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Abstract

Many parallel algorithms require efficient support for reduction collectives. Over the years, researchers have

developed optimal reduction algorithms by taking into account system size, data size, and complexities of reduction

operations. However, all of these algorithms have assumed the fact that the reduction processing takes place on

the host CPU. Modern Network Interface Cards (NICs) sport programmable processors with substantial memory

and thus introduce a fresh variable into the equation. This raises the following interesting challenge: Can we

take advantage of modern NICs to implement fast reduction operations? In this paper, we take on this challenge

in the context of large-scale clusters. Through experiments on the 960-node, 1920-processor ASCI Linux Cluster

(ALC) located at the Lawrence Livermore National Laboratory [24], we show that NIC-based reductions indeed

out scale host-based algorithms in terms of reduced latency and increased consistency. In particular, in the largest

configuration tested —1812 processors— our NIC-based algorithm sums single-element vectors of 32-bit integers

and 64-bit floating-point numbers in 73 µs and 118 µs, respectively. These results represent respective improvements

of 121% and 39% over the production-level MPI library.

1 Introduction

Many high-performance computing applications de-

pend critically on efficient reduction algorithms. Re-
cent performance evaluation studies show that large-

scale scientific simulations spend up to 60% of their

time executing reductions [19]. Similar results have
been provided by an in-depth analysis of the scientific

workload at Lawrence Livermore National Laboratory
[10]. Reduction algorithms which minimize latency

will thus substantially reduce the overall run-time of

such programs.

The problem of developing efficient reduction al-
gorithms has proven to be a rather rich area of re-

search. Reduction collectives involve both communi-

cation (data transfer) and processing (data reduction
operations), and so efficient implementations must

consider characteristics of the network, the processors,

and the interplay between the two. In other words, the
design space for developing efficient reduction algo-

rithms is quite large. Over the years, many researchers

have committed significant time in order to derive op-
timal and scalable algorithms [2, 3, 4, 5, 15, 18].

These algorithms differ in their assumptions of the un-
derlying system characteristics. During all of this ef-

fort, however, designers have commonly assumed pro-

cessing must be performed by the host CPU.

Network interface cards for modern cluster inter-

connects, such as the Quadrics Elan [20], provide pro-
grammable processors and substantial memory. This

added capability allows the host processor to delegate
certain tasks to the NIC processor. To differentiate

where the task is actually performed the terminology

“host-based” and “NIC-based” have been introduced.
There are various reasons one may wish to do such a

thing, and in this paper we discuss two of them with
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regard to reduction. Namely, we find that NIC-based

reductions can offer both significantly lower latency
and better consistency than host-based algorithms.

This paper presents our scientific and technical con-

tributions. We first developed a detailed model to

predict the performance of various NIC-based reduc-
tion algorithms on Quadrics. A new model was neces-

sary since previously existing ones failed to accurately
account for important characteristics of the Quadrics

Elan. Guided by this model, we then implemented a

NIC-based algorithm that uses emulated floating-point
operations in the Quadrics NIC. This algorithm oper-

ates without the intervention of the host processors.

Finally, we provide an enhanced version of our algo-
rithm when reducing larger vector sizes.

Experimental results show that our NIC-based re-

duction algorihtm provides reduced latency and in-
creased consistency in the common case. In partic-

ular, in the largest configuration tested on the ALC
[24] —1812 processors— our NIC-based algorithm

sums single-element vectors of 32-bit integers and 64-

bit floating-point numbers in 73 µs and 118 µs, re-
spectively. These results represent respective improve-

ments of 121% and 39% over the production-level MPI

library. In addition, since the NIC-based algorithm
is not subjected to certain host-level interference, we

found that the performance of our algorithm is also
much more predictable. To the best of our knowledge,

our results are the best performance achieved on any

large-scale parallel computer, both in terms of latency
scalability and consistency.

The rest of this paper is organized as follows.

Section 2 outlines the relevant characteristics of the
Quadrics network. Section 3 describes important

trade-offs involved between implementing host-based

and NIC-based collectives, and Section 4 discusses de-
sign issues, solutions, and simplifications specific to re-

ductions. Section 5 presents the algorithm and asso-

ciated model we developed, while Section 6 provides
the results we obtained. Finally, some concluding re-

marks are given in Section 7.

2 The Quadrics Network

We implemented our NIC-based reduction algorithms
on the Quadrics network, a modern cluster inter-

connect technology [20]. Quadrics is based on

two building blocks: a programmable network in-
terface card called the Elan [21, 22] and a low-

latency high-bandwidth communication switch called
the Elite [23].

The Elan resides on the PCI bus and interfaces a pro-

cessing node, containing one or more CPUs, to the net-

work. The Elan itself is quite powerful. It contains a

user-programmable, multi-threaded, 32-bit 100 MHz
RISC-based processor and a substantial 64 MB bank of

local SDRAM memory, along with an MMU and other

sophisticated processing features. All of this hardware
is provided at the NIC to aid implementation of higher-

level message protocols without requiring explicit in-

tervention from the host CPU. In order to better sup-
port this usage model, the processor’s instruction set

includes extra instructions to construct network pack-
ets, manipulate events, and schedule threads. This

functionality is used to provide extremely low message

processing overhead at the nodes of the network.

The Elan divides messages into a sequence of fixed-

length transactions for efficient transfer through the
network. The primary communication primitive sup-

ported by the network is the Remote DMA (RDMA).
RDMAs allow for one-sided data transfer between re-

mote processes, i.e. the remote process need not ex-

plicitly participate in the exchange. Transfer opera-
tions include PUT, which transfers data to a remote

address space, and GET, which acquires data from a

remote address space. Both operations can access ei-
ther host- or NIC-level memory.

The network itself is worm-hole routed and circuit-

switched. It consists of Elite switches interconnected

in a fat-tree topology [17]. Each Elite provides the
following features: 8 bidirectional links supporting

two virtual channels in each direction, a full cross-

bar switch, a raw transmission bandwidth of 400
MB/s (325 MB/s at MPI level) per link with a low

cut-through latency of 35 ns, and hardware support
for collective communication including barriers and

broadcasts.

3 NIC-based vs. Host-based – Pros

and Cons

In this paper we show how NIC-based reduction al-
gorithms can outperform host-based versions in two

important ways: reduced latency and increased con-

sistency. In this section, we will describe how exactly
this is accomplished. We also discuss the major penal-

ties encountered when implementing reductions at the
NIC-level, namely, host-NIC synchronization cost and

reduced computational performance.

3.1 Advantages – Reduced Latency, In-
creased Consistency

NIC-based collectives can be completed significantly

faster than host-based versions. Modern cluster in-
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terconnects, such as Quadrics, support very low mes-

sage latencies; so low in fact, that PCI bus transaction
time is substantial compared to the latency between

nodes. By implementing collective communications at

the NIC, as opposed to the host, many extraneous PCI
bus transactions can be eliminated. This can signifi-

cantly reduce the total operational latency.

Collective operations, by their very nature, require
a series of related messages to be exchanged between

nodes involved in the collective. In host-based imple-

mentations, the host must handle each of these mes-
sages. In order to do so, each message must be relayed

between the host and the network via PCI bus transac-
tions. NIC-based implementations, on the other hand,

handle messages immediately at the NIC, avoiding

most of these trips through the PCI bus. In fact, NIC-
based implementations suffer from such costs only at

the very beginning and very end of the operation.

If there are a lot of messages in between, the total
savings can amount to a lot. This means that NIC-

based collectives can scale substantially better than
host-based versions as the size of the cluster increases.

Thus far, the majority of NIC-based research has

taken focus on this advantage [6, 7, 8, 9, 13, 14].
In the process of further investigating how this estab-

lished advantage extends to the realm of reductions,

we found a new and much more significant advantage
that NIC-based collectives provide when running on

large-scale systems.

NIC-based collectives show dramatically reduced la-
tency and increased consistency over host-based ver-

sions when used in very large-scale clusters. It hap-

pens that process interference at the host level turns
out to be a major problem on large clusters. To demon-

strate this, observe Figure 1. This figure shows the la-
tency measured for a barrier and a reduction when us-

ing both one and two processes per node. Note the

dramatic latency deviation for each operation when
two processes are used on each node, as opposed to

just one.

In this system, there are two physical processors per
node. When the collective involves only one process

per node, there is a spare processor on which the node

may run various system threads. However, when both
processors are used by the collective, at least one of

the processes is forced to share its processor with the
system threads. This interference is responsible for the

drastic drop in performance.[19]

Basically, the problem arises since host-based pro-
cesses in charge of handling intermediate messages

during the collective may be subject to process swap-

ping. Unlucky intermediate nodes may be swapped
just before processing an incoming message. In this

case, the collective will stall until the process is
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Figure 1: MPI Barrier and Reduce Latencies

swapped back to handle the message. This leads to
poor performance, much like problems observed in

job scheduling on large systems when using a local

scheduling approach. The problem tends to manifest
itself on large systems more so than on small systems,

because larger collectives require larger algorithmic
tree structures. Larger trees in turn require more inter-

mediate nodes. Thus, there are simply more chances

that some intermediate processes will be interfered
with.

In addition to increased latency, one may immedi-

ately understand that this is a rather non-deterministic
phenomenon, which leads to a large variance in oper-

ational latency from one collective invocation to an-
other. Thus, the same process swapping problem si-

multaneously increases average latency and decreases

operational consistency.

As host-level process swapping is inherently a host-

based problem, NIC-based algorithms can avoid it alto-

gether. As a result, NIC-based collectives can complete
with drastically better latency and in a more consistent

fashion.

3.2 Disadvantages – Overhead, Slower
NIC Processor

Even though the NIC carries out the actual collective

in the NIC-based implementations, the host must com-

municate to the NIC, among other information, what
operation is to be done, which data is to be processed,

and when the operation is to start. Also, the NIC must

notify the host of the operation’s completion. This pro-
cess is termed host-NIC synchronization.

Host-NIC synchronization introduces some over-
head which must be compensated before NIC-based

collectives can be beneficial with respect to latency. As

currently implemented, this host-NIC synchronization
adds 2 to 3 microseconds of overhead to the total oper-

ational latency. However, it should also be noted that
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this overhead can be largely avoided by overlapping

it with other operations, and is thus really of minor
concern.

The most important issue to be considered is that of
the NIC processor. The user-programmable processor

on the NIC is considerably slower than the host proces-

sor (as much as 25 times slower on the machines we
used). Different processing requirements by different

algorithms and different operations make this a very
significant difference. Basically, this difference places

a limit on the complexities of the algorithms and oper-

ations which may benefit from NIC-based implemen-
tations. To make matters more complicated, a sub-

stantial lack of processing functionality typically ex-

ists as well. For example, there is no hardware-based
floating-point support on the Quadrics Elan. The lim-

itations of the NIC CPU proved to be the toughest de-
sign issue we encountered in our work.

4 Design Issues and Initial Obser-

vations

We extend NIC-based collectives to the realm of reduc-

tions. Reductions are computationally intensive col-
lectives, and as a result, the slower and less functional

NIC CPU becomes a limiting factor. In this section, we

probe the sensitivity of the Quadrics Elan to computa-
tional requirements, and make note that, fortunately,

the common case in many programs does not require
large amounts of computation. Thus, even with lim-

ited processing power, NIC-based reductions present a

viable option.

4.1 Complications – Processing Speed
and Capability

As noted above, NIC CPUs are typically much slower

than the CPU available at the host level, often by
an order of magnitude or so. In addition, NIC CPUs

provide less functionality. Knowing these limitations,
most of the research in NIC-based work so far has con-

centrated on collectives which involve little process-

ing. Collectives such as barriers, broadcasts, multi-
casts, and gathers, simply require intermediate nodes

to pass on the received message as is, with perhaps mi-

nor data restructuring. Because so little processing is
required, these algorithms incur little penalty by run-

ning on slower processors, and the overall results have
been quite positive.

The success obtained by simpler NIC-based col-
lectives inspired us to investigate more complicated

cases, namely reductions. Our design goals were to
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Figure 2: Serial Reduction Latency

support NIC-based implementations of the standard

MPI reduce and allreduce collectives for 32- and 64-
bit integer and floating-point data types, each having

min, max, and sum operations.

The first problem we encountered is the fact that

the Elan CPU has no hardware support for floating-
point operations. Thus, we were required to emu-

late floating-point operations in software with inte-
ger instructions. Of course, this isn’t the first time

such a problem has been posed, and fortunately others

have worked hard to provide sophisticated software li-
braries to serve as a solution. In particular, we tackled

this problem by porting SoftFloat [25] to the Elan, an

IEEE 754 compliant floating-point package written by
John R. Hauser, which is freely available to the public

domain.

After providing floating-point capability, we investi-
gated the communication and computation character-

istics of the Elan. This was accomplished by imple-

menting a very simplistic version of reduce. Basically,
a group of N nodes performs a reduce by designating

one of the nodes as the root, which is solely responsi-
ble for receiving and reducing all of the data. After a

synchronization phase, all non-root nodes simultane-

ously send their data to a corresponding RDMA buffer
at the root. Upon receiving all of the messages, the

root performs the reduction operation on them in se-

rial order. We will refer to these results at later points
in the paper, so it is convenient to provide a name to

this algorithm. We simply call it the “serial reduction”
algorithm.

Serial reduction tests involving 2-13 processors for

various reduction operations and data sizes produced

Figure 2. There are a couple important features to take
note of.

First, regardless of the operation, all of the curves

closely follow a linear trend as the number of nodes
is increased. Such a tight trend makes it very easy to

model performance, as latency can be predicted using
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only a couple model parameters. We address this issue

in more detail in Section 5, but basically, the intercept
is related to the message latency, while the slope rep-

resents the reception and reduction time required by

the message.

Second, it is more relevant at this time to take note

of the reduction latency sensitivity to the operation be-
ing performed. Simpler operations scale considerably

better than more complicated ones. Even fast opera-
tions are rather sensitive to small changes in data size.

As could be expected, floating-point operations are es-

pecially slow since they must be implemented in soft-
ware on an already slow processor. In fact, the time to

perform a single 64-bit floating-point addition is com-

parable to the message latency between nodes.

Certainly then, it will be essential to consider both
communication and computation costs when design-

ing efficient NIC-based reduction algorithms. It is also

clear that NIC-based reductions, even for very simple
operations, will perform with reasonably low latency

only for small data sizes. Nevertheless, it turns out

that even while this is a rather stringent restriction on
the class of problems where NIC-based implementa-

tions may be valuable, a large majority of the problems
posed by practical programs falls within this class.

4.2 Simplifications – Small Data Sizes

Reductions involving simple operations on small data
sizes are the common case in many scientific appli-

cations. To show this, we profiled the MPI allre-

duce operations performed during the execution of
SAGE [16]. Sage is a program representative of the

typical scientific applications running on large-scale,
ASCI-class parallel machines. The results are shown in

the following figures.

Figure 3 shows the distribution of operation types.

First, note that only a few simple types of operations
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are used by SAGE: minimum, maximum, and sum.
Typical reduction operations thus require limited pro-

cessing. Second, note that floating-point operations

far outnumber integer operations. This strongly sug-
gests that, if no hardware-based floating-point support

is provided on the NIC CPU, the emulation software

should be highly optimized in order to reduce costs in
the common case. Though noting this, we made no

direct optimizations to SoftFloat for our tests.

Equally important is Figure 4 which shows the cu-
mulative distribution of the data sizes for different

reduction operations using both integer and floating-

point data types. Direct observation makes a striking
point: 97% of all reductions use 3 or fewer elements

and 100% use 8 or fewer.

These observations are key. Typical reductions in-
volve simple operations on small vectors, which is the

same class of reductions for which one may bene-

fit from NIC-based implementations. In other words,
NIC-based reduction implementations will benefit the

common case the most. Thus, given the substantial

benefits previously mentioned, NIC-based reduction
implementations promise to be quite valuable to typ-

ical programs, even while considering the limitations
imposed by the NIC processor.

5 The Model and the Algorithms

Over the years, many efficient reduction algorithms

have materialized, stressing the importance of these
collectives. However, a large majority of the existing

algorithms are based on models which make assump-
tions that do not hold when considering NIC-based

reductions. In this section, we point out the major

problems with the standard models, introduce a model
which addresses these problems, and then present an

efficient reduction algorithm based on this new model,
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along with one important optimization.

5.1 Problems with the LogP and Postal
Models

Most proposed reduction algorithms are primarily
based on one of two simple parallel performance mod-

els: LogP [11] or postal [1] [2, 3, 4, 5, 15, 18]. Unfor-

tunately, neither the LogP nor the postal model accu-
rately captures the communication/computation char-

acteristics of Quadrics-based systems, without making

significant modification to the models themselves. As
a result, the algorithms designed to be most efficient

or optimal on systems closely aligned to these models
may no longer be the most efficient or optimal when

implemented with the Quadrics network.

Problems arise in two important respects. The fa-
miliar LogP and postal models each implicitly assume

that: 1) the send/receive costs of the underlying sys-

tem are symmetric, and 2) reduction costs are negli-
gible compared to communication costs. In particular,

the LogP model reserves the ‘o’ parameter to simulta-
neously represent both the time it takes a sender to

send a message as well as the time it takes a receiver

to receive one. The postal model normalizes its sole
parameter ‘λ’ to this symmetrical cost. Additionally,

neither model explicitly provides a parameter to repre-

sent computation time. These prove to be substantial
limitations. Both assumptions break down for NIC-

based reductions on Quadrics, which involve threads

running on relatively slow Elan processors connected
to a fast worm-hole routed, circuit-switched network.

Worm-hole routed, circuit-switched systems, such
as Quadrics, lead to asymmetrical send and receive

costs when sending small messages. This occurs since

the sender must wait for a message to worm its way
through the network to the receiver, establish a cir-

cuit, and then tear it down before sending another

message. This process is limited primarily by the la-
tency of the network. The receiver, on the other hand,

is free to receive messages as fast as it can pull them
off the wire; a process limited by the bandwidth. For

small messages, this means that a receiver is able to

receive more messages than a sender can send in a
given time. While this asymmetry is most prevalent for

small messages, as previously noted, reductions which

involve vectors of just a few elements are arguably the
common case in practical programs. Thus, it is critical

that we choose a model which explicitly accounts for
this asymmetrical behavior when designing our algo-

rithms.

In addition, unlike host-based algorithms which are
largely communication bound, especially for small

vector sizes, NIC-based implementations may be ei-

Parameter Meaning

L message latency

r(M) receive cost of a message of size M

c(M, OP) computation cost of a message of

size M, dependent on the operation
OP

P number of nodes

C(OP) constant due to initial overhead, in

general dependent on the operation
OP

TABLE 1: Model Parameters

ther communication or computation bound. For exam-

ple, on the Quadrics Elan, the cost to perform a single

floating-point 64-bit addition is comparable to the net-
work latency. The much slower and less functional NIC

CPU can pay a considerable price in computation costs
when the vector size is increased even by a single el-

ement. This implies that while host-based algorithms

may be designed quite successfully by neglecting com-
putation costs altogether, efficient NIC-based imple-

mentations are forced to consider such costs. Thus,

it is critical that the model explicitly account for re-
duction costs.

5.2 The Model

Observations of the serial reduction data from the pre-
vious section suggest a very simple model. Namely,

take note of the linearity of the latency curves. Essen-

tially, the intercept represents message latency while
the slope contains information about the receive and

reduction costs of a message. These serial algorithms

will be the building blocks of any more sophisticated
algorithms. So by accurately modeling these building

blocks, one can piece together a model for more so-

phisticated algorithms. In other words, essentially just
the slope and intercept of these lines are sufficient to

quite accurately predict performance of any proposed
algorithms.

With these observations, we define our model as

given in Table 1. We will typically suppress the func-
tional parameters M and OP from the various terms.

Note with this model it is simple to describe the la-

tency curves from the serial reduction data as:

Time ≈ C + L + (P − 1) · (r + c)

This expression is shown pictorially in Figure 5.

To assign numerical values to the parameters, we
extracted the values of r and c from the serial reduc-

tion data for various values of M and OP. The terms L
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LC r r r c c c

(P-1) incoming messages to root

Figure 5: Serial Reduction Latency Model

and C were fit to the data, and P is obviously given
for a particular problem. In passing, we will note that

while, in general, r is dependent on the message size,

it turns out to be constant for cases we are interested
in. This is because we focus on reductions involving

vector sizes of a few elements, say up to 8, which typ-
ically fit into a single 64-byte fixed-length packet on

the Quadrics network. Thus whether we are working

with single-element vectors or 8-element vectors, the
receive time is the same.

The proposed model parameters also suggest the
general form of efficient algorithms. Again looking

at the serial reduction data, note that for small mes-
sages, the latency L is significantly more than the re-

ceive time, r. Thus, due to the circuit-switched nature

of the network, the sender may only send a message
every L units of time, while the receiver can receive

one in every r� L units. This is the asymmetrical com-

munication characteristic previously discussed. As a
result, nodes in efficient algorithms will tend to receive

more often than they send, leading to a class of tree-
shaped algorithms. Given that efficient algorithms will

take the form of trees, we implemented f-nomial tree

algorithms, feeling they were a good balance between
structural simplicity and optimality.

5.3 F-nomial Trees – Generalized Bino-
mial Trees

F-nomial trees are generalized binomial trees, which
are more familiar structures. Here we will describe f-

nomial trees starting from a quick review of the oper-
ation of binomial trees. Also, although reduction trees

will collapse in on themselves, it is easier to describe

the functionality of a tree as it expands. For conve-
nience then, say we are attempting to broadcast a mes-

sage from the root to all nodes in the tree.

Degree 1
(Binomial)

Degree 2
(Trinomial)

Degree 3

Degree 4 Degree 5 Degree 6

Degree 7

Figure 6: F-nomial Trees of Varying Degrees

The operation of binomial trees can be described

as follows. The algorithm can be broken into distinct

phases. At the start of the first phase only the root has
a copy of the message to be broadcast. During each

phase, each node which has a copy at the start of the
phase sends to another node which doesn’t. In this

way, the number of nodes that have copies of the mes-

sage doubles after each phase. The algorithm stops
once all nodes have received the broadcast message.

In a binomial tree then, the number of nodes the mes-

sage can reach in a given number of phases, grows as
a power of 2 (hence the prefix “bi”) with the number

of phases.

An f-nomial tree generalizes this algorithm by hav-
ing each node with a copy of the message at the start

of a phase send to (f-1) others who don’t, as opposed

to just one. Thus, the number of nodes the message
can reach grows as a power of f with the number of

phases. This is the structure of the algorithm we im-

plemented; only remember the tree collapses rather
than expands.

Figure 6 shows some example f-nomial trees of vary-

ing degrees which cover 16 nodes. In general, the
lower the degree, the taller the tree. Each level of the

tree corresponds to a communication phase, while the

width of each level determines the amount of compu-
tation any one processor is required to do. Efficient

algorithms will tend to balance the cost of commu-

nication and computation. Communicationally bound
reductions will favor wide trees to minimize the num-

ber of tree levels, and hence, the number of communi-
cation phases. Computationally bound reductions, on

the other hand, will fair better with tall trees which

better parallelize the processing. Thus, the best choice
for the degree of the tree depends on the relative costs

established by a particular problem.

Now we apply the model to this algorithm. Since the
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(f-1) incoming messages

L r r c c

(f-1) incoming messages

LC r r c c

(f-1) incoming messages

Phase 1 Phase 2

Figure 7: Multi-phase Reduction Latency Model

root node in an f-nomial tree is involved in each step of

the algorithm and is the only node to receive messages
in the final step, we can predict the latency of the en-

tire operation by focusing on the work the root node

must do. An f-nomial tree contains roughly log f (P)
phases, during each of which the root has roughly (f-

1) children (roughly, since this assumes a full tree).

Each phase will be of the linear, building-block, form
of the serial reduction data previously discussed. Thus

one can arrive at the following expression as a quick
analysis of the time required for an f-nomial algorithm

to complete:

Time ≈ C + [L + ( f − 1) · (r + c)] · log f (P)

Application of the model for an intermediate phase
is shown pictorially in Figure 7. In this algorithm, the

initial overhead, C, is encountered as a one time cost.

Then there are log f (P) phases each of which consists
of (f-1) children who send to the root at the same

time. All of these messages worm their way in par-

allel to root and simultaneously suffer the latency, L,
before arriving. Finally, the root must receive and re-

duce each of the (f-1) messages before moving to the
next phase.

This simplistic expression does not accurately ac-

count for trees with a number of nodes other than an
integer power of the degree f. When the number of

nodes, P, is not an integer power of the degree, f, more

careful analysis will show that:

Time ≈ C + L · dPHAS ES e +

(r + c) ·
{

( f − 1) · bPHAS ES c +

dP/ f bPHAS ES c − 1e
}

where PHAS ES = log f (P).

Here, PHAS ES represents roughly the number of
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Figure 8: Derivation of Model of F-nomial Reduction

Latency

phases in the f-nomial tree. In particular dPHAS ES e
is the total number of phases, while bPHAS ES c is the

total number of full phases, i.e. those involving a full
set of (f-1) children. The L term represents the total

latency cost incurred from each phase of the tree. The

(r+c) term accounts for the time to pull each message
from the network and perform the reduction, which in

turn is broken into two terms itself. The bPHAS ES c
term counts the number of children we process due to

full phases, while the ceiling term counts the number

of children in the last step, which may be fewer than
a full set. An example is given in Figure 8 for a 16-

node tree to demonstrate how the various terms refer

to the tree. This more detailed model was found to
be impressively accurate. Verification of this model is

presented in the experimental section.

5.4 Vector Split Optimization

The slower and less functional NIC CPU is quite sensi-
tive to the vector size of the reduction, especially for

floating-point operations which must be emulated in

software. To reduce this cost, one would like to heav-
ily parallelize the computation. In other words, we

would often like to keep as many of the NIC processors

working as possible. To do so, we are often willing to
suffer a little extra communication cost in favor of a

substantial reduction in computation cost.

For multi-element vectors we can use an optimiza-
tion to increase parallelism, proposed by Van de Geijn

in [12]. Basically, the idea is to split the vector and as-
sign the different pieces to different groups of nodes.

The groups then reduce the distributed pieces in par-

allel and recombine the vector in the last step. As an
example, say we would like to reduce a two-element

vector over 8 nodes. Presented with this optimiza-

8
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Figure 9: Vector Split Optimization

tion, we now have two options: 1) perform a straight-

forward two-element reduction via an 8-node f-nomial

tree or, as shown in Figure 9, 2) divide the 8 nodes
into two groups of 4, assign the top piece of the vector

to one group and the bottom piece to the other, then
perform two single-element reductions via 4-node f-

nomial trees in parallel, and finally recombine the re-

duced vector pieces at the end. In the second ap-
proach, we suffer from one extra communication step

to recombine the vector pieces at the end, however if

computation is expensive, we save significantly on re-
duction costs during each phase of the reduction tree.

For very large trees, which require many phases, this
savings can quickly amount to a lot.

This optimization was pre-pended to the f-nomial al-

gorithm to create a new algorithm we call “f-nomial

split”. During the beginning, the vector is split in
halves continuously until the pieces consist of just sin-

gle elements. The f-nomial tree algorithm is then used

to reduce the single-element vectors. As discussed,
this is done in parallel over multiple sub-trees. The

root of each of these sub-trees will receive a fully re-
duced piece of the vector, which is then sent to the pri-

mary root of the overall reduction tree in the last step.

The improvement due to this optimization proved to
be dramatic, and is discussed in the experiment sec-

tion. Basically, it allows the NIC-based reductions to

scale substantially better than they otherwise would
have for larger vector sizes.

6 Experiments

In this paper, we aim to highlight the attractive advan-

tages NIC-based reductions achieve over host-based
versions in large-scale systems. We developed our

algorithms and our initial performance evaluation
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64 Addition on 31 Node F-nomial Tree

on the ‘crescendo’ cluster at LANL, a 32-node 64-

processor cluster based on 1 GHz Pentium IIIs and the
Quadrics network. We completed our scalability anal-

ysis on the ALC cluster [24] located at the Lawrence

Livermore National Laboratory. ALC uses 960 dual-
processor nodes with 2.4 GHz Xeons and the Quadrics

network.

To begin, we will first verify the accuracy of the

newly proposed model. Then, we show results indica-
tive of the reduced latency and increased consistency

we observed using f-nomial NIC-based reductions. To
end, we present the benefits obtained with the vector

split optimization.

6.1 Model Verification

Before running tests on large-scale systems, we

wanted to inspect the accuracy of the model. We ex-
tracted the model parameters from the serial reduc-

tion data as previously mentioned and applied them

to various f-nomial trees for different reduction prob-
lems. To provide some confidence in this model, in

Figure 10, we show the predicted and measured la-
tencies for 64-bit floating-point addition on a 31-node

system using vectors sizes of 1, 2, 4, and 8 elements.

There are a few items of interest here.

First, as one might guess, we were of course quite
pleased to see how well the model aligns with actual

measurements. Because the model fits the data so

closely, this allows one to make theoretical estimates
of the behavior of various reduction algorithms with

a good deal of confidence. Thus, in future reduction
algorithm design, one has a detailed model by which

one may be able to consider and eliminate many de-

sign choices without the need to run extensive tests.

Second, it is also quite important to note how sig-
nificant the computational costs are. For example,

note that the latency required to reduce an 8-element

9



vector across 31 nodes is more than three times the

latency required for a single-element vector. Clearly
then, any well-designed algorithms must absolutely

consider computation costs. To make the point once

more, this brightly highlights the issue of the differ-
ence in processor speeds discussed earlier. This issue

is the most limiting impedance which NIC-based re-

duction implementations encounter.

Finally, note that because of the high susceptibility
to computation costs, the degree of the f-nomial tree

may make a significant difference in the latency of the
reduction. Intuition suggests that expensive computa-

tion should be spread among as many processors as

possible, implying that efficient algorithms will tend
to produce low-degree trees for problems that require

much computation. Reassuringly, that is what is ob-

served in the plots. Small vectors, which require less
processing time, lead to curves that are essentially flat

for the degrees tested, while larger vectors tend to
heavily favor lower-degree trees. On the other hand,

for reduction operations simpler than floating point

addition, it pays more dividends to use higher-degree
trees to save on the relatively more costly communi-

cation. Once again, we point out here that, because

the host processor is so much faster, such drastic la-
tency variation would not be observed as the degree

of the tree is varied in host-based reductions. This is
why many previous reduction algorithms so success-

fully get away with neglecting computation costs.

6.2 Reduced Latency

We timed the latencies for host-based and NIC-based

reduction over a variety of operations and data sizes.

We used the MPI reduce collective for our host-based
tests. When taking measurements, we found a large

variance in the host-based latencies from one itera-

tion to another. To compensate, we plotted the av-
erage latency recorded over 100,000 iterations. We

show the single-element vector results we obtained
for host-based and NIC-based 32-bit integer addition

in Figure 11 and 64-bit floating-point addition in Fig-

ure 12. Since the host-based latencies are only slightly
affected by the type of operation being computed, the

provided curve for floating-point addition is represen-

tative of other operations as well.

As the figures show, we note that the NIC-based
curves scale considerably better than the host-based

results. Indeed, as one may infer from the 32-bit in-
teger addition curve, our NIC-based implementation

was able to perform simple integer reductions in about

half the time it takes the host to do so. Further,
even while incurring the expensive cost of emulating

floating-point addition on a much slower processor,
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our NIC-based implementation was able to substan-

tially out race the host-based reduction. With some op-
timization to the emulation software, this gain could

be even further improved. We will acknoledge that,
when reducing with floating-point operations, the very

best host-based latency recorded was better than the

best NIC-based times. However, for simpler opera-
tions, like integer addition, the NIC-based implemen-

tations gained enough in PCI transaction savings to out

perform the host even on its best run. At any rate,
it is clear to see that, in many cases, NIC-based re-

ductions can complete with extremely low latencies.
When reducing over 906 nodes, we were able to ob-

tain latencies as low as 40 µs for integer operations

and a slightly higher time of 65 µs for floating-point.

Further, we note that the NIC-based reduction la-

tencies involving one process per node scale dot-for-
dot with the times predicted by the model up through

128 nodes, at which point the measured times break
away cleanly. This deviation is due to the testing en-

vironment in which we recorded our results; it is not

due to an inherent fault in the model. The synchro-
nization method we used in between reduction iter-

ations changed from a hardware-based barrier to a

10



software-based barrier at this point due to the manner

in which nodes were allocated to us. The model could
be adjusted to account for this difference, however, we

thought it to be quite instructive to observe the kind

of performance one could expect to see if allocated
nodes appropriately. The model suggests that, pro-

vided with hardware-based barriers, extremely low-

latency reductions may be achieved. Namely, we have
all indications that 32-bit integer addition can be com-

pleted in under 25 µs and 64-bit floating-point addi-
tion in less than 45 µs, even for clustes as large as 900

nodes.

Finally, we should point out the latency deviation

in the NIC-based results when two processes are in-
vovled on each node. Unfortunately, the curves fol-

low the same trend noticeable in the host-based results

which we were trying to avoid. Again, we blame this
occurance on the synchronization method used. We

rather naively used a host-based barrier in between
our NIC-based reductions during testing. As a result,

our NIC-based timings were subject to the same type

of host-level problems as the host-based implementa-
tions. We intend to fix these problems by implement-

ing our own NIC-based synchronization scheme for fu-

ture tests, however, we did not get the opportunity
for another test slot on the Livermore machine before

writing the paper.

6.3 Increased Consistency

We just mentioned how the host-based MPI reduce la-

tencies varied substantially depending on the system
environment. The best times we observed, when the

system was unloaded and noise-free, were about 3

times better than the times observed when other jobs
were running on the system. The NIC-based results

were quite steady in either case. This is related to the

consistency advantage we have noted for NIC-based
reductions.

To brighten the point a little more, Figure 13 shows

a distribution graph of the latencies recorded for the
NIC-based and host-based 64-bit floating-point addi-

tion of a single-element vector. Though at first glance,

the NIC-based reduction appears to take more time
than the host-based reduction, one must look deeper

into the numbers. The point to be made is the much

tighter variance which surrounds the sharp spike of
NIC-based latencies. Host-based latencies, on the

other hand, are spread quite smoothly across a wide
range of values. Indeed, a very large number of host-

based latencies extend far past the right-hand limit

of the distribution graph. To be precise, 97% of the
NIC-based reductions fall with a spread of only 4 µs,

while for host-based reductions, only 57% fall within
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a spread of 20 µs. In fact, after adding it all up, the av-
erage host-based latency comes in around 95 µs, while

the NIC scores a substantially lower 75. This notice-
ably large contrast in consistency is quite indicative of

the non-deterministic effect that process swapping im-

poses on host-based reduction implementations. As
expected, NIC-based reductions are more consistent

and scalable than host-based versions on large-scale

systems.

6.4 Split Optimization

Earlier we noted that, while NIC-based reductions can

provide reduced latency and increased consistency,

they are especially sensitive to computational cost due
to the slow NIC CPU. The vector split optimization is a

way to counteract this shortcoming by increasing par-
allelism when reducing multi-element vectors.

We measured the performance of the f-nomial split

algorithm for 64-bit floating-point addition on 512
nodes using various vector sizes. The results are

shown in Figure 14. The value of the vector split op-

timization is quite pronounced. After 3 splits, the 8-
element latency is improved by nearly a factor of 3,

while for 4 splits, the 16-element case is over 3 times
faster. The trend obviously suggests the larger the vec-

tor, the better the benefit.

Although the vector split optimization enables NIC-
based reductions to scale better than they otherwise

would have, there is still a limit on the performance it

can achieve. Note that a latency of 140 µs for a 16-
element reduction may still be much more than what

a host processor can churn out. And interestingly, one
may carefully note that the latency for a 2-element

vector actually increases slightly after one split. This of

course will happen if the total savings in computation
over the height of the tree is less than the added com-

munication cost of the recombine step. However, the
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cross-over point can be computed so as to always pick

the better of the two options. Van de Geijn discusses

the details in [12].

7 Conclusions and Future Work

In this paper we showed that NIC-based collectives out

perform host-based versions in two important ways:

1) reduced latency via fewer PCI transactions and 2)
reduced and more consistent latency via decreased

susceptibility to process swapping. While these are

attractive advantages, they don’t come to us for free,
namely, one must deal with host-NIC synchronization

overhead and perform processing on a much slower

and less functional processor.

Many existing reduction algorithms are based on

the popular and successful LogP and postal mod-
els. Unfortunately, these models do not well account

for the asymmetrical communication characteristics in
Quadrics, nor for the high computation costs of the

relatively slow Elan processor. In response, we pre-

sented a simple model which does address these is-
sues. The new model suggests that efficient reduc-

tion implementations will fall in the class of asymmet-

rical tree-shaped algorithms. We then presented the
f-nomial tree reduction algorithm, which are general-

ized binomial trees. We also added the vector split
optimization to increase performance when reducing

larger vectors.

Experimental data shows that the model we pro-
posed quite accurately predicts the performance of our

algorithm. We also found evidence that NIC-based re-
duction implementations indeed scale better by elimi-

nating many PCI transactions. More dramatically, we

show that NIC-based reductions can avoid the costly
process-swapping penalties to which the host-based

versions are subject to. Finally, we note the value of

the vector split optimization for larger reduction sizes

in NIC-based algorithms.

The experimental results show low latency and im-
pressive scalability. In the largest configuration tested

—1812 processors— our NIC-based algorithm sums
single-element vectors of 32-bit integers and 64-bit

floating-point numbers in 73 µs and 118 µs, respec-

tively. These results represent respective improve-
ments of 121% and 39% over the production-level MPI

library.

Future work will involve exploration of additional
algorithms. It is also possible to optimize much of the

software performing the reduction on the NIC, espe-

cially for floating-point operations. Another important
optimization to be tapped is the ability for NIC threads

to directly build and send packets on the network. For

small messages, one can gain about 33% improvement
in message latency by doing so. In addition, the host-

based versions do not have access to such benefit, so
this would increase the gains obtained by NIC-based

implementations during each phase, on top of savings

already gained by the elimination of extraneous PCI-
bus transactions.
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