
Mining Frequent Itemsets in Distributed and
Dynamic Databases

Matthew Eric Otey Srinivasan Parthasarathy Chao Wang
Computer and Information Science Dept.

The Ohio State University
{otey, srini, wachao}@cis.ohio-state.edu

Adriano Veloso Wagner Meira Jr.
Computer Science Dept.

Universidade Federal de Minas Gerais
{adrianov, meira}@dcc.ufmg.br

Abstract

Traditional methods for data mining typically make the assumption that the data is centralized,
memory-resident and static. This assumption is no longer tenable. Such methods waste computational
and I/O resources when data is dynamic, and they impose excessive communication overhead when
data is distributed. Efficient implementation of incremental data mining methods is thus becoming
crucial for ensuring system scalability and facilitating knowledge discovery when data is dynamic
and distributed. In this paper we address this issue in the context of the important data mining task
of frequent itemset mining. We first present an efficient algorithm which dynamically maintains the
required information even in the presence of data updates without examining the entire dataset. We
then show how to parallelize this incremental algorithm. We also propose a distributed asynchronous
algorithm, which imposes minimal communication overhead for mining distributed dynamic datasets.
Our distributed approach is capable of generating local models (in which each site has a summary
of its own database) as well as the global model of frequent itemsets (in which all sites have a
summary of the entire database). This ability permits our approach not only to generate frequent
itemsets, but also high-contrast frequent itemsets, which allows one to examine how the data is
skewed over different sites.

Index Terms

Incremental data mining, parallel computing, distributed computing, grid computing.

I. INTRODUCTION

The field of knowledge discovery and data mining (KDD), spurred by advances in data
collection technology, is concerned with the process of deriving interesting and useful patterns
from large datasets. Frequent itemset mining is a core data mining task. It has an elegantly

This work is the result of a collaboration between Ohio State University and Universidade Federal de Minas Gerais. This
work was done while Adriano Veloso was visiting Ohio State University. This work was funded in part by the NSF.

simple problem statement: to find the set of all subsets of items that frequently occur together
in database records or transactions. Although this task has a simple statement, it is CPU and
I/O intensive, mainly because the large number of itemsets that are typically generated and
the large size of the datasets involved in the process.

Consider the problem of mining frequent itemsets from a dynamic dataset, such as those
found in the domains of e-commerce and network traffic analysis. The datasets in such
domains are constantly updated with new data. Let us assume that at some point in time
we have computed all frequent itemsets for such a dataset. Now, if the dataset is updated,
then the set of frequent itemsets that we had previously computed will no longer be valid
(some itemsets may still be frequent, but not all of them). A naı̈ve approach to compute
the new set of frequent itemsets would be to re-execute a traditional algorithm on the entire
updated dataset, but this process is not efficient since it ignores the previously discovered
knowledge, essentially replicating work that has already been performed, which can result in
an explosion in the amount of computational and I/O resources required.

To address this problem several researchers have proposed incremental techniques [1]–[6].
Incremental algorithms essentially re-use previously mined information and try to combine
this information with the fresh data to efficiently compute the new set of frequent itemsets.
However, it can be the case that the size of the dataset is so large and rate at which it is being
updated is so high that existing incremental algorithms are ineffective by themselves. There-
fore, to mine such large and rapidly changing datasets, we must also rely on high-performance
computing techniques. Furthermore, the database may be distributed over multiple sites, being
updated at different rates at each site, which requires the use of distributed asynchronous data
mining techniques.

Ideally, one would like to mine frequent itemsets interactively. To do so, one’s query must be
answered in as little time as possible. To achieve this, an algorithm for distributed, incremental
mining must take into account the rate at which data arrives and the computational resources
available at each site, since these two variables can vary from one site to the next. Additionally,
one might like to know about the skewness of the distributed database, specifically how the
supports of the frequent itemsets vary from site to site. For example, in the context of network
intrusion detection, one might like to know how models of network traffic vary at different
points in a network (e.g. routers). Therefore, the algorithm must be able to determine the
high-contrast frequent itemsets.

In this article we propose an efficient parallel and distributed incremental approach for
mining frequent itemsets on dynamic and distributed datasets. Our work here is an extension
of that presented in [7]–[9]. Our main contributions are:

1) A parallel algorithm based on the ZIGZAG incremental approach, which is used to
update the local model;

2) A distributed mining algorithm that minimizes the communication costs for mining over

2

a wide area network, which is used to update the global model;
3) Novel interactive extensions for computing high contrast frequent itemsets;
4) Experimentation and validation on both real and synthetic databases.

The rest of this article is organized as follows. Section II examines related work in the
fields of distributed and dynamic data mining. In Section III we formally define the problem
we address in this article. Section IV describes our incremental, parallel, and distributed
algorithms. Section V presents experimental results that validate our claims. Concluding
remarks are made in Section VI.

II. BACKGROUND AND RELATED WORK

A. Parallel and Distributed Mining of Databases

Often, the size of a dataset or the rate at which data is inserted or removed is so large that
existing sequential algorithms are ineffective. In these cases, parallel or distributed algorithms
are necessary. In [10], Park and Kargupta give an overview of a wide variety of distributed
data mining algorithms for association rule mining, classifier learning, collective data mining,
and clustering, among others. In particular, there has been much research into parallel and
distributed algorithms for mining association rules [11]–[15]. Zaki provides an overview of
several of these methods and others in [16].

A common approach for mining distributed databases is the centralized one, in which all
data is moved to a single central location and then mined. Another common approach is the
local one, where models are built locally in each site, and then moved to a common location
where they are combined. The later approach is the quickest but often the least accurate, while
the former approach is more accurate but generally quite expensive in terms of time required.
In the search for accurate and efficient solutions, some intermediate approaches have been
proposed [11], [17]–[19]. In [17] three distributed mining approaches were proposed. The
COUNT DISTRIBUTION algorithm is a simple distributed implementation of APRIORI [20].
All sites generate the entire set of candidates, and each site can thus independently get
local support counts from its partition. At each iteration the algorithm does a sum reduction
operation to obtain the global support counts by exchanging local support counts with all
other sites. Since only the support counts are exchanged among the sites, the communication
overhead is reduced. However, it performs one round of communication per iteration (note that
synchronization is implicit in communication). The DATA DISTRIBUTION algorithm generates
disjoint candidate sets on each site. However, to generate the global support counts, each
site has to scan the entire database (its local partition and all remote ones) in all iterations
of the algorithm. Hence this approach suffers from high I/O overhead. The CANDIDATE

DISTRIBUTION algorithm partitions the candidates during each iteration, so that each site
can generate disjoint candidates independently of the other sites, but it still requires one
round of communication per iteration.

3

In [11] two distributed algorithms were presented, PARECLAT and PARMAXECLAT. Both
algorithms are based on the concept of equivalence classes. Each equivalence class corre-
sponds to a sub-tree in the search space for frequent itemsets, and they can be processed
asynchronously on each site. PARECLAT outperforms DATA, COUNT, and CANDIDATE DIS-
TRIBUTION algorithms by more than one order of magnitude. PARMAXECLAT outperforms
PARECLAT, but it searches only the maximal frequent itemsets, instead of all frequent itemsets.

These techniques are devised to scale up a given algorithm (e.g., APRIORI, ECLAT, etc.).
Data is distributed (or in some cases, replicated) among different sites and a data mining
algorithm is executed in parallel on each site. These approaches do not take into account
the possible distributed nature of the data. Some assume a high-speed network environment
and perform excessive communication operations. These approaches are not efficient when
the databases are distributed over a geographically wide area. The FDM (Fast Distributed
Mining) algorithm presented in [18] attempts to cut down on communication between sites. It
does this by first having each site mine its local frequent itemsets and then exchanging these
so that support counts can be taken across all sites to find the global frequent itemsets. In [21],
Schuster and Wolff note that FDM does not scale well as the number of sites increases, and so
propose the DISTRIBUTED DECISION MINER algorithm and several variations, which do not
assume that each local frequent itemset is potentially a global frequent itemset. Additionally,
the DISTRIBUTED DECISION MINER is efficient even in the presence of skewness in the data.
Not only is it desirable to reduce the amount of communication involved in distributed mining,
it is also desirable to adapt the algorithm to differences in the amount of computational and
communication resources at each site. In [22], three strategies of distributed data mining are
examined, based on what information is exchanged between sites. The three strategies are
those that move results (MR), move models (MM), and move data (MD). The MD strategy
is generally avoided, since it can be costly in terms of communication. The authors propose
the Papyrus system, which makes use of all three strategies to different degrees, based on the
values of a cost function and an error function that take into account the cost of transmitting
data between nodes and the distribution of data over the nodes.

B. Mining Dynamic Databases

Some recent effort has been devoted to the problem of performing incremental data mining
in dynamic databases. Parthasarathy and Ramakrishnan propose a parallel incremental method
for performing two-dimensional discretization on a dynamic dataset in [23]. A method for
incremental sequence mining named ISM is presented in [24]. It is based on the SPADE

algorithm [25] for discovering frequent sequences. The incremental algorithm works by
keeping track of the maximally frequent and minimally infrequent sequences in the original
database. It combines this information with the incremental data to minimize the amount
of the original database that need to be re-scanned. Incremental versions of the GSP [26]

4

and MFS [27] frequent sequence mining algorithms, respectively named GSP+ and MFS+
were presented in [28]. Unlike the ISM algorithm, GSP+ and MFS+ are able to handle both
insertions and deletions, and are not limited to a vertical database layout. There has also been
work done in incremental web usage mining [29].

More specifically, there has been work on the problem of incrementally mining frequent
itemsets [1]–[6] in dynamic databases. Some of these algorithms cope with the problem of
determining when to update the current model of frequent itemsets, while others update the
model after an arbitrary number of updates [6]. To decide when to update, Lee and Cheung [4]
propose the DELI algorithm, which uses statistical sampling methods to determine when the
current model is outdated. A similar approach proposed by Ganti et al [3] monitors changes in
the data stream. An efficient incremental algorithm, called ULI, was proposed by Thomas [5]
et al. ULI strives to reduce the I/O requirements for updating the set of frequent itemsets
by maintaining the previous frequent itemsets and the negative border [30] along with their
support counts. The whole database is scanned just once, but the incremental database must
be scanned as many times as the size of the longest frequent itemset.

III. PROBLEM DEFINITION

A. Frequent Itemset Mining

The frequent itemset mining task can be stated as follows: Let I be a set of distinct
attributes, also called items. Let D be a set of transactions, where each transaction has a
unique identifier (tid) and contains a set of items. A set of items is called an itemset. An
itemset with exactly k items (where k is a nonnegative integer) is called a k-itemset. The tidset
of an itemset C corresponds to the set of all transaction identifiers (tids) in which the itemset
C occurs. The support count of C, is the number of transactions of D in which it occurs as
a subset. Similarly, the support of C, denoted by σ(C), is the percentage of transactions of
D in which it occurs as a subset. The itemsets that meet a user specified minimum support
are referred to as frequent itemsets. A frequent itemset is maximal if it is not subset of any
other frequent itemset. The set of all maximal frequent itemsets is denoted as MFI.

Mining frequent itemsets is a difficult problem. Given m items, there are potentially
2m frequent itemsets. Even modest databases contain thousands of items and hundreds of
thousands of transactions, so the computation power, memory, and disk I/O requirements are
very high. The high computational and space costs may be acceptable when D is static since
the discovery is done off-line. Also, many mechanisms such as sampling, and memory and
parallel computing techniques have been presented in the literature to reduce these costs.

5

B. Frequent Itemset Mining in Dynamic Datasets

Using D as a starting point, a set of new transactions d+ is added and a set of old
transactions d− is removed, forming the dynamic dataset ∆ (i.e., ∆ = (D ∪ d+) − d−) 1.
Let sD be the minimum support used when mining D, and FD be the set of frequent itemsets
obtained. Let Π be the information kept from the current mining that will be used in the next
incremental mining operation. In our case, Π consists of FD (i.e., all frequent itemsets, along
with their support counts, in D). An itemset C is frequent in ∆ if σ(C) ≥ s∆. Note that an
itemset C not frequent in D, may become a frequent itemset in ∆. In this case, C is called
an emerged itemset. If a frequent itemset in D remains frequent in ∆ it is called a retained
itemset.

C. Frequent Itemset Mining in Distributed Datasets

The dataset ∆ can be divided into n partitions, δ1, δ2, ..., δn. Each partition δi is assigned
to a site Si. We say that ∆ is horizontally distributed if its transactions are distributed among
the sites. In this case, let C.sup and C.supi be the respective support counts of C in ∆ and
δi. We will call C.sup the global support count of C, and C.supi the local support count
of C in δi. For a given minimum support s∆, C is global frequent if C.sup ≥ s∆× | ∆ |;
correspondingly, C is local frequent at δi, if C.supi ≥ s∆× | δi |. The set of all maximal
global frequent itemsets is denoted as MFI∆, and the set of maximal local frequent itemsets
at δi is denoted as MFIδi

. The task of mining frequent itemsets in distributed and dynamic
datasets is to find F∆ (i.e., all global frequent itemsets in ∆), with respect to a minimum
support s∆ and, more importantly, using Π and minimizing access to D (the original dataset)
to enhance the algorithm’s performance.

IV. ALGORITHMS

In this section we describe the basic algorithms to solve the problems defined in the
previous section. Our incremental algorithm, ZIGZAG, is presented in Section IV-A. We also
present a parallel approach for mining the maximal frequent itemsets. In Section IV-B we
describe our distributed and incremental algorithm. We prove that this algorithm generates an
accurate global model of frequent itemsets, and also present an upper bound for the amount
of communication necessary in the distributed and incremental mining operation. Finally, we
describe approaches for interactively mining itemsets in a distributed setting.

1Since modification of an existing transaction may be handled as a deletion followed by a insertion we will assume,
without loss of generality, that there are no transaction modifications

6

A. Parallel Incremental Algorithm

Almost all algorithms for mining frequent itemsets use the same procedure − first a set
of candidates is generated, the infrequent ones are pruned, and only the frequent ones are
used to generate the next set of candidates. Clearly, an important issue in this task is to
reduce the number of candidates generated. An interesting approach to reduce the number of
candidates is to first find MFI∆. Once MFI∆ is found, it is straightforward to obtain all frequent
itemsets (and their support counts) in a single dataset scan, without generating infrequent (and
unnecessary) candidates. This approach works because the downward closure property (all
subsets of a frequent itemset must be frequent). The number of candidates generated to find
MFI∆ is much smaller than the number of candidates generated to directly find all frequent
itemsets. The maximal frequent itemsets has been successfully used in several data mining
tasks, including incremental mining of evolving datasets [6], [31].

1) The ZIGZAG Algorithm: In [6] an efficient incremental algorithm for mining evolving
datasets, ZIGZAG, was proposed. The main idea is to incrementally compute MFI∆ using
previous knowledge Π. This avoids the generation and testing of many unnecessary candidates.
Having MFI∆ is sufficient to know which itemsets are frequent; their exact support can be
obtained by examining d+, d− and using Π, or, where this is not possible, by examining ∆.

ZIGZAG employs a backtracking search to find MFI∆. Backtracking algorithms are useful
for many combinatorial problems where the solution can be represented as a set I = {i0, i1, ...},
where each ij is chosen from a finite possible set, Pj . Initially I is empty; it is extended one
item at a time, as the search space is traversed. The length of I is the same as the depth of
the corresponding node in the search tree. Given a k-candidate itemset, Ik = {i0, i1, ..., ik−1},
the possible values for the next item ik comes from a subset Rk ⊆ Pk called the combine set.
If y ∈ Pk −Rk, then nodes in the subtree with root node Ik = {i0, i1, ..., ik−1, y} will not be
considered by the backtracking algorithm. Each iteration of the algorithm tries to extend Ik

with every item x in the combine set Rk. An extension is valid if the resulting itemset Ik+1

is frequent and is not a subset of any already known maximal frequent itemset. The next step
is to extract the new possible set of extensions, Pk+1, which consists only of items in Rk that
follow x. The new combine set, Rk+1, consists of those items in the possible set that produce
a frequent itemset when used to extend Ik+1. Any item not in the combine set refers to a
pruned subtree. The backtracking search performs a depth-first traversal of the search space,
as depicted in Figure 1. In this example the minimum support is 30%. The framed itemsets
are the maximal frequent ones, while the cut itemsets are the infrequent ones.

The support computation employed by ZIGZAG is based on the associativity of itemsets,
which is defined as follows. Let C be a k-itemset of items C1 . . . Ck, where Ci ∈ I . Let L(C)

be its tidset and | L(C) | is the length of L(C) and thus the support count of C. According
to [32], any itemset can be obtained by joining its atoms (individual items) and its support
count can be obtained by intersecting the tidsets of its subsets. In the first step, ZIGZAG

7

Fig. 1. Backtrack Trees for Items A and B on ∆

ZigZag(IL, CL, L)
for each x ∈ CL do

IL+1 = I ∪ {x}
PL+1 = {y : y ∈ CLand y > x}
if IL+1 ∪ PL+1 has a superset in MFI

return
CL+1 = Extend(IL+1, PL+1)
if CL+1 == ∅

if IL+1 has no superset in MFI
MFI = MFI ∪IL+1

else
ZigZag(IL+1, CL+1, L + 1)

Extend(IL+1, PL+1)
C = ∅
for each y ∈ PL+1 do

y′ = y

if IL+1 ∪ {y} is a retained itemset
σ∆(y′) = σD(IL+1 ∪ {y}) + σd+(IL+1 ∪ {y})
− σd−(IL+1 ∪ {y})

else
σ∆(y′) = σD(IL+1 ∪ {y})

if σ∆(y′) == s∆

C = C ∪ {y′}
return

Fig. 2. Incremental Search for Maximal Frequent Itemsets

creates a tidset for each item in d+, d−, and ∆. The main goal of incrementally computing
the support is to maximize the number of itemsets that have their support computed based
just on d+ and d− (i.e., retained itemsets), since their support counts in D are already stored
in P . To perform a fast support computation, we first verify if the extension Il+1 ∪ {y} is
a retained itemset. If so, its support can be computed by just using d+, d−, and P , thereby
enhancing the support computation process. All these procedures are described in Figure 2.

2) Parallel Incremental Search for Maximal Frequent Itemsets: We now consider the
problem of parallelizing the search for maximal frequent itemsets in the shared memory
paradigm (i. e., each processor has direct and equal access to all the system’s memory). An
efficient parallel search in this paradigm has two main issues: (1) minimizing synchronization
(i. e., locks and barriers), and (2) improving data locality (i.e., maximizing access to local
cache).

The main idea of our parallel approach is to assign distinct backtrack trees to distinct
processors. Note from Figure 1 that the two issues mentioned above can be addressed by this
approach. First, there is no dependence among the processors, because each backtrack tree

8

corresponds to a disjoint set of candidates. Since each processor can proceed independently
there is no synchronization while searching for maximal frequent itemsets. Second, this
approach is very efficient in achieving good data locality, since the support computation
of an itemset is based on the intersection of the tidsets of the last two generated subsets. To
achieve a suitable level of load-balancing, the trees are assigned to the processors by using
the scheme of bitonic partitioning [33]. The bitonic scheme is a greedy algorithm, which first
sort all the wi (the work load due to tree i). wi is calculated based on our ideas for estimating
the number candidates using correlation measures, presented in [6]. Next it extracts the tree
with maximum wi, and assign it to processor 0. The next highest workload tree is assigned
to processor 1 and so on.

When the bag is empty (i.e., all backtrack trees were processed), all maximal frequent
itemsets have been found.

B. Distributed Incremental Algorithm

The MFI search employed by ZIGZAG is very efficient, but it can only be applied when the
evolving dataset is centralized. Now we will explain how we can extend ZIGZAG for mining
distributed datasets. We first present Lemma 1, which is the basic theoretical foundation of
our approach.

a) Lemma 1 − A global frequent itemset must be local frequent in at least one partition.:
Proof. − Let C be an itemset. If C.supi < s∆× | δi | for all i = 1, ..., n, then C.sup < s∆× |

∆ | (since C.sup =
∑n

i=1 C.supi and | ∆ |=
∑n

i=1 | δi |), and C cannot be globally frequent.
Therefore, if C is a global frequent itemset, it must be local frequent in some partition δi. Â

In the first step each site Si independently performs a parallel and incremental search for
MFIδi

, using ZIGZAG on its dataset δi. After all sites finish their searches, the result will
be the set of all local MFIs, {MFIδ1 , MFIδ2 , ... , MFIδi

}. This information is sufficient for
determining all local frequent itemsets, and from Lemma 1, it is also sufficient for determining
all global frequent itemsets. The second step starts after all local MFIs were found. Each site
sends its local MFI to the other sites, and then they join all local MFIs. Now each site knows
the set

⋃n
i=1 MFIδi

, which is an upper bound for MFI∆.
In the third step each site independently performs a top down incremental enumeration of

the potentially global frequent itemsets, as follows. Each itemset present in the upper bound
⋃n

i=1 MFIδi
is broken into k subsets of size (k − 1). This process iterates generating smaller

subsets and incrementally computing their support counts until there are no more subsets to
be checked. At the end of this step, each site will have the same set of potentially global
frequent itemsets (and the support associated with each of these itemsets).

b) Lemma 2 −
⋃n

i=1 MFIδi
determines all global frequent itemsets.: Proof. − We know

from Lemma 1 that if C is a global frequent itemset, so it must be local frequent in at least

9

one partition. If C is local frequent in some partition δl, so it must be determined by MFIδl
,

and consequently by
⋃n

i=1 MFIδi
. Â

By Lemma 2 all global frequent itemsets were found, but not all itemsets generated in the
third step are global frequent (some of them are just local frequent). The fourth and final
step makes a reduction operation on the local support counts of each itemset, to verify which
of them are globally frequent in ∆. The process starts with site S1, which sends the support
counts of its itemsets (generated in the third step) to site S2. Site S2 sums the support count
of each itemset (generated in the third step) with the value of the same itemset obtained from
site S1, and sends the result to site S3. This procedure continues until site Sn has the global
support counts of all potentially global frequent itemsets. Then site Sn finds all itemsets that
have support greater than or equal to s∆, which constitutes the set of all global frequent
itemsets, i.e., MFI∆

We illustrate all steps of the algorithm execution in Figure 3. The transactions of ∆ (used
in the example of Figure 1) were distributed in two datasets δ1 and δ2. The value of the
minimum support is 50%. In the first step each site mines its local MFI. The result is MFIδ1

= {ABDE, BCE}, and MFIδ2 = {ACDE, BCD}. In the next step, all sites exchange their local
MFIs, so that each one can compute the upper bound

⋃n
i=1 MFIδi

, which is {ABDE, BCE,
ACDE, BCD}. Now, each site computes the support count of each subset of each itemset in
⋃n

i=1 MFIδi
. Some of the generated subsets at site Si are not local frequents in di, but their

support count must be computed because some of them must be local frequent in other site,
and therefore they can still be global frequent itemsets (i.e., ABE). In the last step the global
frequent itemsets are found by aggregating (sum reduction operation) the local counts of each
local frequent itemset.

The overall approach is as follows. At each site the local MFI is found using the appropriate
version of the ZIGZAGaglorithm (the sequential version if the site is a single processor
machine, or the parallel version if the site is a SMP machine or a cluster). Once the local
MFIs have been found, the distributed procedure can be used across the different sites to find
the global MFI.

1) An Upper Bound for the Amount of Communication: We also present an upper bound
for the amount of communication performed during the distributed mining operation. The
upper bound calculation is based just on the local MFIs and on the size of the upper bound
for MFI∆. We divide the upper bound construction into two steps. The first step is related
to the local MFI exchange operation. Since each one of the n sites must send its MFI to the
other sites, the first term is given by:

∑n
i=1

∑|MFIδi
|

j=1 | Ci,j |, where | Ci,j | is the size of the
jth itemset of the local MFI of site Si.

The second step is related to the local support count reduction operation. In this operation
n − 1 sites have to pass their local support counts. The amount of communication for this
operation is given by: (n − 1) ×

∑|UB|
i=1 (2|Cj | − 1), where UB is

⋃n
i=1 MFIδi

, and the term

10

Fig. 3. Overall Process of Distributed Mining

∑|UB|
i=1 (2|Cj | − 1) represents the local support counts of all subsets of all itemsets in UB.
In our data structure a k-itemset is represented by a set of k integers (of 4 bytes). So, in

the worst case (when each itemset is subset of only one itemset in UB), the total amount of
communication is given by: (

∑n
i=1

∑|MFIδi
|

j=1 | Ci,j | + (n − 1) ×
∑|UB|

i=1 (2|Cj | − 1)) ×4 bytes.

C. Interactivity Issues

1) Query Response Time: One of the goals of the distributed mining algorithm is to
minimize response time to a query for the global frequent itemsets in an dynamic, distributed
database. Since the database is dynamic, each site is incrementally updating its local frequent
itemsets. The time it takes to update the local frequent itemsets is proportional to B =| d+ |

+ | d− |, that is to say, the size of a block of differences. We can view the updates to the
database as a queue containing zero or more such blocks. If a query arrives while a block is
being processed, there cannot be a response until the calculation of the local frequent itemsets
is completed and used to find the global frequent itemsets. An obvious approach to reducing
response time is to decrease the size of B. However, because of overhead, the time it takes
to do two increments of size B is longer than the time it takes to do a single increment of
size 2 × B. So there is a trade-off: If the size of B is increased, then the global frequent
model MFI∆ will be more up-to-date, since it incorporates a greater number of changes to
the database, but the amount of time it takes to respond to the query will increase.

2) High-Contrast Frequent Itemsets: An important issue when mining distributed databases
is to understand the differences between the databases. An effective way to understand
such differences is to find the high-contrast frequent itemsets. The support counts of such

11

itemsets vary significantly across different databases. We use the well-established notion of
entropy to detect how the support count of a given frequent itemset is distributed across the
databases [34]. For a random variable, the entropy is a measure of the non-uniformity of its
probability distribution. Let X be a global frequent itemset. The value pX(i) = X.supi

X.sup
is the

probability of occurrence of X in δi.
∑n

i=1 pX(i) = 1, and H(X) = −
∑n

i=1(pX(i)×log(pX(i)))

is a measure of how the local support counts of X is distributed across the different databases.
Note that 0 ≤ H(X) ≤ log(n), and so 0 ≤ E(X) = log(n)−H(X)

log(n)
≤ 1. If E(X) is greater than

or equal to a given minimum entropy threshold, then X is classified as high-contrast frequent
itemset.

D. Discussion

Mining the MFI to find the frequent subsets has several advantages, both in incremental
and distributed mining. In this section we discuss some of these advantages.

All extant incremental mining algorithms make use of the negative border [4] to perform
the incremental operation. The basic idea is to maintain the negative border up-to-date as the
dataset is updated. As shown in [6], the size of the negative border is typically much larger
than the size of MFI∆. So, updating the negative border requires many more candidates to be
processed, incurring computational and I/O overhead. By updating MFI∆, we process fewer
candidates than other approaches.

Almost all distributed algorithms for frequent itemset mining (CD [17], FDM [18], and
DMA [19]) require a round of communication in every iteration of the algorithm. However,
synchronization is implicit in communication, and therefore these algorithms suffer of com-
munication overhead. Our approach overcomes the problem of communication overhead by
making use of maximal frequent itemsets. Each site can independently search its local MFI,
so no communication is needed during this search. After all local MFIs are found, only one
round of communication is performed in order to build the upper bound. Again, each site can
independently enumerates the local frequent itemsets, and after all local frequent itemsets are
found, only one reduction operation is needed to find the global frequent itemsets. Therefore,
by making use of maximal frequent itemsets, our distributed algorithm can asynchronously
mine the frequent itemsets.

V. EXPERIMENTAL EVALUATION

In this section we evaluate our algorithms and compare them to other approaches, and
compare performance with respect to various datasets.

A. Experimental Setup

Our experimental evaluation of the algorithms presented in section IV-B was carried out
on two clusters. The first cluster, Cluster One, consists of dual PENTIUM III 1GHz nodes

12

TABLE I

DATASET CHARACTERISTICS

Dataset #Items Avg. Length #Transactions Size

WPortal 3,183 4 7,786,137 428MB

WCup 5,271 8 7,618,927 645MB

T5I2D8000K 2,000 10 8,000,000 1,897MB

with 1GB of main memory Red Hat Linux 7.1. The second cluster, Cluster Two, consists
of single PENTIUM III 933 MHz nodes with 512 MB of memory running Red Hat Linux
7.3. We further partitioned each cluster into two virtual clusters for a total of four clusters
for some experiments. We assume that each database is distributed between the clusters, and
that each node in the cluster has access to its cluster’s portion of the database. Within each
cluster, we have implemented the parallel program using the MPI message-passing library
(MPICH over GM2), and for communication between clusters we use sockets.

We used several real and synthetic datasets for testing the performance of our algorithms.
The WCup dataset comes from click-stream data from the official site of the 1998 World
Soccer Cup. The WPortal dataset is derived from the click-stream data of a large Brazilian
web portal. We scanned the logs and produced transaction files, where each transaction is
a session of access to the site by a client. Each item in the transaction is a web request.
Not all web requests were turned into items; to become an item, the request must have three
properties: (1) the request method is GET; (2) the request status is OK; and (3) the file type
is HTML. A session starts with a request that satisfies the above properties, and ends when
there has been no click from the client for 30 minutes. We also used a synthetic dataset
(also available from IBM Almaden), which has been used as benchmarks for testing previous
mining algorithms. This dataset mimics the transactions in a retailing environment [20].

Table I shows the characteristics of the real and synthetic datasets used in our evaluation.
It shows the number of items, the average transaction length, the number of transactions, and
the size of each dataset.

B. Parallel Incremental Algorithm Evaluation

The first experiment we conducted was to empirically verify the advantages of incremental
and parallel mining within a single cluster. In this experiment we compared the execution time
of the the distributed algorithms (non-incremental search, incremental search, parallel non-
incremental search, and parallel incremental search). We used Cluster One only and varied

2www.myricom.com

13

the number of nodes (1 to 8), the number of processors (i.e. threads) per node (1 and 2), and
the increment size (10% and 20% of the original dataset). In the incremental case, we first
mine a determined number of transactions and then we incrementally mine the remaining
transactions. For example, for increment sizes of 20%, we first mine 80% of the dataset and
then we incrementally mine the remaining 20%.

Figure 4 shows the execution times obtained for different datasets, and parallel and incre-
mental configurations. As we can see, better execution times are obtained when we combine
both parallel and incremental approaches. Furthermore, when the parallel configuration is the
same, the execution time is better for smaller increment sizes (since the dataset is smaller),
but in some cases the parallel performance is greater than the incremental performance,
and better results can be obtained by applying the parallel algorithm with larger increment
sizes. This is exactly what happens in the experiments with the WCup and WPortal datasets.
Not surprisingly, the gains from parallelizing the algorithm are greater than the gains from
processing the data in an incremental fashion, especially given the number of processors. The
algorithm using the parallel MFI search, applied to an increment size of 20% is more efficient
than the algorithm with sequential MFI search, applied to an increment size of 10%, for any
number of nodes.

1) Advantages of Parallel Mining: We also investigated the performance of our algorithm
in experiments for evaluating the speedup of different parallel configurations. We used a
fixed size dataset with increasing number of nodes. The dataset is divided into 1, 2, 4, and 8
partitions, according to the number of nodes employed. With this configuration we performed
speedup experiments on 1, 2, 4, and 8 dual-processor nodes. In order to evaluate only the
parallel performance, we used the parallel (two threads per node) non-incremental algorithm
and varied the number of nodes. The speedup is in relation to the sequential non-incremental
algorithm. Figure 5 shows the speedup numbers of our parallel algorithm. Our algorithm can
achieve an efficiency of up to 80%, depending on the dataset, the number of processors, and
the minimum support. Note that the speedup is inversely proportional to the minimum support.
This is because for smaller minimum supports the MFI search becomes more complex, and
consequently the parallel task becomes more relevant.

2) Advantages of Incremental Mining: We also investigated the performance of our algo-
rithm in experiments for evaluating the speedup of different incremental configurations. In
tis experiment, we first mined a fixed size dataset, and then we performed the incremental
mining for different increment sizes (5% to 20%). In order to evaluate only the incremental
performance, we used the incremental algorithm with sequential MFI search. We also varied
the number of nodes, but the speedup was very similar for different number of nodes, so we
show only the results regarding one node.

Figure 6 shows the speedup numbers of our incremental algorithm. Note that the speedup is
in relation to re-mining the entire dataset. As is expected, the speed is inversely proportional

14

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

WCup - 0.5%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

WCup - 1%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

WPortal - 0.005%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc
 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

WPortal - 0.01%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

T5I2D8000K - 0.5%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8

E
la

ps
ed

 T
im

e
(s

ec
s)

Processors

T5I2D8000K - 1.0%

1 thread - no inc
2 threads - no inc

1 thread - 20% inc
2 threads - 20% inc
1 thread - 10% inc

2 threads - 10% inc

Fig. 4. Total Execution Times on different Datasets.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l
V

e
rs

io
n

Nodes

WCup

0.5%
1.0%

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l
V

e
rs

io
n

Nodes

WPortal

0.005%
0.01%

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p
 o

v
e
r

S
e
q
u
e
n
ti
a
l
V

e
rs

io
n

Nodes

T5I2D8000K

0.5%
1.0%

Fig. 5. Speedup of the Parallel Non-Incremental Algorithm

15

 1

 2

 3

 4

 5

 6

 7

 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p
 o

v
e
r

N
o
n
-I

n
c
re

m
e
n
ta

l
V

e
rs

io
n

Increment Size (%)

WCup

0.5%
1.0%

 1

 2

 3

 4

 5

 6

 7

 8

 9

 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p
 o

v
e
r

N
o
n
-I

n
c
re

m
e
n
ta

l
V

e
rs

io
n

Increment Size (%)

WPortal

0.005%
0.01%

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 6 8 10 12 14 16 18 20

S
p
e
e
d
u
p
 o

v
e
r

N
o
n
-I

n
c
re

m
e
n
ta

l
V

e
rs

io
n

Increment Size (%)

T5I2D8000K

0.5%
1.0%

Fig. 6. Speedups on Different Incremental Configurations.

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

5e+06

5.5e+06

6e+06

6.5e+06

7e+06

30 35 40 45 50 55 60

Tr

an
sa

ct
io

ns

Deadline (secs)

WPortal - 0.01% - 1 node (2 clusters)

10%
20%
40%

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

10 15 20 25 30 35 40

Tr

an
sa

ct
io

ns

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

10%
20%
40%

Fig. 7. Number of transactions processed.

to the size of the increment. This is because the size of the new data coming in is smaller.
Also note that better speedups are achieved by greater minimum supports. We observed that,
for the datasets used in this experiment, the proportion of retained itemsets (itemsets that are
computed by examining only d+ and Π) is larger for greater minimum supports. From Figure 5
and Figure 6, one can explicitly see the breakdown of the speedup provided by combining
both parallel and incremental techniques. It is clear that parallel mining is a bigger component
of the speedup than the incremental mining.

C. Distributed Incremental Algorithm Evaluation

We also performed several sets of experiments in a broader scenario involving several
clusters. The first set involved finding the number of transactions that were processed and
incorporated into the global model MFI∆ when we varied certain parameters. The second set
examined how the query response time was affected by the block size and the query arrival
time.

16

1) Transactions Processed: The first experiment we conducted was to examine how the
size of a block, the number of nodes used in each cluster, and the time at which a query arrives
affects the amount of data used to build the global model MFI∆. For the WPortal database we
used a minimum support of 0.01% and for the WCup database we used a minimum support
of 1.0%. The results all have similar trends, and two example cases can be seen in Figure 7.
The X-axis represents the time elapsed from when the mining began until the query arrived
(the deadline), and the Y-axis represents the number of transactions that are incorporated into
the global model MFI∆. The lines on the graph represent different values of the block size
B, which is given here as percentages of the database on each cluster. The graphs show that
if more time that elapses before the query arrives, the more data that can be incorporated
into the model, which is to be expected. It also shows that as the block size decreases, fewer
transactions can be processed before the query arrives. This is due to the fact there is more
overhead involved in processing a large number of small blocks than there is in processing a
small number of large blocks.

2) Query Response Time: In the next set of experiments we focused on the query response
time, that is to say, the amount of time a user must wait before the global model is computed.
For this experiment we varied the block size B (in these experiments we assume that each
cluster use the same block size) and the time at which the query arrives. The results can be
seen in Figure 8. The X-axis again represents the time at which the query arrives, and the
Y-axis represents the time spent waiting for the global model to be computed. These graphs
show that as B decreases, the time to wait for a response also decreases. However, the time
at which a query arrives affects the waiting time in a seemingly random manner. This is
because a query arrives at some random point during the processing of a block. The time
remaining to compute the local frequent itemsets is therefore a random number. The graphs
above show the query response time averaged over five runs, and the vertical bars represent
the variance in the runs. This set of experiments, in conjunction with the previous set, clearly
show the trade-off between block size and query response time: As the block size increases,
the number of transactions processed also increases, but the response time increases as well.
Figure 9 shows the same experiment when different block sizes across clusters are allowed.
The basic idea is that smaller response times can be obtained by assigning larger blocks to
the less powerful cluster. The local model in this cluster will be updated less frequently, but
in response, smaller query response times can be obtained by this approach. We can prove
this by comparing the results in Figure 9 against the respective result in Figure 8.

3) Communication: We also performed a set of experiments to analyze the communication
overhead imposed by our algorithm. In particular we examined the number of bytes transferred
between clusters when we varied the minimum support, the block size B, and the number of
clusters involved in the computation. The results can be seen in figure 10. As is expected, as
the minimum support decreases, the number of candidates will increase, and will therefore

17

0

10

20

30

40

50

60

70

80

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 1 node (2 clusters)

10%
20%
40%

10

20

30

40

50

60

70

80

90

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 2 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 4 nodes (2 clusters)

10%
20%
40%

5

10

15

20

25

30

35

40

45

50

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 1 node (4 clusters)

10%
20%
40%

10

15

20

25

30

35

40

45

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 2 nodes (4 clusters)

10%
20%
40%

5

10

15

20

25

30

35

35 40 45 50 55 60 65W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WPortal - 0.01% - 4 nodes (4 clusters)

10%
20%
40%

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

10%
20%
40%

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (2 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (4 clusters)

10%
20%
40%

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (4 clusters)

10%
20%
40%

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (4 clusters)

10%
20%
40%

Fig. 8. Query Response Time using Equal Block Sizes.

18

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 1 node (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)
14%- 26% (40% total)

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 2 nodes (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)

14% - 26% (40% total)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50W
a
it
in

g
 t
im

e
 (

s
e
c
s
)

[a
v
g
-v

a
r,

 a
v
g
,
a
v
g
+

v
a
r]

Deadline (secs)

WCup - 1.0% - 4 nodes (2 clusters)

3.5% - 6.5% (10% total)
7% - 13% (20% total)

14% - 26% (40% total)

Fig. 9. Query Response Time using Different Block Sizes.

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

C
om

m
un

ic
at

io
n

(b
yt

es
)

Minimum Support (%)

WPortal

10% (2 clusters)
20% (2 clusters)
40% (2 clusters)
10% (4 clusters)
20% (4 clusters)
40% (4 clusters)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
om

m
un

ic
at

io
n

(b
yt

es
)

Minimum Support (%)

WCup

Block Size 10% (2 clusters)
Block Size 20% (2 clusters)
Block Size 40% (2 clusters)
Block Size 10% (4 clusters)
Block Size 20% (4 clusters)
Block Size 40% (4 clusters)

Fig. 10. Communication Overhead.

increase the number of bytes that must be transferred between the clusters, since our algorithm
must exchange the support counts of every candidate processed. Also, as the block size
increases, the amount of communication decreases. The reason is that for smaller block sizes
the number of candidates processed tends to be greater (assuming the same minimum support).
Finally, the amount of communication required increases when more clusters are involved
in the process. However, the increasing factor is not linear because the data-skewness also
increases when more clusters are involved, and so the number of candidates processed is
increased as well.

4) High-Contrast Itemsets: The last set of experiments are regarding high-contrast fre-
quent itemsets. We utilized three databases: WPortal, WCup, and also a highly-skewed syn-
thetic database. The synthetic database was generated in the following way. We first gen-
erated four different synthetic databases: T10I2D2000K, T10I4D2000K, T10I6D2000K and
T10I8D2000K. Next, each one of these databases was assigned to a different cluster. In this
way we ensure that this distributed database contains highly-skewed data.

We varied three parameters: the minimum support, the number of clusters involved in the

19

0
5

10
15
20
25
30
35
40
45
50
55

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

WPortal

0.1 (2 clusters)
0.02 (2 clusters)

0.1 (4 clusters)
0.02 (4 clusters)

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

WCup

0.1 (2 clusters)
0.02 (2 clusters)

0.1 (4 clusters)
0.02 (4 clusters)

0

10

20

30

40

50

60

70

80

90

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
e
rc

e
n
ta

g
e
 o

f
H

ig
h
-C

o
n
tr

a
s
t
It
e
m

s
e
ts

Minimum Support (%)

High-Skewed Synthetic Data

0.1 (2 clusters)
0.05 (2 clusters)
0.1 (4 clusters)

0.05 (4 clusters)

Fig. 11. High-Contrast Frequent Itemsets.

process, and the minimum entropy. Figure 11 shows the results obtained in each database. As
we can observe, very different results were obtained from each database. The percentage of
high-contrast frequent itemsets is interesting because it to some extent reveals the skewness of
the database. From the experimental results, we know that the WCup database is more skewed
than the WPortal database. Given the same support thresholds for these two databases, WCup
will give a much higher percentage of high-contrast frequent itemsets. Usually the percentage
of high-contrast frequent itemsets decreases as the minimum support threshold increases.
This is quite understandable given that when the support threshold is low, there will be a
large number of global frequent itemsets generated, and many of these itemsets become global
frequent only because they have high local support at some site. In contrast, when the support
threshold increases, it becomes harder for a local frequent itemset to become global frequent,
which results in a decrease of high-contrast frequent itemsets. Accordingly, there is a higher
proportion of high-contrast frequent itemsets in the former scenario. Furthermore, the more
clusters over which the data distributed, the greater the possibility of skewness in the data.
This is verified by the experimental data. It is interesting to notice that for the highly-skewed
synthetic data, when the support threshold is incremented from 0.05 to 0.1, the percentage of
high-contrast frequent itemsets did not increase as expected. We guess this can be attributed
to the high skewness of the data. We surmise that for such data there exists some threshold
for our claim to take effect. Taking our synthetic data as an example, the threshold value is
around 0.1. Below this threshold, when we raised the support value, both of the high-contrast
frequent itemsets and the global frequent itemsets decreased, but the loss of the high-contrast
frequent itemsets was dominated by the loss of the global frequent itemsets, eventually leading
to an increased percentage of high-contrast frequent itemsets.

20

VI. CONCLUSION AND FUTURE WORK

In this article we have considered the problem of mining frequent itemsets on dynamic
and distributed databases in different parallel and distributed environments. We presented an
efficient distributed and parallel incremental algorithm to deal with this problem. In particular,
we presented techniques to minimize the response time to a query for the global set of frequent
itemsets, as well as to find high-contrast frequent itemsets. We believe that our approach is
the first to deal with problems of dynamic and distributed data in a unified manner.

Our experimental results show that our algorithm results in execution time improvement of
more than one order of magnitude when compared against a naive approach. The efficiency
of our algorithm stems from the fact that it makes use of the MFI, reducing both the number
of candidates processed and the amount of communication necessary. Our experiments in the
distributed setting also examined the trade-offs involved in minimizing the query response
time (whether to sacrifice query response time in order to incorporate more transactions in
the model), the amount of data transferred between clusters, and how the distribution of the
data affected the number of high-contrast frequent itemsets.

In the future, we plan to investigate the effectiveness of the WAVE algorithm [31] in parallel
and distributed settings. The WAVE algorithm provides the ability to estimate support counts
without scanning the entire database. Only when support counts can no longer be reliably
estimated do we have examine the database. We would also like to explore sampling methods
as a means of improving the query response time, and how to minimize query response time
in wide-area networks, where communication latencies tend to be relatively large.

REFERENCES

[1] D. Cheung, J. Han, V. Ng, and C. Y. Wong., “Maintenance of discovered association rules in large databases: An
incremental updating technique,” in Proc. of the 12th Int’l. Conf. on Data Engineering, February 1996.

[2] D. Cheung, S. Lee, and B. Kao, “A general incremental technique for maintaining discovered association rules,” in
Proc. of the 5th Int’l. Conf. on Database Systems for Advanced Applications, April 1997, pp. 1–4.

[3] V. Ganti, J. Gehrke, and R. Ramakrishnan, “Demon: Mining and monitoring evolving data.” in Proc. of the 16th Int’l
Conf. on Data Engineering, San Diego, USA, 2000, pp. 439–448.

[4] S. Lee and D. Cheung, “Maintenance of discovered association rules: When to update?” in Research Issues on Data
Mining and Knowledge Discovery, 1997.

[5] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An efficient algorithm for the incremental updation of association
rules,” in Proc. of the 3rd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, August 1997.

[6] A. Veloso, W. M. Jr., M. B. de Carvalho, B. Pôssas, S. Parthasarathy, and M. Zaki, “Mining frequent itemsets in
evolving databases,” in Proc. of the 2nd SIAM Int’l Conf. on Data Mining, Arlington, USA, May 2002.

[7] M. E. Otey, A. Veloso, C. Wang, S. Parthasarathy, and W. Meira Jr., “Mining frequent itemsets in distributed and
dynamic databases,” in IEEE International Conference on Data Mining, 2003.

[8] A. Veloso, W. Meira Jr., M. B. de Carvalho, S. Parthasarathy, and M. Zaki, “Parallel, incremental and interactive
mining for frequent itemsets in evolving databases,” in International Workshop on High Performance Data Mining,
2003.

[9] A. Veloso, M. E. Otey, S. Parthasarathy, and W. Meira Jr., “Parallel and distributed frequent itemset mining on dynamic
datasets,” in International Conference On High Performance Computing, 2003.

21

[10] B.-H. Park and H. Kargupta, “Distributed data mining: Algorithms, systems, and applications,” in Data Mining
Handbook, N. Ye, Ed., 2002.

[11] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New parallel algorithms for fast discovery of association rules,”
Data Mining and Knowledge Discovery: An International Journal, vol. 4, no. 1, pp. 343–373, December 1997.

[12] E.-H. Han, G. Karypis, , and V. Kumar, “Scalable parallel data mining for association rules,” in ACM SIGMOD Conf.
Management of Data, 1997.

[13] J. Park, M. Chen, , and P. S. Yu, “CACTUS - clustering categorical data using summaries,” in ACM Intl. Conf.
Information and Knowledge Management, 1995b.

[14] S. Parthasarathy, M. Zaki, M. Ogihara, and W. Li, “Parallel data mining for association rules on shared-memory
systems,” Knowledge and Information Systems, vol. 3, no. 1, pp. 1–29, 2001.

[15] M. J. Zaki, S. Parthasarathy, , and W. Li, “A localized algorithm for parallel association mining,” in Supercomputing’96,
1997.

[16] M. J. Zaki, “Parallel and distributed association mining: A survey,” IEEE Concurrency, vol. 7, no. 4, pp. 14–25,
December 1997.

[17] R. Agrawal and J. Shafer, “Parallel mining of association rules,” in IEEE Trans. on Knowledge and Data Engg., vol. 8,
1996, pp. 962–969.

[18] D. Cheung, J. Han, V. Ng, A. Fu, , and Y. Fu, “A fast distributed algorithm for mining association rules,” in 4th Intl.
Conf. Parallel and Distributed Info. Systems, 1996a.

[19] D. Cheung, V. Ng, A. Fu, , and Y. Fu, “Efficient mining of association rules in distributed databases,” in IEEE Trans.
on Knowledge and Data Engg., vol. 8, 1996, pp. 911–922.

[20] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proc. of the 20th Int’l Conf. on Very
Large Databases, SanTiago, Chile, June 1994.

[21] A. Schuster and R. Wolff, “Communication-efficient distributed mining of association rules,” in Proceedings of the
2001 ACM SIGMOD international conference on Management of data. ACM Press, 2001, pp. 473–484.

[22] R. L. Grossman, S. M. Bailey, H. Sivakumar, and A. L. Turinsky, “Papyrus: A system for data mining over local and
wide-area clusters and super-clusters,” 1999. [Online]. Available: citeseer.nj.nec.com/408839.html

[23] S. Parthasarathy and A. Ramakrishnan, “Parallel incremental 2d discretization,” in to appear in IEEE International
Conference on Parallel and Distributed Processing, 2002.

[24] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas, “Incremental and interactive sequence mining,” in
CIKM, 1999, pp. 251–258. [Online]. Available: citeseer.nj.nec.com/article/parthasarathy99incremental.html

[25] Zaki, “Efficient enumeration of frequent sequences,” in CIKM: ACM CIKM International Conference
on Information and Knowledge Management. ACM, SIGIR, and SIGMIS, 1998. [Online]. Available:
citeseer.nj.nec.com/zaki98efficient.html

[26] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance improvements,” in Proc.
5th Int. Conf. Extending Database Technology, EDBT, P. M. G. Apers, M. Bouzeghoub, and G. Gardarin, Eds., vol.
1057. Springer-Verlag, 25–29 1996, pp. 3–17. [Online]. Available: citeseer.nj.nec.com/article/srikant96mining.html

[27] M. Zhang, B. Kao, C. Yip, and D. Cheung, “A gsp-based efficient algorithm for mining frequent sequences,” in Proc.
of IC-AI’001, Las Vegas, Nevada, USA, June 2001. [Online]. Available: citeseer.nj.nec.com/zhang02gspbased.html

[28] M. Zhang, B. Kao, D. W.-L. Cheung, and C. L. Yip, “Efficient algorithms for incremental update of frequent
sequences,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2002, pp. 186–197. [Online].
Available: citeseer.nj.nec.com/article/zhang02efficient.html

[29] F. Masseglia, P. Poncelet, and M. Teisseire, “Web usage mining: How to effciently manage new transactions and new
clients.” [Online]. Available: citeseer.nj.nec.com/400542.html

[30] H. Toivonen, “Sampling large databases for association rules,” in In Proc. 1996 Int. Conf. Very Large Data Bases,
T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, Eds. Morgan Kaufman, 09 1996, pp. 134–145.
[Online]. Available: citeseer.nj.nec.com/toivonen96sampling.html

[31] A. Veloso, W. M. Jr., M. B. de Carvalho, B. Rocha, S. Parthasarathy, and M. Zaki, “Efficiently mining approximate
models of associations in evolving databases,” in Proc. of the 6th Int’l Conf. on Principles and Practices of Data
Mining and Knowledge Discovery in Databases, Helsinki, Finland, August 2002.

22

[32] K. Gouda and M. Zaki, “Efficiently mining maximal frequent itemsets,” in Proc. of the 1st IEEE Int’l Conference on
Data Mining, San Jose, USA, November 2001.

[33] M. Cierniak, M. Zaki, and W. Li, “Compile-time scheduling algorithms for a heterogeneous network of workstations,”
in The Computer Journal, vol. 40, pp. 356–372.

[34] D. Cheung and Y. Xiao, “Effect of data skewness in parallel mining of association rules,” in Proc. of the 4th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, New York, USA, August 1998, pp. 48–60.

23

