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Abstract

Efficient storage and analysis of large volumes of data are important issues in many fields
of science, engineering, and business. In many cases, data analysis is employed in a col-
laborative environment where multiple clients access the same datasets and perform similar
processing on the data. In this work, we present a multi-query optimization framework that
permits the identification and the utilization of data and computation reuse opportunities in the
presence of user-defined operators and aggregations for speeding up the execution of individ-
ual queries and query batches. We also present a methodology for functionally decomposing
complex queries in terms of primitives so that multiple reuse sites are exposed to the query
optimizer, to increase the amount of computation that can be reused. Furthermore, we show
how query scheduling techniques, coupled with intelligent cache replacement policies, can
further improve collective query processing. Finally, we give experimental results highlight-
ing the performance improvements obtained by our methods using real scientific data analysis
applications.

1 Introduction

“The purpose of computing is insight, not numbers” [27]. Therefore, the ultimate goal in the

process of analyzing data, especially large datasets, is to gain insight into new phenomena that

underlie these massive data collections in order to fulfill the role of computing as a tool for better

understanding scientific and business realities.

The efficient storage, management, and manipulation of large datasets is important in many

fields of science, engineering, and business. Simulations and experimental measurements are the

main sources of data in engineering and in scientific studies. In environmental simulations, for
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example, the output of a simulation is one or more datasets (in which each tuple or group of tuples

are associated with spatial/temporal coordinates), each consisting of a large number of numerical

values. A scientist often needs to access, explore, analyze, and visualize these datasets to gain

insight into the problem at hand and to draw meaningful and useful conclusions about the validity

and correctness of a theoretic model that underlies the simulation.

The number of applications that require analytical methods is steadily growing due to a con-

fluence of factors. The first factor is simply the availability of adequate storage and computational

resources. More important though is the inherent perception that these applications will shed new

light upon business and scientific phenomena. In this context, data analysis applications can be

defined as ones that access a subset of all the data available – the hot spots – which are the data

points and regions of highest interest. The data of interest is usually processed and transformed

into a data product. Data products are often generated by computing an aggregation over some of

the dimensions of the dataset, ranging from simple associative arithmetic and logical operators to

more complicated application-specific functions.

In many cases, data analysis is employed in a collaborative environment, where multiple clients

access the same datasets and perform similar processing on the data. For instance, in the emerg-

ing field of medical imaging [10], a possible scenario is a large group of students wanting to

simultaneously explore the same set of digitized microscopy slides or visualize the same Magnetic

Resonance Imaging (MRI) and Computerized Tomography (CT) results. In these situations, the

data server needs to execute multiple queries simultaneously to minimize latencies to the clients.

In this multi-client environment, there may be a large number of overlapping regions of interest

and common processing requirements (e.g., the same magnification level for microscopy images,

or use of the same transfer functions to convert scalar values into color values) among the clients.

This work investigates the problem of optimizing multiple data analysis queries for computation-

intensive and/or data-intensive applications. Many different aspects of the multiple query optimiza-

tion problem have been investigated in other contexts, particularly in relational databases. How-

ever, the scale of the datasets, the application-specific nature of data structures and the computation

of user-defined aggregates require developing new optimization techniques to ensure good system

performance, especially under heavy query workloads.

The need to develop new techniques and extend the methodologies proposed by other re-
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searchers comes from the fact that data analysis applications have many aspects that are particular

to them. Namely, current techniques suffer from limitations in handling either unstructured opera-

tors or operators that are not known a priori. In fact, most of the techniques assume a well-defined

set of operators – relational database operators – and also assume specific algorithms implement-

ing the operators. Such a restricted set of operators allows for defining efficient data structures for

representing data and computation reuse scenarios. However, in more general data analysis appli-

cations there is not a pre-defined set of operators and algorithms that can be leveraged to construct

an efficient query optimizer. Moreover, because of the exploratory nature of these applications,

new operators and algorithms can be dynamically added to a data analysis application. Therefore

it is necessary to provide ways to describe operators and the aggregates generated by such opera-

tors so that a generic query optimizer can detect optimization opportunities. The second important

limitation of previously investigated techniques lies in the fact that data analysis application are of-

ten very data and computation-intensive. Thus, scalability and distributed processing issues must

be accounted for from the outset so that good performance can be obtained by the optimization

engine. In this context, there are four major contributions from this paper:

1. We propose a model for detecting application-specific reusable aggregates and a mechanism

for automatically reusing data and computation through an active semantic cache. The model

consists of a data transformation framework with a set of customizable operators that exposes

information about how a particular (intermediate or final) data product was generated and

how it might relate to other data products (i.e., how it can be transformed in case of partial

reuse opportunities).

2. We show how the generic operator types from our model can be used to derive better query

scheduling and cache replacements policies to further improve query optimizer performance.

3. We explore a model for functionally decomposing complex computations that can be used to

described sophisticated queries in terms of simpler primitives. Query decomposition makes

more reuse sites available to the query optimizer.

4. Using real scientific data analysis applications, we experimentally analyze the impact of each

of our optimization techniques by employing a full-fledged server implemented as part of this
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work. Our results show that 1) the active semantic cache model is very effective in reducing

query response time under multi-query loads, 2) the cache replacement and query scheduling

policies tailored to use the active semantic cache can further improve the performance of

the server, and 3) functional decomposition is an effective approach for exposing data and

functional reuse opportunities in data intensive applications.

The rest of this paper is organized as follows. Section 2 discusses how our work relates to

previous research. Section 3 describes the data processing model we target and the optimization

framework we employ. Section 4 describes the active semantic cache infrastructure, a new cache

replacement policy, and multiple informed query scheduling policies. Section 5 describes how and

why complex queries can be broken into simpler primitives. Section 6 describes two of our case

study applications and how they are implemented using our data analysis framework Section 7

evaluates all of our optimization techniques and provides evidence showing how each particular

technique improves performance. And, finally, Section 8 summarizes this work and presents a

discussion of lessons learned.

2 Related Work

Multiple query optimization can be defined as a set of techniques aimed at minimizing the to-

tal cost of processing a set of queries by creating an optimized access plan for the entire set of

queries [42]. Optimizations for the execution of multiple simultaneous queries have been exten-

sively investigated in the context of relational databases [19, 24, 30, 41, 44]. In general, once

common subexpressions are detected for a batch of queries, individual query plans are merged or

modified and queries are scheduled for execution so that the amount of data retrieved from the

database is minimized and multiple executions of common paths in the query plans are avoided.

One critical aspect in optimizing multi-query batches lies in identifying data and computation reuse

opportunities. Indeed, it has been shown that exploiting reuse is a powerful mechanism for improv-

ing the performance of computational systems in general [11]. For relational database systems, it

has been shown that identifying common subexpressions [19, 24, 42] and applying view materi-

alization strategies [23, 34] can yield sizable decreases in query execution time when processing
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multiple query batches. However, when applications do not conform to the relational database

model and where the developer can extend the database by adding application-specific processing

capabilities and operators, the optimization techniques developed for relational databases cannot

be applied directly.

One way of leveraging results computed in the past in order to speed up the evaluation of

queries under execution is through the use of a semantic cache. Semantic caching is essentially a

mechanism for storing data products and their corresponding semantic descriptions and has been

extensively studied by other researchers [25, 38].

The amount of reuse that the query optimizer can exploit depends on how many reuse sites are

discovered. We therefore suggest, in Section 5, an approach for segmenting complex queries into

primitives that is similar to the component-based application development paradigm. Several re-

search projects have investigated the design and implementation of component-based frameworks

for application development and deployment [2, 13, 16, 18, 37, 39]. In these frameworks, the ap-

plication processing structure is decomposed into a set of interacting computational components.

Most efforts on component-based frameworks have focused on improving the performance of one

or more independent queries by effectively decomposing the application structure and efficiently

scheduling application components. Our work differs in that we also examine the application of

functional decomposition for increasing data and computation reuse opportunities.

Another area related to this work is query scheduling. In a more general setting, the query

optimization and scheduling problem has been extensively investigated in past surveys [22]. It has

been suggested that carefully scheduling queries plays an important role in terms of better using

computational and I/O resources and also in terms of the amount of data reuse. Gupta et al. [26]

present an approach that tackles this problem in the context of decision support queries. Although

our objectives have some similarities to theirs, we deal with a different domain of queries and a dif-

ferent database architecture (non-relational datasets). Sinha and Chase [43] present some heuristics

to minimize the flow time of queries and to exploit inter-query locality for large distributed sys-

tems. The work of Mehta et al. [32] is one of the first to tackle the problem of scheduling queries

in a parallel database by considering batches of queries, as is done in this work, as opposed to

scheduling one query at a time.
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3 Optimization Model

In this work, we refer to an instance of a data analysis operation as a query that processes in-

put data via user-defined operations, generates intermediate aggregates, and produces an output

dataset. Frequently, the query result is a data product or an aggregate constructed by applying

computational operations to transform the raw data into an artifact that can be used to identify

the underlying phenomena, frequently through visualization techniques. An interesting fact is that

many of these applications share a common processing model that we will describe shortly. Un-

derstanding this processing model is important because we construct our optimization framework

around it, essentially by identifying where intermediate and final aggregates are generated and by

providing a means for reusing them in subsequent query evaluations.

3.1 Generic Data Processing Model

Queries for many data analysis applications [1, 15, 21, 31] can be described according to a common

processing structure [20]. In fact, the algorithm shown in Figure 1 describes abstractly the steps

for processing a generic data analysis query. We refer to these queries as range-aggregation

queries (RAG) since they typically have both spatial and temporal predicates that are defined as

ranges, i.e., a multi-dimensional bounding box in the underlying multidimensional attribute space

of the dataset (the query domain). Only data elements whose associated coordinates fall within the

multidimensional box are retrieved and processed according to an application-specific and usually

user-defined method.

In the processing loop, Datasets are the data and associated meta-data information available to

the system for processing a query. The datasets can be classified as input, output, or temporary.

Input datasets correspond to the data to be processed. Output datasets are the result of applying

an operation to the input dataset. Temporary datasets (temporaries) are created during query

processing to store intermediate results. Often a user-defined data structure is used to describe and

store a temporary dataset. Temporary and output datasets are tagged with the operation employed

to compute them and also with the query meta-data information. Temporaries are also referred to

as aggregates, and we use the two terms interchangeably.

The function ���	�
�	�� identifies the set of data elements in a dataset that intersect the query
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// Datasets���
Input� �
Output� �
Temporary Aggregate�����

Query meta-data information
1. ��� � ��������! #" �%$&� �
'

// Initialization
2. foreach  )( in

�
do

3.  ( �*�,+.-  -0/ � -21 �3" '
// Processing

4. foreach
- ( in �.� do

5. read
- (

6. �54 �6�7/8 " - ( '
7.

� � � 8 �9 /  -0:;+ " � $ � 4 '
// Finalization

8. foreach  ( in
�

do
9.

: ( � �=<  8 <  #"> ?( '

Figure 1: Abstract query processing code.

meta-data @ � for a query A � . The data elements retrieved from the storage system are mapped

to the corresponding temporary dataset items (step 6), and an application-specific operation (e.g.,

sum over selected tuples in a relational database or an image processing operation) is applied on

the input data elements (step 7). To complete the processing, the intermediate results in B are

post-processed to generate final output values. Map is an application-specific function that finds

the set of output data items to which the input data elements contribute. An input element may map

to a set of output elements, for example, due to irregular data distributions. Operation describes

an application-specific data transformation function that, given the input data C , produces a data

product from C . An instance of an operation uses the meta-data information to generate output data

from the relevant parts (domain) of C .

A query type is the definition of a processing chain in which a collection of input datasets

CEDGFHFIFJCIK (collectively called C ), the necessary meta-data information @ that describes the data of

interest, a temporary dataset B , and an output dataset L are specified. The meta-data information

@ defines the domain (e.g., relational predicate, or bounding box for multi-dimensional range-

aggregation queries) and the functions Operation and Map to be applied to the input data C to
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generate the output L .

3.2 Data Transformation Model

When multiple queries are processed in the context of a data analysis application, we expect that

there will be inter- and intra-query commonalities because queries tend to concentrate on regions

of higher interest in the dataset. Examples are the visualization of an interesting feature by mul-

tiple users inspecting an MRI data product and the execution of slightly different hydrodynamic

simulation models over the same spatio-temporal grid.

In this description, query A#M refers to a query whose results (referred to as aggregate N ) are

already computed and available for reuse, and query A � refers to a query that has been scheduled

for execution and whose results (referred to as aggregate O ) must be computed. To simplify the

description of the model, we assume that each query generates a single output aggregate, but that

simplification is not a limitation of the model.

We describe a mechanism for exploiting commonalities in the form of a data and computation

reuse model. The model assumes that the two queries A � and A!M , described respectively by meta-

data @ � and @PM , can each potentially share input elements ( Q ( , step 5 in the query processing loop

depicted in Figure 1), temporary aggregate elements ( � ( , step 7), and output elements ( R ( , step

9). When multiple query types must be processed, cached data elements ( Q ( , � ( , and R ( ) may not

be able to be directly reused. However, if the framework provides the ability to perform a data

transformation operation – converting one aggregate into another – data elements potentially can

be reused. We refer to this type of data caching as active semantic caching.

The data transformation model is the cornerstone of our active semantic caching framework.

First, it is responsible for the identification of reuse possibilities when a new query is to be exe-

cuted. The query semantic information (i.e., metadata information) is used to find the matching

entries in the data cache. Second, by transforming an aggregate cached in the system to another

aggregate, data reuse opportunities increase. In our framework, information about multiple possi-

ble overlaps and multiple scheduling possibilities can be used to drive better cache management

policies, as will be shown in Section 4.1, and also to process a query batch to better use available

system resources, as will be shown in Section 4.2.
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Conceptually, the following set of abstract operators describes the information the framework

uses to identify and exploit redundancy elimination opportunities at runtime:

SUTGVXWZY.[	\^] @ �)_ @`M;a�b true or false (1)

Tdce\%[Ef�Y.Whg	i?jJk
l&m)nH] @ �o_ @pM�aqbsr _ where tvuwr�uyx (2)

Wh[,Tdz;\{SU|{] @ �)_ @PM _ N�a}bs~���� _ where @X���w@ � and ~���O (3)

Equation 1 describes the ��R,�������U� function that returns true or false depending on whether

aggregate O described by meta-data @ � is the same as N described by @pM . When the application

of this function returns true, the query planner has identified a common subexpression elimination

opportunity. Hence, in a query plan where O is supposed to be computed, the query executor can

replace uses of O with a reference to aggregate N .

In many situations, aggregates O and N partially overlap, which means that ��RE�������3� is false,

but partial reuse is still possible. Equation 2 describes the RE�{�H�3�0�H� function that returns a value

(overlap index) between 0 and 1 that represents the amount of overlap between aggregates O and

N . This function is computed by inspecting the domain of a cached aggregate (described by @XM )
and the domain of the query under processing ( @ � ) in a two-step process. First, the @��H� function

is applied to the domain of the cached aggregate and the amount of multidimensional overlap with

the query domain is computed. Second, another factor of the overlap is computed with respect to

a set of data transformation functions (called �.�3R��{�	�#� functions), which are responsible for identi-

fying each relevant element from the cached aggregate and converting it (or a collection of them)

into an output data element for the aggregate being computed. More precisely, the �.�3RI�%�	�#� func-

tion, shown in Equation 3, takes one data aggregate N whose meta-data is @�M and projects it over

@ � by extracting and transforming the parts of N that are relevant to O , either computing it in its

entirety or generating ~ , which is a partial computation of O . Each projection function manipu-

lates the input aggregate in different ways to convert it into the aggregate required by the query

being computed. Although any ad hoc data manipulation can be supported, we have identified a

collection of pre-defined projection primitive classes that will be described in detail in Section 3.3.

Upon identifying a reusable aggregate, the query executor must complete the computation of
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Multidimensional domain
for a cached aggregate J

Cached Aggregate

Multidimensional domain for an
aggregate I  being computed

Desired
Aggregate

Mi

Mj
computed by a
project function

computed by the
difference function

overlap index=0.45 (computed
by the overlap function)

Map function

Figure 2: Using the Map, Overlap, Project, and Difference operators to extract a reusable part from
a cached aggregate.

the desired aggregate by evaluating the portions that need to be computed from input data or from

other aggregates. The following equation defines an operator that computes the set of subquery

descriptors for the incomplete regions:

�h��� \%[,\{�hS�\G] @ �)_ @PMIa�b�� (4)

where � is the set of subquery descriptors defined to satisfy the following conditions:

]��
� �#�	� @��;a��p@PM¡ ¢@ � (5)

£
meta-data pairs @X¤ _ @�¥ where @�¤§¦�� _ @�¥�¦¨� _ and @X¤ª©b�@�¥ _ @X¤¬«P@X¥bw® (6)

After the relevant parts of N are obtained, Equation 4 can be employed to instantiate the sub-

queries for computing the aggregates that are necessary to finalize the processing for generating O .

The conditions stated in Equations 5 and 6 establish that these descriptors are the necessary and

minimal ones required to complete the processing for O once N has been reused. The diagram in

Figure 2 shows all the operators in action.

In order to make our description less abstract, we present an example of how this set of func-

tions can be employed for query optimization. Given an image visualization application, assume

there is a query that is supposed to return an image within a given bounding box, with a specific

magnification level, and processed according to a particular image processing algorithm. Because

of the amount of data to be processed, the input data and the output image may be tiled for parallel

processing. Each temporary aggregate tile � ( and each output tile R ( can be described by a 3-tuple,

10



¯
bounding box, zoom factor, image processing algorithm ° , which constitutes the tile meta-data @ .

When a query must be processed and the algorithm in Figure 1 is executed, the operations in steps

5, 7, and 9 are not immediately performed. Instead, using the customized set of operators for the

application at hand, a cache lookup is performed, trying first to find a complete match (applying

Equation 1), and, if that fails, a partial match is attempted (applying Equation 2), in which case a

projection primitive may be employed (Equation 3). Finally, subqueries describing the incomplete

areas of the query region are generated using Equation 4, which are then automatically submitted

for processing.

3.3 Reuse Primitives for Aggregation Operations

Conventional data caching approaches require a complete and perfect match (i.e., cache hit or miss)

between the output to be computed and a previously computed aggregate. Equation 3 introduced

the notion of projection primitives that enable transforming an aggregate generated by a query so

that it can be reused to completely or partially satisfy a new query. We call the mechanism that

allows such reuse operations active semantic caching. This mechanism gives the query engine a

better chance to exploit reuse than does conventional caching.

Based on a number of applications [1, 12, 15, 31], we have identified four classes of projection

primitives. They are based on the type of reuse they can leverage: dimensional overlap, compos-

able reduction operations, invertible functions, and inductive functions.

3.3.1 Dimensional (Spatio-temporal) Overlap Primitives

In applications that deal with range queries, one common part of the query meta-data describes the

spatial and/or temporal coordinates of the region over which the query will perform a computation.

A dimensional projection primitive performs a geometric translation and/or rotation on the cached

overlapped data, in addition to clipping the n-dimensional region to conform to the predicate for

the new query. The new aggregate can be directly obtained if the cached aggregate completely

subsumes the one being computed. Otherwise, the new aggregate can be partially generated, in

which case the region that cannot be computed from the cached aggregate must be calculated from

input data or from other cached aggregates using the difference operator (Equation 4). Indeed,
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the difference operator returns � as the minimal set of multidimensional regions obtained when

@PM , the cached aggregate dimensional coordinates, is subtracted from @ � , the coordinates of the

aggregate to be computed.

3.3.2 Composable Reduction Operations Primitives

Aggregation operations that implement generalized reductions [28] are commutative and asso-

ciative. A commutative and associative aggregation operation produces the same output value

irrespective of the order in which the input data elements are processed. That is, the set of input

data elements can be divided into subsets. Temporary datasets can be computed for each subset

and a new intermediate result or the output can be generated by combining the temporary datasets.

Interestingly, a composable reduction operation primitive takes one or more temporary aggregates

with a finer-level aggregation1 and transforms them into a coarser-level aggregation, coalescing

multiple data points into a single new data point. However, in order for this primitive to generate

a correct result, a congruence relationship must exist between the cached aggregate and the one to

be computed.

We define a congruence relationship as follows. Suppose for a set of data elements �;D _ �²± _ F;FHF _ �oK ,
a collection of aggregates B^³µ´ D _ BG³µ´ ± _ FHF;F _ BG³¶´ · is generated using a reduction operation ¸ such that

BG³¶´ M¹bº¸ ] �¼» _ FHF;F _ �
½Ea and let �^³¾´ M¹bÀ¿H�²» _ FIFHF _ �2½3Á , where ¸ is a generalized reduction operation, �
designates the aggregation level, � designates a particular aggregate, and �Z³¶´ M designates the set of

data elementss used for computing B�³µ´ M . Then BG¤;´ � – the aggregate to be computed, O – can be

defined by a projection primitive over B�³µ´ M – the cached aggregate N – iff Â is congruent to � , which

means that the following condition must hold:

�Ã³¶´ M�Äs�G¤;´ � (7)

Here, Â is an aggregation level that is coarser than � . The difference operator is then defined as

follows:

1The aggregation level is associated with the amount of input data that needs to be aggregated. In image visualiza-
tion, it can be the amount of zooming applied to an image. In satellite data processing, it can be the amount of daily
data to be used for calculating a given data product.
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�¢b �
�	ÅÆ M&ÇEÈIÉËÊ �#ÌdÈIÍ Ê Î �Ã³¾´ � (8)

3.3.3 Inductive Aggregation Primitives

Several aggregation operations can be described inductively, i.e., ¸ ]0Ï�Ð x	a�b�¸ ]
Ï a^R�§Ñ , where Ñ is

a generic function, and R#� is an aggregation operation. In some cases, the function can be written

as ¸ ]
Ï a�b�¸ ]
ÏÒÐ x,a�R�ÃÓ D Ñ , meaning that ¸ ]0Ï a can also be computed from ¸ ]0Ï§Ð x	a by employing

the inverse operation of R#� . Here, Ï designates the inductive step or, in some cases, how much

precision one desires for a computation.

An inductive aggregation primitive can use a cached aggregate from a later inductive step to

compute an aggregate for a prior inductive step by removing the contributions of the intermediate

inductive steps, computed using the set � generated by the difference operator. Consider com-

puting aggregate O defined by ¸ ]0Ï a . Aggregate N is cached and defined as ¸ ]0Ï¹Ð x,a . O can be

computed from N by computing ¸ ]
Ï=Ð x,aGR� Ó D Ñ . Conversely, if O is cached we compute ¸ ]0Ï a^RJ�§Ñ
to obtain N . In this case the set � computed by the difference operator determines the additional

computation and data required to compute N .

An example of inductive operations is performing 3-dimensional volume construction from a

set of 2-dimensional images [15]. In order to produce a 3-dimensional volume, an octree data

structure is constructed from a set of 2-dimensional images. An octree of depth ÏÔÐ x can be used

to build an octree of depth Ï without retrieving and processing the input images. The primitive in

this case benefits from the fact that building ¸ ]0Ï a from ¸ ]
ÏÕÐ x,a and Ñ is cheaper than generating

it from the input dataset.

3.3.4 Invertible Aggregation Primitives

Many aggregations are computed by applying functions to a single input data element or to a

collection of input data elements. Some of these functions may be invertible, more specifically

they can be algebraically or procedurally reversed (given the result, the input can be obtained). Let

us assume that aggregate N was computed by applying function ¸ to a collection of data elements

B . In order to compute aggregate O by applying function Ñ , using the same data elements in
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B , we must recover the original data elements by using ¸hÓ D to compute the original set B and,

subsequently, apply Ñ . For example, in satellite data processing, atmospheric correction is often

employed to account for atmospheric effects on remotely sensed data and is performed by applying

a function, for example, of the form ¸ ] ÂÃa�b��,D Ð Ö0×Ö
Ø�Ù%Ú D Ó Ö
ÛÙ ¤�Ü , where Â is the uncorrected value for a

sensor measurement and �,D , ��± , �Ý , and �Þ are physical constants [29]. In this case, the uncorrected

value of Â can be recovered by algebraically computing ¸ Ó D .
Usually, for invertible functions, leveraging reuse requires extra computation to re-generate the

input data elements. Therefore, using this primitive requires trading off the cost of retrieving the

input data against the cost of applying the invertible function to compute the input data element

from a cached aggregate.

3.3.5 Composition of Multiple Projection Primitives

Oftentimes, combinations of projection primitives can be used to transform a cached aggregate

for reuse by another query. For instance, a dimensional projection primitive can be followed by a

primitive for either composable reduction operations or inductive aggregation functions to produce

the desired aggregate. The query plan will determine how cached aggregates are going to be

manipulated according to a set of transformations in order to obtain the data product defined by a

query as will be seen in Section 5.

3.4 Overlap Functions

Related to each projection primitive is the issue of computing the amount of overlap between a

cached aggregate and the aggregate sought by a query plan, with respect to a particular projection

primitive (Equation 2). There is a one-to-one correspondence between each projection primitive

and an overlap function. In general, the overlap function returns an index between 0 (no overlap)

and 1 (full overlap). When a query plan is computed, the overlap function is used to rank cached

aggregates in terms of how much they can help in computing the desired aggregate.

For dimensional projections, the overlap function computes a normalized value that measures

how much of the desired aggregate can be computed from the cached one. This is accomplished

by calculating the geometric overlap using two bounding boxes in the multi-dimensional space of
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the dataset – one for the cached aggregate and the second describing the aggregate to be computed.

For composable reduction projections, the overlap function returns the congruence level, which

is defined as the percentage of overlap between the aggregation level of a cached aggregate and

the aggregation level to be computed based on meta-data associated with both aggregates (e.g., an

aggregate for days 1 and 2 has a 0.5 overlap with an aggregate for days 1, 2, 3 and 4 from the same

year).

For inductive functions, the overlap function computes an index in terms of inductive distance.

The distance is normalized based on the inductive step being searched for (e.g., an image with a

resolution of 2 ß¨� ± per pixel has an overlap of 0.5 with the same image at 4 ßp� ± per pixel res-

olution). Finally, for invertible functions, the overlap function returns whether or not the function

inverse can be computed (either 0 or 1).

4 Active Semantic Caching

The data reuse framework described in Section 3 employs caching and supports transformations on

cached aggregates. An advantage of this scheme, in contrast to the way multi-query optimization

is performed in relational database systems, is that a particular query execution plan may be opti-

mized using results generated earlier. That is, some of the strategies previously explored optimize

queries only within a single query batch, which presumes that a group of queries can be formed

and simultaneously processed with a single, optimized query plan.

To demonstrate our optimization framework, we have built an active semantic cache system

component. It is primarily responsible for providing dynamic storage space for intermediate ag-

gregates generated as partial or final results for a query. It is said to be active because aggregates

may be automatically transformed, and semantic because meta-data is usually stored with the ag-

gregates to permit transformations to be applied. In our implementation, the system manages a

fixed amount of in-core memory and secondary storage for holding cached aggregates.

A query can take advantage of the semantic cache during query planning. In particular, two

operations are supported by the system – memory allocation and aggregate lookup. When a query

must allocate space for an aggregate, the size of the aggregate and the corresponding meta-data

are passed as parameters to an alloc method that handles all the bookkeeping in the resource
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allocation phase [3]. This design ensures that all dynamically allocated memory is accounted for

by the semantic cache to avoid paging activity. On the other hand, lookup operations are used to

determine whether an aggregate to be generated can be computed entirely or partially from the

aggregates stored in the cache. The lookup operation is defined in terms of both the compare and

the overlap operators described in Section 3 in order to compute the amount of overlap between the

sought aggregate and the cached ones, returning a pointer to the best match. A detailed description

of the system architecture and a discussion of how applications are supposed to customize the

abstract version of the active semantic cache operators can be found in [5, 6, 8].

4.1 Cache Replacement

Our multiple query optimization framework is application independent. The data server that im-

plements the optimization framework was conceived with the design decision that multiple appli-

cations with multiple query types can be supported simultaneously. This decision takes root in

the same principle that governs how Database Management Systems (DBMSs) are constructed,

i.e., multiple applications making use of common infrastructure. Under this assumption, it is rea-

sonable to assume that the aggregates computed by queries may have different construction costs.

Hence, the use of simple cache replacement policies (such as least recently used) can potentially

degrade overall system performance, since a misguided eviction can discard a very expensive ag-

gregate when others that are cheaper to compute could have been discarded instead. Many cache

replacement policies have been proposed in the past, and our optimization model supports several

of them (e.g., Least Recently Used, Least Frequently Used, Size). However, none of these policies

benefits directly from information available in the data transformation model. Therefore we have

adopted a replacement policy used in Web caching – Least Relative Value (LRV) [17]. This policy

replaces the aggregate that has the least value, which can be computed in several different ways.

Ideally, value should be a relative measure of how expensive it is to generate a specific aggregate.

To capture this metric, we extend the data transformation model with two new functions:

Teà�|	Whà�|,á �
â \G] @ � a�b��HD _ (9)

where �	D is the query-specific estimated size in bytes of the result aggregate for query A � over
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the domain defined by its meta-data @ � , and

� ��Wãà�|,á ��â \G] @ � a}bs�± _ (10)

where ��± is the estimated size in bytes of the amount of input data to be processed by query A �
over the domain defined by its meta-data @ � .

Using these two operators, we have devised two variants for calculating the value of an aggre-

gate. The first variant uses the ratio
� KJ½Jäåçæ �µè ( Ú � Î Ü»?äåé½Jä�åçæ �µè ( Ú � Î Ü . We refer to this method as LRVA. The second

variant is the ratio ê
ë¾ëËì Ú � Î Ü»)ä#åé½Jäå>æ �µè ( Ú � Î Ü , We refer to this method as LRVB. The first variant, LRVA, is most

suitable for I/O-intensive queries, for which most of the execution time is spent retrieving input

data from disk. The second variant, LRVB, captures the complete cost of processing a query ( AEå¶å Ö ),
including I/O, compute time, and time spent on bookkeeping tasks. We also employ aging as a

means to alleviate the problem of retaining expensive aggregates indefinitely [4]. An exponential

decay function is used to decrease the value of an aggregate over time.

4.2 Query Scheduling

In general, cache replacement policies attempt to discard the most irrelevant aggregate when an

eviction decision is made. Complementary to this decision is scheduling a query to achieve maxi-

mum reuse based on what the cache currently holds and the queries currently being executed. Our

implementation of the active semantic cache based server middleware can employ several different

parallel organizations [5, 6, 8] (e.g., multithreading, cluster of workstations, and computational

Grid), however each of them allows the execution of multiple queries simultaneously. The level

of concurrency is limited by the number of processors that are available to the system. Since each

query is executed by a processor, when all of the processors are busy, a new query received by the

system is put into a waiting queue. A good query scheduling policy should attempt to order the

execution of waiting queries so that they benefit from greater cache locality without starving other

waiting queries. In a sense, a good cache replacement policy complements the query scheduling

policy by maintaining in cache a working set of data aggregates manipulated by the current query

workload.

In this section, we show how the data transformation model described in Section 3.2 can be used
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Figure 3: (a) Executing multiple queries over two parts of a Virtual Microscope slide (see Sec-
tion 6.1) with different magnification levels. (b) The corresponding scheduling graph.

to drive better query scheduling decisions. Our approach to the multiple query scheduling problem

is based on the use of a priority queue. Multiple ranking strategies are used to impose an execution

order based on different inter-query dependency criteria. Each of them uses semantic information

obtained from the data transformation model to assign weights for the waiting queries. The priority

queue is implemented as a directed graph, í ]2î _Jï a , where î denotes the set of vertices and
ï

is

the set of edges, along with a set of strategies for ranking queries waiting for execution. The graph,

referred to as the query scheduling graph, describes the dependencies and reuse possibilities among

queries because of full or partial overlap, as seen in Figure 3. Each vertex represents a query that is

either waiting to be computed, is currently being computed, or was recently computed and has its

results cached. A directed edge � � ´ M in the graph connecting A � to A!M means that the results of AM can

be computed based on the results of A � . In some situations, a transformation may exist in only one

direction due to the nature of the data transformation, i.e., the data transformation in question is not

symmetric. In that case, the two nodes are connected in only one direction (e.g., �U±!´ Þ in Figure 3

(b)). Associated with each � � ´ M is a weight ð � ´ M , which gives a quantitative measure of how much

of A � can be used to satisfy A M using a projection primitive. Therefore, the scheduling process is

tightly coupled with the optimization model, because the data transformation model is needed to

analyze how two queries are related. In the framework, the weight ð � ´ M associated with any two

edges Q and � is computed as follows:
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ð � ´ M=b Tdce\%[Ef�Y.W=] @ �o_ @pM�a=ñ Teà�|	Wòà�|,á ��â \G] @ � a _ (11)

The weight is essentially a measure of the number of bytes that can possibly be reused if A �
is executed first and then A#M is executed, so that the query plan A#M reuses the aggregates generated

by A � . Associated with each node A � ¦ î is a 2-tuple
¯ � �)_ó;� ° , where � � and

ó;�
are the current rank

and the state of A � , respectively. A query can be in one of four states: WAITING, EXECUTING,

CACHED, or SWAPPED OUT. The rank is used to decide when a query in the WAITING state is

going to be executed, so that when a dequeue operation is invoked on the priority queue, the query

node with the highest rank is scheduled for execution.

The scheduling model is dynamic in the sense that new queries can be inserted as they are re-

ceived from clients. Upon receiving a new query, several events are triggered, causing topological

and/or re-ranking modifications in the scheduling graph [9]. Once a query A � is scheduled for exe-

cution,
ó;�

is updated to EXECUTING and, once it finishes, its state is updated to CACHED, meaning

that its results are available in the active semantic cache for reuse. If memory must be reclaimed

for a cache replacement operation, the state of the query A � will be set to SWAPPED OUT, meaning

that its results are no longer available for reuse (note that this implies communication between the

query scheduler and the active semantic cache). At that point, the scheduler removes the node A �
and all edges whose source or destination is A � from the query scheduling graph. This topological

transformation triggers a re-computation of the ranks of the nodes that were previously neighbors

with A � . The up-to-date state of all queries is therefore always available to the query server. The

ranking of nodes can be viewed as a topological sort operation. We briefly examine several ranking

strategies; a detailed description of the strategies can be found in [9].

1. Most Useful First (MUF): The nodes in the WAITING state in the query scheduling graph

are ranked according to a measure of how much other waiting queries depend on a specific

query, computed as RE�{�H�3�0�H��ñ=R,ô����.ô.� ó Q)õ�� . The intuition behind this policy is that it quantifies

how much other queries will benefit if query A � is executed first.

2. Farthest First (FF): The nodes are ranked based on a measure of how much a query depends

upon another query. When A � depends on AJM , and A � gets scheduled for execution while AM
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is executing, the computation of A � will stall until AJM finishes because its results can be used

to generate a portion of the result for A � . Therefore, farthest first ranking gives a measure of

how likely a query is to block because it depends on a result that is either being computed or

is still waiting to be computed.

3. Closest First (CF): The queries are ranked using a measure of how many of the nodes a

query depends upon have already executed (and whose results are possibly CACHED) or are

currently under execution. The intuition behind this policy is that scheduling queries that are

“close” has the potential to improve locality, making caching more beneficial.

4. Closest and Non-Blocking First (CNBF): In this strategy, nodes are ranked by a measure

of how many of the nodes that a query depends upon have been or are being executed2. The

intuition is the same as that for CF; however, CNBF attempts to prevent interlock situations.

As baseline cases in our experimental setup, we also investigated two traditional scheduling

policies – First in First out (FIFO), in which queries are served in the order they arrive, and

Shortest-Job-First (SJF) in which queries are ordered by their estimated execution times. The

shorter the execution time for a query is, the higher its rank will be. The size in bytes of the pro-

cessed input data, Q Ï ��ô�� ó Q?õ�� ] @ � a , for query A � is used as an estimate of the relative execution time

of the query. The FIFO strategy targets fairness; queries are scheduled in the order they arrive.

On the other hand, the goal of SJF is to reduce average waiting time by scheduling queries with

shorter execution times earlier. The goal of MUF is to schedule earlier the queries that are the

most beneficial for other waiting queries. The objective of FF is to avoid scheduling queries that

are mutually dependent and have one of them wait for the other to complete. CF and CNBF are

similar, but CF aims to achieve higher locality to make better use of cached (or soon to be cached)

aggregates, while CNBF tries to improve locality without paying the price of having to wait for

dependencies to be satisfied.

2We deduct the weight for the nodes being executed because we want to decrease the probability of having very
little overlap due to the deadlock avoidance algorithm implemented in the query server (described in [3]).
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Figure 4: Two functionally decomposed queries A � and AJM . A � has two execution plans A � ´ D and A � ´ ± .¸Eö , in query A � ´ ± , is a projection primitive, taking an aggregate of type B�Ý and generating a projected
aggregate of the same type. In A � ´÷D , ¸�D and ¸EÝ , the leaf nodes, use raw data as their input. Each B �
represents a potential reuse site.

5 Functional Decomposition

In many applications, the processing required to evaluate a query involves relatively complex op-

erations that can be implemented from a set of primitive operations. We refer to an operation as

primitive if it is an application-specific minimal and indivisible part of data processing. An exam-

ple is the processing of satellite data, in which sensor data is first range-selected and subsampled,

correction algorithms are applied to the data, an aggregation operation is performed, and, finally, a

cartographic projection is carried out to yield the final query output, called a data product [29].

A complex function can often be defined as a composition of several primitive operations:

L �ø ¸�D¬ùú¸E±�FHFIF�ùú¸	K ] Cda where ¸�D _ ¸E± _ FHFHF#¸	K are the primitive operations and @ is the domain

as defined by the query meta-data. The implementation of a complex function as a monolithic

computation results in a single aggregate becoming available for later data reuse, namely the output

of the complex function. However, for each primitive function ¸ � , typically different algorithms can

be chosen by a particular user query. Therefore, a monolithic implementation effectively reduces

the likelihood of identifying reusable aggregates, even though some intermediate result could have

been employed by other queries.

Based on this observation, we suggest the implementation of complex operations as a sequence

of primitive operations: BòD �ø ¸,K ] Cda , BG± �ø ¸,K Ó D ] B�D!a , . . . , BGK Ó D �ø ¸,± ] BeK Ó ±a and L �ø ¸�D ] BeK Ó D²a ,
where B�D , BG± , . . . , and BGK Ó D are intermediate temporary aggregates. When a complex operation is

decomposed into a sequence of primitive operations, the query plan produces a processing chain

in which aggregates generated by a primitive in the chain are used as input to the next primitive. In
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essence, aggregates are materialized along the processing chain, in contrast to data elements being

consumed as in a relational database iterator-based pipelined processing chain.

In general, the decomposition approach has high potential to increase data reuse opportunities

(since the transformation model discussed in Section 3.2 can be employed by each primitive), at

the expense of requiring more space for caching intermediate aggregates that would otherwise be

discarded or not even generated, and more bookkeeping.

The primary step in decomposing a complex query consists of identifying the functional primi-

tives that make up the query processing chain. In our approach, we expect the application developer

to present to the system a functional description of the primitive operations. This assumption is

also made by other frameworks that require the functional decomposition of a complex computa-

tion [2, 13, 36, 37].

The execution chain of a query type A � is represented by a directed acyclic graph í � ]?î _#ï a ,
referred to as a query execution chain graph. A vertex represents a function primitive and an edge

corresponds to a data dependency between the two primitives sharing the edge. In the context of

a query graph, a projection primitive can also be viewed as a function primitive. Hence it can be

represented by a vertex in the graph. A vertex is referred to as a sink, or output, vertex if it is

the one that generates the output data product for the query. A source, or input, vertex is a vertex

that processes raw input data elements selected by the query. In a topological sort of the query

graph, the sink vertex is at the top level (i.e., level zero), whereas source vertices form the bottom

level of the query graph. An intermediate vertex at level � has the dual role of consuming the

temporary dataset generated by the primitive(s) immediately before (at level � Ð x ) and generating

the temporary dataset for the primitive(s) immediately after (at level �^ûwx ). An example of query

decomposition is shown in Figure 4. In the example, query A � has two alternative query plans. The

second query plan A � ´ ± uses a projection primitive to decrease execution time by reusing a cached

aggregate.

For a given query type A � , the query graph, í � ]2î _Jï a is traversed in a breadth-first, top-down

fashion, starting from the sink vertex. The algorithm displayed in Figure 5 is executed at each

level of the graph. First, the semantic cache is searched for aggregates that overlap the primitive

meta-data (step 1). If there is complete overlap (step 2), the output is computed from the cached

aggregate by applying the appropriate projection primitive(s) (step 3). If cached aggregates can
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INPUT: ü0ý the query graph and the þéü0ÿ²ü2þ currently being executed
OUTPUT: executes a primitive by recursively computing the processing chain

1: � ������� LOOKUP(ovlps) // locates cached aggregates that fully or partially overlap with this primitive. The compare and overlap operators are used to

compare this primitive’s meta-data with the meta-data for the cached aggregates and find the best match

2: if stat � FULL OVERLAP then // invokes the appropriate project operator to transform the cached aggregate into what this primitive needs

3: PROJECT(ovlps) // uses the project operator

4: return
5: else
6: if stat � PARTIAL OVERLAP then // creates and runs subprimitives by using the difference operator to compute the non-overlapped areas

7: GENERATEANDRUNSUBPRIMITIVES(ovlps,ec,level) // recursively calls the run method for each subprimitive. This causes an

implicit call to the run method, so that other cached aggregates can be employed

8: PROJECT(ovlps) // uses the project operator

9: return
10: else // no reuse has been detected, runs primitive and compute results from input data
11: // a SOURCE LEVEL primitive processes raw input data

// a non-SOURCE LEVEL primitive at level l processes input data generated by a primitive at level l+1

12: if level �� SOURCE LEVEL then // locates the input dataset for this primitive

13: � �����	� LOOKUP(input dataset)
14: if � �
��� �� FULL OVERLAP then // the input dataset is not completely cached, hence executes the primitive at level+1 that generates the

input dataset

15: RUN(ec,level+1) // runs the primitive and stores results in input dataset

// execute the primitive – calls the primitive-specific processing method for processing the input dataset

16: EXECUTE()

Algorithm 1: PRIMITIVE::RUN(EXECUTIONCHAIN EC, LEVEL) – executes a query processing chain

only partially be used to compute the primitive under evaluation, subprimitives are recursively

scheduled for execution to compute the incomplete regions (step 7). On the other hand, if no

overlap was detected, the primitive must be executed from scratch by computing its result from

input data. At this phase (step 12), there are two possibilities. If the primitive is a source vertex,

its processing only requires access to the raw input data accessed from a data source. Otherwise,

the primitive is an intermediate vertex. In that case, the algorithm attempts to locate the required

input data in the cache (step 13). If the input dataset is not located, the primitive at the next level

needs to be recursively executed to generate it (step 15). In either case, the input dataset will be

available for processing at step 16. The execute method is application-specific and performs the

computation necessary to generate the output dataset for a specific primitive from the input dataset.

Each output dataset is cached, which may cause cache evictions according to one of the policies

described in Section 4.

6 Case Study Applications

In order to showcase our techniques, we have chosen representative applications from three dif-

ferent domains: telepathology, computer vision, and satellite data processing. We describe two
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Figure 5: (a) The Virtual Microscope client. (b) The result of a volumetric reconstruction query
(3 frames). (c) A Kronos data product. A 7-day (January 1-7, 1992) composite using Maximum
NDVI (normalized difference vegetation index) as the compositing criteria and Rayleigh/Ozone as
the atmospheric correction method.

of these applications in more details. For a description of the Volumetric Reconstruction (VR)

application, we refer the reader to [4, 15]. All of these applications have been ported to our system

in terms of writing functionally decomposed primitives and customizing the optimization model

operators (from Section 3) via C++ inheritance from the abstract classes provided by the support

library that accompanies the database runtime system.

6.1 The Virtual Microscope

The Virtual Microscope (VM) application [1] implements a realistic digital emulation of a high

power light microscope. Figure 5 displays the VM client Graphical User Interface. VM not

only emulates the behavior of a physical microscope, including continuously moving the stage

and changing magnification, but also provides functionality that is impossible to achieve with a

physical microscope, such as allowing multiple users to view different parts of the same slide

simultaneously.

The raw input data for VM is captured by digitally scanning collections of microscope slides.

Each digitized slide is stored on disk at the highest magnification level and can contain multi-

ple focal planes. The size of one slide with a single focal plane can be up to several gigabytes,

uncompressed. A VM query is described by a 3-tuple of the form
¯
image id, bounding box, mag-

nification algorithm ° . During query processing, the data that intersect the query region, which is a

two-dimensional rectangle within the input image, is retrieved from secondary storage and clipped
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Figure 6: A high complexity Kronos query specified as a sequence of low-level functions. This
query produces a data product transformed by a cartographic projection method.

to the query window. Then it is processed to compute the output image at the desired magnifica-

tion. Two magnification algorithms – subsampling and pixel averaging – are available as primitives

to process the high resolution clipped images to produce lower resolution images. Each of these

results in a different version of VM. The first function employs a simple subsampling operation

and the second implements an averaging operation over a window. For a magnification level of
�

given in a query, the subsampling function returns every
� å� pixel from the region of the input

image that intersects the query window in both dimensions. The averaging function, on the other

hand, computes the value of an output pixel by averaging the values of
� ñ �

pixels in the input

image. The averaging function can be viewed as an imaging processing algorithm since it must

aggregate several input pixels to compute an output pixel.

6.2 Satellite Data Processing – Kronos

Remote sensing has become a very powerful tool for geographical, meteorological, and environ-

mental studies [29]. Usually systems processing remotely sensed data provide on-demand access

to raw data and user-specified data product generation [21]. Kronos [29] is an example of such a

class of applications. It targets datasets composed of remotely sensed AVHRR GAC level 1B (Ad-

vanced Very High Resolution Radiometer – Global Area Coverage) orbit data [35]. The raw data is

continuously collected by multiple satellites and the volume of data for a single day is about 1 GB.

An AVHRR GAC dataset consists of a set of Instantaneous Field of View (IFOV) records orga-

nized according to the scan lines of each satellite orbit. Each IFOV record contains the reflectance

values for 5 spectral range channels. Each sensor reading is associated with a position (longitude

and latitude) and the time the reading was recorded. Additionally, data quality indicators are stored

with the raw data.

The processing structure of Kronos can be divided into several basic functions that form a

processing chain on the sensor data (see Figure 6): Range Selection retrieves the relevant IFOVs
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from the raw AVHRR data. Atmospheric Correction applies an atmospheric correction algorithm

and modifies the relevant part of the selected input data tuples. Composite Generator aggregates

many IFOVs for the same spatial region and multiple temporal coordinates. Subsampler converts

the input data to a user-specified spatial resolution. Cartographic Projection applies a map-

ping function that converts a uniform 2-dimensional (spherical) grid into a particular cartographic

projection. All these primitives may employ different algorithms (e.g., multiple atmospheric cor-

rection methods, multiple cartographic projection methods, etc) that are specified by the query

predicate.

Several types of queries can be posed to a Kronos-like system. Queries can be as simple as

visualizing the remotely sensed data for a given region using a particular cartographic projec-

tion [29], or as complex as statistically comparing a composite data product across two different

time periods [40]. As a result, queries can be as simple as executing a single primitive or as com-

plex as using all the available primitives, as shown in Figure 6. The functional decomposition of

queries permits the utilization of several project operators as stated in Section 5. Therefore, when

cached aggregates are available, the optimization framework can exploit different kinds of reuse

for a single query.

For our study, queries are defined as a 4-tuple:
¯
spatio-temporal bounding box, spatio-temporal

resolution, correction method, compositing method ° . The spatio-temporal bounding box specifies

the spatial and temporal coordinates for the data of interest. The spatio-temporal resolution de-

scribes the amount of data to be aggregated per output point (i.e., each output pixel is composed

from Â input points, so that an output pixel corresponds to an area of, for example, 8 ßp� ± ). The

correction method and the compositing method specify, respectively, the atmospheric correction

algorithm to be applied to the raw data to approximate the values for each IFOV to the ideal cor-

rected values (by trying to eliminate spurious effects caused by, for example, water vapor in the

atmosphere), and the aggregation level and function to be employed to coalesce multiple input grid

points into a single output grid point.

For the query types supported by Kronos, the dimensional (spatio-temporal) overlap projection

primitive can be employed on the output of the Range Selection function to eliminate the data

elements that fall outside the bounding box of a query being evaluated by reusing an overlapping

cached aggregate. The dimensional overlap primitive can similarly be used on the output of other
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basic Kronos functions. The invertible aggregation primitive can be used on the output of the

Atmospheric Correction function. The original uncorrected sensor data can be obtained from a

cached aggregate by inverting the correction algorithm used to generate that aggregate. Both the

composable reduction operation primitive and the inductive aggregation primitive can be employed

for the Composite Generator function. For composable reductions, the aggregation level across

the two aggregates (the one cached and the one under computation) must be congruent. In that

case, for example, we may want to compute a data product for a week’s worth of data. Available

cached aggregates for days 1, 2, and 3 can be merged using the compositing method to generate

a temporary intermediate aggregate. A subquery for days 4 to 7 would be automatically issued

(using the difference operator), and that result would be composed with the temporary aggregate,

producing the final result for days 1 to 7. For inductive aggregations, an aggregate can be used as

an initial partial result for computing a new aggregate in which additional data must be processed

using the raw input data. The inductive aggregation primitive can be used for the Subsampler

function to compute a lower resolution output from a higher resolution aggregate, as well as a

higher resolution aggregate from a lower resolution aggregate by employing additional input data.

7 Experimental Results

Employing the optimization model and utilizing the data transformation framework can signif-

icantly improve the query execution performance. The improvements are associated with the

amount of reuse that can be detected and leveraged, as well as with how effectively the active

semantic cache keeps the aggregates with the highest potential for reuse in cache and how effec-

tively the query scheduler selects a query for execution in order to benefit from the current state of

the system. Ultimately, the amount of data locality in the workload determines how effective the

optimization framework will be. Our performance experiments attempt to capture these effects. In

our discussion, we will typically show the improvements in terms of three metrics. Query Wait

Time (QW) is the amount of time elapsed between when a query is received by the system and

when it is scheduled for execution. Query Execution Time (QE) is the amount of time from

the moment it is scheduled for execution until it is completely evaluated. And Query Wait and

Execution Time (QWE), which is simply the result of ��� Ð � ï .
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Figure 7: Caching strategies. Basic allows reuse of aggregates that are a complete match. Active-
Semantic caching allows reuse of aggregates when partial overlap occurs and data transformation
is necessary. (a) Batch execution time. (b) Average execution time per query.

7.1 Improving Performance via Data Reuse

As we have discussed, the main feature of our optimization framework is the reuse of cached

aggregates by applying projection primitives. Such reuse is profitable when performing the trans-

formation is less expensive than recomputing the aggregate from input data. The results in Figure 7

compare the performance of active semantic caching with both no caching and a basic semantic

cache implementation, where basic semantic caching only uses a cached aggregate if it exactly

matches the requested aggregate.

We assembled an experimental setup using a heterogeneous distributed configuration of the

database system consisting of clients, application database servers, and an instance of a proxy that

functions as the entry point to the system [6] (this is one example of many parallel configurations

that the database system can be configured to use [3]). We have instantiated 5 database servers on 5

nodes including: an 8-processor 550MHz Pentium III Linux SMP machine hosting 8 datasets (two

for Volumetric Reconstruction and six for the Virtual Microscope) and multiple single-processor

650 MHz Pentium III machines hosting copies of the same six VM datasets. The SMP machine had

a single database server serving both VM and VR queries, with up to 4 queries under simultaneous

execution. The uniprocessor machines were able to answer a single query at any given time. A

24-processor UltraSparc III SMP Solaris machine hosted the proxy entrypoint to the collective

database system.

We employed 12 clients. Four of them generated 16 queries each for volume reconstruction,
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and the other eight each generated 32 pixel averaging VM queries. The VM clients used a work-

load model that emulates the behavior of real users as described in [14] and the VR clients used

a synthetic workload model fully described in [6]. Both workload models define how queries by

a single client are going to be generated, and rely on locality meaning that there are several inter-

esting regions within a dataset and the client is going to generate a request for those regions with

higher probabilities than for the uninteresting areas. Noise is also added to the spatial boundaries

of a query to ensure that no two queries are exactly the same and queries from different clients

are not related. We chose to use the workload generator for two reasons. First, extensive real user

traces are very difficult to acquire. Second, the emulator allowed us to create different scenarios

and vary the workload parameters (both the number of clients and the number of queries) in a con-

trolled way. Each VM dataset is a xHt�t�tUtÕñ�x	tUt�t�t 3-byte per pixel image, totaling around 1.8 GB

for the six images. Each VR dataset is a 5200 frame collection (13 cameras, 400 frames), total-

ing approximately 780 MB for the two collections. In all of our experiments, the emulated client

applications were executed simultaneously on a cluster of PCs connected to the SMP machine via

100 Mbit Ethernet. Each client submitted queries independently from the other clients, but waited

for the completion of one of its query before submitting another one.

Figure 7 shows that basic caching improves batch execution time by around 10% compared

to no caching at all, and that increasing the cache size for basic caching does not significantly

improve performance. On the other hand, active semantic caching decreases batch execution time

from 56% up to 75% compared to basic caching, and more caching space implies lower query

computation time. Similar results are also observed when measuring the average query execution

time (Figure 7(b)).

7.2 Improving Performance via Functional Decomposition

Functionally decomposing the query types can potentially increase overall system performance.

We highlight one of several results obtained by optimizing the execution of multiple Kronos query

workloads. This result shows how functional decomposition decreases average query execution

time. More extensive experimental results, including scalability behavior, the impact of different

projection primitives, and the impact of increasing cache size are reported in [7]. Extensive experi-
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mental results for cache replacement policies can be found in [4]. All the experiments were run on

a 24-processor SunFire 6800 machine with 24 GB of main memory running Solaris 2.8. A dataset

containing one month (January 1992) of AVHRR data was used, totaling about 30 GB.

In order to evaluate the benefits of partitioning an application into primitives and to quanti-

tatively measure performance, we investigated the system behavior using a synthetic workload

model. We employed a variation of the Customer Behavior Model Graph (CBMG), which is a

technique utilized, for example, by researchers analyzing performance aspects of e-business appli-

cations and website capacity planning [33]. A CBMG can be characterized by a set of Ï states, a

set of transitions between states, and by an Ï ñ Ï matrix, �yb ¯ � � ´ M#° , of transition probabilities be-

tween the Ï states. A typical query for Kronos may employ all the primitives seen in Section 6.2.

A query specifies a geographical region, a set of temporal coordinates (a continuous period of

days), a resolution level (both vertical and horizontal), a correction algorithm (from 3 possibili-

ties), and a compositing operator (also from 3 different algorithms). Once a query is executed, the

expected transitions from that query to the next one issued by the same client are given by one of

the following operations: spatial movement, temporal movement, resolution increase or decrease,

applying a different correction algorithm, or applying a different compositing operator. For our

experiments, we used the transition matrix in Table 1 to build the CBMG. Workload 1 was used for

all the experiments and workload 2 was used specifically to help analyze the performance impact

of functional decomposition. For a given client, the initial state – empty – must use the New Point-

of-Interest transition to get started. During startup, the client window dimensions (i.e., the size

of the data product generated by a query) is also pre-selected and kept constant across the client

session. From that point forward, each transition has its own fixed probability of being selected.

The number of queries to be generated per client is fixed, and that number is also an input variable

to the model. More details about the workload model can be found in [7].

In order to evaluate functional decomposition, we have collected experimental results for a sin-

gle configuration: 16 clients generating 4 queries each3, submitting them to the version of Kronos

running on our database server, configured with a fixed cache size of 1 GB and with the ability

to service up to 2 queries at the same time4. Two different workloads were employed: workload

3A client application waits for a query to be answered before it submits its next query
4In its original form Kronos can only process one query at a time. To make it able to process two queries simulta-
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Transition Workload 1 Workload 2
New Point-of-Interest 5% 5%

Spatial Movement 40% 10%

New Resolution 15% 10%

Temporal Movement 5% 5%

New Correction 15% 30%

New Compositing 5% 30%

New Compositing Level 15% 10%

Table 1: Transition probabilities. A sequence of queries for one user is generated as follows:
the first query always uses New Point-of-Interest and the next queries are generated based on the
modifications of the query attributes based on the transition selected with the probabilities in the
table.
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Figure 8: The effects of functional decomposition for (a) Workload 1 and (b) Workload 2. Average
time per query is shown for 1) the original Kronos code, 2) for caching at all levels, 3) caching
only at range-selection, 4) caching only at correction, and 5) caching only at the last stage of the
execution chain – compositing.

1 and workload 2, with transition probabilities shown in Table 1. Workload 1 has the bulk of its

transitions driven by spatial movement, which means that a great deal of reuse across queries can

occur at the compositing level (making caching at that level alone potentially beneficial). On the

other hand, workload 2 has most of its transitions changing the compositing and atmospheric cor-

rection methods, which requires reaggregating the data at the compositing level (making caching

at that level not especially beneficial).

Of particular interest in Figures 8 (a) and (b) is that caching at all levels improves performance

much more than configurations in which only a single reuse point was exposed. For the two work-

neously, we also wrote a wrapper that can spawn multiple separate Kronos processes on demand to produce the desired
multiprocessing level.
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Figure 9: (a) The 95%-trimmed mean for the query response time, when more memory is added to
the cache. (b) The total execution time of a single batch of 256 queries, as the memory allocated
to the cache is increased. For both figures, up to 4 queries are allowed execute simultaneously.

loads, caching at all levels achieves between 30% and 36% decrease in average query execution

time compared to the original Kronos implementation. For workload 2, we see that caching only

at the last primitive in the processing chain is not helpful because very little reuse can occur at that

level.

7.3 Improving Performance through Query Scheduling Heuristics

In the previous experiments, queries were scheduled in FIFO order. Now we show evidence that

scheduling decisions based on the data transformation model can improve performance. Since all

of the ranking methods are heuristic, in order to quantify their relative effectiveness and to assess

how they compare to the traditional FIFO and SJF scheduling, we devised an experimental setup

employing Virtual Microscope queries using the subsampling and pixel averaging implementa-

tions.

The results were obtained on the 24-processor SMP, running Solaris 2.8, described in Sec-

tion 7.2. In the experiments, we turned off the operating system file cache via the directio

Solaris function, so that no operating system file caching occurs. We employed the same three VM

datasets described in Section 7.1, and the same client setup and driver program.

In one set of experiments, we evaluated the effect of simply using active data caching (ver-

sus not using it) on the performance of the FIFO and SJF strategies. Neither strategy takes into

account the state of the cache for scheduling queries. However, we observed that overall system

performance improved by as much as 35% and 70% for FIFO and 40% and 70% for SJF for the
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subsampling and averaging implementations of the Virtual Microscope, respectively. Performance

also increased as more memory was allocated for caching.

The second set of experiments evaluated how each scheduling policy affects the database per-

formance from the perspective of average QWE time and total execution time for a query batch.

Figure 9(a) shows the 95%-trimmed mean5 for the query response time achieved by different rank-

ing strategies. As is seen from the figure, FIFO performs discernibly worse than the other ranking

strategies, as expected. The MUF, FF, CF, and CNBF strategies perform slightly better than SJF in

most cases. The SJF strategy aims to minimize average waiting time by executing shorter queries

first, but may suffer from less reuse of cached results.

The other objective of employing multi-query optimization strategies is to decrease the overall

execution time for all the queries in a batch (i.e., increase the system throughput) in contrast with

lowering the execution time per individual query. In fact, a client may submit a batch of queries

to the server. For example, if we want to create a movie from a case study using the Virtual

Microscope, we may want to submit a set of queries, each of which corresponds to visualization of

a specific part of the slide being studied. In that case, it is important to decrease overall execution

time for the query batch. Figure 9 (b) shows the overall 95%-trimmed mean execution time of 256

queries as a single batch (although in this case, individual clients still submit one query at time).

CF and CNBF result in better performance than do other strategies, especially when resources

are scarce (i.e., a small cache). Our results show that when the objective is to minimize the total

execution time of a query batch, taking into account locality is important for better performance,

since the cache is better utilized. Additional query scheduling results including different workloads

and experimental setup are available in [9].

8 Conclusions

We have investigated the problem of optimizing multi-query workloads for data analysis applica-

tions in the presence of user-defined, application-specific aggregations and operations. We pre-

sented a processing model common to many of these applications and identified optimization

5A 95%-trimmed mean is computed by discarding the lowest and highest 2.5% of the scores and taking the mean
of the remaining scores.
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strategies based on a data transformation model that makes use of active semantic caching. To

provide a mechanism for identifying data and computation reuse opportunities, we devised an ex-

tensible optimization framework (with user-customizable operators) based on a data transformation

model that allows a runtime system to infer how a data product can be transformed into another

that is usable for other queries submitted for processing. Workloads based on real usage profiles, as

well as synthetic workloads, were employed to thoroughly analyze the behavior of various aspects

of the system and the optimization model.

The basic optimization model has been extended to incorporate query scheduling techniques

and caching infrastructure improvements. We showed that scheduling is an effective technique

to further improve performance. And we investigated the use of informed query scheduling tech-

niques that take into consideration the relationships among queries that are waiting to be executed,

queries under execution, and queries whose results have been cached. This information is made

explicit by the same data transformation model employed for detecting reuse sites, and was shown

to be useful to reorder the execution of waiting queries to better exploit the alternative execution

paths made available by the optimization transformations.

We also discussed functional decomposition as a mechanism for exposing more sites for opti-

mization to the data transformation model. We proposed a methodology for breaking up complex

queries into atomic primitives, and showed how queries can be executed by employing a top-down,

recursive greedy algorithm for identifying all reusable aggregates available in the cache.

Our optimization framework addresses some of the main shortcomings of previous multi-query

optimization methods for handling application-specific aggregation operations. As a result, when

real data analysis queries are executed using a prototype implementation of the database middle-

ware, the performance optimizations enable large decreases in both single query and query batch

execution times. Moreover, we have gone beyond the basic issue of handling application-specific

operations and showed that our overall strategy of closely coupling the basic optimization frame-

work with (1) more complex techniques for functionally decomposing complex queries, (2) query

scheduling and (3) informed cache replacement policies, leads to large improvements in the overall

performance of data analysis queries.
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[29] S. Kalluri, Z. Zhang, J. JáJá, D. Bader, N. E. Saleous, E. Vermote, and J. R. G. Townshend. A
hierarchical data archiving and processing system to generate custom tailored products from AVHRR
data. In 1999 IEEE International Geoscience and Remote Sensing Symposium, pages 2374–2376,
1999.

[30] M. H. Kang, H. G. Dietz, and B. K. Bhargava. Multiple-query optimization at algorithm-level. Data
and Knowledge Engineering, 14(1):57–75, 1994.

[31] T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz. Visualization of very large datasets with
the Active Data Repository. IEEE Computer Graphics and Applications, 21(4):22–33, July/August
2001.

[32] M. Mehta, V. Soloviev, and D. J. DeWitt. Batch scheduling in parallel database systems. In Proceed-
ings of the 9th International Conference on Data Engineering, Vienna, Austria, 1993.
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