
Designing High Performance DSM Systems using InfiniBand: Opportunities,
Challenges and Experiences

�

Ranjit Noronha and Dhabaleswar K. Panda

Dept. of Computer and Information Science
The Ohio State University

Columbus, OH 43210
{noronha,panda}@cis.ohio-state.edu

Abstract
Software based DSM systems have traditionally not per-

formed well because of the combined effects of increase in
communication, slow networks and the large overhead as-
sociated with processing the coherence protocol. Recent
modern interconnects like Myrinet, Quadrics and Infini-
Band offer reliability, low latency (around 5.0 � s point-to-
point), and high-bandwidth (up to 10.0 Gbps in 4X Infini-
Band). Besides the traditional channel-based send/receive
communication primitives, these networks also support
memory-based communication primitives like RDMA Read
and RDMA Write allowing remote reading and writing of
data respectively without receiver intervention. InfiniBand
also provides hardware support for remote atomic opera-
tions (fetch and add). These architectural supports open
up new challenges in exploring low-overhead, high perfor-
mance, and scalable cache coherency protocols for soft-
ware DSM systems. In this paper, we take on such a chal-
lenge and develop an enhanced coherency protocol by tak-
ing advantage of RDMA Read and atomic fetch-and-add
primitives. This enhanced protocol (termed as ARDMAR -
Atomic and RDMA Read) helps to reduce the load at the
default and actual home nodes on a page fetch request,
leading to reduced page fetch time and handler processing
time. The ARDMAR protocol is integrated into the HLRC
DSM system and evaluated on a 16-node InfiniBand cluster
for five different applications (Barnes, Radix Sort, Integer
Short, 3D FFT, and Water) with various problem sizes. For
16-node systems and various problem sizes, the ARDMAR
protocol is demonstrated to reduce the application-level ex-
ecution time by a factor of up to 2.25. These results demon-
strate potential to build high performance DSM systems us-
ing modern clusters with InfiniBand.
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1 Introduction

Clusters are becoming increasingly popular for provid-
ing cost-effective high-performance computing for a wide
range of applications. Networking technology is improv-
ing dramatically. Increasingly, a variety of advanced inter-
connects like Myrinet [10], Quadrics [4] and very recently
InfiniBand [2] have become popular. These network offer
very low point-to-point latency of the order of 5.0 � s for
small messages and very high unidirectional bandwidth of
the order of 10 Gigabits per second for large messages. In
addition to the basic communication primitives, these net-
works offer a variety of services and operations. For exam-
ple, Myrinet and Quadrics have a programmable network
interface card. InfiniBand and Myrinet support hardware-
based remote atomic operations [11]. All these networks
also support Remote Data Memory Access (RDMA) oper-
ations. RDMA allows a process to read or write a location
in the memory space of another process over the network.
RDMA operations do not require involvement from the re-
ceiver, an important consideration when designing scalable
software.

Considerable research has focused on the development
of Software Distributed Shared Memory (SDSM) Sys-
tems [24, 16, 9] in the past. SDSM systems such as Tread-
Marks [17, 7], SHRIMP [12] and HLRC [15, 23] provide an
intuitive development environment as opposed to the Mes-
sage Passing Interface (MPI) standard. These environments
were developed earlier for clusters with slower intercon-
nects (Fast Ethernet, Giganet [13] and the earlier genera-
tion of Myrinet [10]). These environments did not catch
on earlier primarily because of the communication inten-
sive nature of SDSM protocols which quickly choked net-
works and exhibited poor scaling properties. Modern net-
works have shifted the balance between processor speed
and interconnection speed. These networks can potentially
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sustain the communication rate of SDSM protocols, which
has the potential to improve the scalability of SDSM proto-
cols [21]. Thus, it makes an interesting challenge to exam-
ine the sources of overhead in the current SDSM protocol
design when running over these new interconnects.

The request-response type of communication of the
client-server model of SDSM could possibly be one of the
main sources of overhead. With increasing system and
application size, request serialization at the server drives
up response time and affects scalability. InfiniBand offers
RDMA and remote atomic operations. Thus, it is possi-
ble to replace the asynchronous protocol processing using
these mechanisms. Another interesting question is how
much performance benefit can be achieved by such a re-
placement om InfiniBand based clusters ? In this paper we
take the first step towards removing such asynchronous pro-
tocol processing with InfiniBand mechanisms and studying
the associated performance benefits. Page fetching opera-
tions in SDSM traditionally are performed using the asyn-
chronous handler. A request message is sent to the manager
or home node of the page. The home node then sends a
response back to the requestor with the page contents. We
have proposed a new scheme to use RDMA Read opera-
tion in InfiniBand to directly read the page from the mem-
ory space of the remote process. Coherency is maintained
through the InfiniBand remote atomic operation compare
and swap which is used to assign a home node for the page.
This new protocol is evaluated with both micro-benchmarks
and application-level benchmarks. Micro-benchmark eval-
uation shows that RDMA operations dramatically reduce
the wait time required for page fetching operations. Further-
more, application-level evaluation show an improvement of
up to 2.25 in running time on 16 nodes.

The rest of this paper is organized as follows. Section
2 describes the implementation of HLRC and its main fea-
tures along with an overview of the networking intercon-
nect InfiniBand. Section 3 presents design possibilities of
HLRC with InfiniBand mechanisms. Section 4 explores the
design issues and alternatives used while implementing the
page fetch using RDMA Read and network level atomic
operations. Section 5 evaluates the design using a micro-
benchmark and various applications. Section 7 presents
conclusions and future directions.

2 Background Information

In this section we discuss the basic concepts behind the
SDSM package HLRC with an emphasis on its communica-
tion model primitives. We also take a look at the InfiniBand
standard with a focus on the main communication opera-
tions provided by this interconnection technology. We also
compare the performance of InfiniBand with the networks
Myrinet, Quadrics and Giganet using the metrics of latency

and bandwidth.

2.1 Overview of HLRC

Since the development of the first sequentially consis-
tency SDSM system IVY [18], there has been a large
body of research into the issues with SDSM. Unfortunately,
SDSM has not been found to be scalable, largely because of
the effects of protocol and communication overhead. The
lazy release consistency model was the next advance which
postponed coherence activities to synchronization points,
reducing the amount of communication. The home based
lazy release consistency protocol (HLRC) [15] improved
upon LRC by assigning pages to homes, with a home node
being updated with modifications at every synchronization
point.

HLRC was designed with the goal of reducing not only
the communication associated with non-home based proto-
cols like TreadMarks, but also to reduce the memory foot-
print. In HLRC every page and lock is assigned a home
node. At every synchronization point, the diffs for a partic-
ular page are sent to the home node and the memory for the
diffs are released. A home node can be assigned in a variety
of ways; the default behavior in HLRC is that the default
home of the page assigns it to the node that first requests
that page.

An implementation of HLRC [23] over the Virtual In-
terface Architecture (VIA) [5] was carried on GigaNet [1].
The implementation of HLRC was multi-threaded. The ap-
plication thread would compute while an associated signal
handler would take care of coherence activity on a page
fault or miss. A separate thread would listen for incoming
requests from other remote processes such as page fetches
and lock requests. HLRC over VIA makes use of the
RDMA constructs provided by VIA. Request messages or
messages for services are sent via RDMA Write with im-
mediate data. This generates an asynchronous request at
the receiver which then processes and responds to this re-
quest by either forwarding this request to some other nodes
or itself satisfying the request through several RDMA Write
operations. The requestor meanwhile polls a particular lo-
cation in memory (to which the remote server writes using
RDMA Write) to see whether the request has completed.
The next section briefly discuss the InfiniBand architecture.

2.2 Overview of InfiniBand

The InfiniBand standard is a framework for a System
Area Network for connecting processing and I/O nodes. It
defines various communication and management functions
that are necessary to operate the interconnection fabric. In-
finiBand uses a switched, channel-based interconnection
fabric, which allows for higher bandwidth, more reliability
and better QoS support. Interface to the fabric is through a
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Host Channel Adaptor (HCA) on the processing node and
a Target Channel Adapter (TCA) on the I/O node. Seman-
tics of various operations are defined via InfiniBand Verbs.
The Mellanox implementation of the InfiniBand Verbs API
called VAPI [3] supports the basic send-receive model and
the RDMA operations read and write. There is also sup-
port for atomic operations and multicast. More details on
InfiniBand can be obtained from [2].

2.3 Comparing InfiniBand Performance with
Other Interconnects

We will now examine how InfiniBand performs com-
pared to other networks. Latency and bandwidth are among
the most basic metrics of performance comparision between
different networks. Latency can be measured using the stan-
dard ping-pong test. The ping side posts 2 descriptors. One
is a send descriptor and the other is a receive descriptor.
It then polls for the completion of the receive request. The
pong side posts a single receive descriptor, polls for its com-
pletetion and then posts a send descriptor. The whole pro-
cess is repeated a large number of times to reduces tim-
ing error. Then the measured round-trip time is divided by
two to obtain the one-way latency. Figure 1 shows the la-
tency for the networks InfiniBand, Myrinet and Quadrics
and compares it with the earlier generation networking tech-
nology Giganet.

0

10

20

30

40

50

60

4 16 64 256 1K 4K

Ti
m

e 
(u

s)

Message Size (Bytes)

InfiniBand
Myrinet

Quadrics
Giganet

Figure 1. Latency for messages on different networks.
Unidirectional bandwidth of a network is the maximum

data rate that can be sustained at the network level. To com-
pute the bandwidth, messages are sent out repeatedly to the
receiver node for a number of times and then the sender
waits for the last message to be acknowledged. The time
for sending these back-to-back messages is measured and
the timer is stopped after receiving the acknowledgement
for the last message. The number of messages sent is kept
large so that the transmission time for the acknowledgement
is small in comparision to the total time. Figures 2 shows
the bandwidth for the networks InfiniBand, Myrinet and

1Due to experimental error, bandwidth numbers above 32K could not
be obtained for Giganet and will be available in the final version of the
paper
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Figure 2. Bandwidth for messages on different networks1

Quadrics and compares it with the earlier generation net-
working technology Giganet. InfiniBand has several times
the bandwidth of other networks for large messages. This
could impact the performance of SDSM protocols. Exploit-
ing the resource rich nature of the InfiniBand network is one
of the focuses of this paper.

3 HLRC Design Possibilities with InfiniBand
Mechansims

Let us now examine the potential for integrating network
based support into HLRC. HLRC duplicates activities either
already provided or which could be done with less overhead
by network level services in InfiniBand. Figure 3 shows
some of the matches between InfiniBand level primitives
and HLRC protocol activities. More specifically the fol-
lowing should be possible :

� Asynchronous handling could be eliminated through
the combination of atomic operations and RDMA
Read support. Page fetching operations could poten-
tially benefit from this type of support.

� Diff propagation in HLRC uses RDMA Write with
immediate data which requires activation of the asyn-
chronous handler. Diff processing can be potentially
eliminated by performing RDMA Read operations. In
this design, whenever a particular portion of a page is
needed, it can be fetched from the current owner by is-
suing an RDMA Read operation. The owner does not
have to be interrupted to perform this operation.

� Write notice and Barrier notification propagate via
RDMA Write. Since these go to all other nodes, hard-
ware based multicast could provide an efficient basis
for this operation. This could potentially reduce sig-
nificantly the amount of traffic needed for synchroniza-
tion in an SDSM system.

� Locking could be achieved through the use of remote
atomic operations. This could potentially benefit ap-
plications which frequently use locks; as the need to
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frequently process lock requests at the manager node
and the last owner is eliminated.

� Asynchronous request messages could potentially
propagate via higher priority service levels achieving
better response time.

In this paper we focus on the first option; eliminating asyn-
chronous handling through the combination of atomic op-
erations and RDMA Read while executing a page fetch op-
eration. Since other features (such as reliable multicast and
service levels) are not yet completely operational in current
generation InfiniBand hardware, we plan on investigating
other enhancements in the future. In traditional SDSM’s co-
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Figure 3. The SDSM primitives which could benefit from
network support

herence is maintained through the natural ordering of mes-
sages imposed by the network and serialization of requests
in the asynchronous protocol handler. A similar effect can
be achieved by employing remote atomic operations in In-
finiBand. Figure 4 shows how atomic and RDMA Read
based operations could potentially benefit the basic HRLC
protocol. The request-response model used on a page fetch
can be replaced by the RDMA Read operation which di-
rectly reads a page from the process space of a remote node.
Thus, these two architectural features, atomic and RDMA
Read can be integrated into the HLRC base protocol. This
can allow us to eliminate the asynchronous protocol pro-
cessing needed for a page fetching operation. This enhance-
ment also has the added benefits of a home based protocol
along with stronger integration with the network to produce
enhanced scalability.

4 Design of the ARDMAR protocol

In this section we discuss the design of our proposed pro-
tocol termed as ARDMAR - Atomic and RDMA Read. We
start out by examining the existing HLRC protocol. Fol-
lowing that is a description of the design of ARDMAR and

ARDMAR

(no forwarding)

compare and swap
operation 
Atomic RDMA Read

and detection
Home assignment

Page fetch

Coherency Protocol

HLRC

InfiniBand

Figure 4. How RDMA Read and atomic operations could
potentially enhance the base HLRC protocol

then finally we examine some of the benefits that could ac-
crue from ARDMAR.

4.1 Base HLRC protocol

HLRC employs the home based lazy release consistency
protocol. In this protocol every page and lock is assigned a
home by the protocol. All requests for accesses to a page or
a lock go to the home node. Similarly all updates for a page
and a lock go to the home node. In HLRC updates or diffs
for a page propagate to the home node at synchronization
points such as a lock release or a barrier.

Node 2Node 1Node 0 (default home 
  for page 2)

Request for page 2
Continue Computation

Interrupt generated

Page forwarded 
using RDMA Write

Request forwarded

Interrupt Generated
Home (page 2) = 1

Interrupt Generated
Home (page 2) = 1

Figure 5. The original HLRC protocol (for an example
scenario)
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Figure 5 shows the protocol activity required by HLRC
for an example scenario. Initially all pages are assigned a
default home node. The default home for page 2 is node 2.
Now node 1 first requests page 2 from node 2 by sending it a
message (RDMA Write with immediate data) which is pro-
cessed by the asynchronous protocol handler. The handler
on node 2 appoints node 1 as the home node and updates
its data structures. It then finishes servicing the request by
sending a reply to node 1 (RDMA Write). Node 1 on re-
ceiving this reply updates its data structures and continues
computing. Now when Node 0 requests this page for the
first time by sending a request to the default home node 2,
node 2 forwards this request to node 1, which in turn pro-
cesses the request and replies to node 0 with the correct
version of the page. We define page fetch time or page time
as the elapsed time between sending a page request and ac-
tually receiving the page. We will now see how parts of
this protocol can be enhanced with the features available in
InfiniBand.

4.2 ARDMAR protocol

In this section we describe the design of the proposed
protocol ARDMAR which is shown in Figure 6 for an ex-
ample scenario. The Atomic operation compare and swap
have been combined with the RDMA Read operation to
completely eliminate the asynchronous protocol process-
ing. Let us assume the same pattern of requests for a page
as shown in Figure 5. Here assume that node 1 wants to
access page 2 for the first time. Let home � (x) denote the
last known value for the home of page x at node n. Ini-
tial values for home � (x) are -1 at the default home node
(indicating that a home has not been assigned) and x mod
(number of nodes) at a non-home node. Initially home � (2)
= -1. Let us denote an issued atomic compare and swap op-
eration as CMPSWAP(node, address, compare with value,
swap with value) where address points to some location
in node. Node 1 issues an atomic compare and swap
CMPSWAP(2,home � (2),-1,1). The compare succeeds and
now home � (2) = 1. Now on completion of the atomic op-
eration, node 1 knows that it is the home node (home � (2) =
1) and can continue computation after appropriately setting
the appropriate memory protections on the page.

Now assume that node 0 wants to access the page 2
for the first time. It also issues an atomic compare and
swap operation CMPSWAP(2,home � (2),-1,0) which fails
since home � (2) = 1. Simultaneous with the atomic com-
pare and swap, node 0 also issues an RDMA Read to read
in home � (2). The atomic compare and swap having failed
node 0 looks at the location read in by the RDMA Read.
This location tells node 0 that the actual home is now node
1. Node 0 now issues 2 simultaneous RDMA Reads. The
first RDMA Read bring in the version of the page, while
the second RDMA Read brings in the actual page. If the

Node 2Node 1Node 0 (default home 
  for page 2)

Register memory region

Home(page 2)=1

RDMA Read (page,version)

Till correct version obtained

Home (page 2)= −1

CMP_AND_SWAP

CMP_AND_SWAP
Home (page 2)= 1

Figure 6. The proposed protocol ARDMAR (for the exam-
ple scenario)

version does not match, both RDMA’s are reissued until the
correct version is obtained. This approach requires that ini-
tially all access permissions on all pages be initially set to
read. This is different from the original implementation,
where initially all pages which are at the default home are
in read-write mode (exclusive). Therefore on a write to a
page at the default node there is no page fault, but which re-
sults in a page fault for the new implementation. This could
result in an increased number of page faults at the home
node for applications with that particular write pattern and
this effect will be discussed in section 5.3.3.

4.3 Potential Benefits

ARDMAR could provide significant benefit to applica-
tions programmed with SDSM protocols both directly as
well as indirectly. Applications cannot compute while the
handler is being serviced. Removing the asynchronous han-
dler allows more CPU resources to be allocated to the ap-
plication. As shown in Figure 7 asynchronous handling
forces requests to be serialized, increasing response times.
ARDMAR allows for requests to be serviced in parallel im-
proving throughput. Further, there is the potential for the
network to optimize multiple requests through caching be-
havior and even through optimizations like DMA chaining
which allow multiple DMA transfers to be performed more
quickly across the PCI bus.

5 Performance Evaluation

This section evaluates the performance of the proposed
implementation with atomic and RDMA Read support
ARDMAR against the original implementation of HLRC
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Figure 7. Bottlenecks with asynchronous protocol pro-
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with asynchronous protocol processing support ASYNC.
First we describe the hardware setup. Following that the
implementation is evaluated in terms of various micro-
benchmarks. The application level evaluation is presented.
Following that the effect of ARDMAR on page fetch time
and asynchronous protocol processing are studied. The im-
plementation is evaluated both in terms of varying system
size as well as application size.

5.1 Experimental Test Bed
The experiments were run on a 16 nodes cluster con-

nected through a Topspin [26] 360 24 port 4x InfiniBand
switch. The HCAs are Topspin InfiniBand 4x HCA’s. Each
of the machines is a Microway dual Pentium Xeon 2.4 GHz
processors with 2 GB of main memory and a 133 MHz PCI-
X bus on a Tyan 2721-533 motherboard. The SMP version
of Linux 2.4.18-10 is the kernel running on each of these
machines. The InfiniBand interconnect has a latency for
small messages of about 6.5 � s and a bandwidth of about
6.3 GBps. Table 1 summaries the latencies of some of the
operations pertinent to HLRC. The isolated latency (i.e. in
the absence of any other network traffic) of a RDMA-Read
for a message size of 4096 bytes which is also the pagesize
used in HLRC and is the most common message size for
RDMA-Read is 36.39 � s. The latency of a remote atomic
compare and swap is 23 � s. This value is expected to reduce
as support for atomic operations improves on InfiniBand. In
the next section we look at some micro-benchmarks which
were used in the evaluation.

2It is to be noted that atomic operations over InfiniBand adapters have
just become operational. Thus they have not been optimized. These oper-
ations are expected to be optimized over the next several months and will
bring additional benefit to the proposed framework

3These refer to the time required to post a descriptor to the send queue
on the senders side

Operation Mesg. size (bytes) Latency ( � s)
Remote atomic 8 23 2

Local atomic 8 20 2

RDMA Read 4096 36.39
RDMA Write 4096 9.5 3

RDMA Write 140 6.7 3

RDMA Write (imm) 140 8.69 3

Table 1. Latencies of some basic operations on Infini-
Band

5.2 Micro-benchmark level evaluation

ARDMAR and ASYNC were both evaluated using the
page fetch micro-benchmark modified from the original
version implemented for the TreadMarks SDSM pack-
age [17]. In this micro-benchmark the first node (master
node) initially touches each of 1024 pages so that the home
node is assigned to it. Following that each of the remaining
nodes reads one word from each of the 1024 pages. This
results in all the 1024 pages being read from the first node.
As the number of nodes increases the contention for a page
at the master node increases. The time of the second phase
is measured. Figure 8 shows these results. ASYNC performs
slightly better than ARDMAR at 2 and 4 nodes. For ASYNC
at 2 nodes, the breakdown of timing is as follows:

� 8.69 � s RDMA Write with immediate data (Time to
post Request message)

� 9.5 � s RDMA Write for the page (Response message)
� 6.7 � s RDMA Write for the control message (Re-

sponse Control Message)
� 8.44 � s Pre-posting receive descriptor (to guarantee

that the next message will be received)

This adds up to a total of 33.33 � s for ASYNC. For ARD-
MAR the breakdown in timing at 2 nodes is :

� 23 � s Atomic compare and swap (Request message for
home assignment)

� 36.39 � s RDMA Read for the page (Page fetch)

This totals up to 59.49 � s for ARDMAR. This time is ex-
pected to come down as the support for atomic operations
on InfiniBand improves. As the number of nodes increases,
the time required to fetch a page using ASYNC increases
exponentially demonstrating that the overhead for the asyn-
chronous protocol handler is considerable and has poor
scaling properties. However, with the ARDMAR protocol
as the number of nodes increases, the page-fetch time levels
off and slightly decreases from 8 to 16 nodes. This demon-
strates that RDMA-Read seems to be a more scalable alter-
native than an asynchronous protocol processing scheme.
The next section discusses the application level evaluation.
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5.3 Application level evaluation

In this section we evaluate our implementation using five
different applications; Barnes-HUT (Barnes), Radix sort
(RS), Integer Sort (IS), three dimensional FFT (3DFFT) and
Water spatial (Water). Out of these applications Barnes, RS,
and Water have been taken from the SPLASH-2 benchmark
suite [27] while IS and 3DFFT have been taken from the
TreadMarks [17] SDSM package. The applications were
evaluated both in terms of varying system size as well as
application size. For system size, the applications were run
on two, four, eight and 16 nodes respectively. For applica-
tion size, different parameters within the applications were
changed. These sizes are listed in Table 2. All other pa-
rameters were kept the same as originally described in the
[27, 17]. We will now discuss the performance numbers for
the different applications. Following that is a discussion of
the effects of using RDMA and atomic operations on asyn-
chronous protocol handling and page fetching time. Finally,
we will look at how ARDMAR alters the the distribution of
page faults in the applications.

Application Parameter Large size Small size
Barnes Bodies 32678 16384
RS num of keys 2621440 52488
IS � �
	��� ����������� 23 21
3DFFT Grid size 128 64
Water num of molecules 8192 4096

Table 2. Application sizes
5.3.1 Effect on execution time

The execution time for the different applications are shown
in Figure 10. The breakdown of execution time for the
larger size of different applications on 16 nodes is shown
in Figure 11. From this figure it can seen that page time

Figure 9. Parallel speedups on 16 nodes for different ap-
plication sizes.

decreases for ARDMAR in the case of Barnes, RS, IS and
3DFFT as compared to ASYNC.

Figure 9 shows the parallel speedups for the different
appplications at 16 nodes. ARDMAR shows better paral-
lel speedup than ASYNC in all cases and in fact shows a
speedup for RS while ASYNC shows a slowdown. From
Figure 10 we can observe that for Barnes with application
size 32678, ARDMAR is 1.73 times faster than ASYNC
on 16 nodes. Also ARDMAR shows good scaling property
as compared to ASYNC. Again for application size 16384,
ARDMAR is 1.9 times faster than ASYNC and shows good
scaling properties compared to ASYNC. For both applica-
tion sizes, the execution time for ASYNC increases with
increase in system size while it decreases for ARDMAR.
As we see in the following subsections, the asynchronous
protocol handling time increases substantially for ASYNC,
while it remains constant for ARDMAR. Page time also in-
creases dramatically for ASYNC while increasing at a much
slower rate for ARDMAR.

Again referring to Figure 10, we see that RS shows good
scalability for the larger application size 2621440. ARD-
MAR at 16 nodes is 2.25 times faster than ASYNC. Also
for both application sizes it can be seen clearly that ARD-
MAR scales better than ASYNC. The time spent for page
fetching decreases with increase in system size which ex-
plains improvement in performance for RS.

We will now discuss the results for IS, 3DFFT and Wa-
ter. From Figure 10 it can be seen that for IS at size 23,
ARDMAR is 1.41 times faster than ASYNC on 16 nodes. For
3DFFT size 128, ARDMAR is 1.18 times faster than ASYNC
on 16 nodes, while for Water for size 8192 ARDMAR is 1.02
times faster than ASYNC on 16 nodes. For Water ARDMAR
does not perform as well as ASYNC for the smaller appli-
cation size 4096 because of an increase in the number of
page faults. This effect will be explored further in section
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Figure 10. Overall execution times of the applications for the two protocols (ASYNC and ARDMAR) with varying system and
application sizes.

Figure 11. Breakdown of execution time for different applications at 16 nodes.
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5.3.3. For all three applications with larger problem size,
ARDMAR shows better scaling property as the system size
is increased for the larger application size. In the next sec-
tion we will discuss the effect of ARDMAR on page fetch
time and handler time.

5.3.2 Effect on asynchronous protocol handling and
page fetching time

RDMA-Read considerably reduces asynchronous protocol
processing and page time. Figure 12 shows the average time
spent in the handler across all applications using ASYNC as
compared to ARDMAR. For 3DFFT and Water there is vir-
tually no overhead for the asynchronous handler in ARD-
MAR, while there is considerable asynchronous protocol
handling overhead for ASYNC. For the remaining applica-
tions, the time spent in the handler is mainly because of
lock requests and requests for applying diffs at synchroniza-
tion points. Asynchronous protocol processing time in RS is
more dependent on the extensive locking distribution which
accounts for the variance in the time. As discussed in Sec-
tion 3 and shown in Figure 3, it is possible to completely
eliminate the asynchronous protocol handler through the
use of atomic support from the network and is the focus
of our future work.

Figure 13 shows the average time spent across all nodes
for a page fetch. For virtually all applications it can be
clearly seen that with increase in system size, the time spent
in page fetching decreases for ARDMAR and ultimately be-
comes less than ASYNC. In fact for the applications Water,
it can be seen that the page fetching time increases with
ASYNC but decreases with ARDMAR. These results can be
explained using results from the page micro-benchmark ex-
plained in Section 5.2 which showed that with increasing
contention and increasing number of nodes, RDMA-Read
performs better as compared to the asynchronous protocol
processing mode of operation. Barnes, RS and IS experi-
ence an increasing number of page misses with increasing
system size, which explains why page time increases for
both ASYNC and ARDMAR. While for 3DFFT the number
of page misses decreases with system size which explains
why the page fetching time decreases with increasing sys-
tem size.
5.3.3 Effect on page fault distributon

Figure 14 shows the average number of page faults per node
for each of the larger application sizes. It can be seen that
the number of page faults is a considerable overhead for
both ASYNC and ARDMAR and the page fault overhead is
higher for ARDMAR for the applications 3DFFT and Wa-
ter. This is a facet of the implementation, which requires
the permissions on all page to be set to read-only as op-
posed to read-write-exclusive in ASYNC. Thus, if an appli-
cation at the home node frequently writes to different pages

in its process space for the first time, this will result in an
increase in the number of page faults (which we seen in the
case of 3DFFT and Water). The time required to invoke
the page fault handler and then restart the computation is
about 6.6 � s. It is possible to reduce the effect of and need
for page-fault handling by invoking kernel level primitives
at synchronization points. These primitives can avoid ex-
pensive system calls by page remapping to indicate which
pages have been written. This is one of the problems we
are looking into and the results will be included in the final
version.

6 Related Work

Ever since the proposal for the first SDSM system
IVY [18] there has been considerable research conducted
into the SDSM systems. However SDSM was not found to
be scalable. The benefits of implementing HLRC over low
level protocol like VIA was examined in [23]. Also imple-
menting a SDSM package like Treadmarks directly over a
low level protocol like VIA or GM over Myrinet, was shown
to substantially reduces wait times and improves scalability
in [8, 21]. Special network mechanisms were not employed
in these implementations. A study of the effect of removing
the interrupt handler in HLRC (GeNIMA) through the use
of NIC support on Myrinet is discussed in [6]. Four differ-
ent techniques namely remote deposit for direct diff applica-
tion, remote fetch for page fetching and Network Interface
Locks (coherency information stored at the NIC) were im-
plemented. Our work differs in that native atomic support
provided by InfiniBand has been added to enhance the base
protocol and the benefits have been studied in current gen-
eration clusters with InfiniBand. A comparison of benefits
of using network based support as opposed to a migratory
home protocol in the Cashmere SDSM system was studied
in [24]. Four different techniques; Network Total Ordering,
Broadcast and Remote-Write were studied. The intercon-
nect used in this study was memory channel. Integrating
network based get operations into the sequentially consis-
tent DSZOOM SDSM over the SCI interface is discussed
in [22]. Cache entries are locked using atomic fetch and set
operations before being modified by remote put operations.
We use a lazy release consistency (LRC) model rather than
a sequentially consistent model. Network interface sup-
port was used to perform virtual memory mapped commu-
nication in addition to DMA based communication along
with protected, low-latency user-level message passing in
the SHRIMP project [19]. We have used RDMA rather than
virtual memory mapped support, which does not involve re-
programming the NIC. A proposal for using active-memory
support for SDSM systems to achieve software DSM with
hardware DSM performance is discussed in [14] . [25] ex-
plores the effect of kernel level access to InfiniBand primi-
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Figure 12. Average time spent in asynchronous protocol processing per node in different applications.

Figure 13. Average time spent for page fetching per node in different applications.
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Figure 14. Average number of page faults per node for each of the larger application sizes

tives on SDSM performance. Other research in SDSM has
focused on changing the SDSM protocol rather than using
network support. Reducing the effect of false sharing is dis-
cussed in [20].

7 Conclusions and Future Work

In this work we have examined the impact of reducing
the need for asynchronous protocol processing in a home
based SDSM system HLRC. This was achieved through
the deployment of network based support in the form of
atomic operations and RDMA-Read available with modern
interconnects like InfiniBand. Micro-benchmark evaluation
showed that with increasing system size and network load,
the response time of RDMA-Read is better as compared
to an asynchronous protocol processor. Application level
evaluation in the form of system size scaling and applica-
tion level scaling was performed. An improvement of up to
2.25 in the execution time of the application was observed.
The proposed implementation ARDMAR also showed su-
perior scaling properties, when compared with ASYNC the
implementation of HLRC with the asynchronous protocol
processing support.

Significant improvements to the protocol can be still be
made. The overhead of page faults can potentially be re-
duced through kernel level primitives which detect writes
to a page. Remapping read only areas of the kernel page
data structures into application space would avoid the need

for a system call. RDMA Read operations on InfiniBand
could also help in reducing the effects of false-sharing and
achieve finer granularity. This can be achieved by restart-
ing the computation early during a page fetch, when only
the needed portion of a page has arrived. Barrier could po-
tentially benefit from integration with the native InfiniBand
multicast support. Locking could potentially show better
performance using atomic operations. We are currently ex-
ploring these issues.
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