
Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers over
InfiniBand

SUNDEEP NARRAVULA, PAVAN BALAJI, KARTHIKEYAN VAIDYANATHAN, SAVITHA KRISHNAMOORTHY, JIESHENG

WU AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-11/03-TR65

Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers over
InfiniBand

�

S. Narravula P. Balaji K. Vaidyanathan S. Krishnamoorthy J. Wu D. K. Panda

Computer and Information Science,
The Ohio State University,

2015 Neil Avenue,
Columbus, OH-43210�

narravul, balaji, vaidyana, savitha, wuj, panda � @cis.ohio-state.edu

Abstract

It has been well acknowledged in the research community
that in order to provide or design a data-center environ-
ment which is efficient and offers high performance, one
of the critical issues that needs to be addressed is the ef-
fective reuse of cache content stored away from the origin
server. In the current web, many cache eviction policies and
uncachable resources are driven by two server application
goals: Cache Coherence and Cache Consistency. The prob-
lem of how to provide consistent caching for dynamic con-
tent (Active Caches) has been well studied and researchers
have proposed several weak as well as strong consistency
algorithms. However, the problem of maintaining cache co-
herence has not been studied as much. In this paper, we pro-
pose an architecture for achieving strong cache coherence
for multi-tier data-centers over InfiniBand using the previ-
ously proposed client-polling mechanism. The architecture
as such could be used with any protocol layer; we have also
proposed some optimizations to the algorithm to take ad-
vantage of the advanced features provided by InfiniBand.
We evaluate this architecture using three protocol platforms:
(i) TCP/IP over InfiniBand (IPoIB), (ii) Sockets Direct Pro-
tocol over InfiniBand (SDP) and (iii) the native InfiniBand
Verbs layer (VAPI) and compare it with the performance
of the no-caching based coherence mechanism. Our experi-
mental results show that the InfiniBand-Optimized architec-
ture can achieve an improvement of nearly an order of mag-
nitude compared to the throughput achieved by the TCP/IP
based architecture (over IPoIB), the SDP based architecture
and the no-cache based coherence scheme.
We also propose a shared cache state based adaptive push-

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542

pull architecture for propagating updates. Again, we eval-
uate this using three protocol platforms: TCP/IP, SDP and
VAPI. Our experimental results show that even with a sim-
plistic scheme to make the data-push decision, all the three
implementations of the adaptive push-pull model (TCP/IP
based, SDP based and VAPI based) are able to achieve an
efficient trade-off between the number of cache misses and
the number of wasted updates.

Keywords: Data-Center, Caching, InfiniBand, Cache Co-
herence

1 Introduction

With the increasing adoption of the Internet as the pri-
mary means of electronic interaction and communication,
E-portal and E-commerce, web servers which are highly
scalable, highly available and high performance, have be-
come critical for companies to reach, attract, and keep
customers. Multi-tier Data-centers have become a cen-
tral requirement to providing such services. Figure 1 de-
picts a typical multi-tier data-center environment. The first
tier consists of front-end servers such as the proxy servers
that provide web, messaging and various other services to
clients on a network. The middle tier usually comprises of
application servers that handle transaction processing and
implement data-center business logic. The back-end tier
consists of database servers that hold a persistent state of
the databases and other data repositories. As mentioned
in [23], a fourth tier emerges in today’s data-center environ-
ment: a communication service tier between the network
and the front-end server farm for providing edge services
such as load balancing, security, caching, and others.
With the ever increasing on-line businesses and services

and the growing popularity of personalized Internet ser-

1

vices, dynamic content is becoming increasingly com-
mon [11, 28, 24]. This includes documents that change
upon every access, documents that are results of queries,
documents that embody client-specific information, and
many others. Large-scale dynamic workloads pose in-
teresting challenges in building the next-generation data-
centers [28, 23, 14, 25]. Significant computation and com-
munication may be required to generate and deliver dy-
namic content. Performance and scalability issues need to
be addressed for such workloads.

���

���

�����������������������������������

������
������
������
���

���������������������������
���������������������������	�	�	�	�	
�
�
�
�

��
��

��
��

������������
���

��
��

��
��

���������������������������
���

��
��

��
��

���������������������������
���

��
��

��
��

������������������������������������

 � � � � � � � � � � � � � � � � !�!�!�!�!"�"�"�"�"

##
##

$$
$$%�%�%�%�%&�&�&�&�&

''
''

((
((

)�)�)�)�))�)�)�)�))�)�)�)�)
��*�*�**�*�*�*�**�*�*�*�*+�+�+�+�+,�,�,�,�,

--
--

..
..

/�/�/�/�//�/�/�/�//�/�/�/�/
0�0�0�0�00�0�0�0�00�0�0�0�01�1�1�1�12�2�2�2�2

33
33

44
44

5�5�5�5�55�5�5�5�55�5�5�5�5
6�6�6�6�66�6�6�6�66�6�6�6�67�7�7�7�77�7�7�7�78�8�8�8�88�8�8�8�8

99
99

::
::

;�;�;�;�;;�;�;�;�;;�;�;�;�;
<�<�<�<�<<�<�<�<�<<�<�<�<�<=�=�=�=�==�=�=�=�=>�>�>�>�>>�>�>�>�>

??
??
?

@@
@@
@

A�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�AA�A�A�A�A�A�A

B�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BB�B�B�B�B�BC�C�C�C�C�C�C�CC�C�C�C�C�C�C�CD�D�D�D�D�D�DD�D�D�D�D�D�D

EE
EE
E

FF
FF
F

G�G�G�G�G�G�GG�G�G�G�G�G�GG�G�G�G�G�G�GG�G�G�G�G�G�G

H�H�H�H�H�H�HH�H�H�H�H�H�HH�H�H�H�H�H�HH�H�H�H�H�H�H

II
II
I

JJ
JJ
J

K�K�K�K�K�K�KK�K�K�K�K�K�KK�K�K�K�K�K�KK�K�K�K�K�K�K

L�L�L�L�L�L�LL�L�L�L�L�L�LL�L�L�L�L�L�LL�L�L�L�L�L�LM�M�M�M�M�M�M�MM�M�M�M�M�M�M�MM�M�M�M�M�M�M�M
N�N�N�N�N�N�N�NN�N�N�N�N�N�N�NN�N�N�N�N�N�N�N O�O�OO�O�OO�O�OO�O�OO�O�OO�O�OO�O�O

P�PP�P
P�PP�P
P�PP�P
P�P

Q�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�Q�Q�Q

R�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RR�R�R�R�R�R�R�R�RS�S�S�S�S�S�S�S�SS�S�S�S�S�S�S�S�ST�T�T�T�T�T�T�T�TT�T�T�T�T�T�T�T�T

UU
UU

VV
VV

W�W�W�W�WW�W�W�W�WW�W�W�W�W
X�X�X�X�XX�X�X�X�XX�X�X�X�X

Y�Y�Y�Y�Y�Y�Y�YY�Y�Y�Y�Y�Y�Y�YZ�Z�Z�Z�Z�Z�Z�ZZ�Z�Z�Z�Z�Z�Z�Z
Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design)

Reducing computation and communication overhead is
crucial to improving the performance and scalability of
data-centers. Caching content at various tiers of a multi-
tier data-center is a well known method to reduce the com-
putation and communication overheads. However, caching
dynamic content, typically known as Active Caching [11],
has its own challenges. Issues such as cache consistency
and cache coherence become more prominent for dynam-
ically generated data. In the state-of-art data-center envi-
ronment, these issues are handled based on the type of data
being cached. For dynamic data, for which relaxed con-
sistency or coherency is permissible, several methods like
TTL [15], Adaptive TTL [12], and Invalidation [17] have
been proposed. However, for data like stock quotes or air-
line reservation, where old quotes or old airline availability
values are not acceptable, strong consistency and coherency
is essential.
Providing strong consistency and coherency is a neces-

sity for Active Caching in many web applications, such as
on-line banking and transaction processing. In the current
data-center environment, two popular approaches are used.
The first approach is pre-expiring all entities (forcing data
to be refetched from the origin server on every request).
This scheme is similar to a no-cache scheme. The second
approach, known as Client-Polling, requires the front-end
nodes to inquire from the back-end server if its cache entry

is valid on every cache hit. Both approaches are very costly,
increasing the client response time and the processing over-
head at the back-end servers. The costs are mainly associ-
ated with the high CPU overhead in the traditional network
protocols due to memory copy, context switches, and inter-
rupts [23, 14, 6]. Further, the involvement of both sides for
communication (two-sided communication) results in, per-
formance of these approaches heavily relying on the CPU
load on both communication sides. For example, a busy
back-end server can slow down the communication required
to maintain strong cache coherence significantly.
The InfiniBand Architecture (IBA) [1, 2] is envisioned as

the default interconnect for the future data-center environ-
ments. It is targeted for both Inter-Processor Communica-
tion (IPC) and I/O. Therefore, a single IBA interconnect
can be used to meet different purposes. This significantly
eases network management in data-center servers. In ad-
dition, IBA is designed to achieve low latency and high-
bandwidth with low CPU overhead. It also provides rich
features to greatly improve RAS (Reliability, Availability,
and Scalability) of the data-center servers. IBA relies on
two key features, namely User-level Networking and Re-
mote Direct Memory Access (RDMA). User-level Network-
ing allows applications to directly and safely access the net-
work interface without going through the Operating Sys-
tem. RDMA allows the network interface to transfer data
between local and remote memory buffers without any in-
teration with the Operating System or processor interven-
tion by using DMA engines. These two features have been
leveraged in designing high performance message passing
systems [18] and cluster file systems [27].
In this paper, we focus on leveraging these two features

to support strong coherency for caching dynamic content in
the data-center environment. In particular, we study mecha-
nisms to take advantage of InfiniBand’s features to provide
strong cache consistency and coherency with low overhead
and to provide scalable dynamic content caching (Active
Caching).
This work contains several research contributions. Primar-

ily, it takes the first step toward understanding the role of
the InfiniBand architecture in next-generation data-centers.
The main contributions are:

1. We propose an architecture for achieving strong cache
coherence for multi-tier data-centers. This architecture
requires minimal changes to legacy data-center appli-
cations. It could as such be used with any protocol
layer; at the same time, it allows us to take advantage
of the advanced features provided by InfiniBand to fur-
ther improve performance and scalability of caching in
the data-center environment.

2. We implement the proposed architecture using three
protocol platforms: TCP/IP over InfiniBand (IPoIB),
Sockets Direct Protocol over InfiniBand (SDP) and the

2

native InfiniBand Verbs layer (VAPI). We evaluate this
architecture with all three implementations and com-
pare it with the performance of the no-caching based
coherence mechanism. Our experimental results show
that the InfiniBand-Optimized architecture can achieve
an improvement of nearly an order of magnitude com-
pared to the throughput achieved by the TCP/IP based
architecture, SDP based architecture and the no-cache
based coherence scheme.

3. Our results also show that one-sided operations such
as the RDMA operations can provide better perfor-
mance robustness to load in the data-center environ-
ment compared to two-sided protocols such as TCP/IP
and SDP over the same IBA network. Performance
of Active Caching with strong coherency based on the
RDMA communication mechanism is mostly resilient
and well-conditioned to the load on the application
servers. This feature becomes more important because
of the unpredictability of load in a typical data-center
environment which supports large-scale dynamic ser-
vices.

4. InfiniBand provides opportunities to revise the design
and implementation of many subsystems, protocols,
and communication mechanisms in the data-center en-
vironment. The rich features provided by IBA offer a
flexible design space and tremendous optimization po-
tential.

The rest of the paper is organized as follows. Section 2
describes the background and related work. In Section 3,
we detail the design and challenges of our approach. Sec-
tion 4 presents a shared cache state based hybrid Push-Pull
model which we propose as an extension to improve the per-
formance of cache coherent data-centers. The experimental
results are presented in Section 5. We draw our conclusions
and discuss possible future work in Section 6.

2 Background

In this section, we provide some background work previ-
ously done in three broad directions: (1) Various schemes
proposed by researchers to allow bounded staleness to the
accessed documents, maintaining strong consistency, etc.,
(2) InfiniBand Architecture and the features it provides and
(3) the Sockets Direct Protocol over InfiniBand (SDP).

2.1 Web Cache Consistency and Coherence

It has been well acknowledged in the research community
that in order to provide or design a data-center environment
which is efficient and offers high performance, one of the
critical issues that needs to be addressed is the effective
reuse of cache content stored away from the origin server.

This has been strongly backed up by researchers who have
come up with several approaches to cache more and more
data at the various tiers of a multi-tier data-center. Tradi-
tionally, frequently accessed static content was cached at
the front tiers to allow users a quicker access to these docu-
ments. In the past few years, researchers have come up with
approaches of caching certain dynamic content at the front
tiers as well [11].
In the current web, many cache eviction events and un-

cachable resources are driven by two server application
goals: First, providing clients with a recent or coherent view
of the state of the application (i.e., information that is not
too old); Secondly, providing clients with a self-consistent
view of the application’s state as it changes (i.e., once the
client has been told that something has happened, that client
should never be told anything to the contrary).
The web does not behave like a distributed file system

(DFS) or distributed shared memory (DSM) system; among
the dissimilarities are: (1) the lack of a write semantic in
common use - while the HTTP protocol does include a
PUT event which is in some ways comparable to a write,
it is rarely used. The most common write-like operation is
POST which can have completely arbitrary semantics and
scope. This generality implies, in the general case, an in-
ability to batch user induced updates. (2) The complexity
of addressing particular content - URLs or web addresses
do not in fact address units of contents per se, but rather
address generic objects (resources) which produce content
using completely opaque processes. (3) The absence of any
protocol-layer persistent state or notion of transactions to
identify related, batched or macro-operations. These issues
are further illuminated by Mogul in [21].
In a DSM or DFS world, the mapping from write events to

eventual changes in the canonical system state is clearly de-
fined. In the web, non-safe requests from users can have ar-
bitrary application-defined semantics with arbitrary scopes
of affect completely unknowable from the parameters of a
request, or even from the properties of a response. For this
reason, the definitions of consistency and coherence used
in the DFS/DSM literature do not fit the needs of systems
like the data-center; instead, we use definitions more akin
to those in the distributed database literature.
Depending on the type of data being considered, it is nec-

essary to provide certain guarantees with respect to the view
of the data that each node in the data-center and the users
get. These constraints on the view of data vary depending
on the application requiring the data.
Consistency: Cache consistency refers to a property of

the responses produced by a single logical cache, such that
no response served from the cache will reflect older state
of the server than that reflected by previously served re-
sponses, i.e., a consistent cache provides its clients with
non-decreasing views of the server’s state.

3

Coherence: Cache coherence refers to the average stal-
eness of the documents present in the cache, i.e., the time
elapsed between the current time and the time of the last up-
date of the document in the back-end. A cache is said to be
strong coherent if its average staleness is zero, i.e., a client
would get the same response whether a request is answered
from cache or from the back-end.

2.1.1 Web Cache Consistency

In a multi-tier data-center environment many nodes can ac-
cess data at the same time (concurrency). Data consistency
provides each user with a consistent view of the data, in-
cluding all visible (committed) changes made by the user’s
own updates and the updates of other users. That is, either
all the nodes see a completed update or no node sees an up-
date. Hence, for strong consistency, stale view of data is
permissible, but partially updated view is not.
Several different levels of consistency are used based on

the nature of data being used and its consistency require-
ments. For example, for a web site that reports football
scores, it may be acceptable for one user to see a score, dif-
ferent from the scores as seen by some other users, within
some frame of time. There are a number of methods to im-
plement this kind of weak or lazy consistency models.
The Time-to-Live (TTL) approach, also known as the

�
-

consistency approach, proposed with the HTTP/1.1 speci-
fication, is a popular weak consistency (and weak coher-
ence) model currently being used. This approach associates
a TTL period with each cached document. On a request
for this document from the client, the front-end node is al-
lowed to reply back from their cache as long as they are
within this TTL period, i.e., before the TTL period expires.
This guarantees that document cannot be more stale than
that specified by the TTL period, i.e., this approach guaran-
tees that staleness of the documents is bounded by the TTL
value specified.
Researchers have proposed several variations of the TTL

approach including Adaptive TTL [12] and MONARCH [19]
to allow either dynamically varying TTL values (as in Adap-
tive TTL) or document category based TTL classification (as
in MONARCH). There has also been considerable amount
of work on Strong Consistency algorithms [10, 9].

2.1.2 Web Cache Coherence

Typically, when a request arrives at the proxy node, the
cache is first checked to determine whether the file was pre-
viously requested and cached. If it is, it is considered a
cache hit and the user is served with the cached file. Other-
wise the request is forwarded to its corresponding server in
the back-end of the data-center.
The maximal hit ratio in proxy caches is about 50% [24].

Majority of the cache misses are primarily due to the dy-

namic nature of web requests. Caching dynamic content
pages is much more challenging than static content because
the cached object is related to data at the back-end tiers.
This data may be updated, thus invalidating the cached ob-
ject and resulting in a cache miss. The problem of how
to provide consistent caching for dynamic content has been
well studied and researchers have proposed several weak
as well as strong cache consistency algorithms [10, 9, 28].
However, the problem of maintaining cache coherence has
not been studied as much.
There are two popularly used coherency models in the cur-

rent web: immediate or strong coherence and bounded stal-
eness.
The bounded staleness approach is similar to the previ-

ously discussed TTL based approach. Though this approach
is efficient with respect to the number of cache hits, etc., it
only provides a weak cache coherence model. On the other
hand, immediate coherence provides a strong cache coher-
ence.
With immediate coherence, caches are forbidden from re-

turning a response other than that which would be returned
were the origin server contacted. This guarantees seman-
tic transparency, provides Strong Cache Coherence, and
as a side-effect also guarantees Strong Cache Consistency.
There are two widely used approaches to support immedi-
ate coherence. The first approach is pre-expiring all enti-
ties (forcing all caches to re-validate with the origin server
on every request). This scheme is similar to a no-cache
scheme. The second approach, known as client-polling,
requires the front-end nodes to inquire from the back-end
server if its cache is valid on every cache hit. This cuts
down on the cost of transferring the file to the front end on
every request even in cases when it had not been updated.
The no-caching approach to maintain immediate coher-

ence has several disadvantages:

� Each request has to be processed at the home node tier,
ruling out any caching at the other tiers

� The propagation of these requests to the back-end
home node over traditional protocols can be very ex-
pensive

� For data which does not change frequently, the amount
of computation and communication overhead incurred
to maintain strong coherence could be very high, re-
quiring more resources

These disadvantages are overcome to some extent by the
client-polling mechanism. In this approach, the proxy
server, on getting a request, checks its local cache for the
availability of the required document. If it is not found, the
request is forwarded to the appropriate application server in
the inner tier and there is no cache coherence issue involved
at this tier. If the data is found in the cache, the proxy server

4

checks the coherence status of the cached object by contact-
ing the back-end server(s). If there were updates made to
the dependent data, the cached document is discarded and
the request is forwarded to the application server tier for
processing. The updated object is now cached for future
use. Even though this method involves contacting the back-
end for every request, it benefits from the fact that the actual
data processing and data transfer is only required when the
data is updated at the back-end. This scheme can potentially
have significant benefits when the back-end data is not up-
dated very frequently. However, this scheme has its own set
of disadvantages, mainly based on the traditional network-
ing protocols:

� Every data document is typically associated with a
home-node in the data-center back-end. Frequent ac-
cesses to a document can result in all the front-end
nodes sending in coherence status requests to the same
nodes potentially forming a hot-spot at this node

� Traditional protocols require the back-end nodes to be
interrupted for every cache validation event generated
by the front-end

In this paper, we focus on this model of cache coherence
and analyze the various impacts of the advanced features
provided by InfiniBand on this.

2.2 InfiniBand Architecture

InfiniBand Architecture (IBA) is an industry standard that
defines a System Area Network (SAN) to design clusters
offering low latency and high bandwidth. In a typical IBA
cluster, switched serial links connect the processing nodes
and the I/O nodes. The compute nodes are connected to the
IBA fabric by means of Host Channel Adapters (HCAs).
IBA defines a semantic interface called as Verbs for the con-
sumer applications to communicate with the HCAs.
IBA mainly aims at reducing the system processing over-

head by decreasing the number of copies associated with
a message transfer and removing the kernel from the crit-
ical message passing path. This is achieved by providing
the consumer applications direct and protected access to the
HCA. The specifications for Verbs includes a queue-based
interface, known as a Queue Pair (QP), to issue requests to
the HCA. Figure 2 illustrates the InfiniBand Architecture
model.
Each Queue Pair is a communication endpoint. A Queue

Pair (QP) consists of the send queue and the receive queue.
Two QPs on different nodes can be connected to each
other to form a logical bi-directional communication chan-
nel. An application can have multiple QPs. Communica-
tion requests are initiated by posting Work Queue Requests
(WQRs) to these queues. Each WQR is associated with

Send Rcv

Q
P

Send Rcv

Q
P

CQE CQE

PHY Layer

Link Layer

Network
Layer

Transport
Layer

PHY Layer

Link Layer

Network
Layer

Transport
Layer

Operations,etc
Consumer Transactions,

(IBA Operations)
Consumer Consumer

Transport

WQE

Adapter
Channel

Port Port Port

Packet Relay

Port

Physical link Physical link

(Symbols)(Symbols)

Packet

IBA Operations

(IBA Packets)

IBA Packets

Packet Packet

C
ha

nn
el

 A
da

pt
er

Fabric

Figure 2. InfiniBand Architecture (Courtesy
InfiniBand Specifications)

one or more pre-registered buffers from which data is either
transfered (for a send WQR) or received (receive WQR).
The application can either choose the request to be a Sig-
naled (SG) request or an Un-Signaled request (USG). When
the HCA completes the processing of a signaled request,
it places an entry called as the Completion Queue Entry
(CQE) in the Completion Queue (CQ). The consumer appli-
cation can poll on the CQ associated with the work request
to check for completion. There is also the feature of trigger-
ing event handlers whenever a completion occurs. For Un-
signaled request, no kind of completion event is returned to
the user. However, depending on the implementation, the
driver cleans up the the Work Queue Request from the ap-
propriate Queue Pair on completion.

2.2.1 RDMA Communication Model

IBA supports two types of communication semantics:
Channel Semantics (Send-Receive communication model)
and memory semantics (RDMA communication model).
In channel semantics, every send request has a correspond-

ing receive request at the remote end. Thus there is one-to-
one correspondence between every send and receive opera-
tion. Failure to post a receive descriptor on the remote node
results in the message being dropped and if the connection
is reliable, it might even result in the breaking of the con-
nection.
In memory semantics, Remote Direct Memory Access

(RDMA) operations are used. These operations are trans-
parent at the remote end since they do not require a receive
descriptor to be posted. In this semantics, the send request
itself contains both the virtual address for the local transmit
buffer as well as that for the receive buffer on the remote
end.
Most entries in the WQR are common for both the Send-

Receive model as well as the RDMA model, except an ad-
ditional remote buffer virtual address which has to be spec-

5

ified for RDMA operations.
There are two kinds of RDMA operations: RDMA Write

and RDMA Read. In an RDMA write operation, the initia-
tor directly writes data into the remote node’s user buffer.
Similarly, in an RDMA Read operation, the initiator reads
data from the remote node’s user buffer.
RDMA operations have two notable advantages for us to

design and implement strong cache coherence. First, it
is one-sided communication, that is completely transpar-
ent to the peer side. Therefore, the initiator can initiate
RDMA operations at its own will. Eliminating involvement
of the peer side can overcome the communication perfor-
mance degradation due to CPU workload of the peer side.
This also avoids any interrupt of the peer side processing.
Second, RDMA operations provide a “shared-memory illu-
sion”. This eases status sharing in caching. In the following
section, we describe the design details.

2.3 Sockets Direct Protocol

Sockets Direct Protocol (SDP) is an IBA specific proto-
col defined by the Software Working Group (SWG) of the
InfiniBand Trade Association [4]. The design of SDP is
mainly based on two architectural goals:

� Maintain traditional sockets SOCK STREAM seman-
tics as commonly implemented over TCP/IP. Issues in-
clude graceful closing of connections, ability to use
TCP port space, IP addressing (IPv4, IPv6), Con-
necting/Accepting connect model, Out-of-Band data
(OOB) and support for common socket options

� Support for byte-streaming over a message passing
protocol, including kernel bypass data transfers and
zero-copy data transfers

The SDP specifications focuses specifically on the wire
protocol, finite state machine and packet semantics. Op-
erating system issues, etc can be implementation specific.
It is to be noted that SDP supports only SOCK STREAM
or Streaming sockets semantics and not SOCK DGRAM
(datagram) or other socket semantics. There has also been
some previous work on such high performance sockets in-
terfaces over Gigabit Ethernet [7] and VIA over GigaNet
cLAN [16, 22, 8]. In this paper, we use the SDP interface
over InfiniBand in order to allow the comparison of the dif-
ferent protocol stacks over InfiniBand.

2.3.1 SDP Overview

SDP’s Upper Layer Protocol (ULP) interface is a byte-
stream that is layered on top of InfiniBand’s Reliable Con-
nection (RC) message-oriented transfer model. The map-
ping of the byte stream protocol to InfiniBand message-
oriented semantics was designed to enable ULP data to

be transfered by one of two methods: through intermedi-
ate private buffers (Bcopy) or directly between ULP buffers
(Zcopy).
A mix of InfiniBand Send and RDMA mechanisms are

used to transfer ULP data. Zcopy uses RDMA reads or
writes, transferring data between RDMA buffers (which
typically belong to the ULP). Bcopy uses InfiniBand sends,
transferring data between send and receive private buffers.
SDP has two types of buffers:
Private Buffers: Used for transmission of all SDP mes-

sages and ULP data that is to be copied into the receive ULP
buffer. The Bcopy data transfer mechanism is used for this
traffic.
RDMA Buffers: Used when performing Zcopy data

transfer. ULP data is intended to be RDMAed directly from
the Data Source’s ULP buffer to the Data Sink’s ULP buffer.
An implementation dependent parameter defined as the

Bcopy Threshold is used to abstractly define the results of
the policy decision. For the Bcopy implementation, SDP re-
lies on a flow control mechanism similar to the TCP Sliding
Window protocol, i.e., the sender keeps sending data till the
window is full. When the application reads data from the
socket buffer, the data sink sends a control message back to
the data source updating its window size.
Figure 3 shows SDP in relation to the other Architecture

layers in InfiniBand.
SDP specifications also specify two additional control

messages known as “Buffer Availability Notification” mes-
sages.
Sink Avail Message: If the data sink has already posted a

receive buffer and the data source has not sent the data mes-
sage yet, the data sink does the following steps: (1) Regis-
ters the receive user-buffer (for large message reads) and (2)
Sends a “Sink Avail” message containing the receive buffer
handle to the source. The Data Source on a data transmit
call, uses this receive buffer handle to directly RDMA write
the data into the receive buffer.
Source Avail Message: If the data source has already

posted a send buffer and the available SDP window is not
large enough to contain the buffer, it does the following two
steps: (1) Registers the transmit user-buffer (for large mes-
sage sends) and (2) Send a “Source Avail” message con-
taining the transmit buffer handle to the data sink. The Data
Sink on a data receive call, uses this transmit buffer handle
to directly RDMA read the data into the receive buffer.

2.3.2 SDP Implementation

The current implementation of SDP follows most of the
specifications provided above. There are two major devi-
ations from the specifications in this implementation.

� Buffer Availability Notification: The current imple-
mentation does not support “Source Avail” and “Sink

6

Avail” messages.

� Zcopy implementation: The current implementation
does not support “Zcopy”. All data transfer is done
through the Bcopy mechanism. This limitation can
also be considered as part of the previous limitation,
since they are always used together.

SDPSDP

Network Network

Encoding
Link

Media
Access
Control

Media
Access
Control

Link
Encoding

SAR SAR

IBA IBA
OperationsOperations

Packet
Relay

M
A

C

M
A

C
L

in
k

ApplicationApplication

Network

Layer

Transport

Layer

Layer

Link

Layer
Physical

Session
Layer

Sockets
Interface

Protocols
Upper Level

Packet
Relay

L
in

k
M

A
C

M
A

C

Flow

Ctrl

SDP Messages

Infini Band Messages

Subnet Routing

Inter Subnet Routing

End Node Switch Router

Signaling

End Node

Figure 3. Sockets Direct Protocol Architec-
ture (Courtesy: InfiniBand Specifications Vol-
ume I)

3 Providing Strong Cache Coherence

In this section, we describe the architecture we use to sup-
port strong cache coherence over InfiniBand. We first pro-
vide the basic design of the architecture for any generic
protocol. Next, we point out several optimizations possible
in the design using the various features provided by Infini-
Band.

3.1 Basic Design

As mentioned earlier, there are two popular approaches to
ensure cache coherence: Client-Polling and No-Caching.
In this paper, we focus on the Client-Polling approach to
demonstrate the potential benefits of InfiniBand in support-
ing strong cache coherence.
While the HTTP specification allows a cache-coherent

client-polling architecture (by specifying a TTL value of
NULL and using the ‘‘get-if-modified-since’’
HTTP request to perform the polling operation), it has sev-
eral issues: (1) This scheme is specific to sockets and cannot
be used with other programming interfaces such as Infini-
Band’s native Verbs layers (e.g.: VAPI), (2) In cases where

persistent connections are not possible (HTTP/1.0 based re-
quests, secure transactions, etc), connection setup time be-
tween the nodes in the data-center environment tends to take
up a significant portion of the client response time, espe-
cially for small documents.
In the light of these issues, we present an alternative archi-

tecture to perform Client-Polling. Figure 4 demonstrates
the basic coherency architecture used in this paper. The
main idea of this architecture is to introduce external helper
modules that work along with the various servers in the
data-center environment to ensure cache coherence. All is-
sues related to cache coherence are handled by these mod-
ules and are obscured from the data-center servers. It is to
be noted that the data-center servers require very minimal
changes to be compatible with these modules.

Coherency status

 Proxy
 Server

 App
 Server

 Data
Repository

A
pp

M
odule

D
ata R

ep
M

odule

A
pp

Server

Server
D

atabase

 Query

 Query

 Coherency Status

Coherency status

 reply

 reply

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

Proxy Server

Proxy M
odule

Figure 4. Strong Cache Coherence Protocol

The design consists of a module on each physical node in
the data-center environment associated with the server run-
ning on the node, i.e., each proxy node has a proxy mod-
ule, each application server node has an associated appli-
cation module, etc. The proxy module assists the proxy
server with validation of the cache on every request. The
application module, on the other hand, deals with a num-
ber of things including (a) Keeping track of all updates on
the documents it owns, (b) Locking appropriate files to al-
low a multiple-reader-single-writer based access priority to
files, (c) Updating the appropriate documents during update
requests, (d) Providing the proxy module with the appropri-
ate version number of the requested file, etc.
Figure 5 demonstrates the functionality of the different

modules and their interactions.
Proxy Module: On every request, the proxy server con-

tacts the proxy module through Inter Process Communica-
tion (IPC) to validate the cached object(s) associated with
the request. The proxy module does the actual verification

7

read
 Queue Queue

update

Proxy module

Proxy server
Application Module

Tier2

Application Server

Version Control thread

Update Thread

Update server

Tier3Tier 1

asynchronous update

IP
C

IPC READ REQ

IPC READ PROCEED

IP
C

 U
PD

A
T

E
 R

E
Q

IP
C

 U
PD

A
T

E
 P

R
O

C
E

E
D

IP
C

 U
PD

A
T

E
 D

O
N

E

IPC READ DONE

Figure 5. Interaction between Data-Center
Servers and Modules

of the document with the application module on the appro-
priate application server. If the cached value is valid, the
proxy server is allowed to proceed by replying to the client’s
request from cache. If the cache is invalid, the proxy mod-
ule simply deletes the corresponding cache entry and allows
the proxy server to proceed. Since the document is now not
in cache, the proxy server contacts the appropriate applica-
tion server for the document. This ensures that the cache
remains coherent.
Application Module: The application module is slightly

more complicated than the proxy module. It uses multi-
ple threads to allow both updates and read accesses on the
documents in a multiple-reader-single-writer based access
pattern. This is handled by having a separate thread for han-
dling updates (refered to as the update thread here on). The
main thread blocks for IPC requests from both the applica-
tion server and the update thread. The application server
requests to read a file while an update thread requests to
update a file. The main thread of the application module,
maintains two queues to ensure that the file is not accessed
by a writer (update thread) while the application server is
reading it (to transmit it to the proxy server) and vice-versa.
On receiving a request from the proxy, the applica-

tion server contacts the application module through an
IPC call requesting for access to the required docu-
ment (IPC READ REQUEST). If there are no ongoing
updates to the document, the application module sends
back an IPC message giving it access to the document
(IPC READ PROCEED), and queues the request ID in its
Read Queue. Once the application server is done with read-
ing the document, it sends the application module another
IPC message informing it about the end of the access to the
document (IPC READ DONE). The application module,
then deletes the corresponding entry from its Read Queue.
When a document is to be updated (either due to an update

server interaction or an update query from the user), the up-
date request is handled by the update thread. On getting
an update request, the update thread initiates an IPC mes-
sage to the application module (IPC UPDATE REQUEST).
The application module on seeing this, checks its Read
Queue. If the Read Queue is empty, it immediately sends
an IPC message (IPC UPDATE PROCEED) to the update
thread and queues the request ID in its Update Queue. On
the other hand, if the Read Queue is not empty, the up-
date request is still queued in the Update Queue, but the
IPC UPDATE PROCEED message is not sent back to the
update thread (forcing it to hold the update), until the Read
Queue becomes empty. In either case, no further read-
requests from the application server are allowed to proceed;
instead the application module queues them in its Update
Queue, after the update request. Once the update thread
has completed the update, it sends an IPC UPDATE DONE
message to the update module. At this time, the application
module deletes the update request entry from its Update
Queue, sends IPC READ PROCEED messages for every
read request queued in the Update Queue and queues these
read requests in the Read Queue, to indicate that these are
the current readers of the document.
It is to be noted that if the Update Queue is not empty, the

first request queued will be an update request and all other
requests in the queue will be read requests. Further, if the
Read Queue is empty, the update is currently in progress.
Table 1 tries to summarize this information.

3.2 Strong Coherency Model over InfiniBand

In this section, we point out several optimizations possible
in the design described, using the advanced features pro-
vided by InfiniBand. In Section 5 we provide the perfor-
mance achieved by the InfiniBand-optimized architecture.
As described earlier, on every request the proxy module

needs to validate the cache corresponding to the document
requested. In traditional protocols such as TCP/IP, this re-
quires the proxy module to send a version request message
to the version thread1, followed by the version thread ex-
plicitly sending the version number back to the proxy mod-
ule. This involves the overhead of the TCP/IP protocol
stack for the communication in both directions. Several re-
searchers have provided solutions such as SDP to get rid
of the overhead associated with the TCP/IP protocol stack
while maintaining the sockets API. However, the more im-
portant concern in this case is the processing required at the
version thread (e.g. searching for the index of the requested
file and returning the current version number).
Application servers typically tend to perform several com-

putation intensive tasks including executing CGI scripts,

1Version Thread is a separate thread spawned by the application module
to handle version requests from the proxy module

8

Table 1. IPC message rules
IPC TYPE Read Queue State Update Queue State Rule

IPC READ REQUEST Empty Empty 1. Send IPC READ PROCEED to proxy
2. Enqueue Read Request in Read Queue

IPC READ REQUEST Not Empty Empty 1. Send IPC READ PROCEED to proxy
2. Enqueue Read Request in Read Queue

IPC READ REQUEST Empty Not Empty 1. Enqueue Read Request in Update Queue
IPC READ REQUEST Not Empty Not Empty Enqueue the Read Request in the Update Queue

IPC READ DONE Empty Not Empty Erroneous State. Not Possible.
IPC READ DONE Not Empty Empty 1. Dequeue one entry from Read Queue.
IPC READ DONE Not Empty Not Empty 1. Dequeue one entry from Read Queue

2. If Read Queue is now empty, Send
IPC UPDATE PROCEED to head of Update Queue

IPC UPDATE REQUEST Empty Empty 1. Enqueue Update Request in Update Queue
2. Send IPC UPDATE PROCEED

IPC UPDATE REQUEST Empty Not Empty Erroneous state. Not Possible
IPC UPDATE REQUEST Not Empty Empty 1. Enqueue Update Request in Update Queue
IPC UPDATE REQUEST Not Empty Not Empty Erroneous State. Not possible

IPC UPDATE DONE Empty Empty Erroneous State. Not possible
IPC UPDATE DONE Empty Not Empty 1. Dequeue Update Request from Update Queue

2. For all Read Requests in Update Queue:
- Dequeue Read Requests from Update Queue
- Send IPC READ PROCEED
- Enqueue in Read Queue

IPC UPDATE DONE Not Empty Not Empty Erroneous State. Not Possible.

Java applets, etc. This results in a tremendously high CPU
requirement for the main application server itself. Allow-
ing an additional version thread to satisfy version requests
from the proxy modules results in a high CPU usage for the
module itself. Additionally, the large amount of computa-
tion carried out on the node by the application server results
in significant degradation in performance for the version
thread and other application modules running on the node.
This results in a delay in the version verification leading to
an overall degradation of the system performance.
In this scenario, it would be of great benefit to have a one-

sided communication operation where the proxy module
can directly check the current version number without inter-
rupting the version thread. InfiniBand provides the RDMA
read operation which allows the initiator node to directly
read data from the remote node’s memory. This feature of
InfiniBand makes it an ideal choice for this scenario. In our
implementation, we rely on the RDMA read operation for
the proxy module to get information about the current ver-
sion number of the required file.
Figure 6 demonstrates the InfiniBand-Optimized co-

herency architecture.

3.3 Potential Benefits

Using RDMA operations to design and implement client
polling scheme in data-center servers over InfiniBand has
several potential benefits.

Coherency status

 Proxy
 Server

 App
 Server

 Data
Repository

A
pp

M
odule

D
ata R

ep
M

odule

A
pp

Server

Server
D

atabase

 Coherency Status

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

Proxy Server

Proxy M
odule

RDMA Write

RDMA Write

RDMA Read

Figure 6. Strong Cache Coherency Protocol:
InfiniBand based Optimizations

9

Improving response latency: RDMA operations over In-
finiBand provide very low latency of about 5.5 � s and a high
bandwidth up to 840Mbytes per second. Protocol commu-
nication overhead to provide strong coherence is minimal.
This can improve response latency.

Increasing system throughput: RDMA operations have
very low CPU overhead in both sides. This leaves more
CPU free for the data center nodes to perform other pro-
cessing, particularly on the back-end servers. This ben-
efit becomes more attractive when a large amount of dy-
namic content is generated and significant computation is
needed in the data-center nodes. Therefore, clients can ben-
efit from active caching with strong coherence guarantee at
little cost. The system throughput can be improved signifi-
cantly in many cases.

Enhanced robustness to load: The load of data center
servers with support of dynamic web services is very bursty
and unpredictable [24, 26]. Performance of protocols to
maintain strong cache coherency over traditional network
protocols can be degraded significantly when the server load
is high. This is because both sides should get involved in
communication and afford considerable CPU to perform
communication operations. However, for protocols based
on RDMA operations, the peer side is transparent to and
nearly out of the communication procedure. Little overhead
is paid on the peer server side. Thus, the performance of
dynamic content caching with strong coherence based on
RDMA operations is mostly resilient and well-conditioned
to load.

4 Data Pull Model Vs Data Push Model

Based on the dynamics of the data, it might either be ben-
eficial for the proxies to pull data from the inner tiers (by
forwarding the requests to application servers, etc) when-
ever it detects an update or to have the back-end node push
the data to the outer tiers as soon as an update takes place.
Each of these approaches has its own advantages and disad-
vantages [5].

4.1 Client-driven mechanism (Data Pull Model)

In the Data Pull Model, the back-end nodes do not play any
active role in updating the outer tiers’ caches in case of an
update, i.e., the back-end nodes are only passively involved
in cache updations. On every request, the proxy checks to
see if the data is present in cache (and valid in case of strong
coherency). If the data is not present in cache (or is in-
valid), the proxies forwards the request to the inner tiers and
fetches the requested document. Thus, data is only fetched
to the outer tiers when requested by the client. The advan-
tage of this approach is that the document is fetched into

cache only when it is requested or required. The front tier is
completely in control of the cache state and can decide the
appropriate eviction policy to use based on the requests ar-
riving, etc. Since the front tiers serve all the requests com-
ing in from the clients, the eviction policies based on the
request information and client access patterns can be ex-
pected to be the most reliable. On the negative side, this
model forces the fetching of the data from the inner tiers to
fall in the critical path of the client’s response time.

4.2 Server-driven mechanism (Data Push Model)

In the Data Push model, the back-end nodes play an active
role in updating the outer tiers’ caches in case of an update.
As soon as an update takes place, the back-end nodes sends
a notification to the outer tiers. The notification can either
be through invalidation or the server can propagate the up-
dated file. The disadvantage of this model is that the data
fetch still falls in the critical path of the client’s response
time. In this paper, we focus on the data propagation based
push model.
The advantage of this approach is that the fetch of the data

does not fall in the critical path of the client’s response time,
so it can be expected to be low. The main disadvantage of
this model is the cache state modification which accompa-
nies the transfer of data. Each server in the system has lim-
ited resources. So, there is a limit to what the server can
store in its cache before it has to evict someone else for
space. And at any given instant of time the server will keep
only the files that will most likely be reused in its cache. The
inner tiers are not aware of the requests coming in at the
proxy. This forces them to make caching decisions based
on very limited information on the requests coming in and
the client access patterns. In other words, the view of the
cache state as seen by the outer tiers and the inner tiers can
be completely different. So, pushing data into the cache of
the proxy without being aware of all the details may po-
tentially increase the number of cache misses by budging
out frequently used data from the cache to fit in the updated
data, cause thrashing of the cache entries and could result
in significant hampering of the overall performance of the
system.

4.3 Hybrid Mechanism (Adaptive)

Generally, the push model is preferred when there are strict
consistency requirements and the pull model for decreased
server loads when lazy consistency is acceptable. It is to
be noted, however, that for cache coherent systems (similar
to the one we are considering), functionally either of the
schemes could used. The only concern in this case would
be the performance provided by each of the schemes.
Due to the advantages and disadvantages associated with

10

each of the Push and the Pull models, researchers have
come up with a number of hybrid approaches where an ap-
plication can choose between push and pull model on the
fly [13], with a view to take the best of both the approaches.
However, all these approaches are still based on the inner-
tiers’ view of the outer-tiers’ cache state and lack a global
view of the cache state.
In this paper, we propose a cache state implementation log-

ically shared between the multiple tiers of the data-center.
The design consists of a cache state maintained at each tier
in the data center environment except the last tier. For sim-
plicity, we explain only the shared state maintained between
the proxy and application server. Since every request goes
through the proxy module, the proxy module can maintain
a cache state by having a history of every request accessed
and also dynamically re-assign weights to these requested
files. A typical cache state at proxy module has a table of
the requested files, its timestamp, frequency and an associ-
ated weight.
When a document gets updated, the update server notifies

the change to the application module. In the implementa-
tion, we have separate threads listening for requests from
update server (Update Thread), application server (Appli-
cation Module Main Thread) and also from proxy server
(Version Thread). These threads communicate with each
other via IPCs. After the module gets an update notifica-
tion, it first checks the cache state of the proxy server, either
by contacting the Proxy Module (for TCP/IP) or by using
RDMA read (for InfiniBand) and gets the current state of
the proxy’s cache. The decision to push the updated data
item to proxy nodes is made based on the current state. Af-
ter pushing the data to the proxy server, all subsequent re-
quests to that file are in cache.
On getting client requests at the proxy module, the proxy

module checks with the application module for the version
number and if the file is not modified, the server can serve
the request from cache. If an update is in progress, the ver-
sion numbers at proxy and application module would be
different and as explained before the requests will be for-
warded to the application server. This design largely helps
the application module to adaptively push the data under
dynamically varying conditions at the proxy. Figure 7 illus-
trates the proposed shared cache architecture.
Implementing such a shared state over sockets is very ex-

pensive and adds a lot of overhead at the proxy server. How-
ever, for protocols based on RDMA operations there is al-
most zero overhead associated with the peer node and less
communication overhead. In this design, we have used the
RDMA operations provided by InfiniBand.

Server
UpdateApplication

Server
Proxy
Server

Shared Cache State

Client
Request

U
pdate Server

A
pp update T

hread

A
pp IPC

 T
hread

A
pp proxy thread

A
pp Server

Proxy m
odule

Proxy Server

Request

Response

Data Push

Cache
Hit

Cache
Miss

IPC

IPC

IPC

IPC

Shared Cache State

Read Shared State

Update Notification

Response

Data Version Check

Update Shared State

Data Version reply

IPC

IPC

Figure 7. Shared Cache State based Adaptive
Push-Pull Model)

5 Experimental Results

In this section, we provide three sets of results. First we
show the micro-benchmark level performance given by the
native Verbs layer over InfiniBand (VAPI), the Sockets Di-
rect Protocol over InfiniBand (SDP) and that given by the
kernel TCP/IP stack over InfiniBand (IPoIB). Next, we ana-
lyze the performance of a cache-coherent 2-tier data-center
environment. Cache coherence is achieved using the Client-
Polling based approach in the architecture described in Sec-
tion 3. Lastly, we compare the performance of our adaptive
push-pull model based on shared cache state with that of the
native push and pull models.
All our experiments used the following experimental

testbed. A cluster system consisting of 8 nodes built around
SuperMicro SUPER P4DL6 motherboards and GC chipsets
which include 64-bit 133 MHz PCI-X interfaces. Each
node has two Intel Xeon 2.4 GHz processors with a 512 kB
L2 cache and a 400 MHz front side bus. The machines
are connected with Mellanox InfiniHost MT23108 Dual-
Port 4x HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The Mellanox Infini-
Host HCA SDK version is thca-x86-0.2.0-build-001. The
adapter firmware version is fw-23108-rel-1 18 0000. We
used the Linux 2.4.7-10 kernel.

11

5.1 Micro-benchmarks

In this section, we compare the ideal case performance
achievable by IPoIB and InfiniBand VAPI using a number
of micro-benchmark tests.
Figure 8a shows the one-way latency achieved by IPoIB,

VAPI Send-Receive, RDMA Write, RDMA Read and SDP
for various message sizes. Send-Receive achieves a latency
of around 7.5 � s for 4 byte messages compared to a 30 � s
achieved by IPoIB, 27 � s achieved by SDP and 5.5 � s and
10.5 � s achieved by RDMA Write and RDMA Read, re-
spectively. Further, with increasing message sizes, the dif-
ference between the latency achieved by native VAPI, SDP
and IPoIB tends to increase.
Figure 8b shows the uni-directional bandwidth achieved

by IPoIB, VAPI Send-Receive and RDMA communica-
tion models and SDP. VAPI Send-Receive and both RDMA
models perform comparably with a peak throughput of up
to 840Mbytes/s compared to the 169Mbytes/s achieved by
IPoIB and 500Mbytes/s achieved by SDP. We see that VAPI
is able to transfer data at a much higher rate as compared to
IPoIB and SDP. This improvement in both the latency and
the bandwidth for VAPI compared to the other protocols
is mainly attributed to the zero-copy communication in all
VAPI communication models.

5.2 Strong Cache Coherence

In this section, we analyze the performance of a cache-
coherent 2-tier data-center environment consisting of three
proxy nodes and one application server running Apache-
1.3.12. Cache coherency was achieved using the Client-
Polling based approach described in Section 3. We used
three client nodes, each running three threads, to fire re-
quests to the proxy servers.
Three kinds of traces were used for the results. The first

trace consists of a single 8Kbyte file. This trace shows the
ideal case performance achievable with the highest possi-
bility of cache hits, except when the document is updated at
the back-end. The second trace consists of 20 files of sizes
varying from 200bytes to 1Mbytes. The access frequencies
for these files follow a Zipf distribution [29]. The third trace
is a 20000 request subset of the WorldCup trace [3]. For all
experiments, accessed documents were randomly updated
by a separate update server with a delay of one second be-
tween the updates.
The HTTP client was implemented as a multi-threaded

parallel application with each thread independently firing
requests at the proxy servers. Each thread could either be
executed on the same physical node or on a different phys-
ical nodes. The architecture and execution model is similar
to the WebStone workload generator [20].
As mentioned earlier, application servers are typically

compute intensive mainly due to their support to several
compute intensive applications such as CGI script execu-
tion, Java applets, etc. This typically spawns several com-
pute threads on the application server node using up the
CPU resources. To emulate this kind of behavior, we run
a number of compute threads on the application server in
our experiments.
Figure 9a shows the client response time for the first trace

(consisting of a single 8Kbyte file). The x-axis shows
the number of compute threads running on the application
server node. The figure shows an evaluation of the proposed
architecture implemented using IPoIB, SDP and VAPI and
compares it with the response time obtained in the absence
of a caching mechanism. We can see that the proposed ar-
chitecture performs equally well for all three (IPoIB, SDP
and VAPI) for a low number of compute threads; All three
achieve an improvement of a factor of 1.5 over the no-cache
case. This shows that two-sided communication is not a
huge bottleneck in the module as such when the application
server is not heavily loaded.
As the number of compute threads increases, we see a con-

siderable degradation in the performance in the no-cache
case as well as the Socket-based implementations using
IPoIB and SDP. The degradation in the no-cache case is
quite expected, since all the requests for documents are for-
warded to the back-end. Having a high compute load on the
back-end would slow down the application server’s replies
to the proxy requests.
The degradation in the performance for the Client-Polling

architecture with IPoIB and SDP is attributed to the two
sided communication of these protocols and the context
switches taking place due to the large number of threads.
This results in a significant amount of time being spent by
the application modules just to get access to the system
CPU. It is to be noted that the version thread needs to get
access to the system CPU on every request in order to reply
back to the proxy module’s version number requests.
On the other hand, the Client-Polling architecture with

VAPI does not show any significant drop in performance.
This is attributed to the one-sided RDMA operations sup-
ported by InfiniBand. For example, the version number re-
trieval from the version thread is done by the proxy module
using a RDMA Read. That is, the version thread does not
have to get access to the system CPU; the proxy thread can
retrieve the version number information for the requested
document without any involvement of the version thread.
Figure 9b shows the throughput achieved by the data-

center for the proposed architecture with IPoIB, SDP, VAPI
and the no-cache cases. Again, we observe that the architec-
ture performs equally well for both Socket based implemen-
tations (IPoIB and SDP) as well as VAPI for a low number
of compute threads with an improvement of a factor of 1.67
compared to the no-cache case. As the number of threads

12

Latency

0

20

40

60

80

100

120

140

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message Size

L
at

en
cy

 (
u

s)

Send/Recv
RDMA Write
RDMA Read
IPoIB
SDP

Bandwidth

0

100

200

300

400

500

600

700

800

900

4 16 64 256 1024 4096 16384 65536

Message Size

B
an

d
w

id
th

 (
M

B
p

s)

Send/Recv
RDMA Write
RDMA Read
IPoIB
SDP

Figure 8. Micro-Benchmarks: (a) Latency, (b) Bandwidth

Datacenter: Response Time

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

R
es

po
ns

e
tim

e
(m

s)

NoCache IPoIB VAPI SDP

DataCenter: Throughput

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
P

S
)

No Cache IPoIB VAPI SDP

Figure 9. Strong Cache Coherence in Data-Centers; Performance Analysis: (a) Client Response Time,
(b) Request Throughput

13

increases, we see a significant drop in the performance for
both IPoIB and SDP based client-polling implementations
as well as the no-cache case, unlike the VAPI-based client-
polling model, which remains almost unchanged. This is
attributed to the same reason as that in the response time
test, i.e., no-cache and Socket based client-polling mech-
anisms (IPoIB and SDP) rely on a remote process to assist
them. With a large number of compute threads already com-
peting for the CPU, the wait time for this remote process to
acquire the CPU can be quite high, resulting in this degra-
dation of performance. To demonstrate this, we look at the
component wise break-up of the response time.
Figure 10a shows the component wise break-up of the re-

sponse time observed by the client for each stage in the re-
quest and the response paths, using our proposed architec-
ture on IPoIB, SDP and VAPI, when the backend has no
compute threads and is thus not loaded. In the response
time breakup, the legends Module Processing, and Backend
Version Check are specific to our architecture. We can see
that these components together add up to less than 10% of
the total time. This shows that the computation and commu-
nication costs of the module as such do not add too much
overhead on the client’s response time.
Figure 10b on the other hand, shows the component wise

break-up of the response time with a heavily loaded back-
end server (with 200 compute threads). In this case, the
module overhead increases significantly for IPoIB and SDP,
comprising almost 70% of the response time seen by the
client, while the VAPI module overhead remains unchanged
by the increase in load. This indifference is attributed to the
one-sided communication used by VAPI (RDMA Read) to
perform a version check at the backend. This shows that for
two-sided protocols such as IPoIB and SDP, the main over-
head is the context switch time associated with the multiple
applications running on the application server which skews
this time (by adding significant wait times to the modules
for acquiring the CPU).
Figures 11a and 11b show the throughput obtained by the

data-center environment using the Zipf based trace (Trace2)
and a subset of the world-cup trace (Trace3) respectively.
We see similar observations, as the previous trace, for these
traces. This shows that the proposed scheme is robust across
workload formats and is not specific to a given kind of
workload.

5.3 Adaptive Push-Pull Model

In this section, we analyze the performance of our shared
cache state based adaptive push-pull architecture in two as-
pects: (a) The number of wasted updates and (b) The num-
ber of cache misses. We compare the proposed architecture
with the pure Data Push based and Data Pull based models.
The number of wasted updates refers to scenarios where

two successive updates do not have any request for the doc-
ument in between them. This essentially means that the
first update was not used for any client request. Though
not completely precise, this metric is expected to capture
the number of unneccessary data pushes performed by the
back-end server.
The number of cache misses is a more direct metric which

captures the actual impact of the cache replacement policy
(based on a given model) on the response time observed by
the client.
The main idea of our proposed architecture is to have a

shared cache state which would present a global picture of
the front-tiers’ cache state to the back-end nodes. Based on
this information, any amount of intelligence can be added
into the back-end nodes to develop efficient data push-pull
hybrids, i.e., the web-server can decide based on the cache
state whether it would push the data to the front tiers or if it
would wait for the front-tiers to fetch it from the back-end
on a request.
As mentioned earlier, for this implementation, we have

used a simple scheme in which the front-end nodes keep
track of their current list of most recently accessed docu-
ments. The back-end nodes either contact the proxy module
(for IPoIB or SDP) or perform a RDMA Read on the proxy
module’s memory (for VAPI) to get the required informa-
tion about the cache. If the currently updated file is within
this list of the most recently accessed documents, the data
is pushed to the proxy module. Otherwise, the application
server just waits for the proxy to access the updated docu-
ment on a client request.
Figure 12a shows the comparison of the number of wasted

data pushes occurring in the pull model, push model and
hybrid models where the back-end only updates certain per-
centange of recently accessed files. Figure 12b shows the
comparison of the cache misses in each model. Figures 13
and 14 show a similar analysis for SDP and VAPI respec-
tively. It is to be noted that in the Pull Model, the back-end
nodes do not push any data to the front-end nodes, so there
are no wasted updates. Similarly, the Push Model always
pushes data to all proxy nodes who have an version of the
document. Though this does not guarantee that there will
be no cache misses (for example, compulsory misses if the
proxy does not have any older version of the document in
its cache, there would be a cache miss), it would minimize
the number of cache misses.
It can be seen that the Pull Model does not incur any

wasted updates, but suffers from a high cache miss rate.
Similarly, the Push Model incurs minimal cache misses, but
suffers from a large number of wasted updates. Further we
notice that even with a simplistic scheme to make the data-
push decision, the hybrid scheme is able to achieve an ef-
ficient trade-off between the number of cache misses and
the number of wasted updates. We are currently working on

14

Response Time Splitup - 0 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
(m

s) IPoIB

SDP

VAPI

Response Time Splitup - 200 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
(m

s) IPoIB

SDP

VAPI

Figure 10. Data-Center Response Time Breakup: (a) 0 Compute Threads, (b) 200 Compute Threads

Throughput: ZipF distribution

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

No Cache IPoIB VAPI SDP

ThroughPut: World Cup Trace

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100 200
Number of Compute Threads

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

NoCache IPoIB VAPI SDP

Figure 11. Data-Center Throughput: (a) Zipf Distribution, (b) WorldCup Trace

15

integrating more advanced schemes into the current frame-
work and expect to get a significantly better performance in
both the number of wasted updates as well as the number of
cache misses.

6 Conclusions and Future Work

Data-centers are central to providing high performance,
highly scalable, and highly available web services. Re-
ducing computation and communication overhead is cru-
cial to improve performance and scalability of data-centers.
Caching content at various tiers of a multi-tier data-center is
a well known method to reduce the computation and com-
munication overhead. In the current web, many cache poli-
cies and uncachable resources are driven by two server ap-
plication goals: Cache Coherence and Cache Consistency.
The problem of how to provide consistent caching for dy-
namic content has been well studied and researchers have
proposed several weak as well as strong consistency algo-
rithms. However, the problem of maintaining cache coher-
ence has not been studied as much.
In this paper, we proposed an architecture for achieving

strong cache coherence based on the client-polling mech-
anism for multi-tier data-centers over InfiniBand. The ar-
chitecture as such could be used with any protocol layer;
we also proposed optimizations to better implement it over
InfiniBand by taking advantage of RDMA operations. We
evaluated this architecture using three protocol platforms:
(i) TCP/IP over InfiniBand (IPoIB), (ii) Sockets Direct Pro-
tocol over InfiniBand (SDP) and (iii) the native InfiniBand
Verbs layer (VAPI) and compared it with the performance
of the no-caching based coherence mechanism. Our experi-
mental results show that the optimized architecture over In-
finiBand can achieve an improvement of nearly an order of
magnitude for the throughput achieved by the TCP/IP based
architecture, the SDP based architecture and the no-cache
based coherence scheme. The results also demonstrate that
the implementation based on RDMA communication mech-
anism can offer better performance robustness to load of the
data-center servers.
We also proposed an adaptive push-pull architecture based

on shared cache states for propagating updates. Again,
we evaluated this architecture over TCP/IP over InfiniBand
(IPoIB), Sockets Direct Protocol over InfiniBand (SDP) and
VAPI. Our experimental results show that even with a sim-
plistic scheme to make the data-push decision, all the imple-
mentations of the adaptive push-pull model (over TCP/IP,
over SDP and over VAPI) are able to achieve an efficient
trade-off between the number of cache misses and the num-
ber of wasted updates.
As a future work, we propose to combine InfiniBand

RDMA and Atomic operations to efficiently support load
balancing and virtualization in the data-center environment.

7 Acknowledgments

We would like to thank NAPS Srinivas, Amith Mamidala,
Gopalakrishnan Santhanaraman and Sayantan Sur for all
the technical support they extended during the course of the
project.

References

[1] InfiniBand Trade Association.
http://www.infinibandta.com.

[2] InfiniBand Trade Association, InfiniBand Ar-
chitecture Specification, Volume 1, Release 1.0.
http://www.infinibandta.com.

[3] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/
traces.html.

[4] Infiniband Trade Association. http://www.
infinibandta.org.

[5] Hossein Sheikh Attar and Yaya Yang. Strong Cache
Consistency for Dynamic Web Applications.

[6] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krish-
namoorthy, J. Wu, and D. K. Panda. Sockets Direct
Protocol over InfiniBand in Clusters: Is it Beneficial?
In the Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems and Soft-
ware, Austin, Texas, March 10-12 2004.

[7] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High
Performance User Level Sockets over Gigabit Ether-
net. In Cluster Computing, September 2002.

[8] P. Balaji, J. Wu, T. Kurc, U. Catalyurek, D. K. Panda,
and J. Saltz. Impact of High Performance Sockets on
Data Intensive Applications. In the Proceedings of the
IEEE International Conference on High Performance
Distributed Computing (HPDC 2003), June 2003.

[9] Adam D. Bradley and Azer Bestavros. Basis Token
Consistency: Extending and Evaluating a Novel Web
Consistency Algorithm. In the Proceedings of Work-
shop on Caching, Coherence, and Consistency (WC3),
New York City, 2002.

[10] Adam D. Bradley and Azer Bestavros. Basis to-
ken consistency: Supporting strong web cache con-
sistency. In the Proceedings of the Global Internet
Worshop, Taipei, November 2002.

[11] Pei Cao, Jin Zhang, and Kevin Beach. Active cache:
Caching dynamic contents on the Web. In Middleware
Conference, 1998.

16

Unused Updates Vs. Update Rate : IPoIB

0

100

200

300

400

500

600

700

1024 512 256 128 64 32 16
Update Interval (ms)

N
u

m
b

er
 o

f
u

n
u

se
d

 U
p

d
at

es

Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (50%)

Number of Misses Vs. Update Rate: IPoIB

0

100

200

300

400

500

600

700

800

900

1000

1100

1024 512 256 128 64 32 16
Update Interval (ms)

N
u

m
b

er
 o

f
M

is
se

s

Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (55%)

Figure 12. Push Models for IPoIB: (a) Number of Wasted Updates for Different Models, (b) Number of
Misses for Different Models

Unused Updates Vs. Update Rate : SDP

0

100

200

300

400

500

600

700

1024 512 256 128 64 32 16
Update Interval (ms)

N
u

m
b

er
 o

f
u

n
u

se
d

 U
p

d
at

es

Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (50%)

Number of Misses Vs. Update Rate: SDP

0

100

200

300

400

500

600

700

800

900

1000

1100

1024 512 256 128 64 32 16
Update Interval (ms)

N
u

m
b

er
 o

f
M

is
se

s

Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (50%)

Figure 13. Push Models for SDP: (a) Number of Wasted Updates for Different Models, (b) Number of
Misses for Different Models

Unused Updates Vs. Update Rate: VAPI

0

100

200

300

400

500

600

700

1024 512 256 128 64 32 16

Update Interval (ms)

N
u

m
b

er
 o

f
u

n
u

se
d

 U
p

d
at

es Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (50%)

Number of Misses Vs. Update Rate: VAPI

0

100

200

300

400

500

600

700

800

900

1000

1100

1024 512 256 128 64 32 16
Update Interval (ms)

N
u

m
b

er
 o

f
M

is
se

s

Pull Model
Push Model
Hybrid (25%)
Hybrid (35%)
Hybrid (50%)

Figure 14. Push Models for VAPI: (a) Number of Wasted Updates for Different Models, (b) Number of
Misses for Different Models

17

[12] Michele Colajanni and Philip S. Yu. Adaptive
ttl schemes for load balancing of distributed web
servers. SIGMETRICS Perform. Eval. Rev., 25(2):36–
42, 1997.

[13] Pavan Deolasee, Amol Katkar, Ankur Panchbudhe,
Krithi Ramamritham, and Prashant J. Shenoy. Adap-
tive push-pull: disseminating dynamic web data. In
World Wide Web, pages 265–274, 2001.

[14] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini.
User-Level Communication in Cluster-Based Servers.
In the 8th IEEE International Symposium on High-
Performance Computer Architecture (HPCA 8), Feb.
2002.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol – HTTP 1.1. RFC 2616. June, 1999.

[16] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-
level Sockets Layer over Virtual Interface Architec-
ture. In Proceedings of Cluster Computing, 2001.

[17] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache
Invalidation Protocol. IETF Internet Draft, November
2000.

[18] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete
Wyckoff, and Dhabaleswar K. Panda. High Perfor-
mance RDMA-Based MPI Implementation over In-
finiBand. In 17th Annual ACM International Confer-
ence on Supercomputing, June 2003.

[19] Mikhail Mikhailov and Craig E. Wills. Evaluating a
New Approach to Strong Web Cache Consistency with
Snapshots of Collected Content. In WWW2003, ACM,
2003.

[20] Inc Mindcraft. http://www.mindcraft.com/webstone.

[21] Jeffrey C. Mogul. Clarifying the fundamentals of
HTTP. In the Proceedings of WWW-2002, Honolulu,
HI, May 2002.

[22] H. V. Shah, C. Pu, and R. S. Madukkarumukumana.
High Performance Sockets and RPC over Virtual In-
terface (VI) Architecture. In Proceedings of CANPC
workshop, 1999.

[23] Hemal V. Shah, Dave B. Minturn, Annie Foong,
Gary L. McAlpine, Rajesh S. Madukkarumukumana,
and Greg J. Regnier. CSP: A Novel System Archi-
tecture for Scalable Internet and Communication Ser-
vices. In the Proceedings of the 3rd USENIX Sym-
posium on Internet Technologies and Systems, pages
pages 61–72, San Francisco, CA, March 2001.

[24] Weisong Shi, Eli Collins, and Vijay Karamcheti. Mod-
eling Object Characteristics of Dynamic Web Content.
Special Issue on scalable Internet services and archi-
tecture of Journal of Parallel and Distributed Comput-
ing (JPDC), Sept. 2003.

[25] Mellanox Technologies. InfiniBand and TCP in the
Data-Center.

[26] Matt Welsh, David Culler, and Eric Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable Inter-
net Services. In the Eighteenth Symposium on Oper-
ating Systems Principles (SOSP-18), Oct. 2001.

[27] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K.
Panda. PVFS over InfiniBand: Design and Perfor-
mance Evaluation. In the 2003 International Confer-
ence on Parallel Processing (ICPP 03), Oct. 2003.

[28] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engi-
neering Web Cache Consistency. ACM Transactions
on Internet Technology, 2:3,, August. 2002.

[29] George Kingsley Zipf. Human Behavior and the Prin-
ciple of Least Effort. Addison-Wesley Press, 1949.

18

