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Abstract—Under noise-free conditions, the quality of reverberant speech is dependent on two distinct 
perceptual components: coloration and long-term reverberation. They correspond to two physical 
variables: signal-to-reverberant energy ratio (SRR) and reverberation time, respectively. Inspired by this 
observation, we propose a two-stage reverberant speech enhancement algorithm using one microphone. In 
the first stage, an inverse filter is estimated to reduce coloration effects or increase SRR. The second stage 
employs spectral subtraction to minimize the influence of long-term reverberation. The proposed 
algorithm significantly improves the quality of reverberant speech. A comparison with a recent 
enhancement algorithm is made on a corpus of speech utterances in a number of reverberant conditions, 
and the results show that our algorithm performs substantially better. 

Index terms—dereverberation, inverse filtering, reverberant speech enhancement, reverberation time, 
one-microphone algorithm, and spectral subtraction. 

EDICS Category—1-ENHA: Speech Enhancement. 

I. INTRODUCTION 

A main cause of speech degradation in practically all listening situations is room reverberation. 
Although human listening is little affected by room reverberation to a considerable degree – indeed 
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increased loudness as a result of reverberation may even enhance speech intelligibility [19] – 
reverberation causes significant performance decrement for current automatic speech recognition (ASR) 
and speaker recognition systems. Consequently, an effective reverberant speech enhancement system is 
essential for many speech technology applications including speech and speaker recognition. Also, 
hearing-impaired listeners suffer from reverberation effects disproportionally [26]. A system that 
enhances reverberant speech should improve intelligent hearing aids design.  

In this paper we study one-microphone reverberant speech enhancement. This is motivated by the 
following two considerations. First, a one-microphone solution is highly desirable for many real-world 
applications such as telecommunication and audio information retrieval. Second, although binaural 
listening improves somewhat the intelligibility of reverberant speech for normal listeners, moderately 
reverberant speech is highly intelligible in monaural listening conditions. Hence how to achieve this 
monaural capability remains a fundamental scientific question.  

Many methods have been previously proposed to deal with room reverberation. Some enhancement 
algorithms assume that room impulse response functions are known. For instance, delay-sum 
beamformers [13] and matched filters [14] have been employed to reduce reverberation effects.   One idea 
to remove reverberation effects is by passing the reverberant signal through a second filter that inverts the 
reverberation process and recover the original signal. A perfect reconstruction of the original signal exists, 
however, only if the room impulse response function is a minimum-phase filter. However, as pointed out 
by Neely and Allen [28], room impulse responses are often not minimum-phase. Another solution is to 
use multiple microphones. By assuming no common zeros among the room impulse responses, an exact 
inverse filtering can be realized using FIR filters [25]. In the one-microphone case methods, such as linear 
least-square equalizers, have been suggested that partially reconstruct the original signal [17]. 

A number of reverberant speech enhancement algorithms have been designed to perform in unknown 
acoustic environments but utilize more than one microphone. For example, microphone-array based 
methods [10], such as beamforming techniques, attempt to suppress the sound energy coming from 
directions other than that of the direct source and therefore enhance target speech. As pointed out by 
Koenig et al. [23], the reverberation tails of the impulse responses, characterizing the reverberation 
process in a room with multiple microphones and one speaker, are uncorrelated. Several algorithms are 
proposed to reduce the reverberation effects by removing the incoherent parts of received signals (for 
example, see [3]). Blind deconvolution algorithms aim to reconstruct the inverse filters without the prior 
knowledge of room impulse responses (for example, see [16, 18]). Brandstein and Griebel [9] utilize the 
extrema of wavelet coefficients to reconstruct the linear prediction (LP) residual of original speech. 

With multiple sound sources in a room, the signals received by microphones can be viewed as 
convolutive mixtures of original signals emitted by the sources. Several methods (for example, see [7]) 
have been proposed to achieve blind source separation (BSS) of convolutive mixtures, estimating the 
original signals using only the information of the convolutive mixtures received by the microphones. 
Some methods consider unmixing systems as FIR filters, while others convert the problem into the 
frequency domain and solve an instantaneous BSS for every frequency channel. The performance of 
frequency-domain BBS algorithms, however, is quite poor in a realistic acoustic environment with 
moderate reverberation time [4]. 

Reverberant speech enhancement using one microphone is significantly more challenging than that 
using multiple microphones. Nonetheless, a number of one-microphone algorithms have been proposed. 
Bees et al. [6] employs a cepstrum-based method to estimate the cepstrum of reverberation impulse 
response, and its inverse is then used to dereverberate the signal. Several dereverberation algorithms (for 
example, see [5]) are motivated by the effects of reverberation on Modulation Transfer Function (MTF) 
[21]. Yegnanarayana and Murthy [36] observed that LP residual of voiced clean speech has damped 
sinusoidal patterns within each glottal cycle, while that of reverberant speech is smeared and resembles 
Gaussian noise. With this observation, LP residual of clean speech is estimated and then the enhanced 
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speech is resynthesized. Nakatani and Miyoshi [27] proposed a system capable of blind dereverberation 
by employing the harmonic structure of speech. Good results are obtained but this algorithm requires a 
large amount of reverberant speech produced using the same room impulse response function. 

Despite these studies, existing reverberant speech enhancement algorithms, however, do not reach a 
performance level demanded by many practical applications. Motivated by the observation that 
reverberation leads to perceptual components: coloration and long-term reverberation, we present a novel 
two-stage algorithm for one-microphone reverberant speech enhancement. In the first stage, an inverse 
filter is estimated in order to reduce coloration effects so that signal-to-reverberant energy ratio (SRR) is 
increased. The second stage utilizes spectral subtraction to minimize the influence of long-term 
reverberation. Our two-stage algorithm has been systematically evaluated, and the results show that the 
algorithm achieves substantial improvements on reverberant speech. We have also carried out a 
quantitative comparison with a recent one-microphone speech enhancement algorithm on a corpus of 
reverberant speech and our algorithm yields significantly better performance. 

This paper is organized as follows. In the next section, we give the background that motivates our 
two-stage algorithm. Section III presents the first stage of the algorithm – inverse filtering. The second 
stage of the algorithm – spectral subtraction – is detailed in Section IV. Section V discribes evaluation 
experiments and shows the results. Finally, we discuss related issues and conclude the article in Section 
VI. 

II. BACKGROUND 

Reverberation causes a noticeable change in speech quality [8]. Berkley and Allen [8] identified that 
two physical variables, reverberation time T60 and the talker-listener distance, are important for 
reverberant speech quality. Consider the impulse response as a combination of three parts, the direct, 
early, and late reflections. While late reflections smear the speech spectra and reduce the intelligibility 
and quality of speech signals, early reflections cause another distortion of speech signal called coloration; 
the non-flat frequency response of the early reflections distorts the speech spectrum. The coloration can 
be characterized by a spectral deviation defined as the standard deviation of room frequency response. 

Allen [1] reported a formula derived from a nonlinear regression to predict the quality of reverberant 
speech as measured by subjective preference: 

 603.01 TP
P

MAX

σ−= , (1) 

where MAXP  is the maximum preference, �  is the spectral deviation in dB, and T60 is the reverberation 
time, in seconds. According to this formula, increasing either spectral deviation or reverberation time 
results in decreased reverberant speech quality. Jetzt [22] shows that spectral deviation is determined by 
SRR. The relative reverberant energy in a room is approximately constant. Therefore, in the same room 
spectral deviation is determined by talker-to-microphone distance. Shorter talker-to-microphone distance 
results in higher SRR and less spectral deviation, hence, less distortion or coloration. 

Consequently, we propose a two-stage model to deal with two types of degradations – coloration and 
long-term reverberation – in a reverberant environment. In the first stage, our model estimates an inverse 
filter to reduce coloration effects in order to increase SRR. The second stage employs spectral subtraction 
to minimize the influence of long-term reverberation. Detailed description of the two stages of our 
algorithm is given in the following two sections. 
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III. INVERSE FILTERING 

As described in Section I, inverse filtering can be utilized to reconstruct the original signal. In the 
first stage of our algorithm, we derive an inverse filter to reduce reverberation effects and this stage is 
adapted from a multi-microphone inverse filtering algorithm proposed by Gillespie at el. [18]. Their 
algorithm estimates an inverse filter of the room impulse response by maximizing the kurtosis of the 
linear prediction (LP) residual of speech utilizing multiple microphones. 

Assuming that ( ) ( )],...,2),1([ˆ Lggg=g  is an inverse filter of length L, the inverse-filtered speech is 

 ( ) ( )ttz ygˆˆ= , (2) 

where ( ) ( ) ( ) ( ) TtytyLtyt ],1,...,1[ˆ −+−=y  and y  is the reverberant speech, sampled at 16 kHz, 
The LP residual of clean speech has higher kurtosis than that of reverberant speech [36]. 

Consequently, an inverse filter can be sought by maximizing the kurtosis of LP residual signal of the 
inverse-filtered signal [18]. A schematic diagram of a direct implementation of such a system is shown in 
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Fig. 1. (a) Schematic diagram of an ideal one-microphone dereverberation algorithm maximizing the 
kurtosis of LP residual of inverse-filtered signal. (b) Diagram of the algorithm employed in the first 
stage of our algorithm. 
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Fig. 1(a). However, due to the LP analysis in the feedback loop, the optimization problem is not trivial. 
As a result, an alternative system is employed for inverse filtering [18] and shown in Fig. 1(b). Here, the 
LP residual of the processed speech is approximated by the inverse-filtered LP residual of the reverberant 
speech ( )tz~ . Consequently, we have: 

 ( ) ( )ttz ryg ˆˆ~ = , (3) 

where ( ) ( ) ( ) ( ) T
rrrr tytyLtyt ],1,...,1[ˆ −+−=y  and ( )tyr  is the LP residual of the reverberant speech. The 

optimal inverse filter ĝ  is derived so that the kurtosis of ( )tz~  is maximized. The optimization process can 
be carried out using adaptive-filter-like algorithms as following. 

The kurtosis of the inverse-filtered LP residual of the reverberant speech ( )tz~  is defined as: 

 
( )[ ]
( )[ ] 3

~

~

22

4

−=
tzE

tzE
J . (4) 

The gradient of the kurtosis with respect to the inverse filter ĝ  can be derived as: 

 
( )[ ] ( ) ( )[ ] ( )[ ] ( ) ( )[ ]
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To develop an estimate of this gradient, we substitute the expectations ( ) ( )[ ]ttzE r
ŷ~3

 and ( ) ( )[ ]ttzE
r

ŷ~  

with their instantaneous estimates ( ) ( )ttz
r

ŷ~3
 and ( ) ( )ttz

r
ŷ~ , respectively, and obtain a stochastic 

approximation: 
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With the definition of  

 ( ) ( )[ ] ( ) ( )[ ] ( )( )
( )[ ]tzE

tztzEtztzE
tf

23

432

~

~~~~4 −
= ,  (7) 

the optimization problem can be formulated as a time-domain adaptive filter and the update equation of 
the inverse filter becomes: 

 ( ) ( ) ( )ttftt rygg ˆ)(ˆ1ˆ µ+=+ , (8) 

where µ  denotes the learning rate, for every time step. 
According to Haykin [20], however, the time-domain adaptive filter formulation is not recommended, 

because the large variations in the eigenvectors of the autocorrelation matrices of the input signals may 
lead to very slow convergence, or no convergence at all. Consequently, we use a block frequency-domain 
structure for optimization. In this formulation, the signal is processed block by block using FFT and the 
filter length L is also used as the block length. The new update equations for the inverse filter are: 

 ( ) ( ) �
=

+=+′
M

m
r mm

M
nn

1

* )()(1 YFGG
µ

, and (9) 
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 ( ) ( )
( )1

11 +′
+′=+

n
nn

G
GG , (10) 

where ( )mF  and ( )mrY  denote, respectively, the FFT of ( )tf  and ( )trŷ  for the mth block. The 

superscript * denotes complex conjugate. ( )nG  is the FFT of ĝ  at nth iteration and M is the number of 

 
(a) 

 
(b) 

Fig. 2. (a) A room impulse response function generated by the image model in an office-size room of 
the dimensions 6 by 4 by 3 meters (length by width by height). Wall reflection coefficients are 0.75 for 
all walls, ceiling and floor. The loudspeaker and the microphone are at (2, 3, 1.5) and (4, 1, 2), 
respectively. (b) The equalized impulse response derived from the reverberant speech generated by the 
room impulse response in (a) as the result of the first stage of our algorithm. 
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blocks. Equation 10 ensures that the inverse filter is normalized. Finally, the inverse-filtered speech ( )tz  
is obtained by convolving the reverberant speech with the inverse filter. Specifically, we choose 

9103 −×=µ  and use 20 sec reverberant speech to derive the inverse filter. We run for 500 iterations 
which are needed for good results. 

A typical result from the first stage of our algorithm is shown in Fig. 2. Fig. 2(a) illustrates a room 
impulse response function (T60 = 0.3 s) generated by the image model of Allen and Berkley [2], which is 

 
(a) 

 
(b) 

Fig. 3. Energy decay curves (a) that computed from the room impulse response function in Fig. 2(a). 
(b) That from the equalized impulse response in Fig. 2(b). Each curve is calculated using the 
Schroeder integration method. The horizontal dot line represents –60 dB energy decay level. The left 
dash lines indicate the starting times of the impulse responses and the right dash lines the times at 
which decay curves cross –60 dB. 
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commonly used for this purpose. The equalized impulse response – the result of the room impulse 
response in Fig. 2(a) convolved with the obtained inverse filter – is shown in Fig. 2(b). As can be seen, 
the equalized impulse response is far more impulse-like than the room impulse response. In fact, the SRR 
value of the room impulse response is –9.8 dB in comparison with 2.4 dB for that of the equalized 
impulse response. 

However, the above inverse filtering method does not improve on the tail part of reverberation. 
Fig. 3(a) and (b) show the energy decay curves of the room impulse response and the equalized impulse 
response, respectively. As can be seen, except for the first 50 ms, the energy decay patterns are almost 
identical, and thus the estimated reverberation times are almost the same, around 0.3 s. While the 
coloration distortion is reduced due to the increase of SRR, the degradation due to reverberation tails is 
not alleviated. In other words, the effect of inverse filtering is similar to that of moving the sound source 
closer to the receiver. In the next section, we introduce the second stage of our algorithm to reduce the 
effects of long-term reverberation. 

IV. SPECTRAL SUBTRACTION 

Late reflections in a room impulse response function smear speech spectrum and degrade speech 
intelligibility and quality. Likewise, an equalized impulse response can be decomposed into two parts: 
early and late impulses. Resembling the effects of the late reflections in a room impulse response, the late 
impulses have deleterious effects on the quality of inverse-filtered speech; by estimating the effects of the 
late impulses and subtracting them, we can expect to enhance the speech quality. 

Several methods have been proposed to reduce the effects of late reflections in a room impulse 
response. Palomäki et al. [29] employ a robust speech recognition technique in reverberant environments 
by utilizing only the least reverberation-contaminated time-frequency regions. These regions are 
determined by applying a reverberation masking filter to estimate the relative strength of reverberant and 
clean speech. Wu and Wang [35] propose a one-stage algorithm to enhance the reverberant speech by 
estimating and subtracting effects of late reflections. Reverberation causes the elongation of harmonic 
structure in voiced speech and, therefore, produces elongated pitch tracks. In order to obtain more 
accurate pitch estimation in reverberant environments, Nakatani and Miyoshi [27] employ a filter 

( )eeef p −−−= ,...,,,1  to pre-filter the amplitude spectrum in the time domain and thus reduces some 

elongated pitch tracks in reverberant speech. 
The smearing effects of late impulses lead to the smoothing of the signal spectrum in the time 

domain. Therefore, we assume that the power spectrum of late-impulse components is a smoothed and 
shifted version of the power spectrum of the inverse-filtered speech ( )tz : 

 ( ) ( ) ( ) 22
;; ikSiwikS zl ∗−= ργ , (11) 

where ( ) 2
; ikS z  and ( ) 2

; ikS l  are, respectively, the short-term power spectra of the inverse-filtered 

speech and the late-impulse components. Indexes k  and i  refer to frequency bin and time frame, 
respectively. The symbol ∗ denotes convolution in the time domain and ( )iw  is a smoothing function. The 
short-term speech spectrum is obtained by using hamming windows of length 16 ms with 8 ms overlap 
for short-term Fourier analysis. The shift delay ρ  indicates the relative delay of the late-impulse 
components. The distinction of early and late reflections for speech is commonly set at a delay of 50 ms 
in a room impulse response function [24]. This translates to approximately 7 frames for a shift interval of 
8 ms, and we choose 7=ρ  as a result. Finally, the scaling factor �  specifies the relative strength of the 
late-impulse components and is set to 0.32. 
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Considering the shape of the equalized impulse response, we choose an asymmetrical smoothing 
function as the Rayleigh distribution:1 

( ) ( )

( )
���� �

=

−>���
����	 +−+=

otherwise0

if
2

exp
2

2

2

iw

ai
a

ai

a

ai
iw

, (12) 

where we choose 5=a . This smoothing function goes down to zero on the left side quickly but tails off 
slowly on the right side; the right side of the smoothing function resembles the shape of reverberation 
tails in equalized impulse responses.  

The inverse-filtered speech ( )tz  can be expressed as the convolution of the clean speech ( )ts  and the 

equalized impulse response ( )the : 

 ( ) ( ) ( )

∞

−=
0

τττ dhtstz e . (13) 

By separating the contributions from early and late impulses in the equalized impulse response, we 
rewrite (13) as: 

 ( ) ( ) ( ) ( ) ( )
�� ∞

−+−=
l

l

T

e

T

e dhtsdhtstz ττττττ
0

, (14) 

where lT  indicates the separation between early and late impulses. The first and the second terms in (14) 
represent the early- and late-impulse components, respectively, and are computed from different segments 

                                                
1 Rayleigh distribution is defined as: ( ) ������� −=

2

2

2 2
exp

a

x

a

x
xf  for 0≥x  and ( ) 0=xf  otherwise. 

 

Fig. 4. The average autocorrelation function of the speech utterances of four male and four female 
speakers randomly selected from the TIMIT database. 
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of original clean speech: The early-impulse component is calculated from ( )1
�s , where t�Tt l ≤≤− 1 , 

and the late-impulse component from ( )2
�s , where lTt� −≤2 .  

To investigate the relationship between early- and late-impulse components, we plot the average 
autocorrelation function of speech utterances from four female and four male speakers randomly selected 
from the TIMIT database [12] in Fig. 4. As can be seen, the autocorrelations are large around zero lag but 
fall off rapidly; they are almost zero with lags larger than 30 ms. The early- and late-impulse components 
are separately derived from two adjacent segments of clean speech: ( )1

�s  and ( )2
�s . As indicated in 

Fig. 4, the correlation between these two speech signals is small when the time difference 21
�� −  is 

relatively large (not close to the border between the two segments). Consequently, we assume the early- 
and late-impulse components mutually uncorrelated. To further verify this, we have computed the 
normalized correlation coefficients between the early- and late-impulse components from natural speech 
utterances and these coefficients are very small [34]. Consequently, the power spectrum of the early-
impulse components can be estimated by subtracting the power spectrum of the late-impulse components 
from that of the inverse-filtered speech. The results are further used as an estimate of the power spectrum 
of original speech. Specifically, spectral subtraction [11] is employed to estimate the power spectrum of 

original speech ( ) 2
~ ; ikS x :  

 ( ) ( ) ( ) ( ) ( )
( )

�
�

�

	






�

�
∗−−

= ε
ργ

,
;

;;
max;;

2

22

22
~

ikS

ikSiwikS
ikSikS

z

zz

zx , (15) 

where 001.0=ε  is the floor and corresponds to the maximum attenuation of 30 dB. 
Natural speech utterances contain silent gaps between words and sentences, and reverberation fills 

some of the gaps right after high-intensity speech sections. We identify and then attenuate these silent 
gaps as follows. First, even with reverberation filling, the energy of a silent frame in inverse-filtered 
speech is relatively low. Consequently, a threshold 1ϑ  is established to identify the possibility of a silent 
frame. Secondly, for a silent frame, the energy is substantially reduced after the spectral subtraction 
process described earlier in this section. As a result, a second threshold 2ϑ  is established for the energy 
reduction ratio. Specifically, the signal is first normalized so that the maximum frame energy is 1. A time 

frame i  is identified as a silent frame only if ( ) 1ϑ<iEz  and ( )
( ) 2~

ϑ>iE
iE

x

z , where ( )iEz  and ( )iEx~  are 

the energy values in frame i  for the inverse-filtered speech ( )tz  and the spectral-subtracted speech ( )tx~ . 

We choose 0125.01 =ϑ  and 52 =ϑ . For identified silent frames, all frequency bins are attenuated by 30 
dB. Finally, the short-term phase spectrum of enhanced speech is set to that of inverse-filtered speech and 
the processed speech is reconstructed from the short-term magnitude and phase spectrum. 

V. RESULTS AND COMPARISONS 

To measure progress, it is important to quantitatively assess reverberant speech enhancement 
performance. Ideally, an objective speech quality measure should replicate human performance. In reality, 
however, different objective measures are used for different conditions. 

Wang and Lim [33] studied the importance of phase information in the context of enhancing speech 
mixed with white noise and concluded that phase distortion is not important for speech enhancement 
applications. This is because when speech is mixed with a moderate level of white noise, the phases of 
strong spectral components of speech are not distorted significantly due to the large dynamic range of 
speech signal. Although ignoring the phase information is appropriate for enhancement of noisy speech, it 
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is not appropriate for enhancement of reverberant speech. We have conducted an informal experiment by 
substituting the phase of clean speech with that of reverberant speech while retaining the magnitude of 
clean speech. Clear reduction of speech quality is heard in comparison with original speech. 

 
  (a)         (b) 

 

 
  (c)         (d) 

 

 
  (e)         (f) 

 

 
  Time(Sec)                 Time(Sec) 

  (g)         (h) 
 

Fig. 5. Results of reverberant speech enhancement: (a) clean speech, (b) spectrogram of clean speech, 
(c) reverberant speech, (d) spectrogram of reverberation speech, (e) inverse-filtered speech, (f) 
spectrogram of inverse-filtered speech, (g) speech processed using our algorithm, and (h) 
spectrogram of the processed speech. The speech is a female utterance “She had your dark suit in 
greasy wash water all year,”  sampled at 16 kHz. 
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In this paper, we utilize frequency-weighted segmental SNR ( fwSNR ) [32], which takes into account 

of phase information, to measure performance. Specifically, 

 
( )

( ) ( )[ ]
� � �

= = +−= ���
�

����
−

=
M

j

K

k

m

Nmn kk

k
fw

j

j nsns

ns

KM
SNR

1 1 1
2

2

ˆ

11
, (16)  

where ( )ns  is the original noise- and reverberation-free signal, and ( )nŝ  is the processed signal. jm  is the 

end-time of the jth frame and the summation is over M frames, each of length N (we use a length of 
30 ms). The signals are first filtered into K frequency bands corresponding to 20 classical articulation 
bands [15]. These bands are unequally spaced and have varying bandwidths. However they contribute 
equally to the intelligibility of a processed speech. Experiments show that frequency-weighted segmental 
SNR is highly correlated with subjective speech quality and is superior to conventional SNR or segmental 
SNR [30]. 

A corpus of speech utterances from eight speakers, four females and four males, randomly selected 
from the TIMIT database [12] is used for system evaluation. Informal listening tests show that the 
proposed algorithm achieves substantial reduction of reverberation and has little audible artifacts. To 
illustrate typical performance, we show the enhancement result of a speech signal corresponding to the 
sentence “She had your dark suit in greasy wash water all year”  from the TIMIT database in Fig. 5. 
Fig. 5(a) and (c) show the clean and the reverberant signal and Fig. 5(b) and (d), the corresponding 
spectrograms, respectively. The reverberant signal is produced by convolving the clean signal and the 
room impulse response function in Fig. 2(a) with T60 = 0.3 s. As can be seen, while the clean signal has 
fine harmonic structure and silence gaps between the words, the reverberant speech is smeared and its 
harmonic structure is elongated. The inverse-filtered speech, resulting from the first stage of our 
algorithm, and its spectrogram are shown in Fig. 5(e) and (f), respectively. Compared with the reverberant 
speech, inverse filtering restores some detailed harmonic structure of the original speech, although the 
smearing and silence gaps are not much improved. This is consistent with our understanding that 
coloration mostly degrades the detailed spectrum and phase information. Finally, the processed speech 
using the entire algorithm and its spectrogram are shown in Fig. 5(g) and (h), respectively. As can be 
seen, the effects of reverberation have been significantly reduced in the processed speech. The smearing 
is lessened and many silence gaps are clearer. 

Table I shows the systematic results for the utterances from the eight speakers. rev
fwSNR , inv

fwSNR , and 
processed
fwSNR  denote the frequency-weighted segmental SNRs for reverberant speech, inverse-filtered 

speech, and processed speech, respectively. The SNR gains for inverse-filtered speech and the processed 
speech are represented by rev

fw
inv
fw

revinv
fw SNRSNRSNR −=−  and rev

fw
processed
fw

revprocessed
fw SNRSNRSNR −=− , 

respectively. As can be seen, the quality of the processed speech is substantially improved, with an 
average SNR gain of 4.82 dB over reverberant speech. 

To put our performance in perspective, we compare with a recent one-microphone reverberant speech 
enhancement algorithm proposed by Yegnanarayana and Murthy [36]. We refer to this algorithm as the 
YM algorithm. The YM algorithm first applies gross weights to LP residual so that more severely 
reverberant speech segments are attenuated. Then, fine weights are applied to the residual so that they 
resemble more closely the damped sinusoidal patterns of LP residual from clean speech. Observing that 
the envelop spectrum of clean speech is flatter than that of reverberant speech, the authors modify LP 
coefficients to flatten the spectrum. Since the YM algorithm is implemented for speech signals sampled at 
8 kHz, we downsample the speech signals from 16 kHz and adapt our algorithm to perform at 8 kHz. The 
results of processing the downsampled signal from Fig. 5 are shown in Fig. 6. Fig. 6(a) and (c) show the 



 

 13  
 
  
   
 

clean and the reverberant signal sampled at 8 kHz and Fig. 6(b) and (d), the corresponding spectrograms, 
respectively. Fig. 6(e) and (f) show the processed speech using the YM algorithm and its spectrogram, 
respectively. As can be seen, spectral structure is clearer and some silence gaps are attenuated. The 
processed speech using our algorithm and its spectrogram are shown in Fig. 6(g) and (h). The figure 
clearly shows that our algorithm enhances the reverberant speech more than does the YM algorithm. 

Quantitative comparisons are also obtained from the speech utterances of the eight speakers 
separately and presented in Table II. rev

kfwSNR 8− , YM
kfwSNR 8− , and processed

kfwSNR 8−  represent the frequency-

weighted segmental SNR values of reverberant speech, the processed speech using the YM algorithm, and 
the processed speech using our algorithm, respectively. The SNR gains by employing the YM algorithm 
and our algorithm are denoted by revYM

kfwSNR −
−8  and revprocessed

kfwSNR −
−8 , respectively. As can be seen, the YM 

algorithm obtains an average SNR gain of 0.74 dB compared to that of 4.15 dB by our algorithm.  
Our algorithm has also been tested in reverberant environments with different reverberation times. 

The first stage of our algorithm – inverse filtering – is able to perform reliably with reverberation times 
ranging from 0.2 s to 0.4 s, which cover the reverberation times of typical living rooms. When 
reverberation times are greater than 0.4 s, the length of the inverse filter (64 ms) is too short to cover the 

Table I. The systematic results of reverberant speech enhancement for speech utterances of four 
female and four male speakers randomly selected from the TIMIT database  

 
Speaker/Gender rev

fwSNR (dB) inv
fwSNR (dB) processed

fwSNR (dB) inv rev
fwSNR − (dB) revprocessed

fwSNR − (dB) 

Female#1 -2.62 0.01 1.84 2.63 4.46 
Female#2 -2.07 0.01 1.56 2.17 3.63 
Female#3 -4.28 -1.69 0.74 2.60 5.02 
Female#4 -3.02 -0.90 1.07 2.12 4.09 
Male#1 -4.47 -0.30 1.74 4.17 6.21 
Male#2 -4.42 -0.50 1.07 3.92 5.49 
Male#3 -3.23 0.66 2.01 3.90 5.24 
Male#4 -3.04 -0.06 1.41 2.99 4.45 
Average -3.39 -0.33 1.43 3.06 4.82 

 
 

Table II. The systematic results of reverberant speech enhancement for speech utterances of four 
female and four male speakers randomly selected from the TIMIT database. All signals are 
sampled at 8 kHz. 
 
Speaker/Gender rev

kfwSNR 8−
(dB) YM

kfwSNR 8−
(dB) processed

kfwSNR 8−
(dB) revYM

kfwSNR −
−8

(dB) revprocessed
kfwSNR −

−8
(dB) 

Female#1 -3.64 -3.06 0.92 0.58 4.56 
Female#2 -3.51 -3.05 0.74 0.46 4.25 
Female#3 -3.86 -3.19 -0.20 0.68 3.66 
Female#4 -4.12 -3.29 0.73 0.83 4.84 
Male#1 -3.86 -2.65 -0.92 1.21 2.94 
Male#2 -3.33 -2.68 1.77 0.65 5.10 
Male#3 -3.30 -2.53 1.20 0.76 4.49 
Male#4 -3.50 -2.76 -0.13 0.75 3.38 
Average -3.64 -2.90 0.51 0.74 4.15 
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long room impulse responses. On the other hand, when reverberation times are less than 0.2 s, the quality 
of reverberant speech is reasonably high even without processing. Unless the inverse filter is precisely 
estimated, inverse filtering may even degrade the reverberant speech rather than improve it. Fig. 7 shows 
the performance of our algorithm under different reverberation times. The dot, dash, and solid lines 
represent the frequency-weighted segmental SNR values of reverberant speech, inverse-filtered speech, 
and the enhanced speech, respectively. As can be seen, our algorithm consistently improves the quality of 

 
(a)       (b) 

 

 
(c)       (d) 

 

 
(e)       (f) 

 

 
        Time(Sec)             Time(Sec) 

(g)       (h) 

Fig. 6. Results of reverberant speech enhancement of the same speech utterance in Fig. 5 
downsampled to 8 kHz: (a) clean speech, (b) spectrogram of clean speech, (c) reverberant speech, (d) 
spectrogram of reverberant speech, (e) speech processed using the YM algorithm, (f) spectrogram of 
(e), (g) speech processed using our algorithm, and (h) spectrogram of (g). 



 

 15  
 
  
   
 

reverberant speech within this range of reverberation times. Note that reverberation time can be 
automatically estimated by using algorithms such as the one proposed in [35]. 

The longer reverberation times are, the heavier the reverberation tails. The scaling factor �  in 
Equation 11 indicates the relative strength of the late-impulse components, and ideally should change 
according to reverberation times. The optimal scaling factors can be identified by finding the maxima of 
frequency-weighted segmental SNR values, and are shown in Fig. 8(a). The optimal frequency-weighted 
segmental SNR gains in comparison to those derived by using the fixed scaling factor of 0.32 are shown 
in Fig. 8(b). As can be seen, even with the optimal scaling factors ranging from 0.1 to 0.6, the 
performance gains by using these optimal factors are no greater than 0.3 dB. This strongly suggests that 
our system is not sensitive to specific values of the scaling factor.  

If the reverberation time is outside the range of 0.2 s to 0.4 s, the reverberant speech should be 
handled differently. For reverberation time from 0.1 s to 0.2 s, the second stage of our algorithm – 
estimating and subtracting the late-impulse components – can be applied directly without passing through 
the first stage. Speech utterances from eight speakers described before are employed for evaluation. Our 
experiments show that, under reverberation times of 0.12 s and 0.17 s, the second stage of our algorithm 
with a scaling factor of 0.05 improves the average frequency-weighted segmental SNR values from 3.89 
dB and 1.36 dB of reverberant speech to 4.38 dB and 2.55 dB of the processed speech, respectively. For 
reverberation times lower than 0.1 s, the reverberant speech already has very high quality and no 
enhancement is necessary. For reverberation times greater than 0.4 s, one could also directly use the 
second stage of our algorithm. To see its effects, we perform further experiments using a scaling factor of 
2.0 and employing the speech utterances used before. Utilizing the utterances from the same eight 
speakers, our experiments show that, with T60 = 0.58 s, average frequency-weighted segmental SNR 
improves from –5.7 dB of reverberant speech to –1.4 of the processed speech. 

VI. DISCUSSION AND CONCLUSION 

Many algorithms for reverberant speech enhancement utilize FIR filters for inverse filtering. The 
length of an FIR inverse filter, however, puts limitation on the system performance. For example, 

 
Fig. 7. The results of the proposed algorithm with respect to different reverberation times. The dot, 
dash, and solid lines represent the frequency-weighted segmental SNR values of reverberant speech, 
inverse-filtered speech, and the processed speech. 
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Fig. 9(a) shows the equalized impulse response derived from the room impulse response in Fig. 1 
(T60 = 0.3 s) using linear least-square inverse filtering [17]. This technique derives an optimal FIR inverse 
filter in the least-square sense for length 1024 (64 ms) with the perfect knowledge of the room impulse 
response. The corresponding energy decay curve computed according to the Schroeder integration 
method [31] is shown in Fig. 9(b). As can be seen, the impulses after 70 ms from the starting time of the 
equalized impulse response are not much attenuated. Some remedies have been investigated. For 
example, Gillespie and Atlas proposed a binary-weighted linear-least-square equalizer [17], which 
attenuates more long-term reverberation at the expense of lower SRR values. However, because the 
length of the inverse filter is shorter than the length of reverberation, the reverberation longer than the 

 
(a) 

 
(b) 

 
Fig. 8. (a) The optimal scaling factors with respect to reverberation times. (b) The frequency-weighted 
segmental SNR gains by using the optimal scaling factors instead of a fixed scaling factor. 
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filter cannot be effectively reduced in principle. In theory, longer FIR inverse filters may achieve better 
performance. But long inverse filters introduce many more free parameters that are often difficult to 
estimate in practice. Sometimes, it leads to instability of convergence and often requires a large amounts 
of training data. A few algorithms have been proposed to derive long FIR inverse filters. For example, 
Nakatani and Miyoshi [27] proposed a system capable of blind dereverberation of one-microphone speech 
using long FIR filters (2 s, personal communication, 2003). Good results are obtained using large 
amounts of speech data (trained on 5240 Japanese words). In many practical situations, however, only 
relatively short FIR inverse filters can be derived. In this case, the second stage of our algorithm can be 
used as an add-on to many inverse-filtering based algorithms. 

Although our algorithm is designed for enhancing reverberant speech using one microphone, it is 
straightforward to extend it into multi-microphone scenarios. Many inverse filtering algorithms, such as 
the algorithm by Gillespie et al. [18], are originally proposed using multiple microphones. After inverse 
filtering using multiple microphones, the second stage of our algorithm – the spectral subtraction method 
– can be utilized for reducing long-term reverberation effects. 

Araki et al. [4] point out a fundamental performance limitation of the frequency domain BSS 
algorithms. When a room impulse response is long, the frame length of FFT used for frequency domain 
BSS needs to be long in order to cover the long reverberation. However, when a mixture signal is short, 
the lack of data in each frequency channel caused by the longer frame size triggers the collapse of the 
assumption of independence of source signals. Under these constraints, one can identify a frame length of 
FFT to achieve the optimal performance of a frequency domain BSS system. This optimal length, 
however, is comparatively short with a long room impulse response. For example, in one of their 
experiments, the optimal frame length is 1024 (64 ms) for a convolutive BSS system in a room with the 
reverberation time of 0.3 s. Consistent with the argument we offered earlier, a BSS system employing the 
optimal frame length is unable to attenuate long-term reverberation effects of either target or interfering 
sound sources. On the other hand, the second stage of our algorithm can be extended to deal with multiple 
sound sources by applying a convolutive BBS system and then reducing long-term reverberation effects. 

Our algorithm is also robust to modest levels of background noise. We have tested our algorithm on 
reverberant utterances mixed with white noise so that the SNRs of reverberant speech, where the 
reverberant speech is treated as signal, are 20 dB. The results show that our method consistently reduces 
reverberation effects and yields an average SNR gain similar to that without background noise [34]. 

To conclude, we have presented a two-stage reverberant speech enhancement algorithm using one 
microphone, and the stages correspond to inverse filtering and spectral subtraction. The evaluations show 
that our algorithm enhances the quality of reverberant speech effectively and performs significantly better 
than a recent reverberant speech enhancement algorithm. 
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