
Components-First Approaches to CS1/CS2:
Principles and Practice

Emily Howe, Matthew Thornton, and Bruce W. Weide
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210 USA

+1-614-292-1517
{howe,thorntom,weide}@cis.ohio-state.edu

Technical Report OSU-CISRC-9/03-TR49

September 2003

Copyright © by the authors. All rights reserved.

Components-First Approaches to CS1/CS2:
Principles and Practice

Emily Howe, Matthew Thornton, and Bruce W. Weide
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210 USA

+1-614-292-1517
{howe,thorntom,weide}@cis.ohio-state.edu

ABSTRACT
Among the many ways to focus CS1/CS2 content, two have
been published that emphasize the concepts of component-
based software engineering. Courses based on these two in-
stances of a "components-first" approach are remarkably simi-
lar in several crucial respectsÑwhich is surprising because
they were developed independently and with very different
objectives. Indeed, the two versions are based on virtually the
same principles for content organization, and they share many
common features that are unusual for CS1/CS2. Yet, they are
notably different in other ways. Detailed analysis of these
similarities and differences suggests that it might be possible
to transfer some of their claimed and documented advantages
to other approaches within the programming-first paradigm for
CS1/CS2, by rearranging the content of such courses in accord
with the underlying principles of the components-first ap-
proach.Ê

Categories and Subject Descriptors
K.3.2. [Computer and Information Science Education]: Com-
puter science education, Curriculum.

General Terms
Algorithms, Design, Languages.

Keywords
Component-based software, components-first, CS1, CS2, ob-
jects-first, programming-first, software components.

1. INTRODUCTION
How should we teach CS1/CS2? ACM's Computing Curricula
2001 describes three substantially different approaches to
implementing a programming-first paradigm: imperative-first,
functional-first, and objects-first [3]. In this paper, we iden-
tify, compare, and contrast two instances of a fourth variant of
the programming-first paradigm: components-first. This

approach has been developed independently by two different
groups with different objectives. Despite resulting from com-
pletely separate efforts, the two versions largely share the same
set of principles that dictate how course content should be
organized, and their developers claim similar advantages from
this non-traditional organization.

The contributions of this paper are in noting the surprisingly
close relationship between the results of these two independ-
ent efforts, in highlighting some of the most important simi-
larities and differences with each other and with (especially)
the objects-first approach, and in demonstrating thereby that
the components-first approach is a distinct approach within
the programming-first paradigm. Furthermore, we suggest how
CS1/CS2 courses following the other three programming-first
approaches might benefit from some content reorganization
based on principles of the components-first approach.

2. THE COMPONENTS-FIRST APPROACH
Component-based software engineering (CBSE) is the process
of developing a software system, given a significant library of
existing software components that are available for "reuse,"
with the expectation that a substantial part of the resulting
system will consist of these components [22]. A closely re-
lated notion, software component engineering, involves de-
sign and implementation of a harmonious component library,
such as the Standard Template Library (STL) for C++ [19] and
the java.util library for Java [4], to facilitate the practice of
component-based software engineering by clients of the com-
ponents.

The premise of the components-first approach to CS1/CS2 i s
that the availability of non-trivial software components sig-
nificantly affects how professionals think about building
software. Students might benefit from learning some of these
ways of thinking early in the CS curriculum. Indeed, the
authors of both versions of components-first note that what
made their new courses both viable and necessary was the
recent availability of modern component libraries.

Just as CBSE is noticeably different from traditional software
engineering, we will see that the components-first approach to
CS1/CS2 is noticeably different from the standard program-
ming-first approaches. Historically, component-based soft-
ware is closely related to object-oriented software. So, among
other things, it is natural to ask whether the components-first
approach is really so different from the objects-first approach.
This will be addressed later, but first it is necessary to intro-
duce the two courses of study that follows the components-
first approach.

2.1 Koenig-Moo Version ("K-M")
One version of the components-first approach has been devel-
oped by Andrew Koenig and Barbara Moo of AT&T, who wrote
Accelerated C++: Practical Programming by Example [7] after
teaching a short course on C++ at Stanford. In a series of arti-
cles in the Journal of Object-Oriented Programming, the
authors explain the rationale for the organization of their
material [8-16]. Their primary objective was not to teach the
principles of CBSE, but to teach the C++ language.

The course content organization is based on three main princi-
ples that have little to do with C++ itself. Nonetheless, the
authors observed that students learned faster and were less
frustrated by C++ [7]. These principles are [8]:

• Explain how to use language and library facilities be-
fore explaining how they work.

• Motivate each facility with a problem that uses that fa-
cility as an integral part of its solution.

• Present the most useful ideas first.

Course content is divided roughly in half. The first half in-
cludes how to use the STL and how to apply it to various prob-
lems. The second half introduces implementation-level prob-
lems: how to define new types (classes), how to use pointers,
and inheritance. The book is used at several universities, and
is on the recommended reading list at some others.

There is no published systematic evaluation of outcomes when
using this material, though in the JOOP paper series Koenig
and Moo do provide many anecdotes about their experience.

2.2 RSRG Version ("RSRG")
The other version of the components-first approach has been
developed by the Reusable Software Research Group (RSRG) at
The Ohio State University. The philosophy and some features
of this CS1/CS2 sequence have been described over the past
several years, primarily at SIGCSE symposia [17,18,1,2]. The
objective here was to teach CBSE concepts early in the CS
curriculum, with the programming language serving not as the
focus but merely as the delivery vehicle. The principles under-
lying this effort are not stated so succinctly as those above,
but from [17,18] it is clear that all three are at work here, too.

Course content is divided roughly in half, as in the K-M ver-
sion, and along precisely the same lines. However, the techni-
cal basis for this version is RSRG's research work on
RESOLVE, a framework for writing reusable, component-based
software [20]. The RESOLVE research language includes a
mathematical syntax for writing formal specifications of com-
ponents (which is used starting in CS1), as well as constructs
for component-based software implementation. There are also
language-specific "disciplines" for Ada and C++. The
RESOLVE/C++ discipline and component library is used in
CS1/CS2 courses at two universities, and various aspects of
this version appear primarily in upper-division software engi-
neering courses at some others.

The authors report the results of systematic studies showing
significant changes in student attitudes about various soft-
ware engineering issues [21]. For example, students believed
significantly more strongly after CS1/CS2 than before that "it
is possible to show that a software component works without
actually running it on the computer". Moreover, examination

results showed that most CS1 students learned to understand
formal specifications up to a few lines long without prerequi-
site courses in discrete math.

3. THE (SURPRISING) SIMILARITIES
Both K-M and RSRG begin much like other programming-first
courses. There is, of course, a good reason for this: students
must know how to use certain basic programming language
features in order to write even the first interesting program that
involves components. Both start with simple example pro-
grams involving output, input, if-then-else statements,
while loops, and the built-in scalar types, and eventually use
C++ classes and class templates as components.

Other similarities between K-M and RSRG that are more inter-
esting because they are not evident in the other programming-
first approaches (especially the objects-first approach). Our
observations about these features, in the remainder of this
section, are based on examination of numerous other CS1/CS2
textbooks and syllabi, as well as on informal discussions with
those who teach such courses.

3.1 Client-View-First Pedagogy
The single most significant feature of the components-first
approach is that the behavior of a component is understood
through its interface, not by looking at source code for an
implementation. This leads to many similarities between the
two components-first versions in their treatment of traditional
CS1/CS2 topics and in content organization, and accounts for
many differences with standard programming-first treatments.

A typical objects-first CS1/CS2 course introduces an abstrac-
tion such as a stack, perhaps discusses how it can be used in an
application, and then discusses how to implement it. Students
are alternately clients and implementers of classesÑbut the
client role persists for only a page or two of the textbook and
an hour or two of class time.

Students using a components-first approach act as component
clients first and component implementers second. In both
components-first versions, students are clients for the entire
first half of the course and implementers for the second half.
Hence, for quite some time students use classes as components
to solve application problems, without learning how to im-
plement those or similar classes. This organization is in-
tended to reinforce the role distinction in the minds of stu-
dents and to make them conscious of the importance of ab-
straction in explaining component behavior to clients.

3.2 Value Semantics
In all objects-first courses that we are aware of, either the pro-
gramming language or the inclination of the textbook author
or instructor dictates that students rather quickly become
aware of the reference-value distinction: some variables hold
references to objects, and others hold values. This distinction
raises deep technical issues that complicate life for students
[10] and software professionals [23] alike.

One advantage of using C++ as a language vehicle (as opposed
to, say, Java) is that it is possible to program serious software
without making a reference/value distinction. In such an
approach, there are only values. K-M achieves this by using
the STL, whose developers advise that the default assignment
operator and copy constructor should be overridden to make
"deep" copies. Indeed, C++ struct s are introduced early

because struct s (effectively, records) behave, by default, like
values. The RSRG version obtains value semantics in a differ-
ent way. It prohibits the use of assignment and copy construc-
tion for user-defined types (by making these private) and
replaces data movement using assignment by data movement
using swapping [5,6].

3.3 Pointers
By insisting on clean abstractions for the client view, both
components-first versions delay the introduction of pointer-
based data structure representations until much later than a
traditional CS1/CS2 course. In fact, references and pointers do
not arise until students become component implementers in
the second half, and then only after layered representations are
introduced (i.e., those where the data representation for a new
component consists entirely of previously-defined compo-
nents rather than direct low-level pointer-based structures).

This organization is a direct and natural consequence of think-
ing in terms of component-based software. Although it i s
possible to make the conscious decision to introduce layering
of classes on top of other classes before exploring low-level
data structures, to our knowledge no versions of the objects-
first approach actually do so. Similarly, the other program-
ming-first approaches typically do not attempt to keep
pointer-based data structures "buried" inside a few low-level
components. This is unfortunate for two reasons. First, these
concepts are notoriously difficult for many students to com-
prehend, and even for even professional programmers to "get
right" without substantial debugging effort. Second, and more
important, software professionals who use modern component
libraries such as the STL and java.util rarely need to code their
own linked lists or binary trees. These staples are already
coded and encapsulated inside a few standard components.

3.4 Loop Invariants
With few exceptions, traditional CS1/CS2 courses do not
discuss loop invariants at all, or they treat them as curiosities.
We are not aware of any version of the objects-first approach in
which loop invariants are used consistently.

By contrast, both components-first versions introduce loop
invariants early, while students are still in client-mode, and
continue to use them thereafter. The availability of clean
abstractions, which are needed for client understanding and
reasoning about component behavior, makes this possible [1].
If loop invariants are used only for programs with integers,
then students may become convinced that they are suitable
only for "toy" programs. But if they are used with input
streams and vectors (as in K-M) or with queues, maps, and
other components (as in RSRG), then it becomes more plausi-
ble that loop invariants are a powerful technique for reasoning
about "real" programs, even if students do not practice writing
loop invariants themselves.

3.5 Arrays and Other Data Types
Typically, the first moderately complex data type that students
encounter in the other programming-first approaches is the
array. Part of the reason seems to be that arrays are built-in
types in the most commonly used programming languages.
(In a functional-first approach, lists usually play the same role,
and apparently for the same reason.) If a course seeks to teach
a language and arrays are a prominent language feature, then i t
is quite natural to introduce examples that illustrate it. How-

ever, the early introduction of arrays in the objects-first ap-
proach is problematic. Because arrays are built-in types rather
than class types (in C++ and Java), syntactic sugar distin-
guishes arrays from all the other complex types that come
later. Even with this linguistic support, though, arrays are far
from simple. Arrays are parameterized both by other types and
by integer sizes or bounds. Moreover, arrays are often pre-
sented in terms of their representation as contiguous blocks of
memory. This results both in pointers/memory addresses
being introduced early and in confounding the natural abstract
cover story that an array is like a "table".

In contrast, and in accord with the principles mentioned in
Section 2.1, K-M and RSRG do not introduce arrays early, and
when they are introduced later, they are introduced for their
performance properties rather than their use as a data structure.
Their first componentsÑstring and Text , respec-
tivelyÑinvolve concepts and syntax that apply to subsequent
components as well. These types have straightforward abstrac-
tions as (mathematical) strings of characters. They serve as
simple first examples of "collections" without the need for the
complications of type parameters, static bounds on length,
knowledge of memory layout, or the introduction of pointers
or references. Many interesting application programs need
character strings. Both versions of components-first substi-
tute problems/algorithms that involve strings of characters for
traditional ones that involve integers and arrays. Students
practice early needed programming skills by, for example,
writing loops and/or recursive functions that concatenate
strings, search for substrings, etc.

3.6 Parameterized Types
After the built-in array, it is common for textbooks and
courses taking the objects-first approach to delay or even to
completely avoid the introduction of other parameterized
types. This is true even when the language (e.g., C++) includes
direct support for parameterized types.

In contrast, both K-M and RSRG introduce parameterized types
soon after string and Text , respectively. The K-M version
moves directly to the STL vector , which is similar to the
Sequence component that serves as the first parameterized
component in the RSRG version. In the latter case, at least two
other reasonably complex but not parameterized components
are introduced before templates [2].

4. THE (UNSURPRISING) DIFFERENCES
For all their similarities to each other that are unusual com-
pared to traditional programming-first treatments, K-M and
RSRG have their differences as well. However, these differ-
ences generally can be explained as resulting from the differ-
ent objectives of the two courses of study. K-M is a C++
course; RSRG is an introductory component-based software-
engineering course. These differences help illustrate how to
adapt some ideas from components-first to other program-
ming-first approaches to CS1/CS2.

4.1 Language Features
Because of the different objectives of the two components-first
versions, they obviously need to cover different language
features.Ê For example, K-M starts with while loops but even-
tually introduces all the C++ loop structures, which is consis-
tent with the goal of teaching the C++ language. RSRG sticks
with while loops alone. The benefits of orthogonality not-

withstanding, this limitation makes it marginally easier to
understand, and to be consistent about using, loop invariants.

The two versions differ in their treatments of many other lan-
guage features, such as exceptions, constants, recommended
syntax for template instantiation, etc. Still, K-M introduces
language features not willy-nilly but as they are needed to
solve problems. Because the component library is the STL,
several advanced language features become important along
the way. RSRG introduces as few C++-specific language fea-
tures as possible. Many, however, remain evident despite the
design of the component library to avoid complications such
as non-default constructors and exceptions. For example, the
standard preprocessor idiom that prevents a *.h file from being
included multiple times is evident in both versions.

4.2 Level of Formality in Abstractions
As noted earlier, the single most significant feature of the
components-first approach is that the behavior of a component
is understood through its interface, not by looking at source
code for an implementation. This requires that students, dur-
ing the first half of each version, be able to reason about what
a component does without knowing how it does it. The "cover
stories" that explain the values of objects of complex types,
and the specifications of the effects of executing methods on
them, can be either informal or formal.

K-M takes an informal approach to data type models and speci-
fications. Specifications are not presented in a standard format
as they might be if another component library were used (e.g.,
JavaDoc documentation for java.util). But they are of a compa-
rable nature: English-language descriptions. This is hardly
surprising, because formal specifications are not part of C++.
RSRG uses formal specifications written in a specification
language that augments C++. Several examples of such speci-
fications appear in the literature [1,2,6,17,18]. Because com-
ponent specifications are important for CBSE in the profes-
sion, they are naturally an important topic in the RSRG ver-
sion of CS1/CS2 because of the overall objective.

4.3 Iterators (or Not)
In dealing with collections, it is necessary to have a mecha-
nism for iterating through a structure. Because it uses the STL,
K-M adopts the STL practice of using iterators for this pur-
pose. This implies covering the somewhat unusual syntax and
the behavior of STL iterators. Students following RSRG iterate
over a collection using an idiom that involves swapping and
ordinary while loops [5]. This, too, works only because of
careful component design, but it involves no new syntax.
Despite these differences in detail, the basic concepts students
invoke when developing loops are no different in either ver-
sion of components-first than in the imperative-first and ob-
jects-first approaches.

4.4 Inheritance
If Section 3 did not establish that components-first is different
from objects-first, the treatment of inheritance seals the case.
Both CC2001 sample implementations of objects-first begin
"immediately with the notions of objects and inheritance" [3].
K-M does not mention inheritance until near the end of the
book [7], but then treats it much like the objects-first ap-
proach. RSRG is quite different. Students use inheritance
rather early, but do not understand it as a single language
construct. RSRG instead teases out different "acceptable" uses

of inheritance and introduces them as needed with their own
keywords (by using #define in a standard include file), such
as extends , implements , and encapsulates .

5. CONCLUSION
We conclude first that there is a legitimate fourth program-
ming-first approach to CS1/CS2, namely components-first,
and that K-M and RSRG are two instances of it. We character-
ize it by the use of a library of off-the-shelf components that
can be understood without consulting their implementation
details, by adherence to the client-view-first ordering of top-
ics, and the observation of the three principles in the K-M
approach.

Of course, it is technically possible for anyone to adopt the
components-first approach to CS1/CS2 by acquiring the mate-
rials for either K-M or RSRG and adapting them to local cir-
cumstances. But resistance (of faculty) to such a major change
is inevitably great. However, our analysis of similarities and
differences for K-M and RSRG suggests several opportunities
for CS educators to diversify and perhaps thereby to improve
any traditional CS1/CS2 courseÑwithout wholesale adoption
of the components-first approach.

The most obvious adaptation is to develop a new, small library
of components of the sort that are natural for the current ap-
proach. These need not be general-purpose like the STL. They
can be special-purpose and domain-specific, so long as they
are rich enough to be used to solve several application prob-
lems that are of interest to the students and are plausibly real-
istic. Component behavior need not be specified formally
unless that is important to the current course/instructor.
Given this library, the main change is to reorganize course
concepts around these components: to adopt a client-view-
first ordering of topics, to motivate client usage by adapting
or creating a set of application program examples as lab exer-
cises, and to rearrange the order of introduction of ideas. Some
of the benefits attributed to the client-view-first ordering used
in components-first might then result.

The suggestion above is, to be sure, still rather radical and
effort-intensive in some current CS1/CS2 situations. It in-
volves the creation of a set of components, the client descrip-
tions, and a set of lab exercises, along with the inevitable
addition of transitional material. An easier change that might
work in other situations is simply to reorganize existing mate-
rial to respect the client-view-first ordering, without develop-
ing any new components. For instance, it is common for a CS2
course to focus on data structures and algorithms. Perhaps i t
repeatedly introduces a new set of related functions and/or
procedures, or a new class, and then immediately delves into
how to implement it. The introduction/use and implementa-
tion sub-modules within this course can be reshuffled so all or
most or all of the uses come first, and only later are the imple-
mentation issues addressed. Again, some of the benefits of the
client-view-first topic ordering might be expected to result.

There are other possible changes that could leverage the expe-
rience of K-M and RSRG but that do not require even this
much revision. For example, in a course using C++ or Java,
arrays could be deferred until after character strings are intro-
duced and used extensively. The C++ string and Java
String classes are much cleaner than C strings in this regard
because their explanations do not involve arrays, memory
layout, pointers, null characters, etc. Making this change
alone is unlikely to result in significantly different outcomes,

but it might help students more easily make the transition
from scalar types to complex types. Or in C++ (alas, not in
Java), retaining value semantics as long as possible and defer-
ring pointers until much later might help ease students into
the notably difficult issues associated with indirection.

6. ACKNOWLEDGMENTS
We gratefully acknowledge financial support provided to the
first author by a diversity grant from the GE Foundation, and
that provided to the second author by an REU supplement to
National Science Foundation grant CCR-0081596.

7. REFERENCES
[1] Bucci, P., Long, T.J., and Weide, B.W. Do We Really Teach

Abstraction? Proceedings of the 32nd SIGCSE Technical
Symposium on Computer Science Education , ACM Press,
2001, 26-30.

[2] Bucci, P., Heym, W., Long, T.J., and Weide, B.W. Algo-
rithms and Object-Oriented Programming: Bridging the
Gap. Proceedings of the 33rd SIGCSE Technical Sympo-
sium on Computer Science Education, ACM Press, 2002,
302-306.

[3] Computing Curricula, Final Draft. Available at
http://www.computer.org/education/cc2001/final.

[4] Deitel, H.M., and Deitel, P.J. Java: How to Program, Third
Edition. Prentice-Hall, 1999.

[5] Harms, D.E., and Weide, B.W. Copying and Swapping:
Influences on the Design of Reusable Software Compo-
nents. IEEE Transactions on Software Engineering 17, 5
(1991), 424-435.

[6] Hollingsworth, J.E., Blankenship, L., and Weide, B.W.
Experience Report: Using RESOLVE/C++ for Commercial
Software. Proceedings of the ACM SIGSOFT Eighth Inter-
national Symposium on the Foundations of Software En-
gineering , ACM Press, 2000, 11-19.

[7] Koenig, A., and Moo, B. Accelerated C++: Practical
Programming by Example. Addison-Wesley, Reading, MA,
2000.

[8] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 1: Goals and Principles. Journal of Object Oriented
Programming 13, 7 (Nov. 2000), 44-47.

[9] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 2: Two Interesting Decisions. Journal of Object Ori-
ented Programming 13, 8 (Dec. 2000), 36-40.

[10] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 3: The First Data Structures. Journal of Object Ori-
ented Programming 13, 9 (Jan. 2001), 35-38.

[11] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 4: Emphasizing the Library. Journal of Object Ori-
ented Programming 13, 10 (Feb. 2001), 25-27.

[12] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 5: Working With Strings. Journal of Object Oriented
Programming 13, 11 (Mar. 2001), 29-32.

[13] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 6: Analyzing Strings. Journal of Object Oriented
Programming 13, 12 (Apr. 2001), 29-32.

[14] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 7: Payback Time. Journal of Object Oriented Pro-
gramming 14, 1 (May 2001), 36-40.

[15] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 8: An Interesting Revision. Journal of Object Ori-
ented Programming 14, 2 (June/July 2001), 43-47.

[16] Koenig, A., and Moo, B. Rethinking How to Teach C++,
Part 9: What We Learned From Our Students. Journal of
Object Oriented Programming 14, 3 (Aug./Sep. 2001), 44-
47.

[17] Long, T.J., Weide, B.W., Bucci, P., Gibson, D.S., Sitaraman,
M., Hollingsworth, J.E., and Edwards, S.H. Providing In-
tellectual Focus To CS1/CS2. Proceedings of the 29th
SIGCSE Technical Symposium on Computer Science Edu-
cation, ACM Press, 1998, 252-256.

[18] Long, T.J., Weide, B.W., Bucci, P., and Sitaraman, M. Cli-
ent View First: An Exodus from Implementation-Biased
Teaching. Proceedings of the 30th SIGCSE Technical
Symposium on Computer Science Education, ACM Press,
1999, 136-140.

[19] Musser, D.R., Derge, G.J., and Saini, A. STL Tutorial and
Reference Guide, Second Edition. Addison-Wesley, 2001.

[20] Sitaraman, M., and Weide, B.W. Component-based Soft-
ware Using RESOLVE. ACM SIGSOFT Software Engineer-
ing Notes 19, 4 (1994), 21-67.

[21] Sitaraman, M., Long, T.J., Weide, B.W., Harner, E.J., and
Wang, L. A Formal Approach to Component-Based Soft-
ware Engineering: Education and Evaluation. ICSE 2001:
Proceedings 23rd International Conference on Software
Engineering, IEEE, 2001, 601-609.

[22] Szyperski, C. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[23] Weide, B.W., and Heym, W.D. Specification and Verifica-
tion with References. Proceedings OOPSLA Workshop on
Specification and Verification of Component-Based Sys-
tems, ACM, 2001.

