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Abstract
Visualizing and understanding probability density functions (pdf) on a two-dimensional domain is non-trivial be-
cause of their high dimensionality. Things become much more complicated when the data is in a three-dimensional
space, and/or if it is time-varying. A pixel-by-pixel probing to visualize the pdfs can easily overwhelm the user.
It is necessary to reduce the amount of information before rendering a visualization of the data. We present a
clustering approach which presents a high level view by reducing the number of pdfs to visualize. We also discuss
methods of texture synthesis to show average statistical measures of pdfs of the clusters.

1. Introduction

In many applications, uncertainties in the process of acquir-
ing the data results in probabilistic data. In others, when only
partial true (measured) data is available, simulations can be
done to fill in missing data based on known statistical proper-
ties, resulting in data which is uncertain to some degree. The
data can be two dimensional, as in the case of satellite im-
agery data. Or, it can exist in a three dimensional space, for
example, when an experiment is run on a 3D region. In dy-
namic scenarios, the data depends on time as well, adding an
extra dimension. The data at each grid point can be a proba-
bility density function, which defines the probabilities of the
data values at that grid point. Or it can be the values for mul-
tiple realizations of the data, from which we can construct
the probability density function. Henceforth, we will use the
term pdf for probability density functions. Please note that
distribution data sets are different from multivariate data sets
in the sense that the values are for a single variable instead
of multiple variables.

A dense global representation of the data, i.e., drawing the
pdfs at each data point is not trivial because of the high di-
mensionality of the data. If the user wants to visualize the ac-
tual pdfs at each grid point, he/she has to interactively probe
each point, which can easily overwhelm the user. Our goal
is to facilitate the users search by grouping together similar
data and presenting representatives of such groups, thereby

reducing the amount of data the user has to deal with. This
aggregation of the data is implemented through clustering al-
gorithms. The end result of the clustering is a sparse global
representation of the data. The user can probe the representa-
tive pdfs of each cluster, and can interactively merge or split
clusters to study the data at various levels of detail. More-
over, each cluster can be texture mapped with informative
patterns, which convey various statistical summaries of the
cluster, e.g., mean, variance, skewness etc.

In the following section, we discuss the related work in the
fields of uncertainty visualization and clustering (§ 2). In § 3,
we present the datasets and briefly go over the stages of data
measurement and statistical data generation. The clustering
algorithm for different types of probability data is discussed
in § 4, and visualization of clustering results using textures
is explained in § 5.

2. Related Work

The problem of uncertainty visualization has inspired a
broad variety of solutions ranging from uncertainty glyphs
14, 19 to using sound cues 11, 13, and from procedural annota-
tions 2 to geometric effects 1, 14, 18, 12. These methods do not,
however, permit the visualization of the exact pdf. Some of
these methods consider uncertainty to be a scalar quantity
for the purposes of the visualization technique. The visual-
ization of the data then boils down to showing two values for
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each data point: the expected value of the data (e.g., mean)
and the error in the data, which might be approximated by,
say, variance. Not visualizing the entire pdf deprives the user
of additional, possibly interesting, information. Moreover,
this has the disadvantage of possible misinterpretation of the
data. For example, in the extreme case, the mean of a vari-
able with a bi-modal pdf can lie in between the two peaks;
but the probability of the variable getting a value anywhere
near the mean might be zero. Ehlschlaeger et.al.5 use ani-
mations of multiple realizations of spatial data to help the
user gain insight to the uncertainty in the realizations. Tech-
niques have been developed to study the pdfs in greater detail
by Kao et.al.8. They use various statistical summaries of the
pdfs (e.g., mean, variance, skewness, kurtosis, inter-quartile
distance) to construct a dense global visualization of dataset.
However, the user has to probe each point to visualize the
actual pdf. In 9, Kao et.al. present additional methods of vi-
sualizing 2D pdf data using cutting planes, surface graphs,
pdf isosurfaces etc. Our hierarchical clustering gives a multi-
resolution representation of the pdf data, and the user can in-
teractively visualize the pdfs for each cluster at various levels
of detail.

Clustering is a very powerful tool, and has been used in
various flavors in almost every scientific community. The
whole literature is too wide to mention here, so we will men-
tion some of the research that is directly related to our work.
Some of the recent clustering algorithms are K-means, Pam,
Clarans, DBScan, Cure, Rock and Chameleon. Any cluster-
ing algorithm can be used for our purposes; however hierar-
chical clustering is better as it allows the user to view the
clustering in different levels of detail 7, 16. We use an ag-
glomerative (bottom-up) clustering similar to James Tilton’s
recursive hierarchical image segmentation for satellite spec-
tral data which alternates between region growing and spec-
tral clustering of similar regions at every step17. The algo-
rithm is very computationally expensive as it calculates the
distance (Euclidean Spectral distance) between every pair of
clusters at each step. In our algorithm, we only calculate the
distance between neighboring pairs of clusters.

3. Application Data Sets

We present our pdf visualization techniques with two con-
ditional simulation datasets. The first data set is from data
constructed using a small region in the Netherlands imaged
by the Landsat Thematic Mapper 4. For this dataset, the bio-
physical variable to be mapped across this region represents
percent forest-cover. Ground-based measurements of forest-
cover from 150 well-distributed locations throughout this re-
gion as well as space-based measurements from Landsat of
a spectral vegetation index are assumed to be available. This
spectral vegetation index is related to forest cover in a lin-
ear fashion but with significant unexplained variance. The
ground area represented by a field measurement is assumed
to be equal to the area represented by one pixel. A distri-

bution data set was generated using this information: condi-
tional co-simulation3 using both ground measurements and
the coincident satellite image. The data set consists of 101×
101 pixels and 250 realizations. Values range from 0 to 255,
re-scaled from percentage cover 9.

Our second distribution data set is from an ocean model
covering the Middle Atlantic Bight shelfbreak which is
about 100 km wide and extends from Cape Hatteras to
Canada. Both measurement data and ocean dynamics are
combined to produce a 4D field that contains a time evo-
lution of a 3D volume such as temperature and salinity. To
dynamically evolve the physical uncertainty, an Error Sub-
space Statistical Estimation (ESSE) scheme 10 is employed.
This scheme is based on a reduction of the evolving error
statistics to their dominant components or subspace. To ac-
count for nonlinearities, they are represented by an ensemble
of Monte-Carlo forecasts. Hence, numerous 4D forecasts are
generated and collected into a 5D field. We currently have
access to the Monte-Carlo forecasts of the 3D volume for a
single instant in time. This gives us the raw data for a 3D
distribution data set. The field value is for sound speed and
is derived from the other physical field values. The dimen-
sion of this dataset is 65 × 72 × 42, with 80 realizations of
the volume.

4. Clustering framework

We use a hierarchical clustering framework as a basis for
the visualization techniques presented in this paper. A hier-
archical clustering (as opposed to a non-hierarchical one) of
the data allows the scientist to interact with it, and study the
dataset at different levels of detail. Such interactivity goes a
long way towards a faster and better appreciation of the data,
specially if the data is high-dimensional, and if it is a large
dataset. The higher levels of the cluster tree provide a global
view to the interested scientist; and the lower levels provide
details when the region of interest is smaller (figure 1). We
use a bottom-up clustering method for our implementation.
The visualization methods presented in this paper are not
dependent on which clustering method is used, and any hi-
erarchical scheme will serve our purpose.

In the rest of this section, we present the clustering algo-
rithm, and the distance functions used. We also discuss the
clustering for time-varying data.

4.1. Distance Functions

Distribution datasets may come in the form of pdfs, or they
may be in the form of multiple realizations from random
experiments. For example, both the datasets mentioned in
§ 3 are generated by conditional simulations, which result in
many realizations of the data. If we think of each data point
(each point on the rectilinear grid) in the dataset as one ran-
dom variable, then each realization can be considered as the
result of an experiment where the random variable got the
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Figure 1: Hierarchical clustering of the Landsat distribution data for different error thresholds: (a) low error, (b) medium error,
and (c) high error threshold. The clusters are colored by their mean values. The colormap used gives blue for low values, green
for medium, and red for high values.

value given by the realization. One solution for clustering
multiple realization data is to convert the data form to pdfs,
and run the clustering algorithm as if the data handed to us
was pdf data. A histogram is a crude way of approximat-
ing the pdf. More accurate ways to construct the pdf are the
naive estimator and the kernel estimator9, 15. Many alterna-
tives are available for use as the distance function for pdf
clustering: Kullback-Leibler (KL) distance, entropy, man-
hattan or Euclidean distance between two histogram vectors,
the dot-product between two histogram vectors etc.

However, we loose spatial (spatio-temporal, for time-
varying data) correlation information while converting mul-
tiple realizations of the data to pdfs. Clustering the realiza-
tion data itself preserves the spatial information. For exam-
ple, two grid points which have similar pdfs may have op-
posing behaviors. Consider a random variable X that has
a pdf which is symmetric about some value; one can then
construct a new random variable Y with exactly the same
pdf, such that X and Y have a correlation of -1.0. It would
be counter-intuitive to cluster X and Y together. Hence, for
our two datasets, we chose not to do a pdf estimation be-
fore clustering. Instead, we stack all the realizations for
each grid point to form a realization vector. We then de-
fine the distance between two data points as the Manhattan
(taxicab) distance between their realization vectors. Alter-
natively, other distances like the Euclidean distance can be
used.

4.2. Probability Data Clustering

We use a bottom-up clustering technique to create a tree of
clusters, also known as dendrogram. At first, each grid point
is defined to be a cluster by itself. We then find and merge
the two neighboring clusters whose inter-cluster distance is

the minimum. We define the inter-cluster distance between
cluster A and cluster B as the maximum distance between
any data point in A and any data point in B. The new cluster
(i.e., the parent cluster) of A and B is then associated with an
intra-cluster error, which is defined as the maximum of the
following three values: intra-cluster error of A, intra-cluster
error of B, or the inter-cluster distance between A and B. The
clustering process is continued iteratively till we are left with
a single cluster that contains all the points in the 2-D domain.
This last cluster is the root of the dendrogram, which is the
end result of the clustering algorithm. To restrict the size of
the cluster-tree, we maintain only those clusters in the tree
whose cardinality is greater than a threshold MinClusterSize
given during the clustering process. In general, every node
in the tree (except the leaf nodes) will have two children.
Further reduction of the tree size is possible by throwing
away alternate levels of the tree; each node will then have
four children. Note that other inter-cluster distances, e.g.,
distance between the centroids, hausdorff distance, etc. can
be used.

The user can visualize the clustering results at various
levels of detail by changing a threshold value for the intra-
cluster error (see figure 1). The cluster-tree is traversed re-
cursively and only clusters whose intra-cluster error is less
than the given threshold are shown. Higher thresholds will
result in fewer and bigger clusters compared to lower thresh-
olds. The user can also interactively visualize the cluster-
ing results by manually going through the dendrogram us-
ing a GUI. He/she can click on a node of the dendrogram
to split/unsplit the cluster corresponding to that particular
node. To make the visual exploration process less taxing for
the user, it is desirable that the color of the children (of the
cluster being split) have some resemblance to color of the
parent. We use the mean of a cluster to determine its color,
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as the means of the children are closer to each other and
to the parent than an unrelated node. One might argue that
the visual impact is weakened by rendering two neighboring
clusters with possibly very similar colors. In § 5, we propose
the use of textures which can provide visual cues to more
statistical summaries of the clusters, and thus highlight the
differences between the two neighbors.

The statistical properties of a cluster can be approximated
by using the realizations of all the data points within that
cluster. An ’average’ pdf can be constructed in this man-
ner. Figure 2 shows the ’average’ pdf for the cluster contain-
ing the lower left corner of the Landsat dataset. Depending
on the level of the cluster in the dendrogram, i.e., towards
the root or near the leaves, the average pdf will be respec-
tively less or more close to the actual pdfs of the points inside
the cluster. In figure 2(a), which corresponds to a low error
threshold, the cluster ’average’ pdf is very close to the ac-
tual pdf of the data point ’X’ at the lower left corner. The
red curve shows the variance of each bin of the actual pdfs
of the data points within the cluster.

4.3. Time-series Probability Data Clustering

In this section, we discuss the case when the distribution data
is a time dependent. At the time of writing this case study, we
do not have access to time-dependent distribution data. We
use our 3D (ocean) dataset as an example of time-varying
data. The z-axis, i.e., the ocean depth, is assumed to be the
time dimension. We will consider two methods of clustering
and visualizing a time-varying dataset.

4.3.1. Spatial Clustering

Spatial clustering is useful when the user is interested in the
temporal behavior of fixed regions in the spatial domain. For
example, in case of geographical datasets, the user might be
interested in the temporal behavior of particular regions. In
this case, the time dependent behavior of the data points is
the attribute used as a (dis)similarity measure. The distance
between any two grid points is defined as the distance be-
tween their time-series. For our implementation, we take the
distance between two time-series as the sum of the distances
between the two at each time-step. In other words, the dis-
tance is defined as the Manhattan distance between the two
time-series. As in § 4.2, the distance between the two for
each time-step is the Manhattan distance between the two
realization vectors at that time-step. Like the previous sec-
tion, the clustering results can be visualized at various levels
of detail. For each cluster, the user can then explore how the
pdf changes with time.

4.3.2. Spatio-temporal Clustering

Spatio-temporal information can often turn out to be more
useful to the user than visualizing spatial and temporal in-
formation separately. Our clustering framework can be ex-

tended to take into account both the spatial and temporal di-
mensions simultaneously. The clustering algorithm remains
the same, but now it is run assuming the data to be three di-
mensional, i.e., we consider time to be another dimension in
space-time. The data at each point in this case is a realiza-
tion vector, and the clustering is essentially a 3D extension
of § 4.2.

The results can be visualized in various levels of detail
by selecting a threshold value for the intra-cluster error. We
can visualize the 3D clustering results as an animation of 2D
slices of the 3D volume, where each slice is perpendicular
to the time-axis. We start by showing the clusters on the first
slice (slice which intersects the time-axis at the initial time-
step), and then play an animation by moving the slice along
the time-axis. Each frame of the animation now shows the
clustering results on the 2-D spatial domain for a given time-
step. Since the correspondence between clusters on neigh-
boring slices is known (corresponding clusters come from
the same 3D cluster), they have the same color or texture.
This allows the user to visually track the movement of the
clusters. This method of clustering can be a very useful tool
for meteorological and EOS data. Scientists can visualize the
movement of clusters on the earth’s surface. For example, if
the data is time-series of surface temperature, then tempera-
ture clusters in the northern hemisphere should move south-
wards as winter approaches. Figures 3 and 4 show results of
a 3D clustering on the ocean data.

5. Cluster Visualization

In figure 1, we use the means of clusters to determine their
colors. In addition to giving similar colors to siblings and
their parents in the hierarchical tree (§ 4.2), it also gives the
user some information about the cluster. Next, we discuss
ways to show more statistical information using patterns on
the clusters.

Along with mean and variance, other statistical sum-
maries such as the skewness, kurtosis, and the inter-quartile
range can be very helpful in understanding the pdf. Skewness
is a measure of asymmetry in the tail of the pdf, kurtosis sig-
nifies how flat a pdf is, and the inter-quartile distance gives
an idea about the spread of the pdf. For figures 3 and 4, we
use variance and skewness as two extra inputs while render-
ing the clusters. The variance and skewness are remapped to
a range of [-1,1] for convenience. The uniform mean color
is now replaced with alternating lighter and darker bands.
The width of the darker band in each cluster is directly pro-
portional to the variance within that cluster. The color of
the lighter band comes from the mean. For the third statisti-
cal variable (skewness), we rotate the patterns clockwise for
positive values or counter-clockwise for negative skewness.
The angle of rotation is directly proportional to the skew-
ness within the cluster. The maximum rotation (for values
of -1 or 1) is a little less than ninety degrees. Looking at
figures 3(b,c) and 4, we can see that most of clusters have
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Figure 2: Probability Density function for the point ’X’ on the lower left corner of the Landsat dataset is shown in green.
Figures (a),(b), and (c) respectively show the average pdf (blue) for the clusters containing that point in figure 1(a),(b) and (c).
The ’average’ pdf of the cluster is quite close to the pdf of ’X’ in figure (a), but deviates in figures (b) and (c). The red graph
shows the variance for each bin of the actual pdfs of all the data points within the cluster.

(a) (b) (c)

Figure 3: Different clustering results for the ocean dataset: (a) Spatial clustering of the ocean dataset, assuming time to be
along z axis, and 3D clustering of the ocean dataset:(b) clusters at the surface of the ocean (z=1), and in the middle (c) z = 21.

negative skewness. There are two green clusters towards the
right edge of the ocean dataset, which would have been very
similar to each other but for their opposing skewness. It is
also apparent that, all the clusters other than the large brown
cluster have high variance.

6. Conclusion

We have implemented a hierarchical clustering scheme for
distribution data which allows for a multiple level of de-
tail exploration of dataset. Combined with other interactive
methods, this can prove to be very useful for scientists in
studying probability density data.
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