
The Organic Grid: Self-Organizing Computation
on a Peer-to-Peer Network

Arjav J. Chakravarti Gerald Baumgartner Mario Lauria
Dept. of Computer and Information Science

The Ohio State University
395 Dreese Lab., 2015 Neil Ave.

Columbus, OH 43210–1277, USA
Email:

�
arjav, gb, lauria � @cis.ohio-state.edu

Technical Report: OSU-CISRC-10/03-TR55

October 22, 2003

Abstract

Desktop grids have already been used to perform some of the largest computations in the world and
have the potential to grow by several more orders of magnitude. However current approaches to utilizing
desktop resources require either centralized servers or extensive knowledge of the underlying system,
limiting their scalability.

We propose a biologically inspired and fully-decentralized approach to the organization of compu-
tation that is based on the autonomous scheduling of strongly mobile agents on a peer-to-peer network.
In a radical departure from current models, we envision large scale desktop grids in which agents auto-
nomically organize themselves so as to maximize resource utilization.

We demonstrate this concept with a reduced scale proof-of-concept implementation that executes
a data-intensive parameter sweep application on a set of heterogeneous geographically distributed ma-
chines. We present a detailed exploration of the design space of our system and a performance evaluation
of our implementation using metrics appropriate for assessing self-organizing desktop grids.

1 Introduction

Some of the largest computations in the world have been carried out on collections of PCs and workstations
over the Internet. Tera-flop levels of computational power have been achieved by systems composed of
heterogeneous computing resources that number in the hundreds-of-thousands to the millions.

While impressive, these efforts only use a tiny fraction of the desktops connected to the Internet. Order
of magnitude improvements could be achieved if the design of existing systems could be scaled up to reach
a proportionally larger share of machines.

The basic design constraints for these desktop grid systems can be summarized as follows: negligible
impact to the primary user; efficient resource usage in the presence of wide variations in resource parameters
such as computing power and communication bandwidth; adaptivity under extreme temporal variations
in resource availability. Given these constraints, a software infrastructure with unprecedented levels of
robustness, scalability, and adaptivity is required.

The goal of utilizing the CPU cycles of idle machines was first realized by the Worm project [1] at
Xerox PARC. Further progress was made by academic projects such as Condor [2]. The growth of the

1



Internet made large-scale efforts like GIMPS [3], distributed.net [4], SETI@home [5] and folding@home
[6] feasible. Recently, commercial solutions such as Entropia [7] and Grid MP [8] have also been developed.

Existing designs for desktop grid systems tend to follow two models. Systems like GIMPS, SETI@home,
distributed.net, folding@home and Entropia are based on a master/worker model and rely on the on-demand
distribution of tasks to provide an inherently decentralized and self-balancing form of scheduling. The main
shortcoming of this solution is its reliance on a single master which severely constrains the computing-to-
data ratio on large systems, represents a single point of failure, puts a constraint on the number of users that
can use the system simultaneously, and limits the available resource pool to those that are within good reach
of the server.

The other design philosophy is an extension of traditional Massively-Parallel Processing (MPP) and
Grid scheduling models in that it assumes that sufficient information is available on the underlying system to
precompute a resource-optimizing schedule. A number of meta-schedulers have been built that can compute
optimal schedules under this assumption [9, 10, 11, 12]. Clearly, with desktop grids comprising hundreds
of thousands of machines, it is unrealistic to assume a satisfactory knowledge about the network topology,
the number of cycles available at each node, and the bandwidth of every network connection.

In this paper, we introduce a new approach to the utilization of desktop grids, which represents a radical
departure from current models. Firstly, we do away with the notion of a central scheduling authority and the
related assumptions about the amount of information available on the system. Instead, we propose a self-
organizing approach to computation which is reminiscent of the way complex biological systems organize
themselves. In our design, a large computation is broken down into autonomous units, each endowed with
unrestricted mobility and a set of uniform behavioral rules; we then let these units arrange themselves over
a network of machines, constrained only by resource availability. Our approach is inspired by models of
organization in which complex patterns emerge from the interplay of a large number of agents exhibiting
simple behavior. Examples of such patterns are observed in shell motifs, in neural structures, and in the
behavior of social insects [13, 14].

The other distinctive aspect of our approach is that we pursue a true Peer-to-Peer approach. Our system
is based on the voluntary sharing of resources; every node in the system has equal access and the same role
as anyone else, including the possibility of submitting tasks. The advantages of this organization are: i)
better utilization of every part of the system, ii) absence of centralized server bottlenecks, iii) better fault
tolerance, iv) simultaneous access to the resources for a large number of users.

In summary, we suggest that this combination of task mobility and self-organizing behavior achieves
an ”organic” organization of the computation, which is well suited for large and dynamic systems because
of the completely decentralized nature of control. The success of this type of organization is evident in
complex biological systems with which our organic grid shares its underlying design principles.

The main contributions of this paper are: i) the description of a new organization principle for desk-
top grids which combines autonomous scheduling with strongly mobile agents, ii) the demonstration of
these principles into a working proof-of-concept prototype, iii) a detailed exploration of the design space
of our system, and iv) the performance evaluation of our design using metrics appropriate for assessing
self-organizing desktop grids.

The purpose of this work is the initial exploration of a novel concept, and as such it is not intended to
give a quantitative assessment of all aspects and implications of our new approach. In particular, evaluations
of scalability, degree of tolerance to faults and adaptivity to rapidly changing systems, have been left for
future studies.

2



2 Background and Related Work

This section contains a brief description of the critical concepts and technologies used in our work, as well
as the related work in these areas. These include: self-organizing systems and the concept of emergence,
Peer-to-Peer computing, strongly mobile agents and autonomic scheduling.

2.1 Self-Organization of Complex Systems

The organization of many complex biological and social systems has often been explained in terms of
aggregations of a large number of autonomous entities or agents that behave according to simple rules.
According to this theory, complicated patterns can emerge from the interplay of many agents — despite
the simplicity of the rules [13, 14]. The existence of this mechanism, often referred to as emergence, was
proposed to explain complex patterns such as, among others, shell motifs, animal coats, several types of
social insect behaviors, or neural structures.

Recently, a particular version of this principle called Local Activation, Long-range Inhibition (LALI)
was for the first time formally proven to be responsible for a complex pattern through a clever experiment on
ants [15]. The LALI rule is based on two types of interaction: a positive, reinforcing interaction that works
over a short range, and a negative, destructive one that works over longer distances. In the ant experiment
this rule has been shown to fully account for the formation of cemeteries in ant colonies. An application
of ant behavior to peer-to-peer systems has been proposed [16]. In our project, we are interested in a more
general approach where the aim is maximizing system utilization rather than the accurate reproduction of
animal behavior. We retain the LALI principle but in a different form; we use a notion of distance based
on throughput rather than physical location, and we encourage the propagation of computation among well-
connected nodes while discouraging the inclusion of “distant” agents.

2.2 Peer-to-Peer Computing

Peer-to-peer computing [17, 18] adopts a highly decentralized approach to resource sharing and enables the
building of flexible systems. Current peer-to-peer systems rely on highly available central servers, however,
and are mainly used for high profile, large scale computational projects such as SETI@home, or for popular
data-centric applications like file-sharing [19].

Applications that leverage the capabilities of these systems may make use of data that is distributed
across a network. Program code may also be stored at multiple locations, and subprograms may communi-
cate with one another during execution, i.e., applications need not necessarily be massively parallel. Decen-
tralized scheduling is important to avoid bottlenecks, to keep applications scalable, and to dynamically uti-
lize resources. In this paper, we propose a peer-to-peer framework that differs from both current-generation
desktop grid systems and Grid computing approaches.

2.3 Strongly Mobile Agents

To make progress in the presence of frequent reclamations of desktop machines, current systems rely on
different forms of checkpointing: automatic, e.g., SETI@home, or voluntary, e.g., Legion. Checkpointing
is a time-honored technique, but its storage and computational overheads put additional constraints on the
design of the system, particularly on the amount of state that can be handled and the length of the minimum
useful stretch of continuous availability of a computing resource. To avoid this drawback, desktop grids
need to support the asynchronous and transparent migration of processes across machine boundaries.

Most distributed applications are currently built with distributed object technologies, such as Java RMI.
RPC-based approaches do not consider the execution state of their arguments. If a thread is active within

3



one of the arguments passed to a remote procedure, it does not travel along with the argument.
Mobile agents [20, 21] have relocation autonomy. These agents offer a flexible means of distributing

data and code around a network, of dynamically moving between hosts as resource availability varies, and
of carrying multiple threads of execution to simultaneously perform computation, the scheduling of other
agents, and communication with other agents on a network.

The majority of the mobile agent systems that have been developed until now are Java-based. However,
the execution model of the Java Virtual Machine does not permit an agent to access its execution state,
which is why Java-based mobility libraries can only provide weak mobility [22]. Weak mobility forces
programmers to use a difficult programming style.

By contrast, agent systems with strong mobility provide the abstraction that the execution of the agent is
uninterrupted, even as its location changes. Applications where agents migrate from host to host while com-
municating with one another to solve a problem, are severely restricted by the absence of strong mobility.
Strong mobility also allows programmers to use a far more natural programming style.

The ability of a system to support the migration of an agent at any time by an external thread, is termed
forced mobility. This is essential in desktop grid systems, because owners need to be able to reclaim their
resources. Forced mobility is difficult to implement without strong mobility.

Strong mobility is added to Java by using modified or custom VMs [23, 24, 25, 26, 27, 28, 29], or by
changing the compilation model [30, 31, 32, 33]. The first approach suffers from a lack of portability, while
implementations that use the second approach are either unable to migrate multi-threaded agents, or do not
provide support for forced mobility.

We have chosen to provide strong mobility for Java by using a preprocessor that translates strongly mo-
bile source code into weakly mobile source code [34, 35, 36]. The generated weakly mobile code maintains
a movable execution state for each thread at all times. Our implementation is designed for the full Java
programming language.

2.4 Scheduling

The scheduling of decomposable applications has been studied extensively in the context of heterogeneous
processing resources [37, 38, 39, 40, 41, 42]. All of these approaches have some resemblance of centralized
scheduling, making them inappropriate for large desktop grids. Master/worker schemes have been explored
in [43] and [44]. Both suffer from a lack of scalability and the presence of a single point of failure. In
addition, some of these results are restricted to homogeneous worker resources.

Some research into decentralized scheduling has been conducted as well. Two-level scheduling schemes
have been considered [45, 46], but these are not scalable enough for the Internet. In the scheduling heuristic
described by Leangsuksun et al. [47], every machine attempts to map tasks on to itself as well as its K best
neighbors. This appears to require that each machine have an estimate of the execution time of subtasks on
each of its neighbors, as well as of the bandwidth of the links to these other machines. It is not clear that the
authors’ scheme is practical in large-scale and highly dynamic environments such as a desktop grid system.

G-Commerce was a study of dynamic resource allocation on the Grid in terms of computational market
economies in which applications must buy resources at a market price influenced by demand [48]. While
conceptually decentralized, if implemented, this scheme would require the equivalent of centralized com-
modity markets (or banks, auction houses, etc.) where offer and demand meet, and commodity prices can
be determined.

Truly distributed and autonomous/autonomic scheduling protocols have been developed for peer-to-peer
computing. A biological system is the basis of the novel scheduling scheme discussed in [16]. This scheme
is designed to disperse tasks uniformly over a network, which is not optimal in the context of a computational
grid where tasks should ideally be assigned in proportion to resource availability.

4



A bandwidth-centric approach has been proposed that assumes the presence of an overlay network with
a tree structure — the tasks originate at the root [49]. Each node in the system sends tasks to and receives
results from all of its children. The children are prioritised on the basis of the bandwidth of their connection
to their parent. This minimizes communication time and increases processor utilization. However, the
performance of the system is entirely dependent on the initial selection of the tree overlay network. The
lack of dynamism is bound to affect the performance of the scheme. The authors also do not elaborate
on the issue of choosing such an optimal tree; this appears to require accurate information about system
parameters such as the bandwidth of the connections and the computational capacity of the nodes.

The unique constraints of a desktop grid system were kept in mind when designing and implementing
the scheduling algorithm, particularly the absence of any knowledge of the network topology, machine
configurations, or connection bandwidths. In particular, from the point of view of network topology our
system starts with a minimal amount of knowledge (in the form of the “friend-list”), and then build its own
overlay network on the fly. The construction of the overlay network reflects the availability of computational
and communication bandwidth resources. We only assume that a “friend-list” is available initially on each
node to prime the system; the construction of such lists has been discussed in the context of peer-to-peer
file-sharing [19, 50, 51].

3 Autonomic Scheduling

3.1 Agent Behavior Design

We have developed an autonomic, self-reliant scheduling scheme based on the behavior of mobile agents that
organize themselves on a peer-to-peer network. Although our scheme is general enough to accommodate
several different classes of applications, we focus on the solution to one particular problem in this paper: the
scheduling of the independent, identical subtasks of a parameter sweep-type application whose data initially
resides at one location. The size of individual subtasks and of their results is large, and so transfer times
cannot be neglected. The application that we have used for our experiments is NCBI’s nucleotide-nucleotide
sequence comparison tool BLAST [52].

In designing the behavior of the mobile agents, we faced the classic issues of any distributed computation
in a dynamic environment: distribution of the data, discovery of new nodes, load balancing, collection of
the results, tolerance to faults, detection of task completion. The solutions for all these issues had to be cast
in terms of direct interaction between agents. We proceeded by taking some early design decisions based on
our intuition, and then we refined them with an iterative process of implementation, testing on our testbed,
performance analysis, and new implementation. A modular design in which different aspects of the behavior
were implemented as distinct routines allowed us to deal with the above issues separately.

As a starting point in our design process we decided to organize the computation around a tree-based
overlay network that would simplify the collection of the results and of the load balancing. Since such a
network does not exist at the beginning of the computation, it has to be built on the fly as part of the agents’
colonization of the system.

In our system, a computational task represented by an agent is initially submitted to an arbitrary node
in the overlay network. If the task is too large to be executed by a single agent in a reasonable amount of
time, agents will spread to other nodes; these will be assigned a small section of the task by the initiating
agent. The new agents will complete the subtasks that they have been assigned and return the results to their
parent. They will also, in turn, send agents to available nodes and distribute subtasks to them. The overlay
network is constituted by the connections that are created between agents as the computation spreads out.

The following sections will describe the various aspects of agent behavior in detail, as well as their
relation to the global progress of the computation.

5



3.2 Basic Scheme

Since we currently use the Aglets weak mobility library, an Aglets environment gets set up when a
machine becomes available (for example when the machine has been idle for some time; in our experiments
we assumed the machines to be available at all times).

Every machine has a list of the URLs of other machines that it could ask for work. This list is known as
the friend-list. It is used for constructing the initial overlay network. The problem of how to form this initial
list is not addressed in this paper. For now, we assume that every agent has such a list.

The environment creates a stationary agent, which asks the friends for work by sending them messages.
If a request arrives at a machine that has no computation running on it, the request is ignored. Nothing is
known about the configurations of the machines on the friend-list, or of the bandwidths or latencies of the
links to them, i.e., the algorithm is zero-knowledge and appropriate for dynamic, large-scale systems.

A large computational task is written as a strongly mobile agent. This task should be divisible into
a number of independent and identical subtasks by simply dividing the input data. A user sets up the
agent environment on his/her machine and starts up the computation agent. One thread of the agent begins
executing subtasks sequentially. This agent is now also prepared to receive requests for work from other
machines. On receiving such a request, it checks whether it has any uncomputed subtasks, and if it does, it
creates a clone of itself and sends that clone to the requesting machine. The requester is now this machine’s
child.

A clone is ready to do useful work as soon as it reaches a new location. It asks its parent for a certain
number of subtasks to work on, s. When the parent sends the subtasks, one of this agent’s threads begins to
compute them. Other threads are created — when required — to communicate with the parent or to respond
to requests from other machines. When such a request is received, the agent clones itself and dispatches its
own clone to the requester. The computation spreads in this manner. The topology of the resulting overlay
network is a tree with the originating machine at the root node.

When the subtasks on a machine have been completely executed, the agent on that machine requests its
parent for more subtasks to work on. The parent attempts to comply. Even if the parent does not have the
requested number of subtasks, it will respond and send its child what it can. The parent keeps a record of
the number of subtasks that remain to be sent, and sends a request for those tasks to its own parent. This can
be seen in Figures 1 and 2.

Every time a node of the tree obtains some r results, either computed by itself or obtained from a child,
it needs to send the results to its parent. It also sends along a measurement of the time that has elapsed
since the last time it computed r results. The results and the timing measurement are packaged into a single
message. At this point, the node also checks whether its own — or any of its children’s — requests were not
fully satisfied. If that is the case, a request for the remaining number of subtasks is added to the message and
the entire message is sent to the node’s parent. The parent then uses the timing measurements to compare
the performance of its children and to restructure the overlay network.

3.3 Maintenance of Child-lists

A node cannot have an arbitrarily large number of children because this will adversely affect the synchro-
nization delay at that node. Since the data transfer times of the independent subtasks are large, a node might
have to wait for a very long time for its request to be satisfied. Therefore, each node has a fixed number
of children, c. The number of children also should not be too small so as to avoid deep trees which will
lead to long delays in propagating the data from the root to the leaf nodes. These children are ranked by
the rate at which they send in results. When a child sends in r results and the time that was required to
obtain them, its ranking is updated. This ranking is a reflection of the performance of not just a child node,
but of the entire subtree with the child node as its root. This factors in the scenario of there being a cluster

6



receive request for s subtasks
from node c

// c may be the node itself
if subtask_list.size>=s

c.send_subtasks(s)
else

c.send_subtasks(subtask_list.size)
outstanding_subtask_queue.
add(c,s--subtask_list.size)

parent.send_request
(outstanding_subtask_queue.

total_subtasks)

Figure 1: Behavior of Node on Receiving Request

receive t subtasks from parent
subtask_list.add(t)
if outstanding_subtask_queue.

total_subtasks>=t
<send t subtasks to nodes in
outstanding_subtask_queue>

else
<send outstanding_subtask_queue.
total_subtasks subtasks to nodes
in outstanding_subtask_queue>

// this may include subtasks for
// node itself

Figure 2: Behavior of Node on Receiving Sub-
tasks

receive result-burst from node c
if child_list.contains(c)

child_list.update_rank(c)
else

child_list.add(c)
if child_list.size>MAX_CHILD_LIST_SIZE
sc:=child_list.slowest
child_list.remove(sc)
old_child_list.add(sc)
sc.send_ancestor_list(child_list)

Figure 3: Behavior of Parent Node on Receiving
Result-Burst

receive node b from node c
if old_child_list.not_contains(b)

potential_child_list.add(b)
c.send_accept_child(b)

else
c.send_reject_child(b)

Figure 4: Behavior of Parent Node on Receiving
Propagated Child

receive accept_child(b) from parent
// a request was earlier made to parent
// about node b
b.send_ancestor_list(ancestor_list)
// b will now contact parent directly

Figure 5: Behavior of Child Node on Receiving
Positive Response to Propagation of Grandchild

of high-performance compute nodes available to do work, but with only a slow front end that is publicly
accessible. The front end would be at the root of a subtree of compute nodes. The poor performance of the
root would not penalize the entire cluster.

In addition to c children, a node can also be the parent of p potential children. These are nodes that
have yet to send r results to the current node. The current node needs to receive r results from another
node before it can accept it as its child. Potential children may request subtasks just like normal children.
When a potential child sends its first batch of r results, along with the time required to obtain them, it is
added to the list of the node’s children. If the node now has more than c children, the slowest child, sc, is
removed from the child-list. As described below, sc is then given a set of alternative nodes to contact to try
to get back into the tree. The current node keeps a record of the last o former children, and sc is now placed
in this list. Nodes are removed from this list once a user-defined time period elapses. If sc now attempts
to make requests or send results to the current node within this time period, these messages will remain
unacknowledged. The pseudo-code for the maintenance of child-lists has been presented in Figure 3.

7



3.4 Restructuring of the Overlay Network

The topology of the overlay network is a tree with the root being the node where the original computation
was injected. It is desirable for the best-performing nodes to be close to the root. This minimizes the
communication delay between the root and the best nodes, and the time that these nodes need to wait for
their requests to be handled by the root. This principle to improve system throughput is applicable down
the tree, i.e., a mechanism is required to structure the overlay network such that the nodes with the highest
throughput are closer to the root, while those with low throughput are near the leaves.

A node periodically informs its parent about its best-performing child. The parent then checks whether
its grandchild is present in its list of former children. If not, it adds the grandchild to its list of potential
children and tells this node that it is willing to consider the grandchild. The node then informs the grandchild
that it should now contact its grandparent directly. This results in fast nodes percolating towards the root of
the tree and has been detailed in Figures 4 and 5.

When a node updates its child-list and decides to remove its slowest child, sc, it does not simply discard
the child. It sends sc a list of its other children, which sc attempts to contact in turn. If sc had earlier been
propagated to this node, a check is made as to whether sc’s original parent is still a child of this node. In
that case, sc’s original parent, op, is placed first in the list of nodes being sent for sc to attempt to contact.
Since sc was op’s fastest child at some point, there is a good chance that it will be accepted by op again. The
pseudo-code for this algorithm is in Figure 3. The actions of a node on receipt of a new list of ancestors are
in Figure 6.

3.5 Size of Result Burst

Each node ranks its children on the basis of the time that it took the children to send r results to this node.
The child propagation algorithm benefits from using multiple results, instead of setting r to one. Since the
time required to obtain just one result may not be a good measure of the performance of a child, nodes
may end up making poor decisions about which children to keep and which to discard. The topology of
the overlay network would also change too rapidly and the best-performing nodes may not be near the root.
We found that a better measure for the performance of a child is the time taken by a node to obtain a small
number of results. Even though nodes will now be able to make better evaluations of their children, it will
take more time for these children to send results to their parent. Updates to the child-list will now take more
time. Therefore, r should not be set to a very large value because the overlay network would take too much
time to take form and get updated.

3.6 Fault Tolerance

A node depends on its parent to supply it with new subtasks to work on. However, if the parent were to
become inaccessible due to machine or link failures, the node and its own descendents would be unable to
do any useful work. A node must be able to change its parent if necessary; every node keeps a list of a of
its ancestors in order to accomplish this. A node obtains this list from its parent every time the parent sends
it a message. The updates to the ancestor-list take into account the possibility of the topology of the overlay
network changing frequently.

A child waits a certain user-defined time for a response after sending a message to its parent — the a-th
node in its ancestor-list. If the parent is able to respond, it will, irrespective of whether it has any subtasks
to send its child at this moment or not. The child will receive the response, check whether its request
was satisfied with any subtasks, and begin waiting again if that is not the case. The pseudo-code for this
algorithm is in Figure 7.

8



receive message from parent
ancestor_list := message.ancestor_list
if parent != ancestor_list.last

parent:=ancestor_list.last

Figure 6: Behavior of Node on Receiving new
Ancestor-List

while true
send message to parent
if <reply received within

MAX_REPLY_TIME>
break

ancestor_list.remove(parent)
if ancestor_list.size = 0

<self-destruct>
parent := ancestor_list.last

Figure 7: Fault Tolerance — Contacting Ances-
tors

If no response is obtained within the timeout period, the child removes the current parent from its
ancestor-list and sends a message to the (a - 1)-st node in that list. This goes on until either the size of the
list becomes 0, or an ancestor responds to this node’s request.

If a node’s ancestor-list does go down to size 0, the node has no means of obtaining any work to do. The
mobile agent that computes subtasks informs the agent environment that no useful work is being done by
this machine, and then self-destructs. Just as before, a stationary agent begins to send out requests for work
to a list of friends.

However, if an ancestor does respond to a request, it becomes the parent of the current node and sends a
new ancestor-list of size a to this node. Normal operation resumes with the parent sending subtasks to this
node and this node sending requests and results to its parent.

3.7 Cycles in the Overlay Network

Even though the overlay network should be a tree, failures could cause the formation of a cycle of nodes.
This cycle of nodes will eventually run out of subtasks to compute. However, this does not guarantee that
the compute agents on the nodes in the cycle will die, or that the cycle will be broken. Every node in the
cycle requests subtasks of its parent. The parent informs its child that it is still alive and, in turn, requests
tasks from its own parent. Nodes may thus wait indefinitely.

This situation is avoided by having each node examine its ancestor list on receiving it from its parent. If
a node finds itself in that list, it knows that a cycle has occurred and its computation agent self-destructs.

If the cycle involves a very large number of nodes, the ancestor-list may be too small to include the
current node. A node also keeps track of the total time that has elapsed since it last received a subtask. If
that time exceeds a user-defined limit, a cycle is assumed to have taken shape and the computation agent on
the node destroys itself. Even if a cycle has not actually taken shape, the fact that this node has waited for
an excessive amount of time means that subtasks from the root are taking too long to reach it and that this
node will be unable to contribute effectively to the computation.

3.8 Termination

The root of the tree is the source of the subtasks that flow to all the other nodes. The root continues to
send out subtasks unless it obtains all the results that it requires, i.e., subtasks may be computed redundantly
by multiple machines. Once all the results have been computed, the computation needs to be terminated.
The root sends a termination message to each of its children, potential children and former children. The
computation agent on the root then self-destructs.

The other nodes to which the root sends the termination message do the same. In this way, termination
messages spread from the root down to the leaves and all the computation agents on these nodes destroy

9



themselves.
The overlay network is thus destroyed. The stationary agents on the independent machines now begin

sending request messages to their lists of friends. This goes on until some user creates a new computation
agent.

There are two scenarios in which termination could be incomplete:

� A termination message might not reach a node due to machine or link failures. In that case, the
situation is the same as described in Subsection 3.6. The node will try to contact one of its ancestors,
and when it fails to get a response from any of them, its computation agent will destroy itself.

� Consider the scenario in which a computation agent executes on a node n1, with one of its descendant
agents on node n2. The agent on n1 receives a termination message and destroys itself, but that on n2
does not because of a failure. The stationary agent on n1 now sends request messages to the machines
in its friend-list. If one of these is n2, a clone of n2’s computation agent is sent to n1: the computation
has not terminated. This is not a problem because every agent is required to check whether it has any
uncomputed subtasks before sending out clones. All the subtasks of a computation come from the
root, and the computation agent on the root has obviously destroyed itself. n2 will eventually run out
of subtasks and be unable to propagate any more computation agents. n2 will unsuccessfully attempt
to contact its ancestors and then perish; n1 will eventually follow.

3.9 Self-adjustment of Task List Size

A node always requests a certain number of subtasks, s, in the scheme discussed earlier. It then obtains the
results of those many subtask before requesting another subtask to work on. However, the size of a subtask
is simply an estimation of the smallest unit of work that every machine on the peer-to-peer network should
be able to compute in a time that the user considers reasonable: scheduling should not be inordinately slow
on account of subtasks that take a long time to compute. If a machine offers good performance, i.e., if it is
able to compute subtasks rapidly and/or has a fast network connection, the utilization of that machine may
be poor because it is only requesting a fixed number of subtasks at a time.

A node may request more subtasks in order to increase the utilization of its resources, and to improve
the system computation-to-data ratio. A node requests a certain number of subtasks, t, that it will compute
itself (initially t=1). Once it has finished computing the t subtasks, it compares the average time to compute
a subtask on this run to that of the previous run. Depending on whether it performed better, worse or about
the same, the node chooses to request i(t), d(t) or t subtasks for its next run, where i and d are increasing and
decreasing functions, respectively.

3.10 Prefetching

A potential cause of slowdown in the basic scheduling scheme described earlier, is the delay at each node
due to its waiting for new subtasks. This is because it needs to wait while its requests propagate up the tree
to the root and subtasks propagate down the tree to the node.

We found that it is beneficial to use prefetching for reducing the time that a node waits for subtasks.
A node determines that it should request t subtasks from its parent. The node also makes an optimistic
prediction of how many subtasks it might require in future by using the i function that is used for self-
adjustment. t+i(t) subtasks are then requested from the parent. When a node finishes computing one set of
subtasks, more subtasks are readily available for it to work on, even as a request is submitted to the parent.
This interleaving of computation and communication reduces the time for which a node is idle.

10



Node Delay per Delay per MB
Category Computed Task (sec) Communicated (sec)

fast 0 0
medium 22.5 1.5
slow 45 3

Table 1: Delays for different machine configurations

Parameter Name Parameter Value

Maximum children 5
Maximum potential children 5
Result-burst size 3
Self-adjustment linear
Number of subtasks 1
initially requested
Child-propagation On

Table 2: Original parameters

While prefetching will reduce the delay in obtaining new subtasks to work on, it also increases the
amount of data that needs to be transferred at a time from the root to the current node, thus increasing the
synchronization delay and data transfer time. This is why excessively aggressive prefetching will end up
performing worse than a scheduling scheme with no prefetching.

4 Measurements

We have conducted experiments to evaluate the performance of each aspect of our scheduling scheme. The
experiments were performed on a cluster of eighteen machines at different locations around Ohio. The ma-
chines were of several different configurations and they ran the Aglets weakly mobile agent environment
on top of either Linux or Solaris.

The scientific application we used to test our system was the gene sequence similarity search tool,
NCBI’s nucleotide-nucleotide BLAST [52]: a parameter sweep application. The task was to match the
same 256KB sequence against 320 data chunks, each of size 512KB. Each subtask was to match the string
against one chunk.

The time to compute one of these matchings was around 30 seconds on average. All eighteen machines
would have offered good performance as they all had fast connections to the Internet, high processor speeds
and large memories. In order to obtain more heterogeneity in their performance, we introduced delays in the
application code so that we could simulate the effect of slower machines and slower network connections.
We divided the machines into fast, medium and slow categories by introducing the delays in Table 1.

As shown in Figure 8, the nodes were initially organized randomly. The dotted arrows indicate the
directions in which request messages for work were sent to friends. The only thing a machine knew about a
friend was its URL.

Our autonomic scheduling algorithm organizes the nodes into a tree such that the machine where the
computation originates, i.e., the root, is connected to the subtrees that perform best. The rest of this section
will illustrate how that impacts the total running time of the computation.

We ran the computation with the parameters described in Table 2. Linear self-adjustment means that
the increasing and decreasing functions of the number of subtasks requested at each node are linear. The
ramp-up time, i.e., the time required for the code and the first subtask to arrive at the different nodes can be
seen in Figure 10.

We observed negligible variations in the time required for computation agents to reach all eighteen ma-
chines, across all our experiments. If the same experiments were run on a much larger number of machines,
greater variations in code ramp-up times might be expected.

11



ORIGIN

FAST

MEDIUM

SLOW

KNOWS ABOUT

Figure 8: Original Configuration of Machines

SLOW

MEDIUM

FAST

ORIGIN

KNOWS ABOUT

Figure 9: Good Configuration obtained with A Pri-
ori Knowledge

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 50 100 150 200 250 300 350 400

N
um

be
r 

of
 N

od
es

Time(sec)

Figure 10: Code Ramp-up

4.1 Comparison with Knowledge-based Scheme

We ran an experiment using the original configuration and parameters in Figure 8 and Table 2, respectively.
With a priori knowledge of the performance of the different machines used in our experiments, and an

assumption that they are dedicated resources, a centralized scheduler would be able to come up with a good
initial configuration as in Figure 9.

We then organized the nodes as per this topology and ran the experiment using the same parameters as
in Table 2. A comparison of the running times is in Table 3, and the scheme that uses a priori knowledge
performs 22 % better than a purely zero-knowledge scheme.

It is infeasible, however, to expect a centralized scheduler to be able to work effectively in the large-scale
and dynamic environment of a desktop grid.

12



Configuration Running Time (sec)

original 2294
with a priori knowledge 1781

Table 3: Effect of A Priori Knowledge on Run-
ning Time

Scheme Running Time (sec)

With child-propagation 2294
Without child-propagation 3035

Table 4: Effect of Child-propagation

FAST

MEDIUM

SLOW

IS CHILD OF

IS POTENTIAL CHILD OF

ORIGIN

Figure 11: Organization of Nodes at End of Ex-
periment, With Child Propagation

ORIGIN

SLOW

MEDIUM

FAST

IS CHILD OF

IS POTENTIAL CHILD OF

Figure 12: Organization of Nodes at End of Ex-
periment, Without Child Propagation

4.2 Effect of Child Propagation

We performed our computation with the child-propagation aspect of the scheduling scheme disabled. Com-
parisons of the running times and topologies are in Table 4 and Figures 11 and 12. The solid arrows are
from a child to its parent. The child-propagation mechanism results in a 32 % improvement in the running
time. The reason for this improvement is the difference in the topologies. With child-propagation turned
on, the best-performing nodes are closer to the root. Subtasks and results travel to and from these nodes at
a faster rate, thus improving system throughput.

It may be expected that the structure of the tree in the case without child-propagation be very similar to
the original structure in Figure 8. Our fault-tolerance mechanism is the only reason that they are different.
The slow nodes near the root are unable to provide subtasks to their descendents at a high enough rate. Some
descendants wait for their timeout periods and then communicate directly with their ancestors.

4.3 Result-burst size

The experimental setup in Table 2 was again used. We then ran the experiment with different result-burst
sizes. The running times have been tabulated in Table 5. The variations in the data ramp-up were small
enough to be ignored.

When the result-burst is of size 1, nodes evaluate their children based on just one result. They are unable
to make good judgments about the performance of their children. This is why the child-lists that they form
change frequently and are far from ideal, as is apparent in Figure 13, where only one fast node is adjacent
to the root.

As the result-burst size increases, there is a qualitative improvement in the child-lists. The structure
of the resulting overlay networks for result-burst sizes 3 and 5 are in Figures 14 and 15. Both these tree
structures have several fast nodes adjacent to and close to the root. This is why the running times of the

13



Result-burst Size Running Time (sec)

1 3050
3 2294
5 2320
8 3020

Table 5: Effect of Result-burst Size on Running Time

FAST

MEDIUM

SLOW

IS CHILD OF

IS POTENTIAL CHILD OF

ORIGIN

Figure 13: Organization of Nodes at End of Ex-
periment, Result-burst size = 1

FAST

MEDIUM

SLOW

IS CHILD OF

IS POTENTIAL CHILD OF

ORIGIN

Figure 14: Organization of Nodes at End of Ex-
periment, Result-burst size = 3

experiments decrease with an increase in the size of the result-burst.
However, with still larger child-lists, it takes longer for a node to accept another as its child. Conse-

quently, child propagation takes more time and it takes longer for the overlay network to organize itself.
This is why the experiment slows down when the result-burst size is made 8. Figure 16 reveals that the
structure of the overlay network is very poor and that there are a large number of potential children that have
never been able to send even one result-burst to their parents.

4.4 Prefetching and Initial Task Size

Prefetching is expected to reduce the overall running time of the experiment. This is because each node asks
for more subtasks than it actually needs. If its children request some subtasks, it can satisfy those requests
immediately.

The data ramp-up time, i.e., the time required for subtasks to reach every single node, is dependent on
the minimum number of subtasks that each node requests. The greater this number, the greater the amount
of data that needs to be sent to each node, and the slower the data ramp-up. This is true of experiments both
with and without prefetching, as can be seen in Table 6 and Figures 17 and 18.

For a given minimum number of subtasks, the time for data ramp-up reduces with prefetching. The
effect of prefetching on the ramp-up is shown in Table 6 and Figures 19, 20 and 21.

Prefetching does improves the ramp-up, but of paramount importance is its effect on the overall running
time of an experiment. This is also closely related to the minimum number of subtasks requested by each
node. Prefetching improves system throughput when the minimum number of subtasks requested is one.
As the minimum number of subtasks requested by a node increases, more data needs to be transferred at a
time from the root to this node, and the effect of prefetching becomes negligible. As this number increases
further, prefetching actually causes a degradation in throughput. Table 7 and Figure 22 summarize these

14



ORIGIN

SLOW

MEDIUM

FAST

IS CHILD OF

IS POTENTIAL CHILD OF

Figure 15: Organization of Nodes at End of Ex-
periment, Result-burst size = 5

ORIGIN

SLOW

MEDIUM

FAST

IS CHILD OF

IS POTENTIAL CHILD OF

Figure 16: Organization of Nodes at End of Ex-
periment, Result-burst size = 8

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

prefetch, initial size = 1
prefetch, initial size = 2
prefetch, initial size = 5

Figure 17: Effect of Min. Number of Subtasks on
Data Ramp-up with Prefetching

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

no prefetch, initial size = 1
no prefetch, initial size = 2
no prefetch, initial size = 5

Figure 18: Effect of Min. Number of Subtasks on
Data Ramp-up without Prefetching

results.

4.5 Self-Adjustment

The original configuration in Table 2 has a linear self-adjustment function. We used that for one experiment,
and then ran the same experiment for two different self-adjustment functions, constant and exponential.

The data ramp-ups have been compared in Table 8 and Figure 23. The ramp-up with exponential self-
adjustment is appreciably faster than that with linear or constant self-adjustment.

The aggressive approach performs better because nodes prefetch a larger amount of subtasks, and sub-
tasks quickly reach the nodes farthest from the root.

The ramp-up was faster with the aggressive approach because once nodes began to self-adjust and in-
crease the number of subtasks that they needed, they also prefetch more subtasks from their parents. More
prefetching by a node results in more subtasks being available for its children: subtasks quickly reach the
nodes farthest from the root, thus improving ramp-up.

We also compared the running times of the three runs which are in Table 8. Interestingly, the run with the
exponential self-adjustment performed poorly with respect to runs with linear or constant self-adjustment;
this is due to nodes prefetching extremely large numbers of subtasks. Nodes now spend more time waiting

15



0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

prefetch, initial size = 1
no prefetch, initial size = 1

Figure 19: Effect of Prefetching on Data Ramp-
up, Min. Number of Subtasks = 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

prefetch, initial size = 2
no prefetch, initial size = 2

Figure 20: Effect of Prefetching on Data Ramp-
up, Min. Number of Subtasks = 2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

prefetch, initial size = 5
no prefetch, initial size = 5

Figure 21: Effect of Prefetching on Data Ramp-
up, Min. Number of Subtasks = 5

2000

2100

2200

2300

2400

2500

2600

2700

2800

0 1 2 3 4 5 6

T
im

e(
se

c)

Number of Initial Sub-tasks

with prefetch
without prefetch

Figure 22: Effect of Prefetching and Min. Num-
ber of Subtasks on Running Time

for their requests to be satisfied, resulting in a degradation in the throughput at that node.
However, the difference in overall running time between the runs with linear and constant self-adjustment,

is not very significant. We expect better performance in the linear case and it is our opinion that this differ-
ence would be more pronounced if the total number of subtasks to be computed were to be increased and
the experiment run for a longer period of time.

4.6 Number of children

We experimented with different children-list sizes and found that the data ramp-up time with the maximum
number of children set to 5 was less than that with the maximum number of children set to 10 or 20. These
results are in Table 9 and Figure 24. The root is able to take on more children in the latter cases and the
spread of subtasks to nodes that were originally far from the root takes less time.

Instead of exhibiting better performance, the runs where large numbers of children were allowed, had
approximately the same total running time as the run with the maximum number of children set to 5. This is
because the synchronization delay at each node increases with the number of requesting children. Children
have to wait for a longer time for their requests to be satisfied.

We actually expected a marked degradation in performance as the size of the children-list increases.

16



Initial Number Time (sec) Time (sec)
of Subtasks

Prefetching No prefetching

1 406 590
3 825 979
5 939 1575

Table 6: Effect of Prefetching and Min. Number
of Subtasks on Data Ramp-up

Initial Number Time (sec) Time (sec)
of Subtasks

Prefetching No prefetching

1 2308 2520
2 2302 2190
5 2584 2197

Table 7: Effect of Prefetching and Min. Number
of Subtasks on Running Time

Self-adjustment Ramp-up Running
Function Time (sec) Time (sec)
Linear 1068 2302
Constant 1142 2308
Exponential 681 2584

Table 8: Effect of Self-adjustment function on
Data Ramp-up Time and Running Time

Maximum Number Time (sec)
of Children
5 1068
10 760
20 778

Table 9: Effect of Max. Number of Children on
Data Ramp-up

However, our current computational task does not run for enough time to be able to test this effect properly.
The topology of the overlay network changes frequently before the nodes organize themselves well.

In order to obtain an idea of the severity of the synchronization delay, we ran two experiments: one with
the good initial configuration of Figure 9, and the other using a star topology — every non-root node was
adjacent to the root at the beginning of the experiment itself. The maximum sizes of the child-lists were set
to 5 and 20, respectively. Since the overlay networks were already organized such that there would be no
change in their topology as the computation progressed, there was no impact of these changes on the overall
running time. The effect of the synchronization delay was then clearly observed as in Table 10.

As expected, the root needed to satisfy a large number of requests in the latter case, which is why it
took more time to fulfill any single request. This resulted in the running time with maximum child-list
size set to 20 being 15 % slower than with the size set to 5. Similar results were observed even when the
child-propagation mechanisms were turned off.

5 Conclusions and Future Work

Strong mobility is an important abstraction for developing desktop grid applications. We translate strongly
mobile source code into weakly mobile source code by using a preprocessor. This allows us to build flexible,
large-scale applications where the subtasks of a computation, in the form of multi-threaded mobile agents,
utilize unused desktop resources. Different threads within these agents perform distributed computation and
communication, and decentralized scheduling.

We have designed an autonomic scheduling algorithm for massively parallel applications where the data
initially resided at one location, and whose subtasks have considerable data transfer times. The agents
build a tree-structured overlay network with the data source at the root. The structure of this tree is varied
dynamically such that the nodes that currently exhibit good performance are brought closer to the root, thus
improving system performance. Our scheduling scheme has a number of mechanisms. We have conducted
experiments on a set of machines distributed across Ohio, and have performed extensive analyses of the
performance of the scheme’s different mechanisms. These show that our approach is feasible in practice.

17



0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

constant
linear

exponential

Figure 23: Effect of Self-adjustment function on
Data Ramp-up Time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 N

od
es

Time(sec)

children-list size = 5
children-list size = 10
children-list size = 20

Figure 24: Effect of Max. Number of Children on
Data Ramp-up

Maximum Number Time (sec)
of Children
5 1781
20 2041

Table 10: Effect of Max. Number of Children on Running Time, No Topological Variation

An important problem that we will address in future is the initial assignment of the friend-list. There
has been some research in this direction [19, 50, 51], and we will consider how best to apply this to our own
work.

An interesting aspect of the algorithm in [49] is that a node can prioritize its children according to their
ability to communicate. A communication from a higher-priority child can interrupt that from one of lower
priority. We will experiment with incorporating a similar mechanism into our scheme.

While this paper concentrated on a scheduling scheme for massively parallel applications where the
data was initially all in one repository, we will experiment with autonomic schemes for a wide class of
applications in future. It is our intention to present a desktop grid user with a simple software interface that
will allow him/her to use one of a set of scheduling schemes, depending on the application characteristics.

The experiments that we ran for this paper were run on a set of 18 heterogeneous machines. We plan
to harness the computing power of idle machines across the Internet — at the Ohio State University in
particular — to create a desktop grid of a scale of the tens or hundreds of thousands. We will then allow
researchers to deploy scientific applications on this system.

6 Acknowledgements

This work was partially supported by the Ohio Supercomputer Center grants PAS0036-1 and PAS0121-1.

References

[1] J. A. H. John F. Shoch, “The ”worm” programs — early experience with a distributed computation,”
Communications of the ACM, vol. 25, no. 3, Mar. 1982.

18



[2] M. Litzkow, M. Livny, and M. Mutka, “Condor — a hunter of idle workstations,” in Proceedings of
the 8th International Conference of Distributed Computing Systems, June 1988.

[3] G. Woltman. [Online]. Available: http://www.mersenne.org/prime.htm

[4] distributed.net. [Online]. Available: http://www.distributed.net

[5] SETI@home. [Online]. Available: http://setiathome.ssl.berkeley.edu

[6] folding@home. [Online]. Available: http://folding.stanford.edu

[7] A. A. Chien, B. Calder, S. Elbert, and K. Bhatia, “Entropia: architecture and performance of an enter-
prise desktop grid system,” Journal of Parallel and Distributed Computing, vol. 63, no. 5, pp. 597–610,
2003.

[8] grid.org. [Online]. Available: http://www.grid.org

[9] A. S. Grimshaw and W. A. Wulf, “The legion vision of a worldwide virtual computer,” Communica-
tions of the ACM, vol. 40, no. 1, Jan. 1997.

[10] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli,
J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov, “Adaptive computing on the grid
using apples,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 369–382,
2003.

[11] D. Abramson, J. Giddy, and L. Kotler, “High performance parametric modeling with nimrod/g: Killer
application for the global grid?” in Proceedings of the International Parallel and Distributed Process-
ing Symposium, Cancun, Mexico, May 2000, pp. 520–528.

[12] H. Casanova and J. Dongarra, “Netsolve: A network enabled server, examples and users,” in Proceed-
ings of the Heterogeneous Computing Workshop, Orlando, FL, 1998.

[13] A. Turing, “The chemical basis of morphogenesis,” in Philos. Trans. R. Soc. London, no. 237 B, 1952,
pp. 37–72.

[14] A. Gierer and H. Meinhardt, “A theory of biological pattern formation,” in Kybernetik, no. 12, 1972,
pp. 30–39.

[15] G. T. et al., “Spatial patterns in ant colonies,” in PNAS, vol. 99, no. 15, 2002, pp. 9645–9649.

[16] A. Montresor, H. Meling, and O. Babaoglu, “Messor: Load-balancing through a swarm of autonomous
agents,” in Proceedings of 1st Workshop on Agent and Peer-to-Peer Systems, Bologna, Italy, July 2002.

[17] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, 2001.

[18] C. Shirky, “What is P2P . . . and what isn’t?” O’Reilly Network, November 2000. [Online]. Available:
http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html

[19] Gnutella. [Online]. Available: http://www.gnutella.com

[20] D. Kotz, R. Gray, and D. Rus, “Future directions for mobile-agent research,” IEEE Distributed Systems
Online, vol. 3, no. 8, August 2002. [Online]. Available: http://dsonline.computer.org/0208/f/kot.htm

19



[21] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,” Communications of the ACM,
vol. 42, no. 3, Mar. 1999.

[22] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna, “Analyzing mobile code languages,” in Mobile
Object Systems: Towards the Programmable Internet, ser. Lecture Notes in Computer Science, no.
1222. Springer-Verlag, 1996. [Online]. Available: http://www.polito.it/ � picco/papers/ecoop96.ps.gz

[23] S. Bouchenak, D. Hagimont, S. Krakowiak, N. D. Palma, and F. Boyer, “Experiences implementing
efficient Java thread serialization, mobility and persistence,” INRIA, Tech. Rep. RR-4662, December
2002.

[24] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, and R. Jeffers, “Strong mobility and
fine-grained resource control in NOMADS,” in Proceedings of the Second International Symposium
on Agent Systems and Applications / Fourth International Symposium on Mobile Agents, Zurich, Sept.
2000.

[25] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus, “D’Agents: Applications and perfor-
mance of a mobile-agent system,” Software—Practice and Experience, vol. 32, no. 6, May 2002.

[26] A. Acharya, M. Ranganathan, and J. Saltz, “Sumatra: A language for resource-aware mobile
programs,” in Mobile Object Systems: Towards the Programmable Internet, ser. Lecture Notes in
Computer Science, J. Vitek, Ed., no. 1222. Springer-Verlag, 1996, pp. 111–130. [Online]. Available:
http://www.cs.umd.edu/ � acha/papers/lncs97-1.html

[27] T. Suezawa, “Persistent execution state of a Java virtual machine,” in Proceedings of the ACM 2000
conference on Java Grande, 2000.

[28] H. Peine and T. Stolpmann, “The architecture of the Ara platform for mobile agents,” in First Interna-
tional Workshop on Mobile Agents, Berlin, Germany, Apr. 1997.

[29] T. Illmann, T. Krüger, F. Kargl, and M. Weber, “Transparent migration of mobile agents using the Java
platform debugger architecture,” in Proceedings of the 5th International Conference on Mobile Agents,
Atlanta, GA, December 2001.

[30] S. Fünfrocken, “Transparent migration of Java-based mobile agents: Capturing and reestablishing
the state of Java programs,” in Proceedings of the Second International Workshop on Mobile Agents,
Stuttgart, Germany, September 1998.

[31] T. Sekiguchi, H. Masuhara, and A. Yonezawa, “A simple extension of Java language for controllable
transparent migration and its portable implementation,” in Coordination Models and Languages, 1999.

[32] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Verbaeten, “Portable support for
transparent thread migration in Java,” in Proceedings of the Joint Symposium on Agent Systems and
Applications / Mobile Agents, Zurich, Switzerland, September 2000.

[33] T. Sakamoto, T. Sekiguchi, and A. Yonezawa, “Bytecode transformation for portable thread migration
in Java,” in Proceedings of Agent Systems, Mobile Agents, and Applications, 2000.

[34] A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baumgartner, “Implementation of strong mobil-
ity for multi-threaded agents in Java,” in Proceedings fot 2003 International Conference on Parallel
Processing. IEEE Computer Society, Oct. 2003.

20



[35] ——, “Implementation of strong mobility for multi-threaded agents in Java,” Dept. of Computer and
Information Science, The Ohio State University, Tech. Rep. OSU-CISRC-2/03-TR06, Feb. 2003.

[36] X. Wang, “Translation from strong mobility to weak mobility for Java,” Master’s thesis, The Ohio
State University, 2001.

[37] S. F. Hummel, J. P. Schmidt, R. N. Uma, and J. Wein, “Load-sharing in heterogeneous systems via
weighted factoring,” in Proceedings of the ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 318–328.

[38] T. Hagerup, “Allocating independent tasks to parallel processors: An experimental study,” Journal of
Parallel and Distributed Computing, vol. 47, pp. 185–197, 1997.

[39] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks on non-identical
processors,” Journal of the ACM, vol. 24, no. 2, pp. 280–289, 1977.

[40] C. Kruskal and A. Weiss, “Allocating independent subtasks on parallel processors,” IEEE Transactions
on Software Engineering, vol. 11, pp. 1001–1016, 1984.

[41] M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund, “Dynamic matching and
scheduling of a class of independent tasks onto heterogeneous computing systems,” in Proceedings of
the 8th Heterogeneous Computing Workshop, Apr. 1999, pp. 30–44.

[42] T. H. Tzen and L. M. Ni, “Trapezoidal self-scheduling: A practical scheme for parallel compilers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1, pp. 87–98, Jan. 1993.

[43] E. Heymann, M. A. Senar, E. Luque, and M. Livny, “Adaptive scheduling for master-worker applica-
tions on the computational grid,” in Proceedings of the First International Workshop on Grid Comput-
ing, 2000, pp. 214–227.

[44] T. Kindberg, A. Sahiner, and Y. Paker, “Adaptive Parallelism under Equus,” in Proceedings of the 2nd
International Workshop on Configurable Distributed Systems, Mar. 1994, pp. 172–184.

[45] H. James, K. Hawick, and P. Coddington, “Scheduling independent tasks on metacomputing systems,”
in Proceedings of Parallel and Distributed Computing Systems, Fort Lauderdale, FL, Aug. 1999.

[46] J. Santoso, G. D. van Albada, B. A. A. Nazief, and P. M. A. Sloot, “Hierarchical job scheduling for
clusters of workstations,” in Proceedings of the 6th annual conference of the Advanced School for
Computing and Imaging, June 2000, pp. 99–105.

[47] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms for a distributed hetero-
geneous computing environment,” in Proceedings of the Heterogeneous Computing Workshop, Apr.
1995, pp. 30–34.

[48] R. Wolski, J. Plank, J. Brevik, and T. Bryan, “Analyzing market-based resource allocation strategies for
the computational grid,” International Journal of High-performance Computing Applications, vol. 15,
no. 3, 2001.

[49] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante, “Autonomous protocols for bandwidth-centric
scheduling of independent-task applications,” in 17th International Parallel and Distributed Process-
ing Symposium, Nice, France, Apr. 2003, pp. 23–25.

21



[50] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content addressable net-
work,” in Proceedings of ACM SIGCOMM‘01, 2001.

[51] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A scalable peer-to-
peer lookup service for internet applications,” in Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communications, San Diego, CA, 2001, pp.
149–160.

[52] B. L. A. S. Tool. [Online]. Available: http://www.ncbi.nlm.nih.gov/BLAST/

22


