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ABSTRACT

Marching Cubes and similar isosurface construction algorithms
produce isosurfaces with tremendous numbers of triangles. Often,
the isosurface need not be constructed at full resolution in all re-
gions of the dataset. We present an algorithm for constructing an
isosurface with varying levels of resolution from volumetric data
given by a regular 3D or 4D grid.

Given a regular grid of scalar values and an isovalue, a grid ver-
tex is labeled ’+’ if its scalar value is greater than the isovalue and
’-’, otherwise. A grid is monotonic in the direction of a given co-
ordinate axis if all the ’+’ vertices precede the ’-’ vertices in that
direction or vice versa. Our algorithm partitions the grid into rect-
angular regions of various sizes based on the monotonicity of these
sign patterns. We show that by using monotonicity we can pre-
serve isosurface topology. More significantly, using monotonicity
“bands” we can control topological simplication, ignoring topolog-
ical noise while retaining topological features.

The Marching Cubes algorithm applied to adjacent rectangular
regions of different sizes may create cracks in the isosurface be-
tween the regions. We avoid this cracking by contracting some
edges of the smaller regions, repositioning hanging vertices and
faces so that adjacent regions intersect properly. The Marching
Cubes algorithm applied to this mesh will create a crack-free iso-
surface. By adding a preprocessing splitting step, we can also guar-
antee that our edge contraction will not change the isosurface topol-
ogy.

We present applications of our algorithm to 3D and 4D time-
varying data and to 3D interval volumes.

Keywords: Volume visualization, isosurface, multiresolution,
decimation

1 INTRODUCTION

Given a continuous scalar field, i.e., a scalar function of ��� , an iso-
surface is a set of points with identical scalar values. Lorensen and
Cline [11] gave a simple, efficient algorithm, called the Marching
Cubes algorithm, for constructing a polyhedral approximation of
an isosurface from a regular grid sampling of a scalar function in
��� . The regular grid divides a volume into cubes whose vertices
are the grid vertices. The Marching Cubes algorithm reconstructs
the isosurface within each cube and then pastes together the result-
ing surface patches. Various modifications were proposed to avoid
cracking problems in the original algorithm [12, 14].

Instead of cubes, the regular grid can be partitioned into tetra-
hedra and the isosurface can be reconstructed within each tetra-
hedron [10, 23]. Isosurface construction within each tetrahedron
is simpler but the initial partition into tetrahedra causes the cre-
ation of about twice as many isosurface triangles [10]. Weigle and
Banks [21] generalized the tetrahedral based algorithm to a simplex

based algorithm in higher dimensions. Subsequently, Bhaniramka,
Wenger and Crawfis [3] gave a hypercube based Marching Cubes
algorithm in higher dimensions. The higher dimensional algorithms
reconstruct �	��
��� -dimensional surface patches within simplices or
hypercubes and the union of these surface patches forms the isosur-
face.

The three dimensional Marching Cubes algorithm and its higher
dimensional analogs create a large number of simplices which form
the polyhedral isosurface. Many of these simplices represent rela-
tively flat portions of the isosurface. We would like to replace these
flat regions by a fewer number of larger simplices.

One approach to reducing isosurface complexity in � � is to con-
struct the isosurface and then apply a mesh decimation algorithm.
There are numerous such algorithms with various properties[5],
including preservation of isosurface topology, guaranteed error
bounds, introduction of new vertices and preservation of feature
edges.

An alternative method of reducing isosurface complexity is to
generate flat portions of the isosurface from larger mesh elements,
essentially ignoring some of the grid vertices in those regions.
Techniques using this adaptive resolution approach in � � are di-
vided into those based on a regular grid of cube or hexahedral
elements[13, 18], and those based on a tetrahedral grid[9, 22]. All
these adaptive resolution approaches can guarantee that topology of
the low resolution isosurface is the same as the topology of the full
resolution isosurface.

This paper contains two contributions to the problem of con-
structing isosurfaces of varying resolution. First, we give a new
method based on ‘+’ and ‘ 
 ’ sign patterns for determining the iso-
surface resolution in a given region. A vertex is labeled ‘+’ if its
scalar value is greater than the isovalue and ‘ 
 ’ otherwise. A reg-
ular grid is monotonic in the direction of a given coordinate axis if
all the ’+’ vertices precede the ’-’ vertices in that direction or vice
versa. If a grid is monotonic along some axis, then the “bending” of
the isosurface within that grid is extremely limited. Thus subgrids
which are monotonic along one or more axes are good candidates
for being replaced by larger mesh elements.

In Section 3, we formally define a monotonicity property based
on the monotonicity of the full grid and of its faces. A grid with
this monotonicity property defines an isosurface homeomorphic to
a disk. Our algorithm identifies subgrids which have this mono-
tonicity property and represents them by a single large grid cube.
Because the isosurface in these subgrids are disks, replacing them
by a single grid cube does not change the topology of the generated
isosurface.

While monotonicity conditions work well on smooth, synthetic
data, they have problems when applied to real data whose isosur-
faces contain geometric and topological noise. To handle noise,
we replace monotonicity conditions based on a single isovalue with
monotonicity conditions based on a band of isovalues. By varying
the size of this band, we can increase or decrease the resolution of



the resulting isosurface. We can also increase the size of this band
to produce topological simplification in the isosurface, eliminating
topological features which correspond to small changes in the scalar
field.

Our second contribution is a method of avoiding isosurface
cracks in meshes consisting of axis-parallel rectangular regions
(hexahedra in 3D.) Isosurface patches which are generated in two
adjacent regions of different sizes may have cracks along their com-
mon boundary [13, 18]. The reason is that some vertices in the
smaller region may not correspond to any vertex in the larger one.
To avoid these cracks, we identify “hanging” vertices in smaller re-
gions which are not vertices on adjacent larger regions. We move
these vertices to vertices on the larger region, essentially contract-
ing some of the mesh edges. By contracting the edges consistently,
we can guarantee that adjacent elements in the new mesh intersect
properly on their faces.

The rectangular regions are hexahedra in three dimensions and
topological hypercubes in four dimensions. Contracting edges will
change the regions into other polyhedra such as pyramids or prisms.
Such polyhedra can be viewed as degenerate hexahedra or hyper-
cubes with degenerate edges of zero length which are not inter-
sected by the isosurface. Thus, the isosurface lookup table for hex-
ahedra and hypercubes can still be used to construct the isosurface
in all the mesh elements.

Both our monotonocity conditions for determining isosurface
resolution and the hexahedral edge contraction for avoiding cracks
generalize directly to regular grids in any dimension. In fact, this
ease of generalization was a major motivating factor in the choice
and design of our algorithm. However, our methods only seem
practical in four and possible five dimensions. We present some
examples of our algorithm applied to four dimensional data.

The problem of determining when and where to simplify a poly-
hedral surface is a difficult one and we neither believe nor claim
that the monotonicity should be the sole criterion for determining
isosurface resolution. In particular, geometric conditions such as
distance between low and high resolution surfaces and curvature
of the high resolution surface should also play a role in choos-
ing mesh element size. Similarly, while using monotonicity bands
presents a novel approach to topological simplification and topo-
logical noise, traditional techniques such as Gaussian smoothing of
the initial data, removal of small components, and removal of small
features by erosion and dilation also are important tools. We of-
fer monotonicity as one addition to a suite of tools in isosurface
simplification.

In the next section, we describe some of the previous work on
adaptive resolution isosurface construction. In Section 3, we define
and discuss the monotonicity property. In Section 4, we discuss
topological noise reduction and generalize isovalue monotonicity to
monotonicity bands. In Section 5, we describe our hexahedral edge
contraction for avoiding the cracking problem. In Section 6, we
describe our algorithm for constructing the isosurface at adaptive
levels of resolution. Finally, we present some details and results of
our implementation and our plans for future work.

2 PREVIOUS WORK

We refer the reader to [5] for a discussion and comparison of the
major surface and volume decimation techniques, which are far be-
yond the scope of this paper. We note that while most decimation
techniques preserve topology and some simplify topology, very few
do both. Those that simplify topology do not usually produce man-
ifolds as output.

While we know of no papers explicitly discussing decimation of
surfaces lying in 4D, most of the algorithms simplifying 3D vol-
umes or surfaces in 3D easily generalize. However, it is signifi-
cantly more difficult to ensure that the topology of an isosurface in

4D does not change. Techniques by Dey et. al. [7] can be used to
guarantee no change. For surfaces in dimensions greater than four,
we know of no way of guaranteeing topology preservation.

Previous adaptive resolution techniques for isosurface genera-
tion divide into two categories, those based on a regular hexahedral
grid and those based on a tetrahedral grid.

Müller and Stark [13] and Shekhar et. al. [18] generate adaptive
resolution isosurfaces by merging unit cubes into rectangular re-
gions of various sizes and generating isosurface patches with these
larger regions. Both require that the isosurface in the larger regions
be homeomorphic to a disk. Müller and Stark merges cubes if the
isosurface generated after the merge intersects the same edges of
the original grid as before the merge. Shekhar et. al. merge cubes
if the isosurface is within some tolerance of a plane fitted to the
isosurface. Both algorithms patch “cracks” between regions of dif-
ferent sizes by snapping vertices created in the smaller regions onto
the isosurface from the larger ones. Both algorithms preserve iso-
surface topology and do not permit simplification of that topology.
Neither the topology preservation nor the cracking resolution of ei-
ther algorithm generalizes to higher dimensions.

The low resolution isosurface generated by Müller and Stark in-
tersects the same edges of the original grid as the full resolution
isosurface. This property is quite restrictive unless the isosurface is
originally very smooth. In fact, Müller and Stark apply a smoothing
operator to some of their data before applying their algorithm.

Both [13] and [18] preserve topology by constructing isocon-
tours along the boundary of the cubes. If the isocontour is a single
closed curve, then the isosurface bounded by the curve is a disk.
The analogue in higher dimensions would be determining if the
isosurface on the boundary forms a �	� 
 � � -sphere, a difficult, if
not impossible, task in higher dimensions.

Zhou et. al. [22] presented an alternate adaptive resolution ap-
proach based on meshes of tetrahedra. They detected and marked
mesh vertices whose deletion would change the isosurface topol-
ogy. Starting with six large tetrahedra, they repeatedly apply three
cannonical subdivisions until all the marked vertices are part of the
mesh. Cracking is avoided by splitting tetrahedra so that the mesh
is a simplicial complex. Gerstner and Pajarola [9] used preprocess-
ing and table lookup to identify the significant mesh vertices with
greater accuracy, allowing the deletion of some vertices preserved
in [22]. Both methods generalize to simplicial meshes in higher di-
mensions, although the number of subdivision types and table cases
increases with the dimension.

The drawback to simplicial meshes is the necessity to split all
hypercubes into simplices. The number of simplices required grows
with the dimension. Simplicial decompositions also introduce their
own sampling artifacts into the isosurface [4].

Instead of focusing on a single isosurface, one could reduce
the mesh representing the scalar field while preserving scalar field
topology. Bajaj and Schikore [1] gave an algorithm to do so in
� �

based on computing critical points and integral curves in the
scalar field. Edelsbrunner et. al. [8] showed how to compute the
Morse complex on triangular meshes in � �

. The Morse complex
represents the scalar field topology and can be used to guide mesh
reduction without affecting that topology. Computing the Morse
complex on a tetrahedral mesh in � � is more difficult and listed as
an open problem in [8]. We know of no one addressing the issue
of computing the Morse complex on a simplicial complex in � �

or
whether that is even a tractable problem.

We refer readers to The Handbook of Grid Generation[19] for
a reference to the vast literature on mesh generation and refine-
ment, particularly Chapter 21-1 by R. Schneiders on quadrilateral
and hexahedral element meshes. Following Schneiders definition,
a mesh is conforming if the intersection of adjacent mesh elements
is a face of each element. (This is not to be confused with bound-
ary conforming meshes where the mesh conforms to some given
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Figure 1: a) Monotonically decreasing in �� and �� ; b) Monotonically decreasing in �� and decreasing and increasing in �� ; c) Not monotonic
along the � -axis or the � -axis; d) Monotonically increasing in �� and �� , and not monotonic along the 	 -axis.

boundary.) Octree-based algorithms for adaptive refinement of hex-
ahedral meshes are described in [17, 16, 15]. The problem is to
subdivide an octtree to turn it into a conforming mesh. In [17],
templates are used to subdivide octree elements so that they con-
form to their neighbors. There are difficulties with templates for
certain configurations of octree elements. In [16], an entire surface
is used to split octree elements in the region of desired refinement.
The algorithms produce only convex hexahedral elements.

Weber et. al. in [20] use pyramids, prisms and hexahedra to
fill the gap between regular hexahedral meshes of different reso-
lutions. Careful case analysis is used to determine the various el-
ements needed. The algorithm produces convex polyhedral mesh
elements and does not subdivide the given meshes, only the region
between meshes. On the other hand, it depends upon the regularity
of the given meshes, and does not seem to handle the more general
case of a general partition into hexahedra.

None of the papers mentioned above consider the problem of
meshes in � �

. It is not clear how hard generalizing them beyond
� � would be.































��





 
 
 




 
 










 

 

 











  



  





 




�

����

��� ���

��

Figure 2: A 2-dimensional grid with the monotonicity property.
The grid is monotonically decreasing in direction �� and subgrids�

and
���

both have the monotonicity property. The grid is not
monotonic along the � -axis. (Note the � 
�� patterns in the third
and fourth grid columns.)

3 MONTONICITY

Consider two parallel edges in a sign-labeled grid where one of
the edges has label ����� 
 � , while the other has the reverse labeling
� 
 �!�� . If the edges lie on a single line " , then clearly an isosurface
must bend to intersect " twice. However, even if the edges are
not collinear, the reverse labeling of the edges force a connected
isosurface to “bend” or “twist” so that both vertices labeled “+” are
on the same side of the isosurface. We claim that if there are no
such labeling reversals or if the labeling reversals are appropriately
restricted, then the isosurface defined by the grid is homeomorphic
to a disk.

A sign-labeled cube does not necessarily define a topologically
unique isosurface passing through the cube. There may be two or
more topologically distinct isosurfaces which are consistent with
the given sign labeling. The isosurface #%$ we choose is the one
described by Bhaniramka et. al. in [3]. In three dimensions, this
is topologically identical to the isosurface produced by the modi-
fied marching cubes algorithm[12] in almost all cases. The single
exception is a cube with two opposite corners labeled ’+’ and all
other vertices are labeled ’-’. Actually, all our claims hold equally
well for the isosurface defined by the modified marching cubes al-
gorithm.

Bhaniramka et. al. construct an isosurface lookup table for each
cube labeling by forming the convex hull of the ’+’ vertices and
the midpoints of edges with ’+’ and ’-’ endpoints. The intersection
of the boundary of this convex hull and the interior of the cube is
the generic isosurface stored for this labeling. As in the original
marching cubes algorithm, the isosurface #&$ is constructed within
each grid cube by looking up the generic isosurface for the given
labeling and then interpolating the location of the isosurface vertex
coordinates. (See [3] for more details.) The isosurface topology is
entirely determined by the lookup table.

It is easier to define and illustrate monotonicity and the mono-
tonicity property if we do so in arbitrary dimension. Let �� be a unit
vector parallel to a coordinate axis. A labeled � -dimensional regu-
lar grid is monotonically decreasing in direction �� if no hypercube
edge �(')�*'��+�� � parallel to �� has label � 
 �!�� . (See Figure 1.) A
labeled � -dimensional regular grid is monotonically increasing in
direction �� if no hypercube edge �(')�,' �-�� � parallel to �� has label
����� 
 � . Note that a grid can be both monotonically increasing and
decreasing in a given direction (i.e., ' has a ‘+’ if and only if '.�/��
does.) It can also be neither monotonically increasing nor decreas-
ing in a given direction. A labeled � -dimensional regular grid is
monotonic along a given axis, if it is monotonically decreasing in
one of the two directions parallel to that axis (and hence monotoni-
cally increasing in the other direction.)

The facets of a regular � -dimensional grid 0 are the
� � regular

�	��
 � � -dimensional subgrids bounding 0 . There are exactly two
grid facets perpendicular to each axis. (In Figure 2, the grid facets
perpendicular to the � -axis are labeled

�
and

� �
.) We say that a
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Figure 3: a) Partition into rectangles; b) Partition without partial overlaps; c) Balanced partition; d) Preprocessing splitting step; e) Mesh after
edge contraction.

labeled grid 0 has the monotonicity property if either 0 has dimen-
sion zero or 0 is monotonic along a given axis and both facets of
0 perpendicular to that axis have the monotonicity property. (See
Figure 2.) Thus a 1-dimensional grid has the monotonicity property
if and only if it is monotonic. A 2-dimensional grid has the mono-
tonicity property if and only if it is monotonic along a given axis and
the two 1-dimensional grids perpendicular to that axis are mono-
tonic. A 3-dimensional grid has the monotonicity property if and
only if it is monotonic along a given axis and the two 2-dimensional
grids perpendicular to that axis have the property. Note that if 0 is
monotonic in all directions, then 0 has the monotonicity property.

We claim that if a three dimensional grid 0 has the monotonicity
property, then the isosurface # $ is homeomorphic to a disk. More
generally, if a � -dimensional grid 0 has the monotonicity property,
then the isosurface # $ is homeomorphic to a �	� 
 ��� -dimensional
ball. As an immediate corollary, if 0 is monotonic in all directions,
then # $ is homeomorphic to a �	� 
 � � -dimensional ball.

The general idea behind the proof for � � is as follows. Assume a
3-dimensional grid 0 is monotonic in some direction �� and both 2-
dimensional subgrids in the faces

�
and

���
perpendicular to �� have

the monotonicity property. Because 0 is monotonic in direction �� ,
the isosurface vertices can be perturbed so that � is a 1-1 projection
of the isosurface into

�
. Perturbing the vertices does not affect the

topology of 0 . The intersection of # $ and
�

and
���

are curves
on
�

and
� �

, respectively. The isosurface is homeomorphic to the
region on

�
between #%$ � �

and � ��# $ � � � � .
By induction, # $ � �

is either the empty set or a single curve
with endpoints on the boundary of

�
. The same holds for # $ � � �

.
Thus # $ � �

and � ��# $ � � � � are non-intersecting curves with
endpoints on the boundary of

�
. Since

�
is a topological disk, the

region between # $ � �
and � ��# $ � � � � is a topological disk. Thus

the isosurface is homeomorphic to a disk.
A similar, although more intricate, argument can be made in

higher dimensions. The detailed proof and its extension to higher
dimensions are left for the full version of this paper.

4 TOPOLOGY AND MONOTONICITY

The monotonicity property described in the previous section pre-
serves isosurface topology. While this is a desirable theoretical
goal, it has significant drawbacks on real data which may have noise
and/or small topological features. Noise may create small topolog-
ical and geometric features on the isosurface causing subgrids con-
taining such noise to fail the monotonicity property.

There are numerous methods for reducing the effects of noise on
a data set, including smoothing the initial data set, removing small
connected components and applying dilation and expansion oper-
ators to the region enclosed by the isosurface. We found it most
useful to partition the data set into connected regions with values
above or below the isovalue, and remove small connected compo-

nents in that partition. Grid vertices in the connected components
received the scalar value of their surrounding neighbors. Removing
the small connected components in no way affects the remaining
isosurface bounding the large components.

With the removal of small components, we were able to achieve
significant levels of reduction in isosurface complexity even on
noisy data sets. However, noise could still create topological and
geometric features on a large isosurface causing subgrids contain-
ing such features to violate the monotonicity property. Small fea-
tures on the isosurface would also cause such violations.

To further reduce isosurface complexity, we expanded mono-
tonicity based on a single isovalue to monotonicity bands based on a
minimum and maximum isovalue. A grid is monotonically increas-
ing (decreasing) with respect to a given band if it is monotonically
increasing (resp. decreasing) with respect to BOTH its minimum
and maximum isovalue. A labeled grid 0 has the monotonicity
property with respect to a given band if either 0 has dimension
zero or 0 is monotonic along a given axis and both facets of 0 per-
pendicular to that axis have the monotonicity property with respect
to that band. If a grid has the monotonicity property with respect to
a given band, then the band can be replaced by an isosurface topo-
logically equivalent to a disk, which separates the values above the
maximum value with the values below the minimum value.

In Section 6, we describe how monotonicity bands around a
given isovalue are used to determine the isosurface resolution. By
varying the size of a monotonicity band, we can vary the resolution
and complexity of the constructed isosurface. Note that while many
decimation and simplification algorithms depend solely on the ge-
ometry and topology of the original isosurface, monotonicity bands
depends both on isosurface geometry and on the surrounding scalar
field. It is particularly well-suited to high frequency, low amplitude
noise, which causes small changes in scalar field values.

5 HEXAHEDRAL EDGE CONTRACTION

Consider a regular � -dimensional grid partitioned into axis-parallel
rectangular regions called boxes. Adjacent boxes may have differ-
ent sizes and their intersection may be different from their faces.
Our goal is to modify this partition into a mesh so that the intersec-
tion of adjacent mesh elements is a face of each. Applying the iso-
surface reconstruction algorithm to this mesh will produce a crack
free surface.

We enforce two restrictions on our initial partition into boxes.
First, we require that if any two boxes intersect, then the intersec-
tion is a face of at least one of the boxes. In other words, box faces
cannot partially overlap each other. Our algorithm naturally en-
forces this condition by only creating boxes on certain boundaries
but we could enforce it by a partitioning step which splits boxes
violating this condition. (See Figure 3.)



The second condition is that if an edge of one box properly con-
tains the edge of another, then the longer edge is exactly twice the
corresponding dimension of the smaller one. This is a standard re-
striction in quadtree or octtree mesh generation algorithms and is
enforced by splitting any large boxes violating this condition. Such
splitting increases the size of the quadtree or octtrees by at most a
constant factor[6, Chapter 14]. These two conditions guarantee that
if one box face contains another, then each dimension of the larger
box face is either equal to or twice the corresponding dimension of
the smaller one.

A box vertex is called hanging if it lies on the boundary of some
adjacent box but is not a vertex of that box. We wish to remove or
relocate the hanging vertices.

We start with a preprocessing step which performs another split-
ting of boxes. For each box edge whose interior contains a hanging
vertex, we split the box by a plane (or hyperplane) which passes
through the hanging vertex and is perpendicular to the edge. After
this split, none of the original vertices are hanging.

A hanging vertex lies in the interior of the face of some box.
We identify the largest face whose interior contains the hanging
vertex and move the hanging vertex to the face vertex with lowest
coordinates. Note that since all faces are parallel to the coordinate
axes, there is a unique face vertex whose every coordinate is less
than or equal to the cooresponding coordinate of every other face
vertex.

The preprocessing split serves two functions. First, since none
of the original vertices are hanging, none of them will be moved.
This guarantees that the isosurface topology will be preserved since
all the original edges are preserved. Second, the vertices of a face
containing a hanging vertex must be from the original set of vertices
and so cannot be hanging. Thus a hanging vertex is never moved to
a vertex which is itself hanging.

By always moving hanging vertices to the face vertex with low-
est coordinates, we guarantee that the faces with hanging vertices
will always contract onto faces of an adjacent box. Moreover, a
box which loses its full dimensionality because of the repositioning
of hanging vertices, will contract onto the face of an adjacent box.
These conditions ensure that the intersection of adjacent face ele-
ments is a face of each in the resulting mesh. More formal proofs
of these properties will appear in a full version of this paper.

Moving a hanging vertex may break the planarity of a box face.
Topologically the face may remain the same, but its vertices may no
longer lie in a single plane (or hyperplane.) Thus the mesh elements
produced by our edge contraction are not convex polyhedra. This
is not a problem for isosurface construction which really only uses
the 1-skeleton (edges) of the mesh, although it does limit the utility
of the algorithm for other remeshing applications.

6 ALGORITHM

The algorithm consists of six steps: topological cleanup by removal
of small connected components, the initial partition into axis paral-
lel boxes, splitting to balance box sizes, an additional splitting step,
repositioning of hanging vertices and final isosurface extraction.

As described in Section 4, we form connected components
of vertices with values above or below the isovalue and remove
small connected components by redefining their isovalues based on
neighboring isovalues. This step removes some of the topological
noise associated with the isosurface.

For the initial partition into boxes, we could have used octtrees
and their four dimensional equivalents but we did not want to re-
strict ourselves to cubes and hypercubes. Instead we use a bottom
up approach, first partitioning the grid into subgrids of

��� ��� �

(or
��� ��� ��� �

in � �

) voxels, and attempting to merge the voxels
within each subgrid. If the

��� ��� �
subgrid satisfies our monotonic-

ity condition, then we merge the entire subgrid into a single box.

Otherwise we consider partitioning the
��� ��� �

subgrid into two
� � ��� �

or
��� � � �

or
��� ��� � subgrids. If none of those partitions

succeeds, we consider the four � � � � �
or � � ��� � or

��� � � �
subgrids. We repeat this for

� � � � �
and � � � � � and more gen-

erally
�
	
� �
	
� �
	

subgrids. We restrict the maximum ratio between
different dimensions of the box to four, although this parameter of
the algorithm can be changed.

By only considering powers of two for subgrid dimensions, we
guarantee that the intersection of adjacent boxes will always be a
subset of the face of one of the boxes. Thus we avoid partial over-
laps as required in Section 5.

Our monotonicity condition is either based on a single isovalue
or on a band between a minimum and maximum values as described
in Section 4. The smaller the band, the finer the resolution of the
constructed isosurface. Note that the isosurface isovalue is inde-
pendent of the minimum and maximum values defining the bands
although it should lie between them. Of course, the use of mono-
tonicity bands breaks the guarantee of preservation of isosurface
topology.

To check the monotonicity condition for a subgrid, we could pro-
cess all the edges of the subgrid and determine the monotonicity
in each direction of the subgrid. However, we can also determine
the monotonicity of a subgrid from the monotonicity of elements
in a partition of that subgrid. For instance, if two subgrids are
monotonically increasing in the � -direction, then the union of the
two is monotonically increasing in the � -direction. If one subgrid
is monotonically increasing and one decreasing in the � -direction,
then the union is not monotonic in the � -direction. The same holds
for partitions into more than two elements.

As we merge subgrids into boxes, we store the monotonicity in
each direction for the boxes. When we attempt to merge boxes
into larger boxes, we use the stored monotonicities to compute the
monotonicities of the larger boxes. To compute monotonicity for
bands, we must store the monotonicity with respect to both the min-
imum and maximum value of the band.

To check the monotonicity condition, we also need the mono-
tonicity in each direction of the faces of each subgrid. However,
storing that for each box would require storing the monotonicity in
each of two directions for each of six faces in � � . This is impracti-
cal for large data sets. Instead, we simply compute the monotonicity
from the original grid edges.

The running time is dependent upon the time to check the mono-
tonicity condition. If � is the total number of grid vertices, then
there are  ��� � grid edges, and there are  �����
� ��� � � potential
boxes which can contain a given edge (assuming that the ratio be-
tween the dimensions of a box can never be greater than four.)
Thus the algorithm runs in worst case  ������� ��� � � time. This as-
sumes that one considers all possible box dimensions of the form

�
	
. In practice, we restricted the maximum box dimension to � vox-

els which compresses 512 voxels into a single box in � � .
The monotonicity is only one condition of many which could

be used to determine box size. Geometric measures should also be
included such as distance to the full resolution isosurface and curva-
ture of the full resolution isosurface. Balmelli et. al. in [2] suggest
counting total number of intersections between the isosurface and
the grid edges. Since our contribution is the use of monotonicity,
we do not incorporate these measures into our algorithm or the ex-
perimental results.

Splitting to balance box sizes, the additional splitting step and
the repositioning of hanging vertices are discussed in Section 5.
They run in time proportional to the total number of boxes which is� ��� � .

For the isosurface extraction, each vertex is labeled “+” or “-”
depending upon whether it’s value is above or below the given iso-
value. Each mesh element is a hexahedron (or hypercube in � �

)
with possibly some zero length contracted edges. The labeling of



Type Dataset IsoValue Size at Size with Size with Small Component Bound on Average Time
Full Resoln Decimation Decimation and Size Chosen Block Size

No Band Band (with Width)
3D VisWoman Head 1100 3,256,272 1,597,152 307,354(100) 1000 4 515 s
3D VisWoman Knee 1100 1,372,870 940,426 154,302(100) 1000 4 311 s
4D Vortex 6 9,282,485 2,411,548 - - - 863 s
4D Jetstream 0.0001 59,862,311 12,108,755 - - 4 2138 s

Figure 4: Table of results

Figure 5: Cutaway of adaptive resolution isosurface representing
skull. The internal structures in the skull are retained. Notice the
high resolution in the inner ear area.

Figure 6: Three balls with full resolution in central region.

the mesh element vertices gives a labeling of the original hexahe-
dron where a hanging vertex takes on the sign of the vertex to which
it was moved. Using the Marching Cubes lookup table (or its 4D
variant) we extract the isosurface patch for the mesh element. Note
that both vertices of a contracted edge always have the same sign,
so there is no problem of the isosurface intersecting the contracted
edge.

7 RESULTS

We present results of our adaptive resolution algorithm on 3D and
4D data using various band widths. The performance measure-
ments were done on a 1.5 GHz Pentium 4 system with 1 GB mem-
ory. All the time measurements shown are wall clock times. We
used the Head and Knee portions of the Visible Woman dataset.
For 4D data, we used 33 time steps of the Vortex dataset and the
Jetstream Dataset. Isosurface size was measured in number of trian-
gles for isosurfaces in 3D and number of tetrahedra for isosurfaces
in 4D.

The Visible Woman dataset is made of 512 X 512 slices and each
dataset we used had 257 such slices. This dataset has intreresting
topology as well as noise especially near the bone region (isovalue
approx. 1100.) The isosurface has internal structures that are not
visible from the outside, such as parts of inner ear. These internal
parts are also preserved by our algorithm, as is shown in Figure 5.
Adaptive resolution with band width 100 reduced the number of
isosurface triangles to approximately one-tenth of the number of
triangles in the original full-resolution isosurface.

The Jet Stream and Vortex datasets are series of 3D scalar fields,
which we represented as a 4D dataset. Each time step in the Jet
dataset has dimensions 104 X 128 X 128, while Vortex is of size
128X128X128. We took the first 33 time steps of each of these
datasets. Adaptive resolution reduced the number of tetrahedra in
the Vortex data set to approximately one-fourth of the number of
triangles in the original full-resolution isosurface. Adaptive reso-
lution reduced the number of tetrahedra in the Jet Stream data set
to approximately one-fifth of the number of original tetrahedra. No
bands were used on either data set, meaning that isosurface topol-
ogy was preserved in each.

For the Visible Woman MRI datasets, topological noise reduc-
tion was done by removing small components of less than 1000
grid vertices for the given isovalue. This process, however, does
not remove the noise near the real isosurface, which is handled by
our bands technique.

For the Visible Woman and Jet Stream data sets, we imposed a
geometry criterion on the decimation by restricting the maximum
size of the decimated block. Though this reduces the decimation
achievable, in practice, the effect is not too drastic. The advantage
of having a maximum bound is that it gives us regions of uniform
block sizes. The surface patches in each such region have simi-
lar level of resolution, which is visually more pleasing. An addi-
tional advantage of having such uniform regions is that it reduces
the number of hexahedral edge contractions that is required for fix-
ing cracks.

With our algorithm, it is possible to retain high resolution in
some region of interest, while allowing decimation in the rest. The
resolution automatically reduces gracefully from the high resolu-
tion region. This effect could be noticed in the central band in Fig-
ure 6.

As described in [3], the interval volume between two isosurfaces
in 3D can be constructed by lifting the 3D data into two layers in
4D. We lifted one frame of the Jet Stream data into 17 layers in 4D
corresponding to 17 isovalues, and constructed an adaptive resolu-
tion isosurface in 4D representing the interval volume between the
isosurfaces in 3D. We sliced the 4D isosurface to give an animated
view of the different 3D isosurfaces. The adaptive resolution iso-
surface in 4D had 1,447,703 tetrahedra which was an improvement
by a factor of six over 8,198,190 tetrahedra in the full resolution
isosurface.

One advantage with the decimation algorithm described is that
it partitions the dataset based on local conditions. Hence, in cases
where the dataset is simply too big for the resources, we could con-
sider portions of the dataset at a time and partition each. This is



especially useful in 4D datasets, which typically are of Gigabyte
size.

Our implementation used very simple, but inefficient data struc-
tures, which contributed to an undesirably long running time. Sig-
nificant amounts of time were spent in determining monotonicity
and in detecting hanging vertices. We believe that more sophisti-
cated data structures, data partitioning to avoid thrashing and pre-
processing of empty voxels and blocks could substantially improve
the running time.
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Figure 7: Jet Stream Slice: a) Full resolution isosurface generated from 3D data; b) Slice of adaptive resolution isosurface generated from 4D
data; c) Adaptive resolution isosurface generated from 3D data

Figure 8: Visible Woman Head: a) Full resolution; b) Adaptive resolution with no band; c) Adaptive resolution with band width 100; d)
Adaptive resolution with band width 200.

Figure 9: Visible Woman Knee: a) Full resolution; b) Adaptive resolution with no band; c) Adaptive resolution with band width 100; d)
Adaptive resolution with band width 200.


