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Abstract

Discretization is a crucial preprocessing primitive for a
variety of data warehousing and mining tasks. In this arti-
cle we present a novel PCA-based unsupervised algorithm
for the discretization of continuous attributes in multivari-
ate datasets. The algorithm leverages the underlying cor-
relation structure in the dataset to obtain the discrete in-
tervals, and ensures that the inherent correlations are pre-
served. The approach also extends easily to datasets con-
taining missing values. We demonstrate the efficacy of the
approach on real datasets and as a preprocessing step for
both classification and frequent itemset mining tasks. We
also show that the intervals are meaningful and can uncover
hidden patterns in data.

Keywords: Data preprocessing, Principal Compo-
nents Analysis, Data Mining/Summarization

1 Introduction

Discretization, a widely used data preprocessing primi-
tive, has typically been thought of as the partitioning of the
range of a continuous (base) attribute into intervals, in or-
der to highlight the behavior of a related discrete (goal) at-
tribute. It has been frequently used for classification in the
decision tree context, as well as for summarization in situ-
ations where one needs to transform a continuous attribute
into a discrete one with minimum “loss of information”. It
has recently seen use as a preprocessing step for frequent
itemset discovery applications[14], as well as a compres-
sion/summarization tool in data warehousing environments.

Typically, discretization methods have focused on dis-
cretizing a continuous attribute based on a single goal at-
tribute. Recently several researchers [2, 9] have pointed out
that such methods are limited in a multivariate context re-
sulting in non-optimal solutions. While approaches to ad-
dress this limitation have been proposed, they are usually
very specific to a given task and thus are not inter-operable,
and are quite expensive in nature.

In this article we propose to obtain discrete intervals

based on the correlation structure inherent in the database.
We present a PCA-based algorithm for discretization of
continuous attributes in multivariate datasets. Our algo-
rithm uses the distribution of both categorical and contin-
uous attributes and the underlying correlation structure in
the dataset to obtain the discrete intervals. This approach
also ensures that all attributes are used simultaneously for
deciding the cut points, rather than one attribute at a time.
An additional advantage is that the approach is able to work
well on datasets containing missing data (a common prob-
lem for many data analysis algorithms).

To summarize, the key contributions of this article are:

� Novel unsupervised PCA-based correlation preserv-
ing methods for efficiently discretizing continuous at-
tributes in high dimensional datasets.

� Demonstrating the efficacy of the above algorithms as
a preprocessing step for classical data mining algo-
rithms such as frequent itemset mining and classifica-
tion.

� Extending the above idea to work in the presence of
missing values in multivariate datasets.

� Extensive experimental results on real and synthetic
datasets demonstrating the discovery of meaningful in-
tervals for the continuous attributes and accuracy in
prediction of missing values.

The rest of this article is organized as follows. In Sec-
tion 2 we describe related work. In Section 3 we discuss
the key intuitions underlying the proposed methods and the
basic algorithms. Section 4 reports on our empirical results.
Finally we conclude with directions for future work in Sec-
tion 5.

2 Related Work
Most work on discretization focuses on discretizing a

single continuous attribute. These methods can compute
optimal discretizations along one dimension, but they can-
not generate optimal discretizations in the two dimensional



case. Dougherty et al [4], present an excellent classifica-
tion of current methods in discretization along three sepa-
rate axes, viz., global vs. local, supervised vs. unsupervised
and static vs. dynamic. Among the discretization methods
reviewed in [4] and elsewhere, the following are the most
germane to our work.

The simplest discretization method is an unsupervised
static method called equal sized discretization. It calcu-
lates the maximum and minimum for the attribute being
discretized and simply partitions the range observed into
(some

�
) equal sized intervals. Another unsupervised static

method is equal frequency discretization. It counts the num-
ber of values we have from the attribute that we are trying
to discretize and partitions it into intervals containing the
same number of examples. ChiMerge is a supervised, incre-
mental, bottom up method described by Kerber [8]. It sug-
gests that intra-interval similarity should be maximized and
inter-interval similarity should be minimized. ChiMerge
uses the Chi-Squared statistic to determine the indepen-
dence of the class from the two adjacent intervals. En-
tropy discretization is an supervised dynamic method de-
scribed in Fayyad et al [5]. Entropy discretization recur-
sively selects the cut-points that minimize entropy and uses
the minimum-description-length principle to determine the
appropriate number of intervals (stopping criteria). An im-
provement on this approach was presented recently by Sub-
ramonian et al [15]. Maass [10] provides an efficient al-
gorithm that minimizes classification error. Catlett [3] de-
scribes a supervised dynamic discretization method that re-
cursively selects cut-points maximizing Quinlan’s gain [11]
until a stopping criteria based on a set of heuristic rules ends
the recursion.

Closely related to the work presented in this paper, in
the area of multi-variate discretization, is the recent work
by Bay[2] and also work by Ludl and Widmer[9]. Like
our algorithm, Bay proposes an approach to discretization
that considers the interactions among all attributes. His ap-
proach first finely partitions all continuous attributes into
intervals by using simple discretization techniques such as
equal-width. Then, a merge phase was carried out itera-
tively on two adjacent intervals based on the similarity be-
tween the multivariate distributions corresponding to the
two intervals. Such a merging process continued until no
more eligible intervals are available. Since the multivari-
ate distribution involves all attributes, the resulting inter-
vals were able to reflect the correlation among different at-
tributes. The main limitation of his approach is that it can
be computationally expensive, and perhaps impractically so
for high dimensional and large datasets. Compared to Bay’s
method, our approach relies on Principle Component Anal-
ysis (PCA). By using PCA, our method intrinsically takes
the interactions among all attributes into account. What is
more, we are able to take advantage of the statistics pro-

vided by PCA to effectively reduce the data in the case of
high-dimensionality. This further reduction enables us to
deal with very large high-dimensional datasets in an effi-
cient way.

Ludl and Widmer [9] suggest deriving the cut points for
a continuous attribute by first projecting all the other at-
tributes to the target attribute, and then by clustering the
projected intervals and finally merging adjacent intervals if
their difference is under a user-specified threshold. In order
to project one continuous attribute to the other, their method
requires a preliminary step that split a continuous attribute
into equal-width intervals. A major difference between this
work and our work is that we take the inter-dependences
among all attributes into account, while the interaction con-
sidered in their work is only pair-wise and piecemeal. Sev-
eral other groups have studied discretization [14, 6, 12, 13]
in the context of mining association rules. However, the
discretization approaches discussed in these studies are typ-
ically not generic and can be used only for mining associa-
tions. For instance, Fukuda et al [6] proposed a discretiza-
tion approach that served only for a specific association rule
of interest.

3 Algorithms

In this section we describe our correlation preserving
discretization methods. Before getting into the details of
our approach we first present the key intuition behind our
work.

3.1 Key Intuition

Our claim is that the discretization of a particular contin-
uous attribute must be sensitive to the influence of the other
attributes in the dataset particularly if there is a strong corre-
lation structure to the data. This is most often the case with
real datasets. If we ignore the influence of other attributes,
the resulting discretization can lead to a loss of information
and our ability to discover important relationships among
attributes is reduced.

To account for and preserve the correlation structure
when performing discretization, we rely on two well known
techniques in data mining, frequent association mining and
principle component analysis. Principle component analy-
sis helps identify the correlation structure among the contin-
uous attributes and in conjunction with association patterns
can help effectively capture correlations in datasets contain-
ing both categorical and continuous attributes as we shall
see later. Next, we briefly describe these two techniques.



3.2 Principle Component Analysis

As indicated earlier, the attributes in high dimensional
data are often correlated, which is an underlying assump-
tion of this paper. So discretizing each attribute separately
(univariate discretization) will lead to loss of hidden pat-
terns and result in intervals that will not be meaningful. Due
to strong inter-attribute correlation in most real datasets it is
possible to discretize a continuous attribute based on the
other attributes. To analyze the inter-dependence among
multiple attributes, we use the well-known Principle Com-
ponent Analysis (PCA) [7]. PCA which generates a set of �
orthogonal vectors in the input dataset with dimension

�
,

where ��� � and the � orthogonal directions preserve most
of the variance in the input dataset.

Consider a data set with
�

records and dimensionality � .
In the first step of the PCA technique, we generate the cor-
relation matrix of the continuous attribute in data set. The
correlation matrix is a ����� matrix in which the �
	����� th entry
is equal to the correlation between the dimensions 	 and  .
In the second step we generate the eigenvectors � ��������� �����
of this correlation matrix. These are the directions in the
data which are such that when the data is projected along
these directions, the second order correlations are zero. Let
us assume that the eigenvalue for the eigenvector ��� is equal
to � � . When the data is transformed to this new axis-system,
the value � � is also equal to the variance of the data along
the axis � � . The property of this transformation is that most
of the correlation is retained in a small number of eigenvec-
tors corresponding to the largest values of � � . In our work
unless otherwise specified, we retain the

� ��� eigenvectors
that correspond to the largest eigenvalues which add up to
80%.

3.3 Association Pattern Mining

Discovery of association rules is an important problem in
database mining. The prototypical application is the analy-
sis of sales or basket data [1] although more recently it has
been adopted in the domains of scientific computing, bioin-
formatics and performance modeling. The problem can be
formally stated as: Let  "!#�$	%���%	'&���(�(�(��%	')*� be a set of +
distinct attributes, also called items. Each transaction , in
the database - of transactions, has a unique identifier, and
contains a set of items, such that ,/.0 . An association
rule is an expression 10243 , where 15�63879 , are sets of
items called itemsets, and 1�:;3<!>= . Each itemset is said
to have a support ? if ?A@ of the transactions in - contain
the itemset.

In addition to basic association patterns we also define
a metric that determines the similarity of association pat-
terns generated by two datasets (or two samples of the same
dataset in our case). This metric will be adapted to deter-

mine the similarity between contiguous intervals for select-
ing the discretization cut-points.

Let 1 and 3 respectively be the two sets of frequent
itemsets for a database sample � � and that for a database
sample �B& . For an element CEDF1 (respectively in 3 ), letG%HJI �LK �MCN� (respectively GOHPI ��Q �MCN� ) be the frequency of C in� � (respectively in � & ). Our metric is defined as:

RNSMTVUXW�Y�Z[W�\^]`_baEc$dfeJg�hji5k�lBmLn Z^oqpsrqt�u'vBw�x K UXyP]zpsu'vBw�x Q UXyP]�t {|6}�~���|
where � is a scaling parameter. The parameter � has a de-
fault value of � and can be modified to reflect the signifi-
cance the user attaches to variations in supports. For ��!��
the similarity measure is identical to �[��������[������� , i.e., support
variance carries no significance. ?q	�+ values are bounded
and lie in [0,1]. ?�	[+ also has the property of relative or-
dinality, i.e., if ?�	[+��
���O������?�	[+��
�����j� , then � is more
similar to � than it is to � . Note that while the above for-
mulation does not explicitly consider correlations between
itemsets (e.g. two itemsets (ABEK, AEFK) that have many
items in common are not treated differently), they are ac-
counted for implicitly as all itemsets that can be formed by
the common items (A,E,K) are part of the summation.

3.4 Correlation Preserving Discretization

Our algorithm is composed of the following steps
(pseudo-code in Figure 1):

1. Normalization and Mean Centralization: The first
step of the procedure involves normalizing all the con-
tinuous attributes (to lie between fixed intervals) and
mean centralizing the data. Mean centralization is
a common preprocessing element conducted prior to
PCA computation. Normalization in our case is re-
quired to reduce the impact of attributes that have high
variance. This aspect is discussed in greater detail later
in this section.

2. Eigenvector Computation: We next compute the cor-
relation matrix � from the data. The covariance ma-
trix for a data set is positive semi-definite and can be
expressed in the form � !�� � �5� , where

�
is a

diagonal matrix containing the eigenvalues � � �����6� � .
The columns of � are the eigenvectors �� � � ��������� � ,
which form an orthogonal axis-system. We assume
without loss of generality that the eigenvectors are
sorted so that �N������&9�����������z� . To find these
eigenvectors, we rely on the popular Householder re-
duction to tri-diagonal form and then apply the QL
transform [7], which is the fastest known method to
compute eigenvectors for symmetric matrices. Once
these eigenvectors have been determined, we decide to
retain only those which preserve the greatest amount of



Input:
D : dataset that consists of contiuous and/or discrete attributes
O C : set of continuous attributes in D
O D : set of discrete attributes in D
MAP TYPE: selected mapping method–PROJECTION or KNN
k : number of points retrived when MAP TYPE is PROJECTION

Output:
A set of intervals for each continuous attribute

Algorithm:
(1 ) if ( NORMALIZE ) //user-specified option
(2 ) Normalize each attribute in O C //normalize attributes to 0-1
(3 ) Mean-centralize each attribute o i � O C
(4 ) P C � do PCA on all attributes in O C
(5 ) if ( � ������ )
(6 ) AP D � Compute association patterns on all attributes in O D
(7 ) P C s � set of most contributing s dimensions using correlation criteria // ( 	 
 ���	 
 )
(8 ) Foreach dimension d � P C s
(9 ) determine the number of cut points on d based on proportion of variance
(10) //(eigenvalue of i/sum of eigenvalues)
(11) If ( � ������ )
(12) Foreach dimension d � P C s
(13) compute the cut points by naturally partitioning each eigen component
(14) else
(15) Foreach dimension d � P C s
(16) determine the cut points on d based on AP D
(17) Foreach attribute o i � O C
(18) Identify the principal component p i � P C having the maximum impact on o i
(19) if ( MAP TYPE = KNN )
(20) begin
(21) Foreach attribute o i � O C
(22) Foreach cut point c on p i
(23) begin
(24) Retrive the k points in D that have intercepts on p i being closest to c
(25) k mean � mean point of the k points
(26) a cut point on o i � Project k mean back to o i
(27) end
(28) end
(29) else // MAP TYPE= PROJECTION, normalization is required for this type
(30) begin
(31) v o � the unit vector representing o i
(32) v p � the unit vector represneting p i
(33) Foreach attribute o i � O C
(34) begin
(35) Foreach cut point cp on it p i
(36) begin
(37) scale � the intercept of cp on p i
(38) a cut point on o i ����� ����� ��������� �"!$#
(39) end
(40) end
(41) end

Figure 1. Algorithm



variance from the data. Well known heuristics for de-
ciding the number of eigenvectors to be retained may
be found in [7]. Let us assume that a total of +��<�
eigenvectors ��������� �$) are retained (in our case pre-
serving 80% of correlation).

3. Data Projection onto Eigen-space: In the next step
we project our data elements � , onto the eigen-space
determined by the vectors we retain from the previous
step. Each data point � in the original space is pro-
jected on to the eigen-space where ����� is the projection
of � on the 	��
	 eigenvector.

4. Discretization along Eigen-space: Once all the data
elements are projected onto the eigen-space we dis-
cretize each of the dimensions in the eigen-space. It
is important to note that when the data is projected
along these directions, the second order correlations
are zero, so we do not have to worry about the interac-
tions of other dimensions in this space.

Our approach to discretization here depends on
whether we have categorical attributes in the dataset
or not. If there are no categorical attributes, we choose
to identify natural intervals (distance-based clustering
along each dimension) along each dimension based on
the projections of the data elements composed in � .
The resulting set of cutpoints are denoted as � ���� �����������
for each eigenvector or eigen-dimension ��� .
If the dataset contains categorical attributes then the
discretization approach is as follows: First, we com-
pute the frequent itemsets generated from all categor-
ical attributes in the original dataset � (for a user-
determined value of support). Let us refer to this as
set A. We then split the eigen-dimension � � into equal
frequency intervals (similar to the approach taken by
Bay[2]) and compute the frequent itemsets in each in-
terval that are constrained to being a subset of A. Next,
we compute the similarity between contiguous inter-
vals using the metric described in Section 3.3. If the
similarity exceeds a user defined threshold the contigu-
ous intervals are merged. Again like the case without
categorical attributes we are left with a certain number
of cutpoints along each eigen-dimension.

An important question here is how many discrete in-
tervals are needed? The upper bound limit for each
dimension is determined by the respective eigenvalue
proportions. Intuitively, this makes sense as dimen-
sions capturing less of the variance have fewer inter-
vals. Essentially the vector with lowest eigenvalue is
limited to a user-defined number of intervals (unless
otherwise noted, we use the value 2 in all our exper-
iments) and all others are correspondingly scaled up.

This gives us the upper bound on the number of dis-
crete intervals along each eigen-dimension.

5. Determining Impact of Eigenvectors on Original
Dimensions: The next step is to determine which
eigenvectors are most influenced by which original di-
mensions or vice-versa. To accomplish this task each
original dimension j is associated with exactly one of
the eigenvectors, say ��� . This association is established
by finding the contribution of j on each of the eigenvec-
tors ( ���������O�  ) and choosing the maximum. The con-
tributions are obtained directly from computing the an-
gle formed by the unit eigenvector and the unit vector
along the original dimension. Once this mapping has
been established we can re-project the appropriate cut
points. Note that multiple original dimensions can be
associated to one eigenvector but only one eigenvector
can be associated with one original dimension.

6. Re-projecting Eigen-cutpoints to Original Dimen-
sions:

We consider two strategies in our work. To explain
our approaches for re-projection, let us assume with-
out loss of generality that the ���
	 original dimension is
associated with eigenvector � � .

(a) K-NN method
To project the cut-point � �� � onto the original di-
mension j using this method, we first find the
K nearest neighbor intercepts on the eigenvector
�$� closest to � ���� . The original points ��� ��������� ,
representing each of the K-nearest neighbors, as
well as ����� � , representing the cut point � ���� , are
computed (as shown in Figure 2a). We then com-
pute the mean (or alternately median) value of the
jth dimension for each of these points: � � �����
� �
and ����� � . This mean value represents the corre-
sponding cutpoint along the original dimension j
(as shown in Figure 2a).

(b) Direct projection
The other approach we consider is direct projec-
tion. To project the cut points � ���� ����������� on j orig-
inal dimensions using this method, we need to
find the angle between eigenvector � � and j orig-
inal dimension. The process is shown in Fig 2b.
The cosine of angle � ��� can be calculated by the
formula:

�����B��� ��� � = �� � � � �� � �
where �� � � is an N dimensional unit vector along
the ��
	 dimension.

Now the cut points � ���� ����� ����� can be projected
to original dimension (j) by multiplying it with



�����B�
� ��� � . The same process is applied for all cut
points.

Regardless of which method is adopted, if eigenvector
� � is associated with more than one original dimension
(especially common in high dimensional datasets), the
cut points along that eigenvector � � are projected back
on all associated original dimensions enabling the dis-
cretization method to preserve the inherent correlation
in the data.

7. Post processing: The re-projection will give us the in-
tervals on original dimensions. However we might get
some interval such that an insignificant number of real
data points fall in that interval. We remove (i.e. we
merge them with contiguous ones) such intervals ac-
cording to a user-defined threshold +V	[������� . Please
note that intervals might be very close to each other
but still may exhibit different properties than other in-
tervals, so our criteria of merging intervals is not based
on the width of the interval. Rather it is based on num-
ber of data points in that interval. This step is particu-
larly useful when the method is used as a preprocess-
ing step for association rule mining as the rules in the
small intervals will be very hard to find because of very
low support.

3.5 Extension: Handling Missing Data

Incomplete data sets have become almost ubiquitous in
a wide variety of application domains, e.g., climate, image,
sensor and medical data sets. The incompleteness in these
data sets may arise from a number of factors. In some cases,
it may be a reflection of certain measurements not being
available at the time. In others, the information may be lost
due to partial system failure. Or it may simply be a result
of users being unwilling to specify attributes due to privacy
concerns. Given the ubiquitous prevalence of this problem,
it is important to identify whether our algorithm can adapt
to missing data.

Incomplete datasets seemingly pose the following prob-
lems for our discretization method. First, if values for con-
tinuous attributes are missing, then it affects the first part
of our algorithm. Fortunately if data is missing at ran-
dom then both the means and correlation matrix of the data
can be suitably estimated using expectation-maximization-
based approaches[?, ?]. Furthermore, in recent work Ag-
garwal and Parthasarathy [?] show that estimating the pro-
jections of records with missing values along the principle
components is more accurate than direct imputation, espe-
cially when large parts of the dataset are missing[?]. This
fits in very nicely with the first three steps of our algo-
rithm presented in the previous section enabling us to han-
dle missing continuous attributes effectively.

Second, if categorical attributes are missing, then it can
affect step 4 of our algorithm. While the execution of the
step will not be affected since frequent pattern algorithms
naturally handle missing data, missing entries can result in
changes to the set of frequent itemsets found in each inter-
val. This in turn can impact the similarity metric compu-
tation which can influence the discretization process. How-
ever, if these entries are also missing at random, our premise
is that the structure of the rest of the data, within a given
interval, will enable us to identify the relevant frequent pat-
terns, thus ensuring that the similarity metric computation
is unaffected. We will evaluate this premise in the next sec-
tion.

4 Experimental Results and Analysis

In this section, we experimentally validate the proposed
algorithms both in terms of the quality of the resulting dis-
cretization and its ability to uncover interesting patterns.
We demonstrate the general-purpose utility of the proposed
work as a preprocessing step for data mining tasks like asso-
ciation rule mining and classification. We also demonstrate
the compressibility achieved by our approach and the fact
that it readily adapts to datasets with missing information.

4.1 Experimental Setting

In Table 1 we describe the datasets on which we evaluate
the proposed algorithms. The table summarizes information
about number of records, number of continuous attributes
and number of discrete attributes in the datasets. Two of the
datasets have high dimensionality, several have both con-
tinuous and categorical attributes. In terms of algorithmic
settings, for our K-NN approach the value of K we select
for all experiments is 4 (i.e. 4-nearest neighbors and the
point projecting onto the cut point itself are used to deter-
mine the cut point along the original dimension(s)). Our
default similarity metric threshold (for merging intervals) is
0.8 ( � !�� ). All experiments were run on a Pentium III
1GHZ processor with 512MB memory.

We first evaluate the impact of normalization on our pro-
posed method.

4.2 Importance of Normalization in Direct Pro-
jection

Normalization of the data is a very important step in our
direct projection algorithm, especially in situations where
the attribute ranges are highly unbalanced. In such cases
the re-projection step tends to be heavily influenced by at-
tributes with large variance (range) resulting in near singu-
lar intervals for attributes with relatively small ranges. Ta-
ble 2 highlights this pathological behavior on the cut points
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Figure 2. (a) Direct Projection (b) K-NN

Dataset Records Attributes. Continuous
Adult 48844 14 6
Shuttle 43500 9 9
Musk (1) 476 164 164
Musk (2) 6598 164 164
Cancer 683 8 8
Bupa 345 6 6
Credit 690 14 6
Credit2 1000 20 7

Table 1. Datasets Used in Evaluation

we obtained with and without normalization on the Age at-
tribute of the adult dataset. Specifically, observe the numer-
ous cut points hovering around 35 in the case when nor-
malization is not performed (number of cut points need not
be the same in both cases). Normalization is not essential
with the k-NN projection algorithm as there we are using
the actual age values.

4.3 Qualitative Results based on Association
Rules

In this section we focus on the discretization of the
Adult dataset (containing both categorical and continuous
attributes) as a preprocessing step for obtaining association

rules and compare it with published work on multi-variate
discretization (MVD)[2].

Due to the correlation preserving nature of our approach
we strongly believe that the intervals our method produces
are meaningful and should compare well with MVD. For an
interval to be meaningful, we believe that the following two
conditions should hold. First, the population in an interval
should exhibit similar properties. Second, the population in
different intervals should exhibit different properties. Thus
each cut point should suggest a major change in population
characteristics. Below, we discuss the cut points obtained
for several continuous attributes in the adult dataset.

� Age: Figure 3 shows the intervals obtained from our
approach (both KNN and projection) and the corre-
sponding cut points from MVD on the Age attribute.
First at a coarse-grained level we would like to note
that the cut points obtained between the different meth-
ods are quite similar and quite intuitive. The cut point
at 63 corresponds to the retirement age. The intervals
19-22 and 23-24 are quite narrow but represents two
different group of people as illustrated below:

– 3.4% of people aged 19-22 have a bachelors de-
gree as opposed to 22.7% of people aged 23 to
24.

– 6.1% of people aged 19-22 are married as op-
posed to 17.0% of people in other group.



Method cut points
Projection(Normalized) 19,23,25,29,34,37,40,63,85
Projection(w/o Normalization) 35.39,35.39,35.39,35.39,35.40,35.40,35.40,35.41 35.41,35.41,35.41,35.41,35.42,35.42,,35.43,35.45 38.83,38.83

Table 2. Cut points on Age with and without Normalization (Repeated cut points had different decimal
values after the second decimal point)

– 18.9% of people aged 19-22 work in service
group as opposed to 12.2% people aged 23-24.

MVD also obtained similar cut points. However we
had an extra cut point at age 37 giving us intervals
34-37 and 38-40. MVD combines them in one inter-
val 33-41. At first glance these intervals do not seem
meaningful since usually there is not much difference
in education level and job profiles of people in these
groups. However, upon closer inspection we find that
26% of people in the 34-37 interval are Never Married.
This percentage drops to 13% in the interval 38-40.

MVD’s last cut point was 62 which implies that after
age of 62 there is not much change in demographic and
employment variables. For the KNN method we obtain
an extra cut-point at age 85. The male/female demo-
graphics in this last interval is quite significant and can
be traced to the well known maxim: ‘The average life
expectancy of females is more than males.’

� Capital Gain - The cut points obtained by the three
methods are comparable (shown in Fig 4). The cut
point from the projection method is $12745. MVD
also had one cut point at $5178. Both these methods
separate out people with high gains from people who
make little or no gains to moderate gains. Using KNN
we were able to get even better cut points. It divided
the entire range into 3 intervals, i.e., ���������	� (low
capital gain) which has 1981 people, ($7299,$9998)
(moderate gain) having 920 people and �
�����	��� (high
gain) having 1134 people.

� Capital Loss - From Figure 5 we see that MVD and our
approaches give the same intervals. Records are sep-
arated based on whether loss was declared. We were
able to find the rule
CapitalLoss � $377 2 ���������s�������	� (3% support,
49.3% confidence), which was also found by MVD[2].

� Hours per week - Figure 6 shows our cut points for
hours/week. This is one attribute where we get signifi-
cantly different cut points from MVD. We believe that
our cut points are more intuitive. For example MVD’s
first cut point is at 30 hours/week which implies any-
one working less than 30 hours is similar. This in-
cludes people in the age group (5 to 27) which is a

group of very different people with respect to working
habits, education level etc. Yet all of these are grouped
together in MVD. Using KNN we obtained the first
cut point at 19 hours per week. We are thus able
to extract the rule ������� �"!$#%�'&(# # ) �+*	�V2-,/.�# �0��1 ,
which makes sense as children and young adults typ-
ically work less than 20 hours a week while others
( �32��	� ������ ) typically work longer hours. As another
example we obtain a rule that states that ”people who
work more than 54 hours a week typically earn less
than 50K”. Most likely this refers to blue-collar work-
ers. We note that there is a reduction in percentage of
such people in the interval 50-54 hours, thus explain-
ing the last couple of cut points.

In terms of quantitative experiments we could not really
compare with the MVD method as the source/executable
code was not available to us. We will point out that for the
larger of the datasets (both high dimensional and datasets
with larger number of records) our approach took on the or-
der of a few seconds. The order complexity of our method
is bounded by the order complexity of each step. The steps
that dominate the execution time are the ones to compute
the correlation 4 � � & ( � � , the time to compute the eigen-
vectors 4 �
��5�� where d is the number of dimensions and N
is the number of records in the dataset. The order complex-
ity for the rest of the steps is dependent on the number of
cut points, and if we use the K-NN strategy the value of K
being used. The other steps are at most linear in the number
of dimensions.

In comparing our method(s) with MVD we found that
by and large we find intuitive cut points (like MVD), how-
ever we do so at the fraction of the cost. Our benefits over
MVD in terms of execution time can be traced to the fact
that we use PCA to reduce the dimensionality of the prob-
lem and we compute one set of cut points and project the
resulting cut points onto the original dimension(s) simulta-
neously. We would also like to point out that our method
of discretization can be used to reduce the storage costs of
the data being stored and that it is not tied in to a particular
method, i.e. as we show it is equally effective as a pre-
processing step for classification as it is for a preprocessing
step for association rule mining.
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Figure 3. Cutpoints on Age: (a) Projection (b) KNN (c) MVD
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Figure 4. Cutpoints on Gain: (a) Projection (b) KNN (c) MVD
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Figure 5. Cutpoints on Loss: (a) Projection (b) KNN (c) MVD
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Figure 6. Cutpoints on Hours: (a) Projection (b) KNN (c) MVD



4.4 Qualitative Results using Classification

In this section we evaluate the viability of our approach
as a preprocessing step for classification. For both the direct
projection and KNN algorithm we bootstrap the results with
the C4.5 decision tree classifier. We compare our approach
against various classifiers supported by the Weka data min-
ing toolkit � . Note that in many cases these classifiers use
a supervised discretization algorithm (taking into account
class label distributions) as a preprocessing step. Our algo-
rithms are unsupervised in nature (i.e. they do not take into
account class-label distributions). In our method once the
discretization has been performed we append the class la-
bels to the discretized datasets and run C4.5. All results use
10-fold cross-validation.

Table 3 shows the error rate of our approaches (last
two columns) as compared to seven different classifiers
(first seven columns). First, on viewing the results it is
clear that our methods coupled with C4.5 often outper-
forms the other approaches (including C4.5 with supervised
discretization which had the same exact settings for C4.5
as our approaches) and especially so on high dimensional
datasets (Musk(1) and Musk(2)). The direct method per-
forms marginally better than the KNN method but this is
not statistically significant. The Bupa dataset is the only
dataset on which our method performs slightly worse and
this may be attributed to the fact that the correlation struc-
ture of this dataset is weak[?]. Second, we do better in-spite
of the fact that our approach is unsupervised and many of
the above classifiers use the class-label distributions to dis-
cretize continuous attributes, thus validating our claim that
the inherent correlations that are preserved by our methods
are useful for classification purposes. Finally, our approach
also lends itself to faster classifier construction times. Deci-
sion trees built on top of the discretized datasets were con-
structed around 10-20% faster on the average. This did not
represent a significant savings in execution times for our
datasets (since they are quite small) but can be quite signif-
icant in larger datasets.

4.5 Experiments with Missing Data

The first experiment we ran compared the impact of
missing data on the classification results on three of our
datasets. We randomly eliminated a certain percentage of
the dataset and then adopted the approach described in Sec-
tion 3.5. Table 4 documents these results. Clearly as the
percentage of data missing is increased the classification
error increases. However this error differential is not too
bad even when 30% of the data is missing. When 10% of
the data is missing the differences are relatively insignifi-Y

http://www.cs.waikato.ac.nz/ ml/

cant indicating that the discretization approach can tolerate
missing data quite well.

In the second experiment we randomly eliminated a per-
centage of the categorical components of our dataset and
then attempted to predict the missing values. Our prediction
strategy involved computing the discretization intervals in
our projected space and then computing the frequent pattern
rules that dominate each interval and using these rules to
predict the missing values in a manner akin to CBA[?]. Pre-
diction rules were ordered based on length, confidence and
support and then applied [?]. We compared this strategy,
referred to as PCA-based, against three strawman methods.

� Dominant Value - Under this scheme we find the most
dominant value for each attribute in an interval. All
the missing values are then replaced by correspond-
ing dominant values. The dominant value is for an at-
tribute is value which occurs most number of times.

� Without Continuous Attributes - In this scheme the
predictions are based solely on the other categorical
attributes in the dataset.

� Random - Missing values are predicted by randomly
picking one of the possible value for a specific at-
tribute. Results are averaged over 10 different runs.

Table 5 shows the accuracy of all four schemes on differ-
ent datasets. The proposed PCA-based scheme has the high-
est accuracy and is remarkably accurate when 10% of the
data is missing especially on the adult dataset. This further
asserts the fact that our correlation preserving discretization
strategy indeed provides us with meaningful intervals that
are extremely useful in predicting missing data values. The
dominant and random strategies are not very effective but
the accuracy is worst in case where we do not leverage the
continuous attributes. We plan to compare the PCA-based
imputation scheme with an EM-based imputation method
[?], as part of future work.

4.6 Compression of datasets

In this section we evaluate the compressibility achiev-
able by discretization, a useful utility in the case of large
datasets or warehousing environments. Note that here we
do not consider classic compression utilities such as gzip
etc., which are orthogonal to our approach and can be ap-
plied on top of our approach to achieve further compres-
sion. Discretization of continuous attributes enables fixed
format compression wherein a record can be reduced to a
bit string and each attribute in a record is associated with a
specific contiguous set of bits in the bit string. Continuous
attributes are usually floating numbers and thus require the
minimum four bytes to represent. However, by discretizing



Dataset C4.5 IBK PART Bayes ONER Kernel-based SMO Projection KNN
Adult 15.7 20.35 15.8 16.8 19.54 17 15.7 15.7
Shuttle 0 0 0 5.1 0 0 0 0 0
Musk (1) 17.3 17.2 18.9 25.7 39.4 17.3 15.6 14.1 14.6
Musk (2) 4.7 4.7 4.1 16.2 9.2 5.1 N/A 4.1 4.1
Cancer 5.4 4.3 4.8 4.1 8.2 5.1 4.3 4.1 4.1
Bupa 32 40 35 45 45 36 43 33 34
Credit 15 14.9 17 23.3. 15.5 17.4 15 14.8 14.9

Table 3. Classification Results (error comparison - best results in bold)

Dataset Original 10% missing 20% missing 30% missing
Adult 15.7% 16% 17% 19%
Credit1 15% 17% 18.8% 18.9%
Credit2 25% 28% 30% 32%

Table 4. Classification Error on Missing Data

them we can easily reduce the storage requirements for each
such attribute. The maximum number of bits required for an
attribute A is a log function of the range.of values permis-
sible. Table 6 shows the results for compression on various
datasets. As we can see from the results in most datasets we
achieve a compression factor of around 3 and in some cases
the results are better.

5 Conclusions

In this article we propose correlation preserving dis-
cretization, an efficient method that can effectively dis-
cretize continuous attributes even in high dimensional
datasets, by accounting for the inherent correlations in the
data in a multi-variate context. The algorithm uses both the
distribution of categorical and continuous attributes and the
underlying correlation structure in the dataset to obtain the
discrete intervals. The approach also ensures that all at-
tributes are used simultaneously for deciding the cut points
rather than one attribute at a time. We demonstrate the ef-
fectiveness of the approach on real datasets, including high
dimensional datasets, both as a preprocessing step to classi-
fication as well as for frequent itemset mining. We also pro-
pose an extension to the algorithm so that it can deal with
missing values effectively and validate this aspect as well.
We show that the resulting discretized datasets can be used
as a means to store data in a compressed fashion ready to
use for different mining tasks. We also show that the inter-
vals obtained are meaningful,intuitive and can uncover the
hidden patterns in data.
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