
Efficient and Scalable NIC-Based Barrier over Quadrics and Myrinet

Weikuan Yu Darius Buntinas Rich L. Graham Dhabaleswar K. Panda

OSU-CISRC-11/03-TR63
Technical Report

Efficient and Scalable NIC-Based Barrier over Quadrics and Myrinet
�

Weikuan Yu
�

Darius Buntinas
�

Rich L. Graham
�

Dhabaleswar K. Panda
�

Network-Based Computing Lab
�

Argonne National Laboratory
�

Dept. of Computer and Info. Science Mathematics and Computer Science
The Ohio State University Argonne, IL 60439�

yuw,panda � @cis.ohio-state.edu buntinas@mcs.anl.gov

Los Alamos National Laboratory
�

Advanced Computing Laboratory
Los Alamos, NM 87545

rlgraham@lanl.gov

Abstract

An efficient barrier operation is important for par-
allel programs to obtain good parallel speedup and
achieve fine-grained computation. Modern intercon-
nects often have programmable processors in the net-
work interface that can be exploited to support collective
operations such as barrier. This paper explores differ-
ent schemes for offloading the barrier operation to the
network interface cards (NICs) over two high perfor-
mance interconnects, Quadrics and Myrinet. Accord-
ingly, with our proposed collective processing scheme,
we have designed and implemented efficient and scal-
able NIC-based barrier operations on both intercon-
nects.

Our evaluation shows that, over a Quadrics cluster of
8 nodes with ELan3 Network, the NIC-based barrier op-
eration achieves a barrier latency of only 5.60 � s. This
result is a 2.48 factor of improvement over the Elan-
lib barrier operation when Quadrics hardware-based
broadcast is not available. Over a Myrinet cluster of
8 nodes with LANai-XP NIC cards, a barrier latency of
14.20 � s over 8 nodes is achieved. This is a 2.64 factor
of improvement over the host-based barrier algorithm.
Furthermore, an analytical model developed for the pro-
posed scheme indicates that a NIC-based barrier opera-
tion on a 1024-node cluster can be performed with only
22.13 � s latency over Quadrics and with 38.94 � s latency
over Myrinet. These results indicate the potential for de-

�
This research is supported in part by a DOE grant #DE-FC02-

01ER25506, NSF Grants #EIA-9986052 and #CCR-0204429, and a
grant from Los Alamos National Laboratory.

veloping high performance and scalable communication
subsystems for next generation clusters.

1. Introduction
Barrier/synchronization is a commonly used collec-

tive operation in parallel and distributed programs. It
is used by all the processes in a group to synchro-
nize their stages of computation. One process can-
not exit the barrier until all the other processes in the
same group have invoked it. Message passing standards,
such as MPI [13], often have the barrier operation in-
cluded as a part of their specifications. In the function
MPI Barrier(), while processes are performing the bar-
rier communication and waiting for its completion, no
other computation can be performed. So it is important
to minimize the amount of time spent on waiting for the
barrier. The efficiency of barrier/synchronization also
affects the granularity of a parallel application. To sup-
port fine-grained parallel applications, an efficient bar-
rier/synchronization primitive must be provided.

Some modern interconnects, such as QsNet [18] and
InfiniBand [5], provide hardware broadcast primitives
that can be utilized to support an efficient barrier op-
eration. However, hardware broadcast primitives often
have their limitations. For example, Quadrics hardware
broadcast requires that all the processes are located on a
contiguous set of nodes; InfiniBand hardware broadcast
is not reliable. Other interconnects, such as Myrinet, do
not have hardware broadcast and provide unicast com-
munication along point-to-point links. Thus, a general
barrier operation is often implemented on top of point-

to-point communication. However, the fast improving
performance of the modern day interconnects has led to
the shift in communication bottleneck from the network
fabric to the software layer at the sending and receiving
ends. It will be extremely beneficial if software develop-
ers can offload the communication processing to the net-
work interface cards (NICs) and reduce the bottleneck at
the end hosts.

Earlier research has been done to use programmable
processors to support efficient collective operations [21,
14, 3, 2]. Among them, Buntinas et. al. [3] has explored
NIC-based barrier over Myrinet/GM. In that study, the
NIC takes an active role in detecting arrived barrier mes-
sages and triggering the next barrier messages. This
greatly reduces round-trip PCI bus traffic and host CPU
involvement in a barrier operation, thereby improving
the barrier latency. However, much of the communi-
cation processing for barrier messages is still imple-
mented on top of the NIC’s point-to-point communica-
tion processing. The benefits of NIC-based barrier have
been exposed, but only to a certain extent. And the
scheme has not been generalized to expose the benefits
of NIC programmability over other networks, for exam-
ple, Quadrics. So it remains an open challenge to gain
more insights into the related communication process-
ing and propose an efficient, and generally applicable
scheme in order to provide maximum benefits to NIC-
based barrier operations.

In this paper, we take on this challenge. We start with
discussing the characteristics of NIC-based barrier op-
erations. We then examine the communication process-
ing tasks for point-to-point operations, including queu-
ing, bookkeeping, packetizing and assembly, flow con-
trol and error control, etc. Many of these tasks are redun-
dant for collective operations. We propose a novel NIC-
based barrier scheme which performs queuing, book-
keeping, packetizing and error control tasks in a separate
collective protocol. Accordingly, the proposed scheme
is implemented over Myrinet. Furthermore, a similar
NIC-based barrier is implemented over Quadrics.

Our evaluation has shown that, over a Quadrics clus-
ter of 8 nodes with ELan3 Network, the NIC-based bar-
rier operation achieves a barrier latency of 5.60 � s. This
result is a 2.48 factor of improvement over the Elanlib
barrier operation when Quadrics hardware-based broad-
cast is not available. Over a Myrinet cluster of 8 nodes
with LANai-XP NIC cards, a barrier latency of 14.20 � s
over 8 nodes is achieved. This is a 2.64 factor of im-
provement over the host-based barrier algorithm. Our
evaluation has also shown that, over a 16-node Myrinet
cluster with LANai 9.1 cards, the NIC-based barrier op-
eration achieves a barrier latency of 25.72us, a 3.38 fac-
tor of improvement compared to the host-based algo-

rithm. Furthermore, our analytical model suggests that
NIC-based barrier operations could achieve a latency of
only 22.13 � s and 38.94 � s, respectively over a 1024-
node Quadrics and Myrinet cluster.

The rest of the paper is structured as follows. In the
next section, we give an overview of Quadrics/Elan and
Myrinet/GM. Then in Section 3, we describe the general
ideas and the previous work on the NIC-based barrier
operation over point-to-point communication. Follow-
ing that, we propose a general scheme to provide NIC-
based collective operations in Section 4. Next, we de-
scribe the barrier algorithms considered for our imple-
mentation in Section 5. In Sections 7 and 6, we de-
scribe our NIC-based barrier operations over Quadrics
and Myrinet. The performance results of the barrier op-
erations are provided in Section 8. Finally, we conclude
the paper in Section 9.

2. Overview of Quadrics and Myrinet
In this section, we describe some background infor-

mation on two interconnects that provide programmable
NIC processors, Quadrics and Myrinet. Quadrics pro-
vides hardware-level reliable message passing, while
Myrinet does not. The message passing reliability is left
to the communication protocol. Designing an efficient
reliability scheme is then critical to the performance of
the communication protocol over such a network.

2.1. Quadrics and Elanlib
Quadrics network (QsNet) [16] provides low-latency,

high-bandwidth communication with its two building
blocks: a programmable Elan network interface card
and the Elite switch, which are interconnected in a fat-
tree topology. An Elan network interface card has a 32-
bit microcode processor and a 32-bit thread processor.
The latter provides the user-level programmability and it
can execute arbitrary user code as lightweight processes,
called Elan threads, on the Elan.

QsNet Programming Library – QsNet provides
the Elan and Elan3 libraries as the interface for its
Elan3 network [19], with the Elan3 programming li-
brary (Elan3lib) being the lowest-level programming li-
brary. At the Elan3 level, a process in a parallel job is
allocated a virtual process id (VPID). Interprocess com-
munication is supported by an efficient model: remote
direct memory access (RDMA). Each process maps a
portion of its address space into the Elan interface, al-
lowing direct memory access from remote processes via
the communication processor. Elan3lib also provides a
very useful chained event mechanism, which allows one
RDMA descriptor to be triggered upon the completion
of another RDMA descriptor. A higher-level program-
ming library, Elanlib, extends Elan3lib with point-to-
point, tagged message passing primitives (called Tagged

Message Ports or Tports) and support for collective op-
erations.

Barrier in Elanlib – Elanlib provides two bar-
rier/synchronization functions, elan gsync() and
elan hgsync(). The latter takes advantages of the
hardware broadcast primitive and provides a very
efficient and scalable barrier operation [17]. However, it
requires that the calling processes are located on a set of
contiguous nodes and well synchronized in their stages
of computation [17]. Otherwise, it falls back on the
elan gsync() to complete the barrier with a tree-based
gather-broadcast algorithm.

2.2. Myrinet and GM
Myrinet is a high-speed interconnect technology us-

ing wormhole-routed crossbar switches to connect all
the NICs. GM is a user-level communication protocol
that runs over the Myrinet [1] and provides a reliable
ordered delivery of packets with low latency and high
bandwidth.

Sending a Message – To send a message, a user ap-
plication generates a send descriptor, referred to as a
send event in GM, to the NIC. The NIC translates the
event to a send token (a form of send descriptor that NIC
uses), and appends it to the send queue for the desired
destination. With outstanding send tokens to multiple
destinations, the NIC processes the tokens to different
destinations in a round-robin manner. To send a message
for a token, the NIC also has to wait for the availability
of a send packet, i.e., the send buffer to accommodate
the data. Then the data is DMAed from the host buffer
into the send packet and injected into the network. The
NIC keeps a send record of the sequence number and
the time for each packet it has sent. The send record will
be removed when a corresponding acknowledgment is
received. If the acknowledgment is not received within
the timeout period, the sender will retransmit the packet.
When all the send records are acknowledged, the NIC
will pass the send token back to the host.

Receiving a Message – To receive a message, the
host provides some registered memory as the receive
buffer by preposting a receive descriptor. A posted re-
ceive descriptor is translated into a receive token by the
NIC. When the NIC receives a packet, it checks the se-
quence number. An unexpected packet is dropped im-
mediately. For an expected packet, the NIC locates a
receive token, DMAs the packet data into the host mem-
ory, and then acknowledges the sender. When all the
packets for a message have been received, the NIC will
also generate a receive event to the host process for it to
detect the arrived message.

3. Previous Research on NIC-Based Barrier
In this section, we summarize general ideas and re-

sults of previous research [3, 4] on NIC-based barrier
operations over point-to-point communication. In addi-
tion, we also discuss the pros and cons of the scheme.

NIC

Host
Node 0

Node 2 Node 3 Node 2 Node 3

Node 1Node 0Node 1

Fig. 1. Host-based barrier (left) and NIC-based
barrier (right)

General Ideas – Buntinas et. al.have studied the
benefits of offloading barrier operation to the Myrinet
Control Program (MCP). Fig. 1 shows block diagrams
comparing the host-based barrier to the NIC-based bar-
rier, both using the pairwise-exchange algorithm (See
Section 5 for an overview on barrier algorithms). As
shown in the left diagram, a host-based barrier operation
involves multiple point-to-point messages among host
processes. So a host process has to keep working on
detecting the arrived barrier messages and triggering the
next barrier messages. This also generates multiple mes-
sages across the PCI bus and imposes high overhead to a
barrier operation. In contrast, as shown in the right dia-
gram of Fig. 1, in a NIC-based barrier operation, the host
tells the NIC to perform a barrier operation and the NIC
notifies the host when it has completed the barrier with
other NICs involved in the barrier. The NIC takes an
active role in detecting the arrived barrier messages and
triggering the next barrier messages. Round-trip mes-
sages across the PCI bus are also eliminated.

Pros and Cons – The main goals of the previous re-
search were to eliminate host CPU involvement in the
intermediate steps of a barrier operation and to elimi-
nate round-trip messages across the PCI bus. The result-
ing barrier latency was shown to be reduced by a fac-
tor of 1.83 over a 16-node 700MHz Pentium III cluster
with 64MHz/64bit PCI bus. However, further investi-
gation into this implementation reveals that it builds the
NIC-based barrier operation simply on top of the point-
to-point communication protocol running on the NIC.
The left diagram in Fig. 2 shows how the barrier im-
plementation fits into a user-level protocol (in this case,
MCP). With this approach, much of the communication
processing is redundant for the nature of barrier opera-
tions. However, it still remains to be examined. how
much redundant processing is done. Likewise, it is not

Flow/Error Control

Queuing, Bookkeeping
Point−to−Point Processing:

Packetization, Assembly

Barrier

Device Control

User API

Kernel Module

NIC Control Program

Point−to−Point

Programming Models

Application

Point−to−PointCollective

U
se

r−
L

ev
el

 P
ro

to
co

ls

Physical Network

Collective

User API

Kernel Module

NIC Control Program

Point−to−Point

Programming Models

Application

Point−to−PointCollective

U
se

r−
L

ev
el

 P
ro

to
co

ls

Point−to−Point Processing:
Queuing, Bookkeeping

Flow/Error Control

Collective Processing:
Packetization, AssemblyQueuing, Bookkeeping

Packetization, Assembly
Flow/Error Control

Device Control

Physical Network

Management

ManagementManagement

Management Barrier

b) A Scheme with Separate Collective Processinga) A Direct Scheme
Fig. 2. Different Schemes to Support NIC-based Barrier/Collective Operations

exploited how much benefits there are if one can elimi-
nate the redundancy with a separate collective protocol.

4. A Novel NIC-Based Barrier Scheme and
Assoicated Design Challenges

In this subsection, we first examine the communica-
tion processing undertaken by the point-to-point proto-
col at the NIC, and identify the redundant processing
for NIC-based collective operations. Then we propose
a novel scheme with a NIC-based collective protocol to
eliminate this redundancy. At the end, we describe how
the benefits of NIC-based barrier operations can be max-
imized with this scheme.

4.1. Where to Provide Support for Collective
Communication?

Efficient collective communication is important to
the performance of parallel applications. System devel-
opers usually provide support for collective operations
in their programming models. However, their imple-
mentation and the performance of the resulting collec-
tive operations are often limited by the underlying user-
level protocols. If the user-level protocols only provide
point-to-point communication semantics, the program-
ming models have to lay their collective support on top
of that. The resulting performance may not be ideal.
The NIC-based collective operations can help expose
the best performance from the underlying network to
these developers. As shown in Fig. 2 left diagram, the
earlier NIC-based barrier implementation intercepts the
requests for the barrier operations and directly delivers
the barrier messages to the similar kind of processing

needed for regular messages. No efforts have been put
to examine how the communication processing tasks are
undertaken by the NICs for these regular messages and
how to reduce them for barrier operations. Thus this di-
rect scheme of offloading the barrier operation does not
achieve maximum benefits.

4.2. The Point-to-Point Communication Protocol
at the NIC

An overview to the communication processing per-
formed by the Myrinet Control Program is presented in
Section 2.2. In a NIC control program for a general
user-level protocol, this processing can be classified into
the following categories of tasks: request queuing, re-
quest bookkeeping, data packetization, data assembly,
flow control and error control. These tasks are usually
well-tuned for point-to-point communication. But for a
NIC-based collective operation, much of these tasks can
be done in a collective manner. Such an approach can
lead to simplified and reduced processing. Thus a sepa-
rate communication protocol for the NIC-based collec-
tive operations is needed to maximize the benefits.

4.3. A Proposed Scheme to Support NIC-based
Barrier Operations

Many User-level protocols support NIC-level pro-
grammability, for example, GM [15], EMP [20], and
Elanlib [19]. We propose a separate protocol at the NIC
to perform the communication processing tasks related
to collective operations. As shown in Fig. 2, a set of
API’s for collective operations can be provided at the
user-level. Then the support for these collective opera-

tions can be implemented at the NIC. If there is any col-
lective operation that cannot be supported efficiently by
the NIC, its implementation can still be laid over point-
to-point protocols. Basically, our scheme aims to pro-
vide a protocol that collectively performs the message
passing tasks necessary for collective operations. For
each collective operation, the critical step is to identify
the tasks that can be more efficiently put into the collec-
tive protocol. In the case of a NIC-based barrier opera-
tion, we have identified the following tasks that need to
be included in the NIC-based collective protocol.

Queuing
In a parallel system, a NIC must handle multiple
communication requests to a peer NIC and also
requests to multiple different peer NICs. Each
request must go through multiple queues and be
scheduled before the message can be transmitted.
Thus, in the case of a barrier operation, the ar-
rived barrier message may not immediately lead
to the transmission of the next message until the
corresponding request gets its turn in the relevant
queues. This imposes unnecessary delays into the
barrier operations. If we can provide a separate
queue for a particular process group, its barrier
messages can skip other queues and get transmit-
ted in a much faster manner.

Packetization and Assembly
In the NIC control program of a user-level protocol,
the sender NIC must packetize the large messages
and allocate a send buffer for each of the packet.
Thus the NIC has to wait for a send buffer to be-
come available and fill up the packet with data be-
fore the messaging takes place. Since all the infor-
mation a barrier message needs to carry along is an
integer, if one can utilize a dedicated send buffer for
the barrier messages, all these unnecessary waiting
for a send buffer can also be eliminated. At the re-
ceiver side, the received barrier message also does
not need to go through the queues for data assem-
bly, etc.

Bookkeeping
For each outstanding communication request, the
NIC must perform bookkeeping functions to keep
track of its status and the status of every packet
transmitted on its behalf. This is rather inefficient
for a barrier operation, since there is no data trans-
mission involved. One can just provide a bit vector
to record whether the relevant messages are com-
pleted or not.

Flow/Error Control
Depending on the reliability feature of the under-

lying network, the NIC control program may also
need to provide flow control and/or error control
functions to ensure reliability. The error control
for point-to-point messages is usually implemented
with a form of timeout/retransmission. Acknowl-
edgments are returned from the receivers to the
senders. The NIC-based barrier also provides op-
portunities to have an efficient and simplified er-
ror control. For example, we can eliminate all
the acknowledgments and provide reliability with
a receiver-driven retransmission approach. When a
barrier operation fails to complete due to the miss-
ing of some barrier messages, NACKs can be sent
to the corresponding senders. Thus this reduces the
number of actual barrier messages by half and can
speed up the barrier operation.

5. Barrier Algorithms
In this section, we give a brief introduction to gen-

eral barrier algorithms. Note that we focus on the algo-
rithms for the barrier operation on top of point-to-point
communication. Barrier operations on top of hardware
broadcast have been studied in [17] and [9].

5.1. General Algorithms
Without using hardware barrier/broadcast primitives,

a barrier operation typically requires the exchange of
multiple point-to-point messages between processes.
Typically it is implemented by one of the follow-
ing three algorithms: gather-broadcast [11], pairwise-
exchange [8] and dissemination [9].

Gather-Broadcast – As shown in Fig. 3, processes
involved in a barrier form a tree-based topology. All the
barrier messages are propagated up the tree and com-
bined to the root, which in turn broadcasts a message
down the tree to have other processes exit the barrier.
For a group of � participating nodes, this algorithm
takes (�������	�
�) steps, where � is the degree of the tree.

Pairwise-Exchange – This is a recursive doubling
algorithm used in the popular MPICH [8] distribution.
As shown in Fig. 4, at step m, process i and j, where������ ��� , are paired up and exchange messages. For
a group of � participating nodes, this algorithm takes
�������
� steps, when � is a power of two. If � is not
a power of two, two additional steps needs to be per-
formed. Let M be the largest power of 2 and less than
N. At the very beginning, process i sends a message to
processes j, where

��� ��� and
������ ��� . Then the

low ranked M processes perform pairwise exchange for
the barrier. At the very end, process j notifies process i
to exit the barrier. This algorithm takes (������� � �! #"$�)
steps for non-power of two number of nodes.

root

Broadcast

Gather

Fig. 3. Gather-Broadcast

P0 P1 P2 P3 P4 P5 P6 P7

Step 1Step 0 Step 2
Fig. 4. Pairwise-Exchange

Dissemination – This dissemination algorithm is
also described in [12]. As shown in Fig. 5, in step � ,
process

�
sends a barrier message to process

�
, where� �� � " ��������� � � . Essentially, barrier messages are

disseminated around processes so that each process is
able to collect the barrier information from its left ���	��

processes by step m. This algorithm takes ������� � ��
steps, irrespective of whether N is a power of two or
not.

5.2. Choosing the Right Algorithm
From the earlier description, it is clear that the gather-

broadcast algorithm requires more steps for a barrier op-
eration. Buntinas et. al. [3, 4] also have found that the
pairwise-exchange algorithm generally performs better
than the gather-broadcast algorithm. Thus for the pro-
posed NIC-based barrier in this paper, we have chosen
to implement and compare the pairwise-exchange and
dissemination algorithms.

6. Implementation of the Proposed NIC-
Based Barrier over Myrinet

In this section, we describe the NIC-based barrier
over Myrinet/GM. We have explored many of the chal-
lenging issues in our earlier work with GM-1.2.3 [3, 4].
As having discussed in Section 4, we choose to create a
separated protocol to process the barrier messages. So-
lutions from the earlier work for some of the challenges
have been incorporated into this new protocol. Other
challenging issues related to the new barrier protocol are
described in this section.

6.1. Queuing the Barrier Operations
As described in Section 2.2, MCP processes the send

tokens to different destinations in a round robin fashion.
Send tokens to the same destination are processed in a
FIFO manner. So the send tokens for barrier operations
must go through multiple queues before their messages
can be transmitted. This is enforced to the initial bar-
rier message (e.g., in Step 1 of the pairwise-exchange
algorithm) and also the barrier message that needs to be
transmitted immediately when an earlier barrier message
arrives. It is rather inefficient to have the NIC-based bar-
rier operations put up with so much waiting. We created

a separate queue for each group of processes, and en-
queued only one send token for every barrier operation.
Then the barrier messages do not have to go through the
queues for multiple destinations. With this approach, the
send token for the current barrier operation is always lo-
cated at the front of its queue. Both the initial barrier
message and the ones that need to be triggered later no
longer need to go through the queues for the correspond-
ing destinations.

6.2. Packetizing the Barrier Messages
Within the Myrinet Control Program, to send any

message, the sender NIC must wait for a send packet
to become available and fill up the packet with data. So
to complete a barrier operation, it is inevitable for the
sender NIC to go through multiple rounds of allocating,
filling up and releasing the send packets. Since all the
information a barrier message needs to carry along is an
integer, it is much more efficient if a static send packet
can be utilized to transmit this integer and avoid going
through multiple rounds of claiming/releasing the send
packets.

This static send packet can be very small since it only
carries an integer. One can allocate an additional short
send packet for each group of processes. However, there
is a static send packet to each peer NIC in MCP, which
is used for fast transmission of ACKs. We pad this static
packet with an extra integer and utilize it in our im-
plementation. With this approach, all the packetizing
(including packets claiming and releasing) needed for
transmitting regular messages is avoided for the barrier
messages.

6.3. Bookkeeping and Error Control for Barrier
Messages

The Myrinet Control Program provides bookkeeping
and error control for each packet that has been transmit-
ted. This is to ensure the reliable delivery of packets.
One acknowledgment must be returned by the receiver
in order for the sender to release the bookkeeping en-
tries, i.e., a send record in MCP. When a sender NIC fails
to receive the ACK within a timeout period specified in
the send record, it retransmits the packet. Besides creat-
ing multiple send records and keeping track of them, this
also generates twice as many packets as the number of

P0 P1 P2 P3 P0 P1 P2 P3

Step 1Step 0 Step 2

P4 P5 P6 P7

Fig. 5. Dissemination
barrier messages. It is desirable to design a better way to
provide the bookkeeping and error control for the barrier
operations based on its collective nature.

For the bookkeeping purpose, we create only a send
record for a barrier operation. Within the send record, a
bit vector is provided to keep track of the list of barrier
messages. When the barrier operation starts, a times-
tamp is also created along with the send record. In addi-
tion, an approach called receiver-driven retransmission
is provided to ensure reliable delivery of barrier mes-
sages. The receiver NICs of the barrier messages no
longer need to return acknowledgments to the sender
NICs. If any of the expected barrier messages is not re-
ceived within the timeout period, a NACK will be gener-
ated from the receiver NIC to the corresponding sender
NIC. The sender NIC will then retransmit the barrier
message. Taken together, these enhancements ensure the
reliable delivery with the minimal possible overhead and
also reduce the number of total packets by half. Com-
pared to the reliability scheme for the regular messages.
Thus, it promises a more efficient solution for barrier
operation.

7. Implementation of the Proposed NIC-
Based Barrier over Quadrics

In this section, we describe the NIC-based barrier
over Quadrics. Quadrics provides salient mechanisms to
program the NIC to support collective operations [14],
e.g., threads running in the NIC or chained RDMA de-
scriptors. Thus it is rather convenient to implement NIC-
based barrier operation over Quadrics.

Since a barrier operation typically involves no data
transfer, all messages communicated between processes
just serve as a form of notification, indicating that the
corresponding processes have reached the barrier. Over
Quadrics/Elan, RDMA operation with no data transfer
can be utilized to fire a remote event, which functions as
a kind of notification to the remote process. Although
Elan threads can be created and executed by the thread
processor to process the events and chain RDMA opera-
tions together, an extra thread does increase the process-
ing load to the Elan NIC. With either pairwise-exchange
or dissemination algorithm, all that needed is to chain

the multiple RDMA operations together to support a
NIC-based barrier.

We have chosen not to set up an additional thread to
support NIC-based barrier, and instead, set up a list of
chained RDMA descriptors at the NIC from user-level.
The RDMA operations are triggered only upon the ar-
rival of a remote event except the very first RDMA oper-
ation, which the host process triggers to initiate a barrier
operation. The completion of the very last RDMA op-
eration will trigger a local event to the host process and
signify the completion of the barrier.

8. Performance Evaluation
In this section, we describe the performance evalua-

tion of our implementation. The experiments were con-
ducted on two clusters. One is a 16-node cluster of
quad-SMP 700 MHz Pentium-III, each equipped with
1GB DRAM and 66MHz/64bit PCI bus. This cluster is
connected with both a Myrinet 2000 network and a Qs-
Net/Elan3 network (with only 8 nodes). The Myrinet
NICs have 133MHz LANai 9.1 processors and 2MB
SRAM. The QsNet network consists of a dimension two,
quaternary fat tree switch, Elite-16, and Elan3 QM-400
cards. The other system is a cluster of 8-node SuperMi-
cro SUPER P4DL6, each with dual Intel Xeon 2.4GHz
processors, 512MB DRAM, PCI-X 133MHz/64-bit bus.
This cluster is only connected with Myrinet 2000 net-
work and NICs with 225MHz LANai-XP processors
and 2MB SRAM. Our NIC-based implementation over
Myrinet is based on GM-2.0.3. The NIC-based imple-
mentation over Quadrics is based on 5.2.7 quadrics re-
lease and Elanlib-1.4.3-2.

8.1. NIC-Based Barrier over Myrinet
We tested the latency of our NIC-based barrier op-

erations and compared it to the host-based barrier op-
erations. Our tests were performed by having the pro-
cesses execute consecutive barrier operations. The first
20 iterations were used to warm up the nodes. Then
the average for the next 10,000 iterations was taken as
the latency. We compared the performance for both the
pairwise-exchange and dissemination algorithms.

Fig. 6 shows the barrier latencies of NIC-based and
host-based barriers for both algorithms over the 16-node

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16

La
te

nc
y

(µ
s)

Number of Nodes

NIC-DS
NIC-PE

Host-DS
Host-PE

Fig. 6. Performance Evaluation of NIC-based
and Host-Based Barrier Operations with LANai
9.1 Cards on a 16-node system

0

5

10

15

20

25

30

35

40

45

2 4 6 8

La
te

nc
y

(µ
s)

Number of Nodes

NIC-DS
NIC-PE

Host-DS
Host-PE

Fig. 7. Performance Evaluation of NIC-based
and Host-Based Barrier Operations with LANai
XP Cards on an 8-node system

quad-700MHz cluster with LANai 9.1 cards. With ei-
ther pairwise-exchange (PE) or dissemination (DS) al-
gorithm, the NIC-based barrier operations reduce the
barrier latency, compared to the host-based barrier oper-
ations. The pairwise-exchange algorithm tends to have
a larger latency over non-power of two number of nodes
for the extra step it takes. Over this 16-node cluster, a
barrier latency of 25.72 � s is achieved with both algo-
rithms. This is a 3.38 factor of improvement over host-
based barrier operations. Using the direct NIC-based
barrier scheme on the same cluster, our earlier imple-
mentation [3, 4], achieved 1.86 factor of improvement
using LANai 7.2 cards. The earlier work was done over
GM-1.2.3 and not maintained as new versions of GM are
released. Although, direct comparions are not available,
the difference in the improvement factors suggests that
our new scheme provides more benefits.

Fig. 7 shows the barrier latencies of NIC-based and
host-based barriers for both algorithms over the eight-
node 2.4GHz Xeon cluster with LANai-XP cards. Sim-
ilarly, the NIC-based barrier operation reduces the bar-
rier latency compared to the host-based barrier opera-
tion. Over this eight node cluster, a barrier latency of
14.20 � s is achieved with both algorithms. This is a 2.64
factor of improvement over the host-based implementa-
tion. The reason that the factor of improvement becomes

smaller on this cluster is because this cluster has a much
larger ratio of host CPU speed to NIC CPU speed and
also a faster PCI-X bus. Thus the benefits from the re-
duced host involvement and I/O bus traffic are smaller.

8.2. NIC-Based Barrier over Quadrics
Over an eight-node Quadrics/Elan3 cluster, we tested

the latency of our NIC-based barrier operations and
compared them to the elan hgsync() function provided
in Elanlib, The performance of elan hgsync() is tested
with hardware broadcast either enabled or disabled
Our tests were performed by having the processes per-
form consecutive barrier operations. The first 10 it-
erations were used to warm up the nodes. Then the
average for the next 1,000 iterations was taken as
the latency. The performance for both the pairwise-
exchange and dissemination algorithms are compared to
the elan hgsync() operation.

Fig. 8 shows the barrier latencies of NIC-based bar-
rier operations (shown as NIC-Barrier-DS and NIC-
Barrier-PE in the figure) and the elan hgsync() func-
tion (shown as Elan-HW-Barrier and Elan-Barrier in the
figure). When the hardware broadcast is available, the
elan hgsync() achieves a barrier latency of 4.20 � s. The
hardware broadcast primitive is one of the strong ca-
pabilities this network provides [16]. However, when
the hardware broadcast primitive is not available, our
NIC-based barrier operation has a much reduced bar-
rier latency compared to elan hgsync(). With non-power
of two number of nodes, the pairwise-exchange algo-
rithm performs better than the dissemination algorithm
over Quadrics. This is because Quadrics Elan cards is
very efficient in coping with the hot-spot RDMA oper-
ations [10], which reduces the effects of the extra step.
Over this eight node cluster, a barrier latency of 5.60 � s
is achieved with both algorithms. This is a 2.48 factor
of improvement over elan hgsync() when the hardware
broadcast is not available.

8.3. Scalability of the Proposed NIC-Based Bar-
rier

As the size of parallel system reaches thousands, it
is important for parallel applications to be able to run
over larger size systems and achieve corresponding par-
allel speedup. This requires the underlying program-
ming models provide scalable communication, in par-
ticular, scalable collective operations. Thus it is impor-
tant to find out how the NIC-based barrier operations can
scale over larger size systems.

Since the NIC-based barrier operations with the dis-
semination algorithm exhibits a consistent behavior as
the system size increases, we choose its performance
pattern to model the scalability over different size sys-

0

2

4

6

8

10

12

14

16

2 4 6 8

La
te

nc
y

(µ
s)

Number of Nodes

NIC-Barrier-DS
NIC-Barrier-PE

Elan-Barrier
Elan-HW-Barrier

Fig. 8. Performance Comparisons of Barrier im-
plementations over Quadrics

0

5

10

15

20

25

30

35

40

2 4 8 16 32 64 128 256 512 1024

La
te

nc
y

(µ
s)

Number of Nodes

Myrinet-Model
Quadrics-Model

Myrinet
Quadrics

Fig. 9. Modeling of the Barrier Scalability over
Different Size Systems

tems. We formulate the latency for NIC-based barrier
with the following equation.

���������	��
�� �������� " � ��� ��� � �� ��� � � ��������� " ��� ���
In this equation,

� �������
is the average NIC-based barrier

latency over two nodes, where each NIC only sends an
initial barrier message for the entire barrier operation;����	���

is the average time for every other message the
NIC needs to trigger when having received an earlier
message; and

��� ��� is provided as the adjustment fac-
tor. The adjustment factor is needed to reflect the ef-
fects from other aspects of the NIC-based barrier, e.g.,
reduced PCI bus traffic and the overhead of bookkeep-
ing. Through mathematical analysis, we have derived
Myrinet NIC-based barrier latency as

� �������	��
�� �"! #%$ "� ��� ��� � �� �&� � � �'!)(�$ " �"! *,+ for 2.4GHz Xeon clusters
with LANai-XP cards, and Quadrics NIC-based barrier
latency as

� ����������
�� � ! � (" � ��� ��� � � �-� � � � ! � � �-�%! $%$
for quad-700MHz clusters with Elan3 cards. This model
suggests that the NIC-based barrier operations could
achieve a barrier latency of 22.13 � s and 38.94 � s over
a 1024-node Quadrics and Myrinet cluster of the same
kinds, respectively. In addition, it indicates that the NIC-
based barrier has potential for developing high perfor-
mance and scalable communication subsystems for next
generation clusters.

9. Conclusions and Future Work
We have characterized general concepts and the ben-

efits of the NIC-based barrier algorithms on top of
point-to-point communication. We have then examined
the communication processing for point-to-point oper-
ations, and pinpointed the relevant processing we can
reduce for collective operations. Accordingly we have
proposed a general scheme for an efficient NIC-based
barrier operation. The proposed scheme has been im-
plemented over both Quadrics and Myrinet.

Our evaluation has shown that, over a Quadrics clus-
ter of 8 nodes with ELan3 Network, the NIC-based bar-
rier operation achieves a barrier latency of only 5.60 � s.
This result is a 2.48 factor of improvement over the Elan-
lib barrier operation when Quadrics hardware-based
broadcast is not available. Over a Myrinet cluster of
8 nodes with LANai-XP NIC cards, a barrier latency
of 14.20 � s over 8 nodes is achieved. This is a 2.64
factor of improvement over the host-based barrier algo-
rithm. In addition, our evaluation has also shown that,
over a 16-node Myrinet cluster with LANai 9.1 cards,
the NIC-based barrier operation achieves a barrier la-
tency of 25.72us, which is a 3.38 factor of improvement
compared to the host-based algorithm. Furthermore, our
analytical model suggests that NIC-based barrier opera-
tions could achieve a latency of 22.13 � s and 38.94 � s, re-
spectively over a 1024-node Quadrics and Myrinet clus-
ter.

In future, we intend to study the benefits of this
NIC-based barrier/synchronization for different paral-
lel programming models and applications built on top
of them. Specifically, we plan to incorporate this bar-
rier/synchronization algorithm into LA-MPI [7] to pro-
vide a more efficient barrier operation and reduce the
synchronization overhead in its broadcast implementa-
tion [22]. In addition, we intend to incorporate this
NIC-based barrier, along with the NIC-based broad-
cast [21] into a resource management framework (e.g.,
STORM [6]) to investigate their benefits in increas-
ing the resource utilization and the efficiency of re-
source management. Furthermore, we intend to inves-
tigate whether other collective communication opera-
tions, such as Allgather or Alltoall could benefit from
similar NIC-level implementations.

10. Acknowledgments
We would like to thank Adam Wagner for reading the

draft.

References
[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A
Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29–36, 1995.

[2] D. Buntinas and D. K. Panda. NIC-Based Reduction in
Myrinet Clusters: Is It Beneficial? In SAN-02 Workshop
(in conjunction with HPCA), Feb 2003.

[3] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
Level Barrier over Myrinet/GM. In IPDPS, 2001.

[4] D. Buntinas, D. K. Panda, and P. Sadayappan. Perfor-
mance benefits of NIC-based barrier on Myrinet/GM.
In Proceedings of the Workshop on Communication Ar-
chitecture for Clusters (CAC) held in conjunction with
IPDPS ’01, April 2001.

[5] C. Eddington. InfiniBridge: An InfiniBand Channel
Adapter With Integrated Switch. IEEE Micro, (2):48–
56, April 2002.

[6] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin, and
S. Coll. STORM: Lightning-Fast Resource Manage-
ment. In Proceedings of the Supercomputing ’02, Bal-
timore, MD, November 2002.

[7] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai,
R. Minnich, C. E. Rasmussen, L. Dean Risinger, and
M. W. Sukalski. A Network-Failure-tolerant Message-
Passing system for Terascale Clusters. In Proceedings of
the 2002 International Conference on Supercomputing,
June 2002.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Mes-
sage Passing Interface Standard. Parallel Computing,
22(6):789–828, 1996.

[9] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda.
Fast and Scalable Barrier using RDMA and Multicast
Mechanisms for InfiniBand-Based Clusters. In Euro
PVM/MPI Conference, Venice, Italy, September.

[10] J. Liu, B. Chandrasekaran, W. Yu, J. Wu, D. Bunti-
nas, S. Kinis, P. Wyckoff, and D. K. Panda. Micro-
Benchmark Level Performance Comparison of High-
Speed Cluster Interconnects. In Hot Interconnects 11,
(HotI 2003), Stanford, CA, August 2003.

[11] P. K. McKinley, Y.-J. Tsai, and D. F. Robinson. A Sur-
vey of Collective Communication in Wormhole-Routed
Massively Parallel Computers. Technical Report MSU-
CPS-94-35, Dept. of Computer Science, Michigan State
University, 1994.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for scalable synchronization on shared-memory multi-
processors. ACM Transactions on Computer Systems,
9(1):21–65, 1991.

[13] Message Passing Interface Forum, MPIF. MPI-2: Exten-
sions to the Message-Passing Interface. Technical Re-
port, University of Tennessee, Knoxville, 1996.

[14] A. Moody, J. Fernandez, F. Petrini, and D. Panda. Scal-
able NIC-based reduction on Large-scale Clusters. In
IEEE/ACM Int’l Conference on Supercomputing, (SC
2003), Phoenix, Arizona, November 2003.

[15] Myricom. Myrinet Software and Customer Support.
http://www.myri.com/scs/GM/doc/, 2003.

[16] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network: High Perfor-
mance Clustering Technology. IEEE Micro, 22(1):46–
57, January-February 2002.

[17] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.
Hardware- and Software-Based Collective Communica-
tion on the Quadrics Network. In IEEE International
Symposium on Network Computing and Applications
2001, (NCA 2001), Boston, MA, February 2002.

[18] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network (QsNet): High-
Performance Clustering Technology. In the Proceedings
of Hot Interconnects ’01, August 2001.

[19] Quadrics Supercomputers World, Ltd. Quadrics
Documentation Collection. http://www.quadrics.com/
onlinedocs/Linux/html/index.html.

[20] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy
OS-bypass NIC-driven Gigabit Ethernet Message Pass-
ing. In the Proceedings of Supercomputing ’01, Novem-
ber 2001.

[21] W. Yu, D. Buntinas, and D. K. Panda. High Performance
and Reliable NIC-Based Multicast over Myrinet/GM-2.
In Int’l Conference on Parallel Processing, (ICPP ’03),
Kaohsiung, Taiwan, October 2003.

[22] W. Yu, S. Sur, D. K. Panda, R. T. Aulwes, and R. L.
Graham. High Performance Broadcast Support in LA-
MPI over Quadrics. In Los Alamos Computer Science
Institute, (LACSI ’03), Santa Fe, New Mexico, October
2003.

