
Sockets Direct Protocol over InfiniBand in Clusters: Is it Beneficial?

PAVAN BALAJI, SUNDEEP NARRAVULA, KARTHIKEYAN VAIDYANATHAN, SAVITHA KRISHNAMOORTHY, JIESHENG

WU AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-10/03-TR54



Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial?
�

P. Balaji S. Narravula K. Vaidyanathan S. Krishnamoorthy J. Wu D. K. Panda

Computer and Information Science,
The Ohio State University,

2015 Neil Avenue,
Columbus, OH43210�

balaji, narravul, vaidyana, savitha, wuj, panda � @cis.ohio-state.edu

Abstract

InfiniBand has been recently standardized by the industry
to design next generation high-end clusters for both data-
center and high performance computing domains. Though
InfiniBand has been able support low latency and high
bandwidth, traditional sockets based applications have not
been able to take advantage of this; this is mainly attributed
to the multiple copies and kernel context switches associ-
ated with the traditional TCP/IP protocol stack. The Sockets
Direct Protocol (SDP) had been proposed recently in order
to enable sockets based applications to take advantage of
the enhanced features provided by InfiniBand Architecture.
In this paper, we study the benefits and limitations of an

implementation of SDP. We first analyze the performance of
SDP based on a detailed suite of micro-benchmarks. Next,
we evaluate it on two different real application domains:
(1) A multi-tier Data-Center environment and (2) A Paral-
lel Virtual File System (PVFS). Our micro-benchmark re-
sults show that SDP is able to provide up to 2.7 times better
bandwidth as compared to the native sockets implementa-
tion over InfiniBand (IPoIB) and significantly better latency
for large message sizes. Our experimental results also show
that SDP is able to achieve a considerably higher perfor-
mance (improvement of up to 2.4 times) as compared to
IPoIB in the PVFS environment. In the data-center envi-
ronment, SDP outperforms IPoIB for large file transfers in-
spite of currently being limited by a high connection setup
time. However, this limitation is entirely implementation
specific and as the InfiniBand software and hardware prod-
ucts are rapidly maturing, we expect this limitation to be
overcome soon. Based on this, we have shown that the pro-
jected performance for SDP, without the connection setup
time, can outperform IPoIB for small message transfers as

�
This research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542.

well.

Keywords: Sockets Direct Protocol (SDP), InfiniBand,
Data-Center, PVFS

1 Introduction

Cluster systems are becoming increasingly popular in
various application domains mainly due to their high
performance-to-cost ratio. Out of the current Top 500 Su-
percomputers, 149 systems are clusters [20]. Cluster sys-
tems are now present at all levels of performance, due to the
increasing performance of commodity processors, memory
and network technologies.
During the last few years, the research and industry com-

munities have been proposing and implementing user-level
communication systems to address some of the problems
associated with the traditional networking protocols. The
Virtual Interface Architecture (VIA) [14, 4, 17] was pro-
posed earlier to standardize these efforts. InfiniBand Ar-
chitecture (IBA) [9] has been recently standardized by the
industry to design next generation high-end clusters.
Earlier generation protocols such as TCP/IP [26, 29] re-

lied upon the kernel for processing the messages. This
caused multiple copies and kernel context switches in the
critical message passing path. Thus, the communication la-
tency was high. Researchers have been looking at alterna-
tives to increase the communication performance delivered
by clusters in the form of low-latency and high-bandwidth
user-level protocols such as FM [22] and GM [18] for
Myrinet [13], EMP [24, 25] for Gigabit Ethernet [19], etc.
These developments are reducing the gap between the per-

formance capabilities of the physical network and that ob-
tained by the end users. While this approach is good for
developing new applications, it might not be so beneficial
for the already existing sockets applications which were de-

1



veloped over a span of several years. A number of applica-
tions have been developed on kernel-based protocols such
as TCP/UDP using the sockets interface. To support such
applications on high performance user-level protocols with-
out any changes to the application itself, researchers have
come up with a number of techniques. These techniques in-
clude user-level sockets layers over high performance pro-
tocols [10, 21, 23, 11].
Sockets Direct Protocol (SDP) [6] is an InfiniBand Archi-

tecture specific protocol defined by the InfiniBand Trade
Association. SDP was proposed along the same lines as
the user-level sockets layers; to allow a smooth transition
to deploy existing sockets based applications on to clusters
connected with InfiniBand while sustaining most of the per-
formance provided by the base network.
At this point, the following open questions arise:

� What kind of benefits can be expected from the current
Sockets Direct Protocol implementation?

� What are the trade-offs associated with such an imple-
mentation?

In this paper, we study the benefits and limitations of an
implementation of SDP. We first analyze the performance of
SDP based on a detailed suite of micro-benchmarks. Next,
we evaluate it on two different real application domains:

� A multi-tier Data-Center environment

� A Parallel Virtual File System (PVFS)

Our micro-benchmark results show that SDP is able to pro-
vide up to 2.7 times better bandwidth as compared to the
native sockets implementation over InfiniBand (IPoIB) and
significantly better latency for large message sizes. Our ex-
perimental results also show that SDP is able to achieve a
considerably high performance (improvement of up to a fac-
tor of 2.4) compared to the native sockets implementation
in the PVFS environment. In the data-center environment,
SDP outperforms IPoIB for large file transfers in-spite of
currently being limited by a high connection setup time.
However, this limitation is entirely implementation specific
and as the InfiniBand software and hardware products are
rapidly maturing, we expect this limitation to be overcome
soon. Based on this, we have shown that the projected per-
formance for SDP, without the connection setup time, can
outperform IPoIB for small message transfers as well.
The remaining part of the paper is organized as follows:

Section 2 provides a brief background about InfiniBand, the
modern user-level sockets implementations and the Sockets
Direct Protocol (SDP) implementation. In Section 3 we dis-
cuss the software infrastructure we used; in particular about
Multi-Tier Data-Center environments and Parallel Virtual
File System (PVFS). Section 4 deals with the evaluation of

a number of micro-benchmarks to evaluate the ideal case
benefits of SDP over the native sockets implementation over
InfiniBand. In Section 5, we discuss the Multi-Tier Data-
Center environment we used in more detail. We present the
evaluation of PVFS in Section 6 and conclude the paper in
Section 7.

2 Background

In this section we provide a brief background about In-
finiBand Architecture, the modern user-level sockets im-
plementation and the Sockets Direct Protocol (SDP) imple-
mentation.

2.1 InfiniBand Architecture (IBA)

InfiniBand Architecture (IBA) is an industry standard that
defines a System Area Network (SAN) to design clusters of-
fering low latency and high bandwidth. A typical IBA clus-
ter consists of switched serial links for interconnecting both
the processing nodes and the I/O nodes. The IBA specifica-
tion defines a communication and management infrastruc-
ture for both inter-processor communication as well as inter
and intra node I/O. IBA also defines built-in QoS mecha-
nisms which provide virtual lanes on each link and define
service levels for individual packets.
In an InfiniBand network, processing nodes and the I/O

nodes are connected to the fabric by Host Channel Adapters
(HCA) and Target Channel Adapters (TCA). HCAs are as-
sociated with processing nodes and their semantic interface
to consumers is specified in the form of InfiniBand Verbs.
TCAs connect I/O nodes to the fabric and have interfaces to
consumers that are implementation specific and are not de-
fined in the IBA specifications. Channel Adapters usually
have programmable DMA engines with protection features.
IBA mainly aims at reducing the system processing over-

head by decreasing the number of copies associated with
a message transfer and removing the kernel from the criti-
cal message passing path. The InfiniBand communication
stack consists of different layers. The interface presented
by Channel Adapters to consumers belongs to the transport
layer. A Queue Pair (QP) based model is used in this inter-
face.
Each Queue Pair is a communication endpoint. A Queue

Pair consists of a send queue and a receive queue. Two QPs
on different nodes can be connected to each other to form
a logical bi-directional communication channel. An appli-
cation can have multiple QPs. Communication requests are
initiated by posting Work Queue Requests (WQRs) to these
queues. Each WQR is associated with one or more pre-
registered buffers from which data is either transferred (for
a send WQR) or received (receive WQR). Further, the ap-
plication can either choose to be signaled on the completion

2



of a WQR using the Signaled (SG) request or alternatively
choose an Unsignaled (USG) request. When the HCA com-
pletes the processing of a signaled request, it places an en-
try in the Completion Queue (CQ) called as the Completion
Queue Entry (CQE).
The consumer application can poll on the CQ associated

with the work request to check for completion. There is also
the feature of triggering event handlers whenever a comple-
tion occurs. For Unsignaled requests, no completion event
is returned to the user. However, depending on the imple-
mentation, the driver cleans up the Work Queue Request
from the appropriate Queue Pair on completion.

2.1.1 IBA Communication Models

IBA supports two types of communication semantics:
Channel Semantics (Send-Receive communication model)
and Memory Semantics (RDMA communication model).
In channel semantics, each send request has a correspond-

ing receive request at the remote end. Thus there is a one-to-
one correspondence between every send and receive opera-
tion. Failure to post a descriptor on the remote node results
in the message being dropped and if the connection is reli-
able, it might even result in the breaking of the connection.
In memory semantics, Remote Direct Memory Access

(RDMA) operations are used. These operations are trans-
parent at the remote end since they do not require a receive
descriptor to be posted. In this semantics, the send request
itself contains both the virtual address for the local transmit
buffer as well as that for the receive buffer on the remote
end. The RDMA operations are available with the Reliable
Connection (RC) service type.
The IBA specifications does not provide different primi-

tives for the channel semantics and the memory semantics.
It is the “opcode” entry in the WQR, which distinguishes
between the channel semantics and the memory semantics.
Most other entries in the WQR are common for both the
Send-Receive model as well as the RDMA model, except an
additional remote buffer virtual address (and other related
entries) which has to be specified for RDMA operations.
There are two kinds of RDMA operations: RDMA Write

and RDMA Read. In the RDMA Write model, the initiator
directly writes data into the remote node’s memory. Simi-
larly, in the RDMA Read model, the initiator directly reads
data from the remote node’s memory.

2.1.2 IBA Communication Protocols

InfiniBand is an emerging standard intended as an intercon-
nect for processor and I/O systems and devices. There are
three main types of traffic over IBA fabrics. The first type
of traffic is IBA native protocols such as VAPI [5], IBAL
(InfiniBand Access Layer) [1], uDAPL (User-Level Direct
Access Transport APIs) [7] and kDAPL (Kernel-Level Di-

rect Access Transport APIs) [8]. These interfaces are low-
level APIs for IBA. Applications can be programmed using
these APIs to take full advantage of IBA user level network-
ing and RDMA features. IP is one type of traffic (and a
very important one) that could use this interconnect. Infini-
Band would benefit greatly from a standardized method of
handling IP traffic. IPoIB provides standardized IP encap-
sulation over IBA fabrics as defined by the IETF Internet
Area IPoIB working group [2]. The IPoIB project [3] im-
plements this proposed standard as a layer-2 Linux network
driver. The primary responsibilities of the driver are per-
forming address resolution to map IPv4 and IPv6 addresses
to InfiniBand Unreliable Datagram (UD) address vectors,
the management of multicast membership, and the trans-
mission and reception of IPoIB protocol frames. Sockets
Direct Protocol (SDP) is another type of traffic over IBA
fabrics. Details about SDP are discussed in Section 2.3.

2.2 User-Level Sockets

With the advent of high performance interconnects like
Myrinet, GigaNet, Quadrics and InfiniBand, the communi-
cation overhead has shifted to the software message passing
system at the sender and the receiver side. Traditional com-
munication architecture based on TCP/IP are unable to take
advantage of these developments mainly due to the protocol
processing overhead which involve multiple copies, kernel
context switches and interrupts.
To avoid these processing overheads, researchers came up

with user level protocols like VIA, FM, GM, EMP. The
goal of user level protocols is to reduce the bottleneck in
the software message passing, by removing the kernel from
the critical path of communication. User Level Protocols
achieve high performance by gaining direct access to the
network interface in a protected manner. While User level
protocols are beneficial for new applications, existing ap-
plications written using the sockets interface, have not been
able to take advantage of these protocols. In order to allow
these applications achieve the better performance provided
by these networks, researchers came up with a number of
solutions including user level sockets.
The basic idea of a user level sockets is to create a pseudo

sockets-like interface to the application. This sockets layer
is designed to serve two purposes: a) to provide a smooth
transition to deploy existing application on to clusters con-
nected with high performance networks and b) to sustain
most of the performance provided by the high performance
protocols.

2.3 Sockets Direct Protocol (SDP)

Sockets Direct Protocol (SDP) is an IBA specific proto-
col defined by the Software Working Group (SWG) of the

3



InfiniBand Trade Association [9]. The design of SDP is
mainly based on two architectural goals:

� Maintain traditional sockets SOCK STREAM seman-
tics as commonly implemented over TCP/IP. Issues in-
clude graceful closing of connections, ability to use
TCP port space, IP addressing (IPv4, IPv6), Con-
necting/Accepting connect model, Out-of-Band data
(OOB) and support for common socket options

� Support for byte-streaming over a message passing
protocol, including kernel bypass data transfers and
zero-copy data transfers

The SDP specifications focuses specifically on the wire
protocol, finite state machine and packet semantics. Op-
erating system issues, etc can be implementation specific.
It is to be noted that SDP supports only SOCK STREAM
or Streaming sockets semantics and not SOCK DGRAM
(datagram) or other socket semantics.

2.3.1 SDP Overview

SDP’s Upper Layer Protocol (ULP) interface is a byte-
stream that is layered on top of InfiniBand’s Reliable Con-
nection (RC) message-oriented transfer model. The map-
ping of the byte stream protocol to InfiniBand message-
oriented semantics was designed to enable ULP data to
be transfered by one of two methods: through intermedi-
ate private buffers (Bcopy) or directly between ULP buffers
(Zcopy).
A mix of InfiniBand Send and RDMA mechanisms are

used to transfer ULP data. Zcopy uses RDMA reads or
writes, transferring data between RDMA buffers (which
typically belong to the ULP). Bcopy uses InfiniBand sends,
transferring data between send and receive private buffers.
SDP has two types of buffers:
Private Buffers: Used for transmission of all SDP mes-

sages and ULP data that is to be copied into the receive ULP
buffer. The Bcopy data transfer mechanism is used for this
traffic.
RDMA Buffers: Used when performing Zcopy data

transfer. ULP data is intended to be RDMAed directly from
the Data Source’s ULP buffer to the Data Sink’s ULP buffer.
An implementation dependent parameter defined as the

Bcopy Threshold is used to abstractly define the results of
the policy decision. For the Bcopy implementation, SDP re-
lies on a flow control mechanism similar to the TCP Sliding
Window protocol, i.e., the sender keeps sending data till the
window is full. When the application reads data from the
socket buffer, the data sink sends a control message back to
the data source updating its window size.
Figure 1 shows SDP in relation to the other Architecture

layers in InfiniBand.

SDP specifications also specify two additional control
messages known as “Buffer Availability Notification” mes-
sages.
Sink Avail Message: If the data sink has already posted a

receive buffer and the data source has not sent the data mes-
sage yet, the data sink does the following steps: (1) Regis-
ters the receive user-buffer (for large message reads) and (2)
Sends a “Sink Avail” message containing the receive buffer
handle to the source. The Data Source on a data transmit
call, uses this receive buffer handle to directly RDMA write
the data into the receive buffer.
Source Avail Message: If the data source has already

posted a send buffer and the available SDP window is not
large enough to contain the buffer, it does the following two
steps: (1) Registers the transmit user-buffer (for large mes-
sage sends) and (2) Send a “Source Avail” message con-
taining the transmit buffer handle to the data sink. The Data
Sink on a data receive call, uses this transmit buffer handle
to directly RDMA read the data into the receive buffer.

2.3.2 SDP Implementation

The current implementation of SDP follows most of the
specifications provided above. There are two major devi-
ations from the specifications in this implementation.

� Buffer Availability Notification: The current imple-
mentation does not support “Source Avail” and “Sink
Avail” messages.

� Zcopy implementation: The current implementation
does not support “Zcopy”. All data transfer is done
through the Bcopy mechanism. This limitation can
also be considered as part of the previous limitation,
since they are always used together.

3 Software Infrastructure

We have carried out the evaluation of SDP on two different
software infrastructures: Multi-Tier Data Center environ-
ment and the Parallel Virtual File System (PVFS). In this
section, we discuss each of these in more detail.

3.1 Multi-Tier Data Center environment

More and more people are using web interfaces for a wide
range of services. Scalability of these systems is a very im-
portant factor.
A typical Multi-tier Data-center has as its first tier, a clus-

ter of nodes known as the edge nodes. These nodes can be
thought of as switches (up to the 7th layer) providing load
balancing, security, caching etc. The main purpose of this
tier is to help increase the performance of the inner tiers.

4



SDPSDP

Network Network

Encoding
Link 

Media 
Access
Control

Media 
Access
Control

Link 
Encoding

SAR SAR

IBA IBA
OperationsOperations

Packet
Relay

M
A

C

M
A

C
L

in
k

ApplicationApplication

Network

Layer

Transport

Layer

Layer

Link

Layer
Physical 

Session
Layer

Sockets
Interface

Protocols
Upper Level

Packet
Relay

L
in

k
M

A
C

M
A

C

Flow

Ctrl

SDP Messages

Infini Band Messages

Subnet Routing

Inter Subnet Routing

End Node Switch Router

Signaling

End Node

Figure 1. Sockets Direct Protocol Architec-
ture (Courtesy: InfiniBand Specifications Vol-
ume I)

The next tier usually contains the web-servers and applica-
tion servers. These nodes apart from serving static content,
can fetch dynamic data from other sources and serve that
data in presentable form. The last tier of the Data-Center
is the database tier. It is used to store persistent data. This
tier is usually I/O intensive. Figure 2 shows a typical data-
center setup.

WAN

Tier 1
Storage

Servers Application Servers
Database Proxy 

Servers

Tier 0 Tier 2

Figure 2. A Typical 3-Tier Data-Center

A request from a client is received by the edge servers. If
this request can be serviced from the cache, it is. Other-
wise, it is forwarded to the Web/Application servers. Static
requests are serviced by the web servers by just returning
the requested file to the client via the edge server. This con-
tent may be cached at the edge server so that subsequent
requests to the same static content may be served from the
cache. The Application tier nodes handle the Dynamic con-
tent. The type of applications this tier includes range from
mail servers to directory services to ERP software. Any re-
quest that needs a value to be computed, searched, analyzed

or stored uses this tier. The back end database servers are
responsible for storing data persistently and responding to
queries. These nodes are connected to persistent storage
systems. Queries to the database systems can be anything
ranging from a simple seek of required data to performing
joins, aggregation and select operations on the data.

3.2 Parallel Virtual File System (PVFS)

Parallel Virtual File System (PVFS) [15] is one of the lead-
ing parallel file systems for Linux cluster systems today. It
was designed to meet the increasing I/O demands of paral-
lel applications in cluster systems. Figure 3 demonstrates a
typical PVFS environment. As demonstrated in the figure,
a number of nodes in the cluster system can be configured
as I/O servers and one of them (either an I/O server or an
different node) as a metadata manager. It is possible for a
node to host computations while serving as an I/O node.

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Node
I/O server

Node
I/O server

Node
I/O server

Data

Data

Data

Meta
Data

.

.

.
.
.
.

...

.

.

N
etw

ork

Metadata
Manager

Figure 3. A Typical PVFS Setup

PVFS achieves high performance by striping files across
a set of I/O server nodes allowing parallel accesses to the
data. It uses the native file system on the I/O servers to store
individual file stripes. An I/O daemon runs on each I/O
node and services requests from the compute nodes, in par-
ticular the read and write requests. Thus, data is transferred
directly between the I/O servers and the compute nodes.
A manager daemon runs on a metadata manager node.

It handles metadata operations involving file permissions,
truncation, file stripe characteristics, and so on. Metadata is
also stored on the local file system. The metadata manager
provides a cluster-wide consistent name space to applica-
tions. In PVFS, the metadata manager does not participate
in read/write operations.
PVFS supports a set of feature-rich interfaces, includ-

ing support for both contiguous and non-contiguous ac-
cesses to both memory and files [16]. PVFS can be used
with multiple APIs: a native API, the UNIX/POSIX API,

5



MPI-IO [27], and an array I/O interface called the Multi-
Dimensional Block Interface (MDBI). The presence of mul-
tiple popular interfaces contributes to the wide success of
PVFS in the industry.

4 SDP Micro-Benchmark Results

In this section, we compare the ideal case performance
achievable by SDP and the native sockets implementa-
tion over InfiniBand (IPoIB) using a number of micro-
benchmarks tests. In Sections 5 and 6, we study the per-
formance achieved by SDP and IPoIB in the Data-Center
and PVFS environments respectively.
For all our experiments we used 2 clusters whose descrip-

tions are as follows:
Cluster1: A cluster system consisting of 8 nodes built

around SuperMicro SUPER P4DL6 motherboards and GC
chipsets which include 64-bit 133 MHz PCI-X interfaces.
Each node has two Intel Xeon 2.4 GHz processors with a
512 kB L2 cache and a 400 MHz front side bus. The ma-
chines are connected with Mellanox InfiniHost MT23108
DualPort 4x HCA adapter through an InfiniScale MT43132
Eight 4x Port InfiniBand Switch. The Mellanox Infini-
Host HCA SDK version is thca-x86-0.2.0-build-001. The
adapter firmware version is fw-23108-rel-1 17 0000-rc12-
build-001. We used the Linux RedHat 7.2 operating system.
Cluster2: A cluster consisting of 16 Dell Precision 420

nodes connected by Fast Ethernet. Each node has two 1GHz
Pentium III processors, built around the Intel 840 chipset,
which has four 32-bit 33-MHz PCI slots. These nodes
are equipped with 512MB of SDRAM and 256K L2-level
cache.
We used Cluster 1 for all experiments in this section.

4.1 Latency and Bandwidth

Figure 4a shows the one-way latency achieved by IPoIB,
SDP and Send-Receive and RDMA Write communication
models of native VAPI for various message sizes. SDP
achieves a latency of around 28 � s for 2 byte messages
compared to a 30 � s achieved by IPoIB and 7 � s and 5.5 � s
achieved by the Send-Receive and RDMA communication
models of VAPI. Further, with increasing message sizes, the
difference between the latency achieved by SDP and that
achieved by IPoIB tends to increase.
Figure 4b shows the uni-directional bandwidth achieved

by IPoIB, SDP, VAPI Send-Receive and VAPI RDMA com-
munication models. SDP achieves a throughput of up
to 471Mbytes/s compared to a 169Mbytes/s achieved by
IPoIB and 825Mbytes/s and 820Mbytes/s achieved by the
Send-Receive and RDMA communication models of VAPI.
We see that SDP is able to transfer data at a much higher rate
as compared to IPoIB using a significantly lower portion of

the host CPU. This improvement in the throughput and CPU
is mainly attributed to the NIC offload of the transportation
and network layers in SDP unlike that of IPoIB.

4.2 Multi-Stream Bandwidth

In the Multi-Stream bandwidth test, we use two machines
and � threads on each machine. Each thread on one ma-
chine has a connection to exactly one thread on the other
machine. Thus, � connections are established between
these two machines. On each connection, the basic band-
width test is performed. The aggregate bandwidth achieved
by all the threads together within a period of time is calcu-
lated as the multi-stream bandwidth. Performance results
with different numbers of streams are shown in Figure 5.
We can see that SDP achieves a peak bandwidth of about
500Mbytes/s as compared to a 200Mbytes/s achieved by
IPoIB.
The CPU Utilization for a 16Kbyte message size is also

presented. The benchmark reveals that SDP can not only
achieve high aggregated bandwidth, but also reduce the
overall CPU utilization in most cases. The CPU utilization
shown in this figure is the total CPU seen by all the threads.

Bandwidth and CPU utilization on SDP vs IPoIB

0

100

200

300

400

500

600

1 2 4 8 16 32 64

Message Size

B
an

d
w

id
th

 
(M

b
yt

es
/s

)

0

40

80

120

160

200

%
 C

P
U

 u
ti

liz
at

io
n

16K SDP recv 16K SDP send 16K IPoIB recv 16K IPoIB send 8K IPoIB
8K SDP 16K IPoIB 16K SDP 64K IPoIB 64K SDP

Figure 5. Multi-Stream Bandwidth

4.3 Hot-Spot Test

In the Hot-Spot test, multiple clients communicate with
the same server. All clients and the server run on different
machines. The communication pattern between any client
and the server is the same pattern as in the basic latency
test. That is, the server needs to receive messages from all
the clients and sends messages to all clients as well. Thus,
a hot-spot occurs on the server side. Figure 6 shows the
one-way latency of IPoIB and SDP when communicating
with a hot-spot server, for different numbers of clients. The
server CPU utilization for a 16Kbyte message size is also

6



Latency and CPU utilization on SDP vs IPoIB

0
10
20
30
40
50
60
70

2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Message Size

T
im

e 
(u

s)

0

10

20

30

40

50

60

%
 C

P
U

 
u

ti
liz

at
io

n

IPoIB CPU SDP CPU IPoIB
SDP VAPI send/recv VAPI RDMA write

Bandwidth and CPU utilization on SDP vs IPoIB

0
100
200
300
400
500
600
700
800
900

4 16 64 256 1K 4K 16K 64K

Message Size

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

0

40

80

120

160

200

%
 C

P
U

 u
ti

liz
at

io
n

IPoIB CPU SDP CPU IPoIB
SDP VAPI send/recv VAPI RDMA write

Figure 4. Micro-Benchmarks: (a) Latency, (b) Bandwidth

presented. We can see that as SDP scales well with the
number of clients; its latency increasing by only a 138 � s
compared to 456 � s increase with IPoIB for a message size
of 16Kbytes. For the CPU utilization, we find that as num-
ber of nodes increase we get a tremendous improvement of
more than a factor of 2, in terms of CPU utilization for SDP
over IPoIB.

Hotspot Latency on SDP vs IPoIB

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7
Number of Nodes

T
im

e 
(u

s)

0
20
40
60
80
100
120
140
160
180
200

%
 C

P
U

 U
ti

liz
at

io
n

16K IPoIBCPU 16K SDP CPU 1K IPoIB 1K SDP
4K IPoIB 4K SDP 16K IPoIB 16K SDP

Figure 6. Hot-Spot Latency

4.4 Fan-in and Fan-out

In the Fan-in test, multiple clients from different nodes
stream data to the same server. Similarly, in the Fan-out
test, the same server streams data out to multiple clients.
Figures 7a and 7b show the aggregate bandwidth observed
by the server for different number of clients for the Fan-
in and Fan-out tests respectively. We can see that for the
Fan-in test, SDP reaches a peak aggregate throughput of
687Mbytes/s compared to a 237Mbytes/s of IPoIB. Simi-
larly, for the Fan-out test, SDP reaches a peak aggregate

throughput of 477Mbytes/s compared to a 175Mbytes/s of
IPoIB. The server CPU utilization for a 16Kbyte message
size is also presented. Both figures show similar trends in
CPU utilization for SDP and IPoIB as the previous tests i.e.,
SDP performs about 60-70% better than IPoIB in CPU re-
quirements.

5 Data-Center Performance Evaluation

In this section, we analyze the performance of a 3-tier data-
center environment over SDP while comparing it with the
performance of IPoIB. For all experiments in this section,
we used nodes in Cluster 1 (described in Section 4) for the
data-center tiers. For the client nodes, we used the nodes in
Cluster 2 for most experiments. We’ll notify the readers at
points in this paper when other nodes are used as clients.

5.1 Evaluation Methodology

In this section, we evaluate the amount of time taken by
each request sent by the client. We analyze the time taken
by the request in each tier of the data-center and nail down
the bottlenecks of the data-center environment. We also
show the potential benefits derivable from using SDP in this
environment.
We set up a three-tier data-center test-bed to determine the

performance characteristics of using SDP and IPoIB over
InfiniBand. The first tier consists of the front-end prox-
ies. For this we used the proxy module of Apache 1.3.12.
The second tier consists of the web server and PHP appli-
cation server modules of Apache, in order to service static
and dynamic requests respectively. The third tier consists
of the Database servers. For this, we used MySQL servers
with master and slave server components to serve dynamic
database queries. All the three tiers in the data-center reside
on an InfiniBand network; the clients are connected to the

7



Fanin: SDP vs IPoIB

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7

Number of Nodes

A
g

g
re

g
at

e 
B

an
d

w
id

th
 

(M
b

yt
es

/s
)

0

20

40

60

80

100

120

140

160

180

200

%
 C

P
U

 U
ti

liz
at

io
n

16KIPoIBCPU 16KSDPCPU 4K IPoIB 4K SDP
16K IPoIB 16K SDP 64K IPoIB 64 KSDP

Fanout: SDP vs IPoIB

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Number of Nodes

A
g

g
re

g
at

e 
B

an
d

w
id

th
 

(M
b

yt
es

/s
)

0

20

40

60

80

100

120

140

160

180

200

%
 C

P
U

 U
ti

liz
at

io
n

16KIPoIBCPU 16KSDPCPU 4K IPoIB 4K SDP
16KIPoIB 16K SDP 64K IPoIB 64KSDP

Figure 7. Micro-Benchmarks: (a) Fan-in, (b) Fan-out

data-center using a Fast Ethernet connection.
We evaluate the response time of the data-center using

Openload, an open source client workload generator which
sends requests (both static and dynamic) to the proxy at
the first tier. We use a 20000 request subset of the world-
cup trace [28] for our experiments. To generate requests
amounting to different average file sizes, we scale the file
sizes in the given trace linearly, while keeping the access
pattern intact.
In our experiments, we evaluate two scenarios: requests

from the client consisting of 100% static content (involving
only the proxy and the web server) and requests from the
client consisting of 100% dynamic content (involving all the
three tiers in the data-center). “Openload” allows firing a
mix of static and dynamic requests. However, the main aim
of this paper was the analysis of the performance achievable
by IPoIB and SDP. Hence, we only focused on these two
scenarios (100% static and 100% dynamic content) to avoid
dilution of this analysis with other aspects of the data-center
environment such as workload characteristics etc.
For evaluating the scenario with 100% static requests, we

used a test-bed with one proxy at the first tier and one web-
server at the second tier. The client would fire requests one
at a time, so as to evaluate the ideal case response time for
the request.
For evaluating the scenario with 100% dynamic page re-

quests, we set up the data center with the following con-
figuration: Tier 1 consists of 3 Proxies, Tier 2 contains 2
servers which act as both web servers as well as application
servers (running PHP) and Tier 3 with 3 MySQL Database
Servers (1 Master and 2 Slave Servers).
The typical access pattern used for workload generation

followed the transactional web benchmark TPC-W [12] as
shown in Table 1. The benchmark is based on a business
model that portrays the scenario of a whole-sale supplier.
Some of the activities include entering, querying and check-

ing the status of orders, monitoring various products by cat-
egory, suppliers, region and territories and recording pay-
ments. We used this distribution for generating our dynamic
request access pattern.
In the data-center set up for dynamic requests, we create a

database consisting of a number of tables with varying sizes,
attributes and relationship integrity based on the TPC-W
specifications (Table 2). We also generate dynamic pages
(PHP) with database accesses and updates. At the client
end, we create a trace file with a series of database queries
that consist of a mix of dynamic requests, some of which
might be cached by the database server for a specified pe-
riod of time.

Web Interaction Shopping Mix

Browse 80%

Home 16%
New Products 5%
Best Sellers 5%

Product Details 17%
Search Requests 20%
Search Results 17%

Orders 20%

Shopping Cart 11.6%
Customer Registration 3%

Order Confirmation 3%
Cancel Orders 1%

Table 1. TPC-W Web traffic pattern

8



Table Name Cardinality Typical Row Length

Customers 1890 760
Orders 1531 220

Products 100 150
Categories 10 100
Suppliers 50 450
Territories 65 90

Table 2. TPC-W Database Specifications

5.2 Experimental Results

5.2.1 Analysis of Static Requests

We used a 20,000 request subset of the worldcup trace to
come up with our base trace file. The weighted average of
the file size was calculated as the ratio of the total amount
of data requested in the trace file to the total number of re-
quests. So, if the trace file contained 4 entries, with 3 of
them requesting file “f1” of size “s1” and one of them re-
questing file “f2” of size “s2”, the weighted average would
be (3s1 + s2)/4.
As discussed earlier, to generate multiple traces with dif-

ferent average file sizes, we scale each file size with the
ratio of the requested average file size and the current file
size. For example, if the weighted average of the current
trace is “a1” bytes and the requested average is “a2” bytes,
the size of each file in the trace is increased (a2/a1) times.
Figure 8 shows the response times seen by the client for

various average file sizes requested over IPoIB and SDP. As
seen in the figure, the benefit obtained by SDP over IPoIB
is quite minimal. In order to analyze the reason for this, we
found the break-up of this response time in the proxy and
web servers.

0

50

100

150

200

250

300

350

400

450

32K 64K 128k 256k 512k 1024k 2048k 4096k

Average File Size Requested

T
im

e 
(m

s)

IPoIB SDP

Figure 8. Client over Fast Ethernet: Response
Time

Figure 9 shows the break-up of the response time for av-
erage file size requests of 64K and 128K. The “Web-Server
Time” shown in the graph is the time duration for the back-
end web-server to respond to the file request from the proxy.
The “Proxy-Time” is the difference between the times spent
by the proxy (from the time it gets the request to the time
it sends back the response) and the time spent by the web-
server. This value denotes the actual overhead of the proxy
tier in the entire response time seen by the client. Similarly,
the “Client-Time” is the difference between the times seen
by the client and by the proxy.
We see that, the total response time perceived by the client

is similar for both IPoIB and SDP. However, we see some
benefit in the time taken at the web server when the commu-
nication within the the data-center is over SDP as compared
to IPoIB. We analyzed the web server response times for
various file sizes for both IPoIB and SDP.

0

2

4

6

8

10

12

14

16

64K-IPoIB 64K-SDP 128K-IPoIB 128K-SDP

Average File Size-Protocol

T
im

e 
(m

s)

Web Server Time
Proxy Time
Client Time

Figure 9. Response Time Split Up for Client
over Fast Ethernet

Figure 10 shows the web server request servicing time for
varying average file sizes. We observe that the web server
over SDP is consistently better than IPoIB, implying that the
web server over SDP can deliver better throughput. Further,
this also implies that SDP can handle a given server load
with lesser number of back-end web-servers as compared
to an IPoIB based implementation due to the reduced “per-
request-time” spent at the server.
Since the client connects to the data-center over fast ether-

net, a possible reason for the comparability in the response
times (of IPoIB and SDP) might be that the slow intercon-
nect becomes the bottleneck for the transfer of the response
message, i.e., the client is unable to accept the response at
the rate at which the server is able to send the data.
To validate this hypothesis, we conducted experiments us-

ing our data-center test-bed with faster clients. Such clients
may themselves be on high speed interconnects such as In-

9



finiBand or may become available due to Internet proxies,
ISPs etc.

0

20

40

60

80

100

120

140

160

180

200

32K 64K 128k 256k 512k 1024k 2048k

Average File Size

T
im

e 
(m

s)

Server Time: IPoIB (Slow Client)

Server Time: SDP( Slow Client)

Figure 10. Response Times at the Web Server
Tier for Slow Client

Figure 11 shows the client response times that is achiev-
able using SDP and IPoIB in this new scenario which we
emulated by having the clients request files over IPoIB (us-
ing InfiniBand). This figure clearly shows a better perfor-
mance for SDP, as compared to IPoIB for large file transfers
above 128K. To understand the lack of performance bene-
fits for small files, we took a similar split up of the response
time perceived by the client.
Figure 12 shows the splitup of the response time seen by

the faster clients. We observe the same trend as seen with
clients over Fast Ethernet. The “web-server time” reduces
even in this scenario (Figure 13). However, it’s quickly ap-
parent from the figure that the time taken at the proxy is
higher for SDP as compared to IPoIB. For a clearer under-
standing of this observation, we further evaluated the re-
sponse time within the data-center by further breaking down
the time taken by the proxy in servicing the request.
Figures 14a and 14b show a comprehensive breakup of the

time spent at the proxy over IPoIB and SDP respectively.
A comparison of this splitup for SDP with IPoIB shows a
significant difference in the time for the the proxy to con-
nect to the back-end server. This high connection time of
the current SDP implementation, (about 500 � s higher than
IPoIB), makes the data-transfer related benefits of SDP im-
perceivable for low file size transfers.
The current implementation of SDP has inherent lower

level function calls during the process of connection estab-
lishment, which form a significant portion of the connection
latency. In order to hide this connection time overhead, re-
searchers are proposing a number of techniques including
persistent connections from the proxy to the back-end, al-
lowing free connected Queue Pair (QP) pools, etc. Further,
since this issue of connection setup time is completely im-

0

5

10

15

20

25

30

32K 64K 128k 256k 512k 1024k 2048k

Requested File Size

T
im

e 
(m

s)

IPoIB

SDP

Figure 11. Fast Client Response Time

0

1

2

3

4

5

6

7

8

64K-IPoIB 64K-SDP 128K-IPoIB 128K-SDP

Requested File Size -Protocol

T
im

e 
(m

s)

Web Server Time
Proxy Time
Client Time

Figure 12. Response Time Split Up Times for
Fast Clients

0

5

10

15

20

25

32K 64K 128k 256k 512k 1024k 2048k

Average File Size

T
im

e 
(m

s)

Server Time IPoIB (Fast Client)

Server Time: SDP (Fast Client)

Figure 13. Response Times at the Web Server
Tier for Fast Client

10



Init + Qtime
9%

Request Read
3%

Core Processing
12%

URL Manipulation
1%

Back-end Connect
14%

Request Write
2%

Reply Read
15%

Cache Update
3%

Response Write
38%

Proxy End
3%

Init + Qtime
8%

Request Read
3%

Core Processing
10%

URL Manipulation
1%

Back-end Connect
32%

Request Write
2%

Reply Read
14%

Cache Update
2%

Response Write
25%

Proxy End
3%

Figure 14. Proxy Split-up times: (a) IPoIB, (b) SDP

plementation specific, we tried to estimate the (projected)
performance SDP can provide if the connection time bottle-
neck was resolved.
Figure 15 shows the projected response times of the fast

client, without the connection time overhead. Assuming a
future implementation of SDP with lower connection time,
we see that SDP is able to give significant response time
benefits as compared to IPoIB even for small file size trans-
fers.

0

5

10

15

20

25

30

32K 64K 128k 256k 512k 1024k 2048k

Requested File Size 

T
im

e 
(m

s)

IPoIB
SDP

Figure 15. Fast Client Response Time without
Connection Time

5.2.2 Analysis of Dynamic Requests

Figure 16 shows the processing and communication over-
head seen by each of the tiers across various sets of dynamic
requests over IPoIB and SDP. There is no significant benefit
from SDP over IPoIB in terms of the response time. How-

ever, the interesting observation is that, consistently across
all mixtures, the back-end (MySQL) time consumes most
of the request processing time.

Timing splitup for dynamic content in a 3 tier architecure

0

2

4

6

8

10

12

14

IPoIB
100%
Reads

SDP 100%
Reads

IPoIB 80%
Reads

SDP 80%
Reads

IPoIB 50%
Reads

SDP 50%
Reads

Client Proxy PHP MySQL

Figure 16. Timing Splitup for dynamic content
(Slow Client)

When we move from 100% reads case to 80% reads to
50% reads, the response time seen by the client decreases.
For SDP, the service time of the back-end database server is
always less than IPoIB. This is similar to the trend observed
with Web-Servers for static file requests.
To evaluate the impact of Fast Ethernet on the lack of per-

formance benefits for SDP, we have carried out this test us-
ing a fast client (emulated over IPoIB as in the static case).
Figure 17 shows the processing and communication over-
head seen by each of the tiers.
It can be seen in the figure that there is little benefit for

11



Timing splitup for dynamic requests (Fast Client)

0

2

4

6

8

10

12

IPoIB
100%
Reads

SDP 100%
Reads

IPoIB 80%
Reads

SDP 80%
Reads

IPoIB 50%
Reads

SDP 50%
Reads

Client Proxy PHP MySQL

Figure 17. Timing Splitup for dynamic content
(Fast Client)

SDP over IPoIB even for faster clients. This lack of bene-
fit is attributed to the low message transfers involved in dy-
namic requests, which get shadowed by the high connection
time for this implementation of SDP.

6 PVFS Performance Evaluation

In this section, we compare the performance of the Parallel
Virtual File System (PVFS) over IPoIB and SDP with the
original PVFS implementation [15]. We also compare the
performance of PVFS on the above two protocols with the
performance of our previous implementation of PVFS over
InfiniBand [30]. All experiments in this section have been
performed on Cluster 1 (mentioned in Section 4).

6.1 Evaluation Methodology

Figure 4b shows that both IPoIB and SDP can offer a band-
width of several hundred bytes. The native InfiniBand in-
terface (VAPI) [5] offers an even higher bandwidth of up
to 830 Mbytes per second. There is a large difference be-
tween the bandwidth realized by different protocols over the
InfiniBand network and that which can be obtained on a
disk-based file system in most cluster systems. However,
applications can still benefit from fast networks for many
reasons in spite of this disparity. Data is frequently in server
memory due to file caching and read-ahead when a request
arrives. Also, in large disk array systems, the aggregate
performance of many disks can approach network speeds.
Caches on disk arrays and on individual disks also serve
to speed up transfers. Therefore, we designed two types
of experiments. The first type of experiments are based on
a memory-resident file system, ramfs. These tests are de-
signed to stress the network data transfer independent of

any disk activity. Results of these tests are representative
of workloads with sequential I/O on large disk arrays or
random-access loads on servers which are capable of de-
livering data at network speeds. The second type of exper-
iments are based on a regular disk file system, ext3fs. Re-
sults of these tests are representative of disk-bounded work-
loads. In these tests, we focus on how the difference in CPU
utilization for these protocols can affect the PVFS perfor-
mance.

6.2 Experimental Results

6.2.1 PVFS Concurrent Read and Write on ramfs

We used the test program, pvfs-test (included in the PVFS
release package), to measure the concurrent read and
write performance. We followed the same test method
as described in [15], i.e., each compute node simultane-
ously reads or writes a single contiguous region of size� � Mbytes, where � is the number of I/O nodes in use.
For example, if the number of I/O nodes is 4, the request
size is � Mbytes. Each compute node accesses 2 Mbytes
data from each I/O node.
Figure 18 shows the read performance with the original

implementation of PVFS over IPoIB and SDP and an im-
plementation of PVFS over VAPI [30], previously done
by our group. The performance of PVFS over SDP de-
picts the peak performance one can achieve without mak-
ing any changes to the PVFS implementation. On the
other hand, PVFS over VAPI depicts the peak performance
achievable by PVFS over InfiniBand. We name these three
cases using the legends IPoIB, SDP, and VAPI, respectively.
With IPoIB, the bandwidth increases at a rate of approxi-
mately 140 Mbytes/s with each additional I/O node when
there are sufficient compute nodes to carry the load. With
SDP, the bandwidth increases at a rate of approximately
310 Mbytes/s with each additional I/O node. Note that in
our 8-node InfiniBand cluster system (Cluster 1), we can-
not place the PVFS manager process and the I/O server
process on the same physical node since the current imple-
mentation of SDP does not support socket-based commu-
nication between two processes on the same physical node.
Therefore, we have one compute node lesser in all experi-
ments with SDP. The PVFS implementation on VAPI offers
a bandwidth increase of roughly 380 Mbytes/s with each
additional I/O node.
Figure 19 shows the write performance of PVFS over

IPoIB, SDP and VAPI. With IPoIB, the bandwidth increases
at a rate of approximately 130 Mbytes/s with each addi-
tional I/O node when there are sufficient compute nodes
to carry the load. With SDP, the bandwidth increases at a
rate of approximately 210 Mbytes/s with each additional
I/O node. The PVFS implementation on VAPI offers a
bandwidth increase of roughly 310 Mbytes/s with each ad-

12



ditional I/O node.
Overall, compared to PVFS on IPoIB, PVFS on SDP has

a factor of 2.4 improvement for concurrent reads and a fac-
tor of 1.5 improvement for concurrent writes. The cost of
writes on ramfs is higher than that of reads, resulting in a
lesser improvement for SDP as compared to IPoIB. Com-
pared to PVFS over VAPI, PVFS over SDP has about 35%
degradation. This degradation is mainly attributed to the
copies on the sender and the receiver sides in the current
implementation of SDP. With a future zero-copy implemen-
tation of SDP, this gap is expected to be further reduced.

6.2.2 PVFS Concurrent Write on ext3fs

We also performed the above mentioned test on a disk-
based file system, ext3fs on a Seagate ST340016A, ATA
100 40 GB disk. The write bandwidth for this disk is 25
Mbytes/s. In this test, the number of I/O nodes are fixed
at three, and the number of compute nodes four. We chose
PVFS write with sync to avoid any cache effects. Figure 20
shows the performance of PVFS write with sync with the
original implementation on IPoIB and SDP and an imple-
mentation of PVFS over VAPI, respectively. It can be seen
that, although each I/O server is disk-bound, a significant
performance improvement of 9% is achieved by PVFS over
SDP as compared to PVFS over IPoIB. This is because the
lower overhead of SDP as shown in Figure 4b leaves more
CPU cycles free for I/O servers to process concurrent re-
quests.

7 Concluding Remarks and Future Work

The advent of 10-Gigabit networks such as InfiniBand has
challenged the performance achievable by the traditional
TCP/IP stack. Though InfiniBand has been able to support
low latency and high bandwidth, traditional sockets based
applications have not been able to take advantage of this;
this is mainly attributed to the multiple copies and kernel
context switches associated with the traditional kernel based
TCP/IP protocol stack.
The Sockets Direct Protocol had been proposed recently

in order to enable traditional sockets based applications to
take advantage of the enhanced features provided by the
InfiniBand Architecture including Remote Direct Memory
Access, Solicited Events, etc. The main idea of this proto-
col is to provide a pseudo sockets-like API which internally
utilizes InfiniBand’s advanced features to provide a signifi-
cantly higher performance for sockets based applications.
In this paper, we study the benefits and limitations of an

implementation of SDP. We first analyze the performance of
SDP based on a detailed suite of micro-benchmarks. Next,
we evaluate it on two different real application domains:
(1) A multi-tier Data-Center environment and (2) A Paral-

0

100

200

300

400

500

1 2 3 4 5 6 7

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Read Performance with One IOD

IBIP
SDP
VAPI

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Read Performance with Two IODs

IBIP
SDP
VAPI

0

200

400

600

800

1000

1200

1 2 3 4 5

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Read Performance with Three IODs

IBIP
SDP
VAPI

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Read Performance with Four IODs

IBIP
SDP
VAPI

Figure 18. PVFS Read Performance Compari-
son.

13



0

100

200

300

400

500

1 2 3 4 5 6 7

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Write Performance with One IOD

IBIP
SDP
VAPI

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Write Performance with Two IODs

IBIP
SDP
VAPI

0

200

400

600

800

1000

1200

1 2 3 4 5

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Write Performance with Three IODs

IBIP
SDP
VAPI

0

200

400

600

800

1000

1200

1400

1 2 3 4

A
gg

re
ga

te
 B

an
dw

id
th

 (
M

B
yt

es
/s

ec
)

Number of Compute Nodes

PVFS Write Performance with Four IODs

IBIP
SDP
VAPI

Figure 19. PVFS Write Performance Compari-
son.

60

65

70

75

IPoIB SDP VAPI

A
gg

ra
ga

te
 B

an
dw

id
th

 (
M

by
te

s/
s)

  
 

 Figure 20. Performance of PVFS Write with
Sync on ext3fs.

lel Virtual File System (PVFS). Our micro-benchmark re-
sults show that SDP is able to provide up to 2.7 times better
bandwidth as compared to the native sockets implementa-
tion over InfiniBand (IPoIB) and significantly better latency
for large message sizes. Our experimental results also show
that SDP is able to achieve a considerably higher perfor-
mance (improvement of up to 2.4 times) as compared to
IPoIB in the PVFS environment. In the data-center envi-
ronment, SDP outperforms IPoIB for large file transfers in-
spite of currently being limited by a high connection setup
time. However, this limitation is entirely implementation
specific and as the InfiniBand software and hardware prod-
ucts are rapidly maturing, we expect this limitation to be
overcome rapidly. Based on this, we have shown that the
projected performance for SDP can perform significantly
better than IPoIB in all cases. These results provide pro-
found insights into the efficiencies and bottlenecks associ-
ated with High Performance socket layers for 10-Gigabit
networks. These insights have strong implications on the
design and implementation of the next generation high per-
formance applications.
We are currently working in two broad aspects with re-

spect to SDP. Firstly, the connection time is a huge require-
ment for environments such as the Data-Center, where con-
nections are established and tore down dynamically. We are
currently looking at using dynamic registered buffer pools
and connected Queue Pair (QP) pools to optimize SDP for
such applications. The second direction we are currently
working on is Power-Law networks. It has been shown that
despite its apparent randomness, the Internet in reality tends
to form a number of highly connected clusters together with
a number of other nodes connected randomly. These clus-
ters form central hubs for most of the data-transfer; more
interestingly, most of these data transfers are intra-cluster
communications, forming an ideal scenario for utilizing the
capabilities of SDP.

14



8 Acknowledgments

We would like to thank Gali Zisman, Andy Hillaker, Erez
Strauss, Yaron Haviv and Yaron Segev from Voltaire for
providing us with the details of their SDP implementation.
We would also like to thank Adam Wagner for all the help
he provided with the Data-Center component of this pa-
per. Lastly, we would like to thank the PVFS team at the
Argonne National Laboratory and Clemson University for
giving us access to the latest version of the PVFS imple-
mentation and for providing us with crucial insights into
the implementation details.

References

[1] IBAL: InfiniBand Linux SourceForge Project.
http://infiniband.sourceforge.net/
IAL/Access/IBAL.

[2] IP over InfiniBand Working Group. http://
www.ietf.org/html.charters/ipoib-
charter.html.

[3] IPoIB: InfiniBand Linux SourceForge Project.
http://infiniband.sourceforge.net/
NW/IPoIB/overview.htm.

[4] M-VIA: A High Performance Modular VIA for Linux.

[5] Mellanox Technologies.
http://www.mellanox.com.

[6] Sockets Direct Protocol.
http://www.infinibandta.com.

[7] The DAT Collaborative. http://www.
datcollaborative.org/udapl.html.

[8] The DAT Collaborative. http://www.
datcollaborative.org/kdapl.html.

[9] Infiniband Trade Association. http://www.
infinibandta.org.

[10] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High
Performance User Level Sockets over Gigabit Ether-
net. In Cluster Computing, September 2002.

[11] Pavan Balaji, Jiesheng Wu, Tahsin Kurc, Umit
Catalyurek, Dhabaleswar K. Panda, and Joel Saltz.
Impact of High Performance Sockets on Data Inten-
sive Applications. In the Proceedings of the IEEE
International Conference on High Performance Dis-
tributed Computing (HPDC 2003), June 2003.

[12] TPC-W Benchmark. http://www.tpc.org.

[13] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[14] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Inter-
face Architecture. In Proceedings of Supercomputing,
1998.

[15] Philip H. Carns, Walter B. Ligon III, Robert B. Ross,
and Rajeev Thakur. PVFS: A Parallel File System
for Linux Clusters. In Proceedings of the 4th Annual
Linux Showcase and Conference, pages 317–327, At-
lanta, GA, 2000. USENIX Association.

[16] Avery Ching, Alok Choudhary, Wei keng Liao, Robert
Ross, and William Gropp. Noncontiguous I/O through
PVFS. In Proceedings of the IEEE International Con-
ference on Cluster Computing, 2002.

[17] GigaNet Corporations. cLAN for Linux: Software
Users’ Guide.

[18] Myricom Corporations. The GM Message Passing
System.

[19] H. Frazier and H. Johnson. Gigabit Ethernet: From
100 to 1000Mbps.

[20] http://www.top500.org. Top 500 supercomputer sites.

[21] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-
level Sockets Layer over Virtual Interface Architec-
ture. In Proceedings of Cluster Computing, 2001.

[22] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM). In Proceedings of Supercomputing, 1995.

[23] H. V. Shah, C. Pu, and R. S. Madukkarumukumana.
High Performance Sockets and RPC over Virtual In-
terface (VI) Architecture. In Proceedings of CANPC
workshop, 1999.

[24] Piyush Shivam, Pete Wyckoff, and D.K. Panda. EMP:
Zero-copy OS-bypass NIC-driven Gigabit Ethernet
Message Passing. In Proceedings of Supercomputing,
2001.

[25] Piyush Shivam, Pete Wyckoff, and D.K. Panda. Can
User-Level protocols take advantage of Multi-CPU
NICs? In Proceedings of International Parallel and
Distributed Processing Symposium, 2002.

[26] W. Richard Stevens. TCP/IP Illustrated, Volume I: The
Protocols. Addison Wesley, 2nd edition, 2000.

15



[27] Rajeev Thakur, William Gropp, and Ewing Lusk. On
Implementing MPI-IO Portably and with High Perfor-
mance. In Proceedings of the 6th Workshop on I/O in
Parallel and Distributed Systems, pages 23–32. ACM
Press, May 1999.

[28] Internet Traffic Archive Public Tools.
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[29] Gary R. Wright and W. Richard Stevens. TCP/IP Il-
lustrated, Volume II: The Implementation. Addison
Wesley, 2nd edition, 2000.

[30] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K.
Panda. PVFS over InfiniBand: Design and Perfor-
mance Evaluation. In Proceedings of the 2003 In-
ternational Conference on Parallel Processing (ICPP
03), Oct. 2003.

16


