-CELL has completed, the postconditions will be satisfied.

(a) Initial conditions (b) After pursuer moves in
line 1, cell (y, col) has been
cleared

(c) Pursuer has movedn spaces,
after line 3

(d) Evader moves in line 4,
causing cells on the frontier to
be uncleared (better phrasing?)
(clarify “frontier”)

(e) Pursuer moves nextn
spaces, in lines 5–7, returning
to cell (0, col)

(f) Evader moves in line 8,
causing cells on the frontier to
be uncleared; the postcondi-
tions are now satisfied

Fig. 16. Execution of the CLEAR-CELL algorithm in Figure 15.

CLEAR-CELL

1 move N y
2 move SE 1
3 move N n− y
4 evader-move
5 move S n− y
6 move W 1
7 move S y − 1
8 evader-move

Fig. 17. Algorithm that guarantees the evader is not in a cell when both the pursuer and the evader can move diagonally
andspeed ≥ n+ 1.

(a) Initial conditions (b) After pursuer moves in
lines 1, cell (y, col) has been
cleared; the moves in line 2
will protect cell (y, col) from
the evader’s diagonal movement

(c) Pursuer has movedn + 1
spaces, after line 3

(d) Evader moves in line 4,
causing cells on the frontier to
be uncleared (better phrasing?)
(clarify “frontier”)

(e) Pursuer moves nextn
spaces, in lines 5–7, returning
to cell (0, col)

(f) Evader moves in line 8,
causing cells on the frontier to
be uncleared; the postcondi-
tions are now satisfied

Fig. 18. Execution of the CLEAR-CELL algorithm in Figure 17.

Theorem 13:If both the pursuer and the evader can move diagonally, then to catch the evader
the pursuer’s minimum speed is at mostmin(m,n) + 1 spaces/turn.

Proof: Assume without loss of generality thatmin(m,n) = n. By Theorem 7 and Lemma
12, we have correct implementations of CLEAR-LAST-CELL and CLEAR-CELL that can be used
by the implementation of CLEAR-COLUMN when speed ≥ n + 1. By Theorems 5 and 6, we
have correct implementations of CLEAR-COLUMN and CLEAR-LAST-COLUMN that can be used
by the implementation of CLEAR-BOARD. By Theorem 3, we have a correct implementation
of CLEAR-BOARD. Finally, by Theorem 1, that algorithm will assure that the pursuer will be
collocated with each evader eventually.

Conjecture 14:If neither the pursuer nor the evader can move diagonally, then to catch the
evader the pursuer’s speed must be at leastmin(m,n) + 1 spaces/turn.

Corollary 15: Assume neither the pursuer nor the evader can move diagonally. By Theorem 13,
and if Conjecture 14 holds, the pursuer can catch the evader if and only if the pursuer can catch

CLEAR-CELL

1 move N y
2 move E 1
3 move S 1
4 move N n− y
5 evader-move
6 move S n− y
7 move W 1
8 move S y − 1
9 evader-move

Fig. 19. Algorithm that guarantees the evader is not in a cell when the evader can move diagonally but the pursuer
cannot, andspeed ≥ n+ 2.

the evader when movingmin(m,n) + 1 spaces/turn.

C. Evader cannot move diagonally; pursuer can

Theorem 16:If the pursuer can move diagonally but the evaders cannot, then to catch the
evaders the pursuer’s minimum speed is at mostmin(m,n) spaces/turn.

Proof: Assume without loss of generality thatmin(m,n) = n. By Theorem 7 and Lemma
8, we have correct implementations of CLEAR-LAST-CELL and CLEAR-CELL that can be used
by the implementation of CLEAR-COLUMN when speed ≥ n. By Theorems 5 and 6, we have
correct implementations of CLEAR-COLUMN and CLEAR-LAST-COLUMN that can be used by the
implementation of CLEAR-BOARD. By Theorem 3, we have a correct implementation of CLEAR-
BOARD. Finally, by Theorem 1, that algorithm will assure that the pursuer will be collocated with
each evader eventually.

Conjecture 17:If neither the pursuer nor the evader can move diagonally, then to catch the
evader the pursuer’s speed must be at leastmin(m,n) spaces/turn.

Corollary 18: Assume neither the pursuer nor the evader can move diagonally. By Theorem 16,
and if Conjecture 17 holds, the pursuer can catch the evader if and only if the pursuer can catch
the evader when movingmin(m,n) spaces/turn.

D. Evader can move diagonally; pursuer cannot

Lemma 19:If speed ≥ n+ 2, then when both the pursuer and the evader can move diagonally
(they can use all headings∈ {N, NE, E, SE, S, SW,W, NW}), the algorithm in Figure 19 satisfies
the specification of CLEAR-CELL in Figure 11.

Proof: The derivation in Appendix H shows that if the preconditions are met, then after
CLEAR-CELL has completed, the postconditions will be satisfied.

Theorem 20:If both the pursuer can move orthoganlly only and the evaders can move diago-
nally, then to catch the evaders the pursuer’s minimum speed is at mostmin(m,n)+2 spaces/turn.

Proof: Assume without loss of generality thatmin(m,n) = n. By Theorem 7 and Lemma
19, we have correct implementations of CLEAR-LAST-CELL and CLEAR-CELL that can be used
by the implementation of CLEAR-COLUMN when speed ≥ n + 2. By Theorems 5 and 6, we
have correct implementations of CLEAR-COLUMN and CLEAR-LAST-COLUMN that can be used
by the implementation of CLEAR-BOARD. By Theorem 3, we have a correct implementation
of CLEAR-BOARD. Finally, by Theorem 1, that algorithm will assure that the pursuer will be
collocated with each evader eventually.

We have shown that when the evader can move diagonally but the pursuer can move only
cardinally, a speed advantage ofn+ 2 is sufficient to assure the pursuer’s victory, whereasn+ 1
is sufficient when both the pursuer and evader can move diagonally. Contrast this with the two
cases in which the evader cannot move diagonally – in those cases, the pursuer does not benefit
from being able to move diagonally; in each case, a speed advantage ofn is sufficient and, we

(a) Initial conditions (b) After pursuer moves in
lines 1, cell (y, col) has been
cleared; the moves in lines 2–
3 will protect cell (y, col) from
the evader’s diagonal movement

(c) Pursuer has movedn + 2
spaces, after line 4

(d) Evader moves in line 5,
causing cells on the frontier to
be uncleared (better phrasing?)
(clarify “frontier”)

(e) Pursuer moves nextn
spaces, in lines 6–8, returning
to cell (0, col)

(f) Evader moves in line 9,
causing cells on the frontier to
be uncleared; the postcondi-
tions are now satisfied

Fig. 20. Execution of the CLEAR-CELL algorithm in Figure 19.

believe, necessary. The obvious question to ask at this point is whether the pursuer can win with
a speed advantage ofn+ 1 in both cases in which the pursuer can move diagonally.

The answer is “yes”, though the witness algorithm is considerably less straight-forward than
those we have presented so far. First, we shall require some new subroutines, which we shall use
to construct a new implementation of CLEAR-COLUMN, involving monotonically increasing the
number ofcleared cells in the column beingcleared. Unlike the previous implementation, this
new implementation alternates between clearing cells at the top and at the bottom of the column.

The next subroutine is TRANSITION, specified in Figure 23. After half of the column has been
cleared, TRANSITION is used to rearrange thecleared cells to satisfy the conditions needed by
GROW-TOP2 and GROW-BOTTOM2, which are specified in Figures 24 and 25, respectively. As
with GROW-TOP1, GROW-TOP2 preserves the number ofcleared cells by clearing cells at the
top of the column, and then GROW-BOTTOM2 increases th enumber ofcleared cells by clearing
cells at the bottom of the column. With these subroutines specified, we can now implement the

GROW-BOTTOM1(y)
preconditions

1 c < m− 1
2 y <

⌊
n
2

⌋
3 time mod cycle = 0
4 col = c
5 row = y
6 ∀% < n, κ < col : (%, κ) ∈ Clear
7 ∀% : n− y ≤ % < n : (%, col) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row = n− y − 1
4 ∀% < n, κ < col : (%, κ) ∈ Clear
5 ∀% ≤ y : (%, col) ∈ Clear

Fig. 21. Specification for an algorithm that placescleared cells in the lower half of a column.

GROW-TOP1(y)
preconditions

1 c < m− 1
2 y <

⌊
n
2

⌋
3 time mod cycle = 0
4 col = c
5 row = n− y − 1
6 ∀% < n, κ < col : (%, κ) ∈ Clear
7 ∀% : % ≤ y : (%, col) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 y <

⌈
n
2

⌉
− 1⇒ row = y + 1

4 y =
⌈
n
2

⌉
− 1⇒ row = y

5 ∀% < n, κ < col : (%, κ) ∈ Clear
6 ∀% : n− y − 1 ≤ % < n : (%, col) ∈ Clear

Fig. 22. Specification for an algorithm that placescleared cells in the upper half of a column.

specification of CLEAR-COLUMN with CLEAR-COLUMN, shown in Figure code:clearColumnCD.
Theorem 21:The algorithm in Figure 26 terminates and satisfies the specification of CLEAR-

COLUMN in Figure 7.
Proof: The derivation in Appendix I shows the total correctness of the CLEAR-COLUMN

algorithm.

We now offer implementations of subroutines used by CLEAR-COLUMN. Figure 27 shows an
implementation of GROW-BOTTOM1, and Figure 28 shows an implementation of GROW-TOP1;
both require thatspeed ≥ n+1. Figures 32 and 33 show representative uses of GROW-BOTTOM1
and GROW-TOP1 whenn = 8 for the first and last iterations of thewhile loop in Lines 2–7 of
Program 26.

Lemma 22:The algorithm in Figure 27 terminates and satisfies the specification of GROW-
BOTTOM1 in Figure 21.

Proof: The derivation in Appendix J shows the total correctness of the GROW-BOTTOM1
algorithm.

Lemma 23:The algorithm in Figure 28 terminates and satisfies the specification of GROW-

TRANSITION

preconditions
1 0 < c < m
2 time mod cycle = 0
3 col = c− 1
4 row =

⌈
n
2

⌉
− 1

5 ∀% < n, κ < col : (%, κ) ∈ Clear
6 ∀% : row < % < n : (%, col) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row =

⌊
n
2

⌋
− 1

4 ∀% < n, κ < col −1 : (%, κ) ∈ Clear
5 ∀% < row : (%, col −1) ∈ Clear

Fig. 23. Specification for an algorithm that repositions the pursuer from the postcondition of GROW-TOP1 to the
precondition of GROW-TOP2.

GROW-TOP2(y)
preconditions

1 0 < c < m
2
⌊
n
2

⌋
≤ y < n− 1

3 time mod cycle = 0
4 col = c
5 row = 2

⌊
n
2

⌋
− y − 1

6 ∀% < n, κ < col −1 : (%, κ) ∈ Clear
7 ∀% < y : (%, col −1) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 row = y + 1
4 ∀% < n, κ < col −1 : (%, κ) ∈ Clear
5 ∀% : 2

⌊
n
2

⌋
− y ≤ % < n : (%, col −1) ∈ Clear

Fig. 24. Specification for an algorithm that placescleared cells in the upper half of a column.

TOP1 in Figure 22.
Proof: The derivation in Appendix K shows the total correctness of the GROW-TOP1

algorithm.

Figure 29 shows an implementation of TRANSITION whenspeed ≥ n+1, and Figure 34 shows
a representative use of TRANSITION whenn = 8 in Line 8 of Program 26.

Lemma 24:The algorithm in Figure 29 terminates and satisfies the specification of TRANSI-
TION in Figure 23.

Proof: The derivation in Appendix K shows the total correctness of the GROW-TOP1
algorithm.

Finally, Program 30 shows an implementation of GROW-TOP2, and Program 31 shows an
implementation of GROW-BOTTOM2; both require thatspeed ≥ n + 1. Figures 35 and 36 show
representative uses of GROW-TOP2 and GROW-BOTTOM2 when n = 8 for the first and last
iterations of thewhile loop in Lines 9–14 of Program 26.

Lemma 25:The algorithm in Figure 30 terminates and satisfies the specification of GROW-
TOP2 in Figure 24.

Proof: The derivation in Appendix M shows the total correctness of the GROW-TOP2
algorithm.

GROW-BOTTOM2(y)
preconditions

1 0 < c < m
2
⌊
n
2

⌋
≤ y < n− 1

3 time mod cycle = 0
4 col = c
5 row = y + 1
6 ∀% < n, κ < col −1 : (%, κ) ∈ Clear
7 ∀% : 2

⌊
n
2

⌋
− y ≤ % < n : (%, col −1) ∈ Clear

postconditions
1 time mod cycle = 0
2 col = c
3 y < n− 2⇒ row = 2

⌊
n
2

⌋
− y − 2

4 y = n− 2⇒ row = 0
5 ∀% < n, κ < col −1 : (%, κ) ∈ Clear
6 ∀% ≤ y : (%, col −1) ∈ Clear
7 y = n− 2⇒ ∀% < n, κ < col : (%, κ) ∈ Clear

Fig. 25. Specification for an algorithm that placescleared cells in the lower half of a column.

CLEAR-COLUMN

1 y ← 0
2 while y <

⌊
n
2

⌋
3 do
4 GROW-BOTTOM1(y)
5 GROW-TOP1(y)
6 y ← y + 1
7 end do
8 TRANSITION

9 while y < n− 1
10 do
11 GROW-TOP2(y)
12 GROW-BOTTOM2(y)
13 y ← y + 1
14 end do

Fig. 26. Algorithm that guarantees the evader is not in a cell when the evader can move diagonally, implementing the
specification of CLEAR-COLUMN in Figure 7.

GROW-BOTTOM1(y)
1 move S y
2 move E 1
3 move N y + 1
4 move W 1
5 move N n− 2y − 2
6 evader-move

Fig. 27. Algorithm satisfying GROW-BOTTOM1 specification of Figure 21 whenspeed ≥ n+ 1.

GROW-TOP1(y)
1 move N y
2 move E 1
3 move S y + 1
4 move W 1
5 if n > 2y + 3
6 then
7 move S n− 2y − 3
8 end if
9 evader-move

Fig. 28. Algorithm satisfying GROW-TOP1 specification of Figure 22 whenspeed ≥ n+ 1.

TRANSITION

1 move S
⌈
n
2

⌉
− 1

2 move E 1
3 move N

⌊
n
2

⌋
4 move S 1
5 evader-move

Fig. 29. Algorithm satisfying TRANSITION specification of Figure 23 whenspeed ≥ n+ 1.

GROW-TOP2(y)
1 move N 2

(
y −

⌊
n
2

⌋)
+ 1

2 move W 1
3 move N n− y − 1
4 move E 1
5 move S n− y − 2
6 evader-move

Fig. 30. Algorithm satisfying GROW-TOP2 specification of Figure 24 whenspeed ≥ n+ 1.

GROW-BOTTOM2(y)
1 move S 2

(
y −

⌊
n
2

⌋
+ 1
)

2 move W 1
3 move S 2

⌊
n
2

⌋
− y − 1

4 move E 1
5 if y < 2(

⌊
n
2

⌋
− 1)

6 then
7 move N 2

⌊
n
2

⌋
− y − 2

8 end if
9 evader-move

Fig. 31. Algorithm satisfying GROW-BOTTOM2 specification of Figure 25 whenspeed ≥ n+ 1.

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(a) Before
any move-
ment

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(b) After
pursuer’s
turn in
GROW-BOTTOM1(0)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(c) After
evader’s
turn in
GROW-BOTTOM1(0)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(d) After
pursuer’s
turn in
GROW-TOP1(0)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(e) After
evader’s
turn in
GROW-TOP1(0)

Fig. 32. Partial execution of CLEAR-COLUMN algorithm in Figure 26 whenn = 8, y = 0.

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(a) Before
any move-
ment

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(b) After
pursuer’s
turn in
GROW-BOTTOM1(3)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(c) After
evader’s
turn in
GROW-BOTTOM1(3)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(d) After
pursuer’s
turn in
GROW-TOP1(3)

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(e) After
evader’s
turn in
GROW-TOP1(3)

Fig. 33. Partial execution of CLEAR-COLUMN algorithm in Figure 26 whenn = 8, y = 3.

Lemma 26:The algorithm in Figure 31 terminates and satisfies the specification of GROW-
BOTTOM2 in Figure 25.

Proof: The derivation in Appendix N shows the total correctness of the GROW-BOTTOM2
algorithm.

We now can show thatspeed = n + 1 is a sufficient condition for the pursuer to detect all
evaders when the evaders can move diagonally.

Theorem 27:If both the pursuer can move orthoganlly only and the evaders can move diago-
nally, then to catch the evaders the pursuer’s minimum speed is at mostmin(m,n)+1 spaces/turn.

Proof: Assume without loss of generality thatmin(m,n) = n. By Lemmas 22–26, we
have correct implementations of GROW-BOTTOM1, GROW-TOP1, TRANSITION, GROW-TOP2,
and GROW-BOTTOM2 that can be used by the CLEAR-COLUMN implementation of Figure 26
when speed ≥ n + 1. By Theorems 21 and 6, we have correct implementations of CLEAR-
COLUMN and CLEAR-LAST-COLUMN that can be used by the implementation of CLEAR-BOARD.
By Theorem 3, we have a correct implementation of CLEAR-BOARD. Finally, by Theorem 1, that
algorithm will assure that the pursuer will be collocated with each evader eventually.

V. CONCLUSION

We have established that if the pursuer can move at speedss ≥ n+ 1, wheren is the shorter
dimension of the grid, it has a search strategy that is guaranteed to locate the evader. Moreover,
if the evader cannot move diagonally, then the pursuer also has a search strategy at speeds = n.

ACKNOWLEDGMENT

The authors gratefully thank the US Air Force and the Air Force Institute of Technology for
their direct support of the primary author. This work was supported by the AFRL/VA and AFOSR
Collaborative Center of Control Science (Grant F33615-01-2-3154).

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(a) Before
any move-
ment

c+1c
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(b) After
pursuer’s
turn in
TRANSI-
TION

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

... ...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

...

(c) After
evader’s
turn in
TRANSI-
TION

Fig. 34. Partial execution of CLEAR-COLUMN algorithm in Figure 26 at execution of TRANSITION.

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(a) Before
any move-
ment

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(b) After
pursuer’s
turn in
GROW-TOP2(4)

cc-1
0

1

2

3

4

5

6

7

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

(c) After
evader’s
turn in
GROW-TOP2(4)

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(d) After
pursuer’s
turn in
GROW-BOTTOM2(4)

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(e) After
evader’s
turn in
GROW-BOTTOM2(4)

Fig. 35. Partial execution of CLEAR-COLUMN algorithm in Figure 26 whenn = 8, y = 4.

REFERENCES

[1] Office of the Secretary of Defense, “Unmanned aerial vehicles roadmap: 2002–2027,” December 2002.
[2] C. Hoare, “An axiomatic basis for computer programming,”Communications of the ACM, vol. 12, no. 10, pp. 576–583,

October 1969.
[3] ——, “Procedures and parameters: An axiomatic approach,” inLecture Notes in Mathematics 118. Springer-Verlag,

1971, pp. 102–116.
[4] Z. Manna,Mathematical Theory of Computation. McGraw-Hill, 1974, ch. 3-3.

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(a) Before
any move-
ment

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(b) After
pursuer’s
turn in
GROW-TOP2(6)

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(c) After
evader’s
turn in
GROW-TOP2(6)

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

...

...

...

...

...

...

...

...

(d) After
pursuer’s
turn in
GROW-BOTTOM2(6)

cc-1
0

1

2

3

4

5

6

7

 ...

 ...

 ...

...

...

...

...

...

...

...

...

 ...

 ...

 ...

 ...

 ...

(e) After
evader’s
turn in
GROW-BOTTOM2(6)

Fig. 36. Partial execution of CLEAR-COLUMN algorithm in Figure 26 whenn = 8, y = 6.

APPENDIX

A. Axiomatic Semantics

In this section we introduce the axioms and rules of inference used in the derivations in the
other sections of the appendix. The notation used in this section is:

• Q is the set of program states
• σ ∈ Q is an arbitrary program state
• p, p′, q, q′, r are propositional formulae
• x is an arbitary variable name
• expr is an arbitrary expression that is type-compatible withx
• b is a boolean expression
• S,S1,S2 are program fragments: a program fragment is either an atomic command (e.g.an

assignment or amove command) or a composition of program fragments
• PROC is an arbitrary procedure name
• declare PROC S indicates the declaration of PROC with produre bodyS
• call PROC indicates the use of PROC

• −−−−⇀params is a list of non-local variables for PROC

• −−⇀args is a list of expressions that are type-compatible with the variables in−−−−⇀params
• pxexpr is the formulap with every occurance ofx replaced byexpr
• {p} is the set of program statesσ such thatσ |= p
• {p}S {q} is a Hoare triple indicating that if the program state satisfiesp beforeS executes,

then q is satisfied afterS executes; we assume that any state variables that are not part of
the Hoare triple’s specification are left unchanged byS

• {p}S {q} ↓ is a Hoare triple that also indicates thatS will terminate without generating a
run-time error

• f : Q → N is an arbitrary function mapping from program states to natural numbers

1) Axioms:We begin with five axioms, the Skip and Assignment Axioms and the three axioms
unique to our language.

a) Skip Axiom: We don’t explictly use the Skip Axiom in any of the algorithms, but we
introduce it nonetheless to emphasize that a command that has no effect does not change the
program state. Moreover, we shall use it to simply our derivations in later appendices.

{p}no-op{p} (6)

b) Assignment Axiom:The Assignment Axiom is derived from that used by Hoare [2].{
pxexpr

}
x← expr {p} (7)

Application of the Assignment Axiom is essentially the textual replacement ofexpr for x in the
precondition. For example:{2 < 3}x← 2 {x < 3}. Obviously, this axiom assumes that evaluation
of expr has no side-effects.

c) Move Lemma:The Move Lemma was introduced as (4) in the text. We consider it to
be a lemma since it is Axiom (1) enhanced by definitions in Section III-B. The terms in the
precondition and postcondition are described in Figure 3.

dir ∈ {SW, S, SE} ⇒ row = r + spaces ∧
dir ∈ {W, E} ⇒ row = r ∧
dir ∈ {NW, N, NE} ⇒ row = r − spaces ∧
dir ∈ {NW,W, SW} ⇒ col = c+ spaces ∧
dir ∈ {N, S} ⇒ col = c ∧
dir ∈ {NE, E, SE} ⇒ col = c− spaces ∧
time = t− spaces ∧
t div cycle = time div cycle ∧
dir = N ⇒ F , {(r − s, c)|s ∈ [0 . . spaces]} ∧
dir = NE ⇒ F , {(r − s, c− s)|s ∈ [0 . . spaces]} ∧
dir = E ⇒ F , {(r, c− s)|s ∈ [0 . . spaces]} ∧
dir = SE ⇒ F , {(r + s, c− s)|s ∈ [0 . . spaces]} ∧
dir = S ⇒ F , {(r + s, c)|s ∈ [0 . . spaces]} ∧
dir = SW ⇒ F , {(r + s, c+ s)|s ∈ [0 . . spaces]} ∧
dir = W ⇒ F , {(r, c+ s)|s ∈ [0 . . spaces]} ∧
dir = NW ⇒ F , {(r − s, c+ s)|s ∈ [0 . . spaces]} ∧
Clear ∪F = C

movedir spaces

row = r ∧
col = c ∧
time = t ∧
Clear = C

(4)
The legal values fordir are {NW,N,NE,W,E,SW,S,SE} if the pursuer can move diagonally, and
{N,W,E,S} if the pursuer can only move in the four cardinal directions. The pursuer moves a
distance ofspaces ∈ N in the specified direction, and so the pursuer’srow and col values are
changed by the movement. Each space moved incrementstime by one unit, but the pursuer is not
permitted to move so far that the move cannot be completed before the evader’s turn to move.
Finally, because the pursuer clears each cell it occupies, the set ofcleared cells changes.

d) Evader-Move Lemma:As with the Move Lemma, the Evader-Move Lemma was intro-
duced as (5) in the text as the enhancement of Axiom (2) by definitions in Section III-B. The
terms in the precondition and postcondition are described in Figure 3.

tdiv cycle = (time div cycle) + 1 ∧
t mod cycle = 0 ∧
F ,

{
(r, c)|∃(ρ, κ) ∈ Clear : e-adjacent ((ρ, κ), (r, c))

}
∧

(Clear \F) ∪ {(row , col)} = C

evader-move
{

time = t ∧
Clear = C

}
(5)

Invoking evader-movehas two effects. The first is to advance the clock to the beginning of
the pursuer’s next turn. The other effect is to change the set ofcleared cells. Any cell that is
e-adjacent to an uncleared cell cannot becleared after the evader has moved; the one exception
is the cell currently occupied by the pursuer.

e) Wait Axiom:The Wait Axiom was introduced as (3) in the text. Its purpose is to provide
a mechanism to incrementtime without moving the pursuer or evader.{

time = t− duration ∧
t div cycle = time div cycle

}
wait duration {time = t} (3)

2) Inference Rules:We now cover seven rules of inference. Six of these rules are used when
the derivation uses structured programming constructs; the other rule is can be used simplify
derivations.

a) Consequence Rule:The Consequence Rule is the combination of Hoare’s two Rules of
Consequence [2].

{p}S {q} , p′ ⇒ p , q ⇒ q′ ` {p′}S {q′} (8)

Put simply, the Consequence Rule permits us to begin the derivation step with a stronger precon-
dition than the specified precondition and end the derivation step asserting a weaker postcondition
than the specified postcondition. For example, if the specification is{TRUE}S {x = 3} then our
derivation step could instead show{x = 42}S {x < 42}.

b) Sequential Composition Rule:The Sequential Composition Rule is Hoare’s Rule of Se-
quential Composition [2]. It permits us to combine two program fragments as straight-line code.

{p}S1 {q} , {q}S2 {r} ` {p}S1; S2 {r} (9)

Note that because of the Consequence Rule, the specified postcondition ofS1 and the precondition
of S2 need not be identical.

c) Conditional Rules:When Hoare introduced axiomatic semantics [2], he initially omitted
the if -then-elseconstruct. Within a couple years, he had corrected this, and the first Conditional
Rule is his Rule of Alternation [3].

{p ∧ b}S1 {q} , {p ∧ ¬b}S2 {q} ` {p} if b then S1 else S2 end if {q} (10)

Our second Conditional Rule is a special case of the first, whereS2 can be considered to be
no-op:

{p ∧ b}S {q} , p ∧ ¬b⇒ q ` {p} if b then S end if {q} (11)

d) Iteration Rule: The Iteration Rule comes from Hoare’s Rule of Iteration [2].

{p ∧ b}S {p} ` {p}while b do S end do{p ∧ ¬b} (12)

A derivation involving a loop requires us to establish a loop invariant, that is, a proposition that
will be satisfied at the beginning and end of every loop iteration. If the loop invariantp holds
before thewhile loop, thenp and the negation of the loop condition will hold after thewhile
loop. Note that this Iteration Rule can only be used to establish partial correctness: the rule says
nothing about whether the loop will terminate, only that if the loop terminates thenp ∧ ¬b are
satisfied after it terminates.

e) Invocation Rules:Our first Invocation Rule is Hoare’s first Rule of Invocation [3], for
procedures that do not use parameters.

declare PROC S , {p}S {q} ` {p} call PROC{q} (13)

We combine Hoare’s second Rule of Invocation with his Rule of Substitution for our second
Invocation Rule.−−−−⇀params is the list of formal parameters for the procedure, and−−⇀args is a list of
expressions that correspond to the formal parameters.

declare PROC(−−−−⇀params) S , {p}S {q} , ‖−−−−⇀params‖ = ‖−−⇀args‖
`

{
p
−−−−−⇀params
−−⇀args

}
call PROC(−−⇀args)

{
q
−−−−−⇀params
−−⇀args

} (14)

While our language is pass-by-value, we make the simplifying assumption in this proof rule that
no terms in the expressions in−−⇀args are assigned new values in the procedure body. Of course
doing so would have no effect on thevalues in −−⇀args, but it would complicate the substitution
portion of our second Invocation Rule.

We have not used all the rules from Hoare’s axiomatic treatment of procedures [3]. For example,
Invocation Rules (13) and (14) are insufficient for recursive calls, but we do not use recursive
calls in this paper. We also have not introduced Hoare’s Rule of Declaration, since we do not
use local variable names inside procedure bodies that are also the names of variables in a greater
scope.

3) Total Correctness:In the previous two sections, we covered the material that can be used
to demonstrate program correctnessif the program terminates error-free. We will now cover the
material that can be used to demonstrate that the program will terminate.

a) Skip Lemma:We begin with the trivial: by definition,no-op will always terminate without
generating a run-time error.

{p}no-op{p} ↓ (15)

b) Assignment Rule:The Assignment axiom is not, in of itself, sufficient to establish that
an assignment command will terminate error-free. As we did with the Skip Axiom, we could
define assignments as always terminating, but that would be inappropriate. Manna did not alter
his Assignment Axiomcheck name![4], there are still two ways in which the assignment would
fail to terminate correctlyreference!. If expr contains a function call, then the function might
not terminate; as our language does not include functions, this is not an issue for us. The other
concern is that the evaluation ofexpr might generate an error: it might involve a divide-by-zero
error, or it might evaluate to a value outsidex’s range.

“expr is error-free” ,
{
pxexpr

}
x← expr {p} `

{
pxexpr

}
x← expr {p} ↓ (16)

c) Move Rule:Similar to the concern with assignments that an illegal value not be assigned,
we must be cautious that when the pursuer moves, it does not move off the board.

“dir and spaces are error-free” , p⇒ (0 ≤ row < n) ∧ (0 ≤ col < m) ,
q ⇒ (0 ≤ row < n) ∧ (0 ≤ col < m) , {p}movedir spaces {q} ` {p}movedir spaces {q} ↓

(17)
d) Evader-Move Lemma:As with no-op, we can safely defineevader-move↓:
tdiv cycle = (time div cycle) + 1 ∧
t mod cycle = 0 ∧
F ,

{
(r, c)|∃(ρ, κ) ∈ Clear : e-adjacent ((ρ, κ), (r, c))

}
∧

(Clear \F) ∪ {(row , col)} = C

evader-move
{

time = t ∧
Clear = C

}
↓

(18)
e) Wait Rule:The wait command can safely be assumed to terminate, provided the precon-

dition is satisfied and expression within the command is cleanly evaluated:

“duration is error-free” , {p}wait duration {q} ` {p}wait duration {q} ↓ (19)

f) Consequence, Sequential Composition, and Conditional Rules:These rules require no
special treatment(double check!); if the program fragments terminate, then so do the constructs
(probably ought to cite that):

{p}S {q} ↓ , p′ ⇒ p , q ⇒ q′ ` {p′}S {q′} ↓ (20)

{p}S1 {q} ↓ , {q}S2 {r} ↓ ` {p}S1; S2 {r} ↓ (21)

{p ∧ b}S1 {q} ↓ , {p ∧ ¬b}S2 {q} ↓ ` {p} if b then S1 else S2 end if {q} ↓ (22)

{p ∧ b}S {q} ↓ , p ∧ ¬b⇒ q ` {p} if b then S end if {q} ↓ (23)

g) Iteration Rule: The Iteration Rule (24) in Section A.2 uses a loop invariant to establish
that a loop has correct behavior if it terminates. We now introduce a variant function to establish
that the loop terminates. When Manna introduced this concept, he required the variant function
ranges over a well-founded set [4]; however for simplicity’s sake, we shall limit that to the natural
numbers.

∃ f : Q → N ∀k ∈ N+ :: {p ∧ b ∧ (f(σ) = k)}S {p ∧ (f(σ) < k)} ↓ ,
(f(σ) = 0)⇒ ¬b ` {p}while b do S end do{p ∧ ¬b} ↓ (24)

Notice that the requirement forf is that each iteration reduce its value. Sincef ranges overN, it
will eventually reach0, and the loop must terminate whenf(σ) = 0.

h) Invocation Rules:Total correctness of the first Invocation Rule requires no special treate-
ment; if the procedure body terminates, then the procedure call terminates(reference):

declare PROC S , {p}S {q} ↓ ` {p} call PROC{q} ↓ (25)

Finally, total correctness of the second Invocation Rule requires not only that the procedure body
terminate error-free, but also that the expressions in−−⇀args evaluate error-free(reference).

declare PROC(−−−−⇀params) S , {p}S {q} ↓ , ‖−−−−⇀params‖ = ‖−−⇀args‖ ,

∀ expr ∈ −−⇀args : “expr is error-free” `
{
p
−−−−−⇀params
−−⇀args

}
call PROC(−−⇀args)

{
q
−−−−−⇀params
−−⇀args

}
↓ (26)

B. Derivation of CLEAR-BOARD in Figure 5

We make use of the following loop invariant:

(x < m)∧(time mod cycle = 0)∧(0 ≤ col = x < m)∧(0 ≤ row = 0 < n)∧(∀% < n, κ < col : (%, κ) ∈ Clear)
(27)

And the following loop variant function:

f(σ) = m− x (28){
(time = 0) ∧ (0 ≤ col = 0 < m) ∧ (0 ≤ row = 0 < n)

}
� precondition

1 x← 0{
(x = 0) ∧ (time = 0) ∧ (0 ≤ col = 0 < m) ∧ (0 ≤ row = 0 < n)

}
⇒{

(x = 0) ∧ (time mod cycle = 0) ∧ (0 ≤ col = x < m) ∧ (0 ≤ row = 0 < n)
}

� 0 < m− 1 < m
� {(%, κ)|% < n, κ < 0} = ∅
� f(σ) = 0⇒ x = m ≥ m− 1

2 while x < m− 1
3 do{

(x < m− 1 < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = x < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear)

}
�

(27) ∧ (x < m− 1)
f(σ) = m− x , k ≥ 1

4 CLEAR-COLUMN{
(x < m− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = x+ 1 < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear)

}
5 x← x+ 1{

(x < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = x < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear)

}
�

(27)
f(σ) = m− x− 1 < k

6 end do{
(x = m− 1 < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = m− 1 < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < m-1 : (%, κ) ∈ Clear)

}
� (27) ∧ ¬(x < m− 1)

7 CLEAR-LAST-COLUMN{
(∀% < n, κ < m : (%, κ) ∈ Clear)

}
� postcondition

C. Derivation of CLEAR-COLUMN in Figure 9

We make use of the following loop invariant:

(0 < c < m) ∧ (y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

(29)
And the following loop variant function:

f(σ) = y (30)

Note that thec in this invariant is thec “magic” variable1 in CLEAR-COLUMN ’s specification,
which is distinct from thec “magic” variables in CLEAR-CELL and CLEAR-LAST-CELL. The
significance of its appearance in the loop invariant is that the pursuer must begin every iteration
in the same column.{

(0 < c < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� precondition

1 y ← n− 1{
(0 < c < m) ∧ (y = n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� 0 < n− 1 < n
� {(%, col)|n− 1 + 1 ≤ % < n} = ∅
� f(σ) = 0⇒ y ≤ 0

2 while y > 0
3 do{

(0 < c < m) ∧ (0 < y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
�

(29) ∧ (y > 0)
f(σ) = y , k ≥ 1

� cCLEAR-CELL = cCLEAR-COLUMN − 1
4 CLEAR-CELL(y){

(0 < c < m) ∧ (0 < y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y ≤ % < n : (%, col) ∈ Clear)

}
⇒{

(0 < c < m) ∧ (y − 1 < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y − 1 + 1 ≤ % < n : (%, col) ∈ Clear)

}
5 y ← y − 1{

(0 < c < m) ∧ (y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
�

(29)
f(σ) = y − 1 < k

6 end do{
(0 < c < m) ∧ (y = 0 < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
� (29) ∧ ¬(y > 0)

⇒{
(0 < c < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : 1 ≤ % < n : (%, col) ∈ Clear)

}
� cCLEAR-LAST-CELL = cCLEAR-COLUMN

7 CLEAR-LAST-CELL{
(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� postcondition

1is there a better name? “parameter”? “specification variable”?

D. Derivation of CLEAR-LAST-COLUMN in Figure 13

We assume the time is initiallyt0.{
(speed ≥ n− 1) ∧ (time mod cycle = 0) ∧ (time = t0)∧
(0 ≤ col = m− 1 < m) ∧ (0 ≤ row = 0 < n) ∧ (∀% < n, κ < m− 1 : (%, κ) ∈ Clear)

}
� precondition

⇒{
(cycle > n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = m− 1 < m) ∧ (0 ≤ row = 0 < n)∧
({(%, κ)|% < n, κ < m− 1} ⊆ Clear) ∧ ((t0 + n− 1) div cycle = t0 div cycle)

}
1 move N n− 1{

(cycle > n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n− 1) ∧ (0 ≤ col = m− 1 < m) ∧ (0 ≤ row = n− 1 < n)∧
({(%, κ)|% < n, κ < m} ⊆ Clear)

}
⇒{

(∀% < n, κ < m : (%, κ) ∈ Clear)
}

� postcondition

E. Derivation of CLEAR-LAST-CELL in Figure 14

We assume the time is initiallyt0.{
(speed ≥ n) ∧ (0 < c < m) ∧ (time mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c− 1 < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : 1 ≤ % < n : (%, col) ∈ Clear)

}
� precondition

⇒{
(cycle > n) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
({(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|1 ≤ % < n} ⊆ Clear) ∧ ((t0 + 1) div cycle = t0 div cycle)

}
1 move E 1{

(cycle > n) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0 + 1) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(0, c)} ⊆ Clear) ∧ ((t0 + n) div cycle = (t0 + 1) div cycle)

}
2 move N n− 1{

(cycle > n) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− 1 < n)∧
({(%, κ)|% < n, κ ≤ c} ⊆ Clear)

}
⇒ (cycle > n) ∧ (0 < c < m) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + n) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− 1 < n)∧

({(%, κ)|% < n, κ ≤ c} ⊆ Clear) ∧ (∀% < n : e-adjacent((%, c+ 1), (%, c)))∧
((t0 + cycle) div cycle = (t0 + n) div cycle +1)

3 evader-move{

(cycle > n) ∧ (0 < c < m) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(n− 1, c)} ⊆ Clear) ∧ ((t0 + cycle +n− 1) div cycle = (t0 + cycle) div cycle)

}
4 move S n− 1{

(cycle > n) ∧ (0 < c < m) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− 1)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ⊆ Clear)

}
⇒ (cycle > n) ∧ (0 < c < m) ∧ ((t0 + 2 cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− 1)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ⊆ Clear) ∧ (∀% < n : e-adjacent((%, c+ 1), (%, c)))∧
((t0 + 2 cycle) div cycle = (t0 + cycle +n− 1) div cycle +1)

5 evader-move{

(cycle > n) ∧ (0 < c < m) ∧ ((t0 + 2 cycle) mod cycle = 0) ∧ (time = t0 + 2 cycle)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(0, c)} ⊆ Clear)

}
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear)
}

� postcondition

F. Derivation of CLEAR-CELL in Figure 15

We assume the time is initiallyt0.{
(speed ≥ n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (time mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
� precondition

⇒ (cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y + 1 ≤ % < n} ⊆ Clear)∧
((t0 + y) div cycle = t0 div cycle)

1 move N y{

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ ≤ c} ⊆ Clear) ∧ ((t0 + y + 1) div cycle = (t0 + y) div cycle)

}
2 move E 1 (cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 1)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(y, c+ 1)} ⊆ Clear)∧
((t0 + n) div cycle = t0 + y + 1 div cycle)

3 move N n− y − 1{

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
((t0 + cycle) div cycle = (t0 + n) div cycle +1)

4 evader-move (cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)∧
((t0 + cycle +n− y − 1) div cycle = (t0 + cycle) div cycle)

5 move S n− y − 1 (cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− y − 1)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)∧
((t0 + cycle +n− y) div cycle = (t0 + cycle +n− y − 1) div cycle)

6 move W 1

 (cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− y)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)∧
((t0 + cycle +n) div cycle = (t0 + cycle +n− y) div cycle)

7 move S y{

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
((t0 + 2 cycle) div cycle = (t0 + cycle +n) div cycle +1)

8 evader-move{

(cycle > n) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + 2 cycle) mod cycle = 0) ∧ (time = t0 + 2 cycle)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)

}
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y ≤ % < n : (%, col) ∈ Clear)

}
� postcondition

G. Derivation of CLEAR-CELL in Figure 17

We assume the time is initiallyt0.{
(speed ≥ n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (time mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
� precondition

⇒ (cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y + 1 ≤ % < n} ⊆ Clear)∧
((t0 + y) div cycle = t0 div cycle)

1 move N y{

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ ≤ c} ⊆ Clear) ∧ ((t0 + y + 1) div cycle = (t0 + y) div cycle)

}
2 move SE 1 (cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 1)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y − 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(y − 1, c+ 1)} ⊆ Clear)∧
((t0 + n+ 1) div cycle = (t0 + y + 1) div cycle)

3 move N n− y{

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 1)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 1)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y − 1 ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
(e-adjacent((c+ 1, y − 2), (c, y − 1))) ∧ ((t0 + cycle) div cycle = (t0 + n+ 1) div cycle +1)

4 evader-move (cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)∧
((t0 + cycle +n− y) div cycle = (t0 + cycle) div cycle)

5 move S n− y (cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− y)∧

({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y ≤ % < n, c ≤ κ ≤ c+ 1} ∪ {(y − 1, c+ 1)} ⊆ Clear)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y − 1 < n) ∧ ((t0 + cycle +n− y + 1) div cycle = (t0 + cycle +n− y) div cycle)

6 move W 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0)∧
(time = t0 + cycle +n− y + 1) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y − 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y − 1 ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)∧
((t0 + cycle +n) div cycle = (t0 + cycle +n− y + 1) div cycle)

7 move S y − 1{

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(time = t0 + cycle +n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y − 1 ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
(e-adjacent((c+ 1, y − 2), (c, y − 1))) ∧ ((t0 + 2 cycle) div cycle = (t0 + cycle +n) div cycle +1)

8 evader-move{

(cycle > n+ 1) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + 2 cycle) mod cycle = 0) ∧ (time = t0 + 2 cycle)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)

}
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y ≤ % < n : (%, col) ∈ Clear)

}
� postcondition

H. Derivation of CLEAR-CELL in Figure 19

We assume the time is initiallyt0.{
(speed ≥ n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (time mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c < m)∧
(0 ≤ row = 0 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y + 1 ≤ % < n : (%, col) ∈ Clear)

}
� precondition

⇒ (cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y + 1 ≤ % < n} ⊆ Clear)∧
((t0 + y) div cycle = t0 div cycle)

1 move N y{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ ≤ c} ⊆ Clear) ∧ ((t0 + y + 1) div cycle = (t0 + y) div cycle)

}
2 move E 1{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 1)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(y, c+ 1)} ⊆ Clear) ∧ ((t0 + y + 2) div cycle = (t0 + y + 1) div cycle)

}
3 move S 1{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 2)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y − 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(y − 1, c+ 1), (y, c+ 1)} ⊆ Clear) ∧ ((t0 + n+ 2) div cycle = (t0 + y + 2) div cycle)

}
4 move N n− y{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 2)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 2)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y − 1 ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
(e-adjacent((c+ 1, y − 2), (c, y − 1))) ∧ ((t0 + cycle) div cycle = (t0 + n+ 2) div cycle +1)

5 evader-move (cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)∧
((t0 + cycle +n− y) div cycle = (t0 + cycle) div cycle)

6 move S n− y (cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n− y)∧

({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y ≤ % < n, c ≤ κ ≤ c+ 1} ∪ {(y − 1, c+ 1)} ⊆ Clear)∧
(0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y − 1 < n) ∧ ((t0 + cycle +n− y + 1) div cycle = (t0 + cycle +n− y) div cycle)

7 move W 1

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0)∧
(time = t0 + cycle +n− y + 1) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y − 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, κ)|y − 1 ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)∧
((t0 + cycle +n) div cycle = (t0 + cycle +n− y + 1) div cycle)

8 move S y − 1{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(time = t0 + cycle +n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)

}
⇒

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle +n)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|y − 1 ≤ % < n} ⊆ Clear)∧
(∀% : % < y : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : y − 1 ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1)))∧
(e-adjacent((c+ 1, y − 2), (c, y − 1))) ∧ ((t0 + 2 cycle) div cycle = (t0 + cycle +n) div cycle +1)

9 evader-move{

(cycle > n+ 2) ∧ (c < m− 1) ∧ (0 < y < n) ∧ ((t0 + 2 cycle) mod cycle = 0) ∧ (time = t0 + 2 cycle)∧
(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|y ≤ % < n} ⊆ Clear)

}
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : y ≤ % < n : (%, col) ∈ Clear)

}
� postcondition

I. Derivation of CLEAR-COLUMN in Figure 26

We make use of two loop invariants. For the loop in lines 2–7:

(0 < c < m) ∧ (y ≤
⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (y <

⌈
n
2

⌉
⇒ row = y)∧

(y =
⌈
n
2

⌉
⇒ row = y − 1) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y ≤ % < n : (%, col) ∈ Clear)

(31)
For the loop in lines 9–14:

(0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y < n− 1⇒ row = 2

⌊
n
2

⌋
− y − 1)∧

(y = n− 1⇒ row = 0) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)∧
(y = n− 1⇒ (n− 1, col −1) ∈ Clear)

(32)
Both loops use the following loop variant function:

f(σ) = n− y (33){
(0 < c < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� precondition

1 y ← 0{
(0 < c < m) ∧ (y = 0) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� 0 <

⌊
n
2

⌋
� {(%, col)|n− 0 ≤ % < n} = ∅
� f(σ) = 0⇒ y = n ≥ n− 1 ≥

⌊
n
2

⌋
2 while y <

⌊
n
2

⌋
3 do{

(0 < c < m) ∧ (y <
⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = y < n)∧

(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y ≤ % < n : (%, col) ∈ Clear)

}
�

(31) ∧ (y <
⌊
n
2

⌋
)

f(σ) = n− y , k ≥ 1
� cGROW-BOTTOM1 = cCLEAR-COLUMN − 1

4 GROW-BOTTOM1(y){
(0 < c < m) ∧ (y <

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (0 ≤ row = n− y − 1 < n)∧

(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% ≤ y : (%, col) ∈ Clear)

}
� cGROW-TOP1 = cCLEAR-COLUMN − 1

5 GROW-TOP1(y){
(0 < c < m) ∧ (y <

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (y <

⌈
n
2

⌉
− 1⇒ row = y + 1)∧

(y =
⌈
n
2

⌉
− 1⇒ row = y) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y − 1 ≤ % < n : (%, col) ∈ Clear)

}
⇒{

(0 < c < m) ∧ (y ≤
⌊
n
2

⌋
− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (y <

⌈
n
2

⌉
− 1⇒ row = y + 1)∧

(y =
⌈
n
2

⌉
− 1⇒ row = y) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− (y + 1) ≤ % < n : (%, col) ∈ Clear)

}

6 y ← y + 1{
(0 < c < m) ∧ (y ≤

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (y <

⌈
n
2

⌉
⇒ row = y)∧

(y =
⌈
n
2

⌉
⇒ row = y − 1) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y ≤ % < n : (%, col) ∈ Clear)

}
�

(31)
f(σ) = n− y − 1 < k

7 end do (0 < c < m) ∧ (y =
⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧ (y <

⌈
n
2

⌉
⇒ row = y)∧

(y =
⌈
n
2

⌉
⇒ row = y − 1) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear)∧

(∀% : n− y ≤ % < n : (%, col) ∈ Clear)

 � (31) ∧ ¬(y <
⌊
n
2

⌋
)

� is-odd(n)⇒ y =
⌊
n
2

⌋
=
⌈
n
2

⌉
− 1 <

⌈
n
2

⌉
⇒ row = y =

⌈
n
2

⌉
− 1

� is-even(n)⇒ y =
⌊
n
2

⌋
=
⌈
n
2

⌉
⇒ row = y − 1 =

⌈
n
2

⌉
− 1

� n− y = n−
⌊
n
2

⌋
=
⌈
n
2

⌉
>
⌈
n
2

⌉
− 1 = row

⇒{
(0 < c < m) ∧ (y =

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧

(
0 ≤ row =

⌈
n
2

⌉
− 1 < n

)
∧

(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : row < % < n : (%, col) ∈ Clear)

}
� cTRANSITION = cCLEAR-COLUMN

8 TRANSITION{
(0 < c < m) ∧ (y =

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧

(
0 ≤ row = 2

⌊
n
2

⌋
− y − 1 < n

)
∧

(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)

}
9 while y < n− 1

10 do{
(0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧

(
0 ≤ row = 2

⌊
n
2

⌋
− y − 1 < n

)
∧

(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)

}
�

(32) ∧ (y < n− 1)
f(σ) = n− y , k ≥ 1

� cGROW-TOP2 = cCLEAR-COLUMN

11 GROW-TOP2(y){
(0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n)∧

(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧
(
∀% : 2

⌊
n
2

⌋
− y ≤ % < n : (%, col −1) ∈ Clear

) }
� cGROW-BOTTOM2 = cCLEAR-COLUMN

12 GROW-BOTTOM2(y) (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2

⌊
n
2

⌋
− y − 2)∧

(y = n− 2⇒ row = 0) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% ≤ y : (%, col −1) ∈ Clear)∧
(y = n− 2⇒ ∀% < n, κ < col : (%, κ) ∈ Clear)

⇒ (0 < c < m) ∧ (

⌊
n
2

⌋
− 1 ≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2

⌊
n
2

⌋
− y − 2)∧

(y = n− 2⇒ row = 0) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y + 1 : (%, col −1) ∈ Clear)∧
(y = n− 2⇒ (n− 1, col −1) ∈ Clear)

13 y ← y + 1

 (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y < n− 1⇒ row = 2

⌊
n
2

⌋
− y − 1)∧

(y = n− 1⇒ row = 0) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)∧
(y = n− 1⇒ (n− 1, col −1) ∈ Clear)

 � (32)

14 end do (0 < c < m) ∧ (y = n− 1 < n) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)∧
((n− 1, col −1) ∈ Clear)

 �
(32) ∧ ¬(y < n− 1)
f(σ) = n− y − 1 < k

⇒{
(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear)

}
� postcondition

J. Derivation of GROW-BOTTOM1 in Figure 27

We assume the time is initiallyt0.{
(speed ≥ n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = y < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y ≤ % < n : (%, col) ∈ Clear)

}
� precondition

⇒ (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|n− y ≤ % < n} ⊆ Clear)∧
((t0 + y) div cycle = t0 div cycle)

1 move S y (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y ≤ % < n} ⊆ Clear)∧
((t0 + y + 1) div cycle = (t0 + y) div cycle)

2 move E 1 (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 1) ∧ (0 ≤ col = c+ 1 < m)∧

(0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y ≤ % < n} ∪ {(0, c+ 1)} ⊆ Clear)∧
((t0 + 2y + 2) div cycle = (t0 + y + 1) div cycle)

3 move N y + 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 2) ∧ (0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = y + 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y ≤ % < n} ∪ {(%, c+ 1)|% ≤ y + 1} ⊆ Clear)∧
((t0 + 2y + 3) div cycle = (t0 + 2y + 2) div cycle)

4 move W 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y + 1} ∪ {(%, c)|n− y ≤ % < n} ∪ {(%, c+ 1)|% ≤ y + 1} ⊆ Clear)∧
((t0 + n+ 1) div cycle = (t0 + 2y + 3) div cycle)

5 move N n− 2y − 2 (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + n+ 1) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ n− y − 1} ∪ {(%, c)|n− y ≤ % < n} ∪ {(%, c+ 1)|% ≤ y + 1} ⊆ Clear)

⇒

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 1)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 1 < n) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|% ≤ y + 1} ⊆ Clear)∧
(∀% : y + 2 ≤ % < n : e-adjacent((%, c+ 1), (%, c))) ∧ (∀% : % ≤ y + 1 : e-adjacent((%, c+ 2), (%, c+ 1)))∧
(e-adjacent((c+ 1, y + 2), (c, y + 1))) ∧ ((t0 + cycle) div cycle = (t0 + n+ 1) div cycle +1)

6 evader-move{

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|% < y + 1} ⊆ Clear)

}
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 1 < n)∧
(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% ≤ y : (%, col) ∈ Clear)

}
� postcondition

K. Derivation of GROW-TOP1 in Figure 28

We make use of the observation in Appendix A.2.c that Rule (11) can be treated as Rule (10) in
which theelseblock consists only of ano-op; we use this to simplify the derivation by expanding
the algorithm’sif construct to include ano-op-only elseblock.

We assume the time is initiallyt0.{
(speed ≥ n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = n− y − 1 < n) ∧ (∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% ≤ y : (%, col) ∈ Clear)

}
� precondition

⇒ (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ⊆ Clear)∧
((t0 + y) div cycle = t0 div cycle)

1 move N y (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = n− 1 < n) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y − 1 ≤ % < n} ⊆ Clear)∧
((t0 + y + 1) div cycle = t0 + y div cycle)

2 move E 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + y + 1) ∧ (0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y − 1 ≤ % < n} ∪ {(n− 1, c+ 1)} ⊆ Clear)∧
((t0 + 2y + 2) div cycle = t0 + y + 1 div cycle)

3 move S y + 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 2) ∧ (0 ≤ col = c+ 1 < m) ∧ (0 ≤ row = n− y − 2 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y − 1 ≤ % < n} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear)∧
((t0 + 2y + 3) div cycle = t0 + 2y + 2 div cycle)

4 move W 1 (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 2 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|n− y − 2 ≤ % < n} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear)

 � (A)

� need a more elegant mechanism there, for referencing later
5 if n > 2y + 3
6 then

� (y <
⌊
n
2

⌋
) ∧ (n > 2y + 3)⇒ n

2 > y + 3
2 ⇒

⌊
n
2

⌋
> y + 1

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y <

⌊
n
2

⌋
− 1) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 2 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, κ)|n− y − 2 ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)∧
((t0 + n) div cycle = t0 + 2y + 3 div cycle)

 � (A) ∧ (n > 2y + 3)

7 move S n− 2y − 3 (cycle > n+ 1) ∧ (c < m− 1) ∧ (y <
⌊
n
2

⌋
− 1) ∧ (t0 mod cycle = 0)∧

(time = t0 + n) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, c)|y + 1 ≤ % < n} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear)

� (0 ≤ row = y + 1 < n) ≡ (0 ≤ row = y + 1 < n) ∧ TRUE

� TRUE≡ (FALSE⇒ row = y)
� (0 ≤ row = y + 1 < n) ≡ (TRUE⇒ row = y + 1)
⇒ (cycle > n+ 1) ∧ (c < m− 1) ∧ (y ≤

⌈
n
2

⌉
− 1) ∧ (t0 mod cycle = 0)∧

(t0 < time < t0 + n+ 1 < t0 + cycle) ∧ (0 ≤ col = c < m) ∧ (y <
⌈
n
2

⌉
− 1⇒ row = y + 1)∧

(y =
⌈
n
2

⌉
− 1⇒ row = y) ∧ ({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear)

 � (B)

else
�
(
(y <

⌊
n
2

⌋
) ∧ ¬(n > 2y + 3)⇒ n

2 ≤ y + 3
2 ⇒

⌊
n
2

⌋
≤ y + 1

)
V y =

⌊
n
2

⌋
− 1 (cycle > n+ 1) ∧ (c < m− 1) ∧ (y =

⌊
n
2

⌋
− 1) ∧ (t0 mod cycle = 0)∧

(time = t0 + 2y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = n− y − 2 < n)∧
({(%, κ)|% < n, κ < c} ∪ {(%, c)|% ≤ y} ∪ {(%, κ)|n− y − 2 ≤ % < n, c ≤ κ ≤ c+ 1} ⊆ Clear)

 � (A) ∧ ¬(n > 2y + 3)

� is-even(n)⇒ (y =
⌈
n
2

⌉
− 1) ∧ (n− y − 2 = y)

� is-odd(n)⇒ (y =
⌈
n
2

⌉
− 2 <

⌈
n
2

⌉
− 1) ∧ (n− y − 2 = y + 1)

no-op
(cycle > n+ 1) ∧ (c < m− 1) ∧ (y ≤

⌈
n
2

⌉
− 1) ∧ (t0 mod cycle = 0)∧

(t0 < time = t0 + 2
⌊
n
2

⌋
+ 1 ≤ t0 + n+ 1 < t0 + cycle)∧

(0 ≤ col = c < m) ∧ (y <
⌈
n
2

⌉
− 1⇒ row = y + 1) ∧ (y =

⌈
n
2

⌉
− 1⇒ row = y)∧

({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear)

 � (B)

8 end if
(B)⇒

(cycle > n+ 1) ∧ (c < m− 1) ∧ (y ≤
⌈
n
2

⌉
− 1) ∧ (t0 mod cycle = 0) ∧ (t0 < time < t0 + cycle) ∧ (0 ≤ col = c < m)∧

(y <
⌈
n
2

⌉
− 1⇒ row = y + 1) ∧ (y =

⌈
n
2

⌉
− 1⇒ row = y) ∧ ((t0 + cycle) div cycle = time div cycle +1)∧

({(%, κ)|% < n, κ ≤ c} ∪ {(%, c+ 1)|n− y − 2 ≤ % < n} ⊆ Clear) ∧ (∀% : % < n− y − 2 : e-adjacent((%, c+ 1), (%, c)))∧
(∀% : n− y − 2 ≤ % < n : e-adjacent((%, c+ 2), (%, c+ 1))) ∧ (e-adjacent((c+ 1, n− y − 2), (c, n− y − 3)))

9 evader-move (cycle > n+ 1) ∧ (c < m− 1) ∧ (y ≤

⌈
n
2

⌉
− 1) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c < m) ∧ (y <
⌈
n
2

⌉
− 1⇒ row = y + 1) ∧ (y =

⌈
n
2

⌉
− 1⇒ row = y)∧

({(%, κ)|% < n, κ < c} ∪ {(%, c)|n− y − 1 ≤ % < n} ⊆ Clear)

⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y <
⌈
n
2

⌉
− 1⇒ row = y + 1) ∧ (y =

⌈
n
2

⌉
− 1⇒ row = y)∧

(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : n− y − 1 ≤ % < n : (%, col) ∈ Clear)

}
� postcondition

L. Derivation of TRANSITION in Figure 29

We assume the time is initiallyt0.{
(speed ≥ n+ 1) ∧ (0 < c < m) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c− 1 < m) ∧

(
0 ≤ row =

⌈
n
2

⌉
− 1 < n

)
∧

(∀% < n, κ < col : (%, κ) ∈ Clear) ∧ (∀% : row < % < n : (%, col) ∈ Clear)

}
� precondition

⇒
(cycle > n+ 1) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c− 1 < m)∧(
0 ≤ row =

⌈
n
2

⌉
− 1 < n

)
∧
(
{(%, κ)|% < n, κ < c− 1} ∪

{
(%, c− 1)|

⌈
n
2

⌉
≤ % < n

}
⊆ Clear

)
∧(

(t0 +
⌈
n
2

⌉
− 1) div cycle = t0 div cycle

)

1 move S
⌈
n
2

⌉
− 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧

(
time = t0 +

⌈
n
2

⌉
− 1
)
∧

(0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|0 ≤ % < n} ⊆ Clear)∧(
(t0 +

⌈
n
2

⌉
) div cycle = (t0 +

⌈
n
2

⌉
− 1) div cycle

)

2 move E 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧
(
time = t0 +

⌈
n
2

⌉)
∧

(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧ ({(%, κ)|% < n, κ ≤ c− 1} ∪ {(0, c)} ⊆ Clear)∧(
(t0 +

⌈
n
2

⌉
+
⌊
n
2

⌋
) div cycle = (t0 +

⌈
n
2

⌉
) div cycle

)

3 move N
⌊
n
2

⌋ (cycle > n+ 1) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n) ∧ (0 ≤ col = c < m)∧(
0 ≤ row =

⌊
n
2

⌋
< n

)
∧
(
{(%, κ)|% < n, κ ≤ c− 1} ∪

{
(%, c)|% ≤

⌊
n
2

⌋}
⊆ Clear

)
∧

((t0 + n+ 1) div cycle = (t0 + n) div cycle)

4 move S 1

(cycle > n+ 1) ∧ (0 < c < m) ∧ (t0 mod cycle = 0) ∧ (time = t0 + n+ 1) ∧ (0 ≤ col = c < m)∧(
0 ≤ row =

⌊
n
2

⌋
− 1 < n

)
∧
(
{(%, κ)|% < n, κ ≤ c− 1} ∪

{
(%, c)|% ≤

⌊
n
2

⌋}
⊆ Clear

)
∧(

∀% :
⌊
n
2

⌋
+ 1 ≤ % < n : e-adjacent((%, c), (%, c− 1))

)
∧
(
∀% : % ≤

⌊
n
2

⌋
: e-adjacent((%, c+ 1), (%, c))

)
∧(

e-adjacent((c,
⌊
n
2

⌋
+ 1), (c− 1,

⌊
n
2

⌋
))
)
∧ ((t0 + cycle) div cycle = time div cycle +1)

5 evader-move{

(cycle > n+ 1) ∧ (0 < c < m) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle) ∧ (0 ≤ col = c < m)∧(
0 ≤ row =

⌊
n
2

⌋
− 1 < n

)
∧
(
{(%, κ)|% < n, κ < c− 1} ∪

{
(%, c− 1)|% ≤

⌊
n
2

⌋
− 1
}
∪
{

(
⌊
n
2

⌋
− 1, c)

}
⊆ Clear

) }
⇒{

(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧
(
0 ≤ row =

⌊
n
2

⌋
− 1 < n

)
∧

(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < row : (%, col −1) ∈ Clear)

}
� postcondition

M. Derivation of GROW-TOP2 in Figure 30

We assume the time is initiallyt0.{
(speed ≥ n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m)∧(

0 ≤ row = 2
⌊
n
2

⌋
− y − 1 < n

)
∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧ (∀% < y : (%, col −1) ∈ Clear)

}
� precondition

⇒ (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0)∧

(0 ≤ col = c < m) ∧
(
0 ≤ row = 2

⌊
n
2

⌋
− y − 1 < n

)
∧ ({(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|% < y} ⊆ Clear)∧(

(t0 + 2
(
y −

⌊
n
2

⌋)
+ 1) div cycle = t0 div cycle

)

1 move N 2
(
y −

⌊
n
2

⌋)
+ 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + 2y − 2

⌊
n
2

⌋
+ 1
)
∧(

{(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|% < y} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y

}
⊆ Clear

)
∧

(0 ≤ col = c < m) ∧ (0 ≤ row = y < n) ∧
(
(t0 + 2y − 2

⌊
n
2

⌋
+ 2) div cycle = (t0 + 2y − 2

⌊
n
2

⌋
+ 1) div cycle

)

2 move W 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + 2y − 2

⌊
n
2

⌋
+ 2
)
∧(

{(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|% ≤ y} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y

}
⊆ Clear

)
∧

(0 ≤ col = c− 1 < m) ∧ (0 ≤ row = y < n) ∧
(
(t0 + y + n− 2

⌊
n
2

⌋
+ 1) div cycle = (t0 + 2y − 2

⌊
n
2

⌋
+ 2) div cycle

)

3 move N n− y − 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + y + n− 2

⌊
n
2

⌋
+ 1
)
∧(

{(%, κ)|% < n, κ < c− 1} ∪ {(%, c− 1)|% ≤ n− 1} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y

}
⊆ Clear

)
∧

(0 ≤ col = c− 1 < m) ∧ (0 ≤ row = n− 1 < n) ∧
(
(t0 + y + n− 2

⌊
n
2

⌋
+ 2) div cycle = (t0 + y + n− 2

⌊
n
2

⌋
+ 1) div cycle

)

4 move E 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + y + n− 2

⌊
n
2

⌋
+ 2
)
∧(

{(%, κ)|% < n, κ < c} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y

}
∪ {(n− 1, c)} ⊆ Clear

)
∧

(0 ≤ col = c < m) ∧ (0 ≤ row = n− 1 < n) ∧
(
(t0 + 2n− 2

⌊
n
2

⌋
) div cycle = (t0 + y + n− 2

⌊
n
2

⌋
+ 2) div cycle

)

5 move S n− y − 2
(cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + 2

⌈
n
2

⌉)
∧(

{(%, κ)|% < n, κ < c} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y

}
∪ {(%, c)|y + 1 ≤ % < n} ⊆ Clear

)
∧

(0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n) ∧
(
(t0 + cycle) div cycle = (t0 + 2

⌈
n
2

⌉
) div cycle +1

)
∧(

∀% : 0 ≤ % < 2
⌊
n
2

⌋
− y − 1 : e-adjacent((%, c), (%, c− 1))

)
∧(

∀% : 2
⌊
n
2

⌋
− y − 1 ≤ % < n : e-adjacent((%, c+ 1), (%, c))

)
∧
(
e-adjacent((c, 2

⌊
n
2

⌋
− y − 2), (c− 1, 2

⌊
n
2

⌋
− y − 1))

)

6 evader-move

 (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ ((t0 + cycle mod cycle = 0)∧

(time = t0 + cycle) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n)∧(
{(%, κ)|% < n, κ < c− 1} ∪

{
(%, c− 1)|2

⌊
n
2

⌋
− y ≤ % < n

}
∪ {(y + 1, c)} ⊆ Clear

)

⇒{
(time mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = y + 1 < n)∧
(∀% < n, κ < col −1 : (%, κ) ∈ Clear) ∧

(
∀% : 2

⌊
n
2

⌋
− y ≤ % < n : (%, col −1) ∈ Clear

) } � postcondition

N. Derivation of GROW-BOTTOM2 in Figure 31

We make use of the observation in Appendix A.2.c that Rule (11) can be treated as Rule (10) in
which theelseblock consists only of ano-op; we use this to simplify the derivation by expanding
the algorithm’sif construct to include ano-op-only elseblock.

We assume the time is initiallyt0. (speed ≥ n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (time mod cycle = 0) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = y + 1 < n) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear)∧(
∀% : 2

⌊
n
2

⌋
− y ≤ % < n : (%, col −1) ∈ Clear

)
 � precondition

⇒ (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0) ∧ (0 ≤ col = c < m)∧

(0 ≤ row = y + 1 < n) ∧
(
{(%, κ)|% < n, κ < c− 1} ∪

{
(%, c− 1)|2

⌊
n
2

⌋
− y ≤ % < n

}
⊆ Clear

)
∧(

(t0 + 2
(
y −

⌊
n
2

⌋
+ 1
)
) div cycle = t0 div cycle

)

1 move S 2
(
y −

⌊
n
2

⌋
+ 1
) (cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + 2y − 2

⌊
n
2

⌋
+ 2
)
∧(

{(%, κ)|% < n, κ < c− 1} ∪
{

(%, c− 1)|2
⌊
n
2

⌋
− y ≤ % < n

}
∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)
∧

(0 ≤ col = c < m) ∧
(
0 ≤ row = 2

⌊
n
2

⌋
− y − 1 < n

)
∧
(
(t0 + 2y − 2

⌊
n
2

⌋
+ 3) div cycle = (t0 + 2y − 2

⌊
n
2

⌋
+ 2) div cycle

)

2 move W 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧

(
time = t0 + 2y − 2

⌊
n
2

⌋
+ 3
)
∧(

{(%, κ)|% < n, κ < c− 1} ∪
{

(%, c− 1)|2
⌊
n
2

⌋
− y − 1 ≤ % < n

}
∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)
∧

(0 ≤ col = c− 1 < m) ∧
(
0 ≤ row = 2

⌊
n
2

⌋
− y − 1 < n

)
∧
(
(t0 + y + 2) div cycle = (t0 + 2y − 2

⌊
n
2

⌋
+ 3) div cycle

)

3 move S 2
⌊
n
2

⌋
− y − 1 (cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 2)∧(

{(%, κ)|% < n, κ < c} ∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)
∧

(0 ≤ col = c− 1 < m) ∧ (0 ≤ row = 0 < n) ∧ ((t0 + y + 3) div cycle = (t0 + y + 2) div cycle)

4 move E 1{

(cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧ (time = t0 + y + 3)∧

(0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n) ∧
(
{(%, κ)|% < n, κ < c} ∪ {(0, c)} ∪

{
(%, c)|2

⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

) } � (D)

5 if y < 2(
⌊
n
2

⌋
− 1)

6 then
(cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < 2

⌊
n
2

⌋
− 2) ∧ (t0 mod cycle = 0)∧

(time = t0 + y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧(
{(%, κ)|% < n, κ < c} ∪ {(0, c)} ∪

{
(%, c)|2

⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)
∧(

(t0 + 2
⌊
n
2

⌋
+ 1) div cycle = (t0 + y + 3) div cycle

)
 � (D) ∧ (y < 2(

⌊
n
2

⌋
− 1))

7 move N 2
⌊
n
2

⌋
− y − 2 (cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < 2

⌊
n
2

⌋
− 2) ∧ (t0 mod cycle = 0)∧

(t0 < t0 + n ≤ time ≤ t0 + n+ 1 < t0 + cycle) ∧ (0 ≤ col = c < m) ∧
(
0 ≤ row = 2

⌊
n
2

⌋
− y − 2 < n

)
∧(

{(%, κ)|% < n, κ < c} ∪
{

(%, c)|0 ≤ % ≤ 2
⌊
n
2

⌋
− y − 2

}
∪
{

(%, c)|2
⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)

� is-even(n) ∧ (y = n− 2)⇒ 2
⌊
n
2

⌋
− y − 2 = 0

� is-odd(n) ∧ (y < 2(
⌊
n
2

⌋
− 1)⇒ y < n− 3 < n− 2

⇒ (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0)∧

(t0 < t0 + n ≤ time ≤ t0 + n+ 1 < t0 + cycle) ∧ (0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2
⌊
n
2

⌋
− y − 2)∧

(y = n− 2⇒ row = 0) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|0 ≤ % ≤ y + 1} ⊆ Clear)

 � (E)

else (cycle > n+ 1) ∧ (0 < c < m) ∧ (2
⌊
n
2

⌋
− 2 ≤ y < n− 1) ∧ (t0 mod cycle = 0)∧

(time = t0 + y + 3) ∧ (0 ≤ col = c < m) ∧ (0 ≤ row = 0 < n)∧(
{(%, κ)|% < n, κ < c} ∪ {(0, c)} ∪

{
(%, c)|2

⌊
n
2

⌋
− y − 1 ≤ % ≤ y + 1

}
⊆ Clear

)
 � (D) ∧ ¬(y < 2(

⌊
n
2

⌋
− 1))

� is-even(n)⇒ 2
⌊
n
2

⌋
− 2 = n− 2⇒ y = n− 2V 2

⌊
n
2

⌋
− y − 1 = 1

� is-odd(n)⇒ 2
⌊
n
2

⌋
− 2 = n− 3⇒ n− 3 ≤ y ≤ n− 2V 2

⌊
n
2

⌋
− y − 1 ∈ {0, 1}

� is-odd(n) ∧ y = n− 3⇒ 0 = 2
⌊
n
2

⌋
− y − 2

no-op (cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0)∧

(t0 < t0 + n ≤ time ≤ t0 + n+ 1 < t0 + cycle) ∧ (0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2
⌊
n
2

⌋
− y − 2)∧

(y = n− 2⇒ row = 0) ∧ ({(%, κ)|% < n, κ < c} ∪ {(%, c)|0 ≤ % ≤ y + 1} ⊆ Clear)

 � (E)

8 end if
(E)⇒

(cycle > n+ 1) ∧ (0 < c < m) ∧ (
⌊
n
2

⌋
≤ y < n− 1) ∧ (t0 mod cycle = 0) ∧ (t0 < time < t0 + cycle) ∧ (0 ≤ col = c < m)∧

(y < n− 2⇒ row = 2
⌊
n
2

⌋
− y − 2) ∧ (y = n− 2⇒ row = 0) ∧ ((t0 + cycle) div cycle = time div cycle +1)∧

({(%, κ)|% < n, κ < c} ∪ {(%, c)|0 ≤ % ≤ y + 1} ⊆ Clear) ∧ (∀% : y + 1 < % < n : e-adjacent((%, c), (%, c− 1)))∧
(∀% : 0 ≤ % ≤ y + 1 : e-adjacent((%, c+ 1), (%, c))) ∧ (e-adjacent((c, y + 2), (c− 1, y + 1)))

9 evader-move (cycle > n+ 1) ∧ (0 < c < m) ∧ (

⌊
n
2

⌋
≤ y < n− 1) ∧ ((t0 + cycle) mod cycle = 0) ∧ (time = t0 + cycle)∧

(0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2
⌊
n
2

⌋
− y − 2) ∧ (y = n− 2⇒ row = 0)∧

({(%, κ)|% < n, κ < c− 1} ∪ {(%, c)|0 ≤ % < y + 1} ⊆ Clear)

⇒ (time) mod cycle = 0) ∧ (0 ≤ col = c < m) ∧ (y < n− 2⇒ row = 2

⌊
n
2

⌋
− y − 2)∧

(y = n− 2⇒ row = 0) ∧ (∀% < n, κ < col −1 : (%, κ) ∈ Clear)∧
(∀% ≤ y : (%, col −1) ∈ Clear) ∧ (y = n− 2⇒ ∀% < n, κ < col : (%, κ) ∈ Clear)

 � postcondition

