
CSAR: Cluster Storage with Adaptive Redundancy

Manoj Pillai, Mario Lauria
Department of Computer and Information Science

The Ohio State University
Columbus, OH, 43210 Email: pillai,lauria@cis.ohio-state.edu

Abstract

Striped file systems such as the Parallel Virtual File Sys-
tem (PVFS) deliver high-bandwidth I/O to applications
running on clusters. An open problem of existing striped
file systems is how to provide efficient data redundancy to
decrease their vulnerability to disk failures. In this paper
we describe CSAR, a version of PVFS augmented with
a novel redundancy scheme that addresses the efficiency
issue while using unmodified stock file systems. By dy-
namically switching between RAID1 and RAID5 redun-
dancy based on write size, CSAR achieves RAID1 per-
formance on small writes, and RAID5 efficiency on large
writes. On a microbenchmark, our scheme achieves iden-
tical read bandwidth and 73% of the write bandwidth of
PVFS over 7 I/O nodes. We describe the issues in imple-
menting our new scheme in a popular striped file system
such as PVFS on a Linux cluster with a high performance
I/O subsystem.

1 Introduction

Input/Output has been identified as the weakest link for
parallel applications, especially those running on clusters
[10]. A number of cluster file systems have been devel-
oped in recent years to provide scalable storage in a clus-
ter. The goal of the Parallel Virtual File System (PVFS)
project [6] is to provide high-performance I/O in a cluster,
and a platform for further research in this area. An imple-
mentation of the MPI-IO library over PVFS is available,
and has made PVFS very popular for parallel computing
on Linux clusters. In PVFS, as in most other cluster file
systems, clients directly access storage servers on data

transfer operations, providing scalable performance and
capacity.

A major limitation of PVFS, however, is that it does not
store any redundancy. As a result, a disk crash on any of
the many I/O servers will result in data loss. Because of
this limitation, PVFS is mostly used as high-bandwidth,
scratch space; important files have to be stored in a low-
bandwidth, general-purpose file system.

The goal of the CSAR project is to study issues in re-
dundant data storage in high-bandwidth cluster environ-
ments. We have extended PVFS so as to make it toler-
ant of single disk failures by adding support for redun-
dant data storage. Adding redundancy inevitably reduces
the performance seen by clients, because of the overhead
of maintaining redundancy. Our primary concern is to
achieve reliability with minimal degradation in perfor-
mance. A number of previous projects have studied the is-
sue of redundancy in disk-array controllers. However, the
problem is significantly different in a cluster file system
like PVFS where there is no single point through which
all data passes.

We have implemented three redundancy schemes in
CSAR. The first scheme is a striped, block-mirroring
scheme which is a variation of the RAID1 and RAID10
schemes used in disk controllers. In this scheme, the total
number of bytes stored is always twice the amount stored
by PVFS. The second scheme is a RAID5-like scheme,
where parity is used to reduce the number of bytes needed
for redundancy. In addition to adapting these well-known
schemes to the PVFS architecture, we have designed a hy-
brid scheme that uses RAID5 style (parity-based) writes
for large write accesses, and mirroring for small writes.
The goal of the Hybrid schemes is to provide the best of
the other two schemes by adapting dynamically to the pre-

1

sented workload.
Section 2 describes the advantages and disadvantages

of the RAID1 and RAID5 schemes, and provides the mo-
tivation for the Hybrid scheme. Section 3 describes re-
lated work. Section 4 gives an overview of the PVFS im-
plementation, and the changes we made in order to im-
plement each of our redundancy schemes. Section 5 de-
scribes experimental results. Section 6 provides our con-
clusions and outlines future work.

2 Motivation

Redundancy schemes have been studied extensively in the
context of disk-array controllers. The most popular con-
figurations used in disk-array controllers are RAID5 and
RAID1. In the RAID5 configuration, storage is organized
into stripes. Each stripe consists of one block on each
disk. One of the blocks in the stripe stores the parity of
all other blocks. Thus, for a disk-array with n disks, the
storage overhead in RAID5 is just 1/n.

In addition to having low storage overhead, RAID5 also
provides good performance for writes that span an integral
number of stripes. The performance overhead in RAID5
has two components: (1) the overhead for computing the
parity. (2) the overhead for writing out the parity blocks.
The overhead for computing parity depends on the num-
ber of data bytes being written. The overhead for writing
out the parity depends on the number of parity bytes to
write – if the number of data bytes is kept constant, the
number of parity bytes to write decreases as the number
of disks in the array increases. Thus for very large disk ar-
rays, and large writes, RAID5 has both low storage over-
head, and low performance overhead.

The major problem with the RAID5 configuration is its
performance for a workload consisting of small writes that
modify only a portion of a stripe. For such a write, RAID5
needs to do the following: (1) Read the old version of the
data being updated and the old parity for it (2) Compute
the new parity (3) Write out the new data and new parity.
The latency of a small write is quite high in RAID5 and
disk utilization is poor because of the extra reads.

In the RAID1 configuration, two copies of each block
are stored. This configuration has fixed storage overhead,
independent of the number of disks in the array. The per-
formance overhead is also fixed, since one byte of redun-

dancy is written for each byte of data.
A number of variations have been proposed to the ba-

sic RAID5 scheme that attempt to solve the performance
problem of RAID5 for small writes. The Hybrid scheme
that we present in this paper is one such scheme. Our
work differs from previous work in two ways:

1. Previous work has focused on retaining the low stor-
age overhead of RAID5 compared to RAID1. Our
starting point is a high-performance, cluster file sys-
tem intended primarily for parallel application. Our
emphasis is on performance rather than storage over-
head.

2. Many of the previous solutions are intended for disk-
array controllers. We are interested in a cluster envi-
ronment where multiple clients access the same set
of storage servers.

In a cluster environment, the RAID5 scheme presents
an additional problem. In parallel applications, it is com-
mon for multiple clients to write disjoint portions of the
same file. With the RAID5 scheme, two clients writing to
disjoint portions of the same stripe could leave the parity
for the stripe in an inconsistent state. To avoid this prob-
lem, an implementation of RAID5 in a cluster file system
would need additional synchronization for clients writing
partial stripes. RAID1 does not suffer from this problem.

Our Hybrid scheme uses a combination of RAID5 and
RAID1 writes to store data. Most of the data are stored
using RAID5 style redundancy. RAID1 is used to tem-
porarily store data from partial stripe updates, since this
access pattern results in poor performance in RAID5. As
a result, the storage system has reliability with low stor-
age overhead, while also providing good bandwidth for
a range of access patterns. Since partial stripe writes are
written using the RAID1 scheme, we avoid the synchro-
nization necessary in the RAID5 scheme for this access
pattern.

3 Related Work

There are a number of projects that address the perfor-
mance problems with a centralized file server. Zebra [3],
xFS [1] and Swarm [4] all use multiple storage servers
similar to PVFS, but store data using RAID5 redundancy.

2

They use log-structured writes to solve the small-write
problem of RAID5. As a result, they suffer from the
garbage collection overhead inherent in a log-structured
systems [8]. This overhead is low for some workloads,
like software development workloads, but it can be quite
significant for others, like transaction processing work-
loads. Our work uses a different storage scheme in order
to perform well for a larger range of workloads.

Swift/RAID [7] implements a distributed RAID system
with RAID levels 0, 4 and 5. In their implementation,
RAID5 obtained only about 50% of the RAID0 perfor-
mance on writes; RAID4 was worse. Our implementa-
tion performs much better relative to PVFS. We experi-
enced some of the characteristics reported in the Swift pa-
per. For example, doing parity computation one word at a
time, instead of one byte at a time significantly improved
the performance of the RAID5 and Hybrid schemes. The
Swift/RAID project does not implement any variation
similar to our Hybrid scheme.

The RAID-x architecture [5] is a distributed RAID
scheme that uses a mirroring technique. RAID-x achieves
good performance by delaying the write of redundancy.
Delaying the write improves the latency of the write op-
eration, but it need not improve the throughput of the sys-
tem. Also, a scheme that delays the writing of redundancy
does not provide the same level of fault-tolerance as the
schemes discussed here.

HP AutoRAID [11], parity logging [9] and data logging
[2] address the small write problem of RAID5, but they
provide solutions meant to be used in centralized storage
controllers. These solutions cannot be used directly in
a cluster storage system. For example, AutoRAID uses
both RAID1 for hot data (write-active data) and RAID5
for cold data. It maintains metadata in the controller’s
non-volatile memory to keep track of the current location
of blocks as they migrate between RAID1 and RAID5.
In moving to a cluster, we have to re-assign the functions
implemented in the controller to different components in
the cluster in such a manner that there is minimal impact
on the performance.

4 Implementation

4.1 PVFS Overview

PVFS is designed as a client-server system with multi-
ple I/O servers to handle storage of file data. There is
also a manager process that maintains metadata for PVFS
files and handles operations such as file creation. Each
PVFS file is striped across the I/O servers. Applications
can access PVFS files either using the PVFS library or by
mounting the PVFS file system. When an application on a
client opens a PVFS file, the client contacts the manager
and obtains a description of the layout of the file on the
I/O servers. To access file data, the client sends requests
directly to the I/O servers storing the relevant portions of
the file. Each I/O server stores its portion of a PVFS file
as a file on its local file system. The name of this local file
is based on the inode number assigned to the PVFS file on
the manager.

D0 D1 D2

D3 D4 D5

I/O Server 0 I/O Server 1 I/O Server 2

D6 D7

D9 D10 D11

D8

D0 D1 D2 D10 D11

PVFS File

Figure 1: File Striping in PVFS

Figure 1 shows the striping for a PVFS file using 3 I/O
servers. Each I/O server has one data file corresponding
to the PVFS file in which it stores its portion of the PVFS
file. The blocks of the PVFS file are labeled D0, D1 etc.
and the figure shows how these blocks are striped across
the I/O servers. PVFS achieves good bandwidth on reads
and writes because multiple servers can read and transmit
portions of a file in parallel.

4.2 RAID1 Implementation

In the RAID1 implementation in CSAR, each I/O dae-
mon maintains two files per client file. One file is used

3

to store the data, just like in PVFS. The other file is used
to store redundancy. Figure 2 shows how the data and re-
dundancy blocks are distributed in the RAID1 scheme to
prevent data loss in the case of single disk crashes. The
data blocks are labeled D0, D1 etc. and the corresponding
redundancy blocks are labeled R0, R1 etc. The contents
of a redundancy block are identical to the contents of the
corresponding data block. As can be seen from the figure,
the data file on an I/O server has the same contents as the
redundancy file on the succeeding I/O server.

I/O Server 0 I/O Server 1 I/O Server 2

D0 D1 D2

D3 D4 D5

R0 R1R2

R3 R4R5

Data
File

Redundancy
File

D File R File D File R File

D6 D7 D8

D9 D10 D11

R6 R7R8

R9 R10R11

Figure 2: The RAID1 scheme

As is the case in PVFS, the RAID1 scheme in CSAR is
able to take advantage of all the available I/O servers on
a read operation. On a write, all the I/O servers may be
used but the RAID1 scheme writes out twice the number
of bytes as PVFS.

4.3 RAID5 Implementation

Like the RAID1 scheme, our RAID5 scheme also has a
redundancy file on each I/O server in addition to the data
file. However, the contents of these files contain parity
for specific portions of the data files. The RAID5 scheme
is shown in Figure 3. The first block of the redundancy
file on I/O server 2 (P[0-1]) stores the parity of the first
data block on I/O Server 0 and the first data block on
I/O Server 1 (D0 and D1, respectively.) On a write op-
eration, the client checks to see if any stripes are about
to be updated partially. There can be at most two such
partially updated stripes in a given write operation. The
client reads the data in the partial stripes and also the cor-
responding parity region, computes the parity, and then
writes out the new data and new parity.

In both the RAID1 and the RAID5 scheme, the layout
of the data blocks is identical to the PVFS layout. By de-
signing our redundancy schemes in this manner, we were

I/O Server 0 I/O Server 1 I/O Server 2

D0 D1 D2

D3 D4 D5

D6 D7 D8

Data
File

Redundancy
File

D File R File D File R File

P[0−1]P[2−3]P[4−5]

D9 D10 D11

P[6−7]P[8−9]P[10−11]

Figure 3: The RAID5 scheme

able to leave much of the original code in PVFS intact
and implement redundancy by adding new routines. In
both schemes, the expected performance of reads is the
same as in PVFS because redundancy is not read during
normal operation.

4.4 The Hybrid Scheme

In the Hybrid scheme, every client write in broken down
into three portions: (1) a partial stripe write at the start (2)
a portion that updates an integral number of full stripes
(3) a trailing partial write. For the portion of the write that
updates full stripes, we compute and write the parity, just
like in the RAID5 case. For the portions involving partial
stripe writes, we write the data and redundancy like in the
RAID1 case, except that the updated blocks are written to
an overflow region on the I/O servers. The blocks cannot
be updated in place because the old blocks are needed to
reconstruct the data in the stripe in the event of a crash.
When a file is read, the I/O servers return the latest copy
of the data which could be in the overflow region.

In addition to the files maintained for the RAID5
scheme, each I/O server in the Hybrid scheme maintains
additional files for storing overflow regions, and a table
listing the overflow regions for each PVFS file. When a
client issues a full-stripe write any data in the overflow
region for that stripe is invalidated. The actual storage re-
quired by the Hybrid scheme will depend on the access
pattern. For workloads with large accesses, the storage
requirement will be close to that of the RAID5 scheme.
If the workload consists mostly of partial stripe writes, a
significant portion of the data will be in the overflow re-
gions.

PVFS allows applications to specify striping character-
istics like stripe block size and number of I/O servers to

4

be used. The same is true of the redundancy schemes that
we have implemented. Even though redundancy is trans-
parent to clients, the design of our redundancy schemes
allows the same I/O servers used for storing data to be
used for redundancy.

5 Performance Results

5.1 Cluster Description

Our testbed consists of 8 nodes each with two Pentium
III processors and 1GB of RAM. The nodes are inter-
connected using a 1.3 Gb/s Myrinet network and using
Fast Ethernet. In our experiments, the traffic between
the clients and the PVFS I/O servers used Myrinet. Each
node in the cluster has two 60 GB disks connected using
a 3Ware controller in RAID0 configuration.

5.2 Performance for Full Stripe Writes

We measured the performance of the redundancy schemes
with a single client writing large chunks to a number of
I/O servers. The write sizes were chosen to be an inte-
gral number of the stripe size. This workload represents
the best case for a RAID5 scheme. For this workload,
the Hybrid scheme has the same behavior as the RAID5
scheme. Figure 4 shows that for this workload, RAID1
has the worst performance of all the schemes, with no sig-
nificant increase in bandwidth beyond 4 I/O servers. This
is because RAID1 writes out a larger number of bytes, and
the client network link soon becomes a bottleneck. With
only 8 nodes in our cluster, we were not able to go beyond
7 I/O servers. But based on the RAID1 performance, we
expect the bandwidth for RAID0 to hit a peak with about 8
I/O servers. We expect the bandwidth for RAID5 and the
Hybrid case to continue to rise marginally with increas-
ing number of I/O servers, because of the reduction in the
parity overhead.

The RAID5-npc graph in Figure 4 shows the perfor-
mance of RAID5 when we commented out the parity
computation code. As can be seen, the overhead of parity
computation on our system is quite low.

0

20

40

60

80

100

120

2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Number of IO Servers

Single Client Bandwidth for Large Writes

"RAID0"
"RAID1"
"Hybrid"
"RAID5"

"RAID5-npc"

Figure 4: Large Write Performance

5.3 Performance for Partial Stripe Writes

To measure the performance for small writes, we wrote a
benchmark where a single client creates a large file and
then writes to it in one-block chunks. For this workload,
RAID5 has to read the old data and parity for each block,
before it can compute the new parity. Both the RAID1
and the Hybrid schemes simply write out two copies of the
block. Figure 5 shows that the bandwidth observed for the
RAID1 and the Hybrid schemes are identical, while the
RAID5 bandwidth is lower. In this test, the old data and
parity needed by RAID5 are found in the memory cache
of the servers. As a result, the performance of RAID5 is
much better than it would be if the reads had to go to disk.
For larger data sets that do not fit into the server caches,
the RAID1 and Hybrid schemes will have a greater ad-
vantage over RAID5.

5.4 ROMIO/perf Benchmark Performance

In this section, we compare the performance of the redun-
dancy schemes using the perf benchmark included in the
ROMIO distribution. perf is an MPI program in which
clients write concurrently to a single file. Each client
writes a large buffer, to an offset in the file which is equal
to the rank of the client times the size of the buffer. The
write size is 4 MB by default. The benchmark reports
the read and write bandwidths, before and after the file is
flushed to disk. Here we report only the times after the
flush.

Figure 6 shows the read performance for the different

5

0

5

10

15

20

25

30

RAID 0 RAID 1 RAID 5 Hybrid

B
an

dw
id

th
 (

M
B

/s
)

Redundancy Schemes

Single Client Bandwidth for Small Writes (4 IO Servers)

"smw"

Figure 5: Small Write Performance

0

50

100

150

200

250

300

350

400

2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Number of IO Servers

ROMIO/perf Read Bandwidth (4 Clients)

"RAID0"
"RAID1"
"Hybrid"
"RAID5"

Figure 6: ROMIO/perf Read Performance

schemes. All the schemes had similar performance for
read. The write performance of the RAID5 and the Hybrid
schemes, shown in Figure 7 are better than RAID1 in this
case because the benchmark consists of large writes.

5.5 Effect of Delaying Redundancy Write

The degradation in write performace can be reduced by
delaying the write of redundancy to disk. In the experi-
ments reported above, the effect of an fdatasync call by
the application is to flush both the data and redundancy to
disk. Other projects have reported better performance for
mirroring schemes compared to RAID5 by delaying the
writing of redundancy [5].

We modified the I/O server code so that on an fdatasync
operation, the server flushes only the data files to disk.

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Number of Servers

ROMOI/perf Write Performance

"RAID0"
"RAID1"
"Hybrid"
"RAID5"

Figure 7: ROMIO/perf Write Performance

0

50

100

150

200

2 3 4 5 6 7 8

B
an

dw
id

th
 (

M
B

/s
)

Number of IO Servers

ROMIO/perf Write Bandwidth (4 Clients)

"RAID0"
"RAID1"
"Hybrid"
"RAID5"

Figure 8: ROMIO/perf Performance with Delayed Re-
dundancy Write

In this scheme, the files storing redundancy are eventu-
ally written back to disk when the local file system on the
I/O server flushes its cache. In the Hybrid case, the table
holding the list of overflow regions was also flushed to
disk on the fdatasync. The results are shown in Figure 8.
In our implementation, RAID-5 and the Hybrid schemes
perform better than RAID1 even when the flush of redun-
dancy is delayed for all schemes.

It is to be noted that delaying the flush of redundancy
improves the latency seen by the client, but it does not
improve the throughput of the storage system. In that re-
spect, the parity-based schemes which write fewer num-
ber of bytes have an advantage over RAID1.

6

6 Conclusions and Future Work

Our experiments demonstrate that the Hybrid redundancy
scheme performs as well as RAID5 for workloads com-
prising large writes and as well as RAID1 for small writes.
We expect that for applications consisting of a mix of
small and large writes, the Hybrid scheme will show
significant improvement over both RAID1 and RAID5.
However, more experiments are needed before we can
reach that conclusion. Our experiments so far have not
given a good idea of the overhead of RAID5 for appli-
cations with large data sets, or the synchronization over-
head in RAID5. Also, the storage overhead of the Hybrid
scheme for real applications needs to be studied. We are
currently investigating these issues.

Currently, we specify the redundancy scheme to be
used at the time CSAR is compiled. We are implementing
the changes necessary to allow the redundancy scheme to
be chosen on a file granularity at the time of creation of
a file. The main motivation for this feature is to allow
temporary files to be created without the overhead of re-
dundancy.

We have implemented the redundancy schemes as
changes to the PVFS library. Our implementation al-
lows us to write programs that use the PVFS library and
also run programs written using the MPI-IO interface.
PVFS also provides a kernel module that allows the PVFS
filesystem to be mounted like a normal Unix filesystem.
So far, we have implemented a kernel module only for
the RAID1 scheme. Implementing the kernel module will
allow us to test our system with other interesting bench-
marks. PVFS provides an interface, called the list I/O in-
terface, that allows access to non-contiguous portions of
a file. Non-contiguous accesses can be used to improve
the performance of small accesses by batching together a
number of accesses. The redundancy schemes have not
been implemented for the list I/O interface yet.

One of the goals of the PVFS project was to provide a
platform for further research in the area of cluster storage.
In our case, it has done that. We found it useful to have
an actual file system where we could test our ideas. PVFS
has become very popular for high-performance comput-
ing on Linux clusters, and implementing our schemes in
PVFS will give us access to interesting applications to test
our implementations.

7 Acknowledgements

This work was partially supported by the Ohio Supercom-
puter Center grant # PAS0036-1. We are grateful to Dr.
Pete Wyckoff and Troy Baer of OSC for their help in set-
ting up the experiments with the OSC clusters. We would
like to thank Dr. Rob Ross of Argonne National Labs,
for clarifying many intricate details of the PVFS protocol
and for making available the PVFS source to the research
community.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson,
D. Roselli, and R. Young. Serverless network file
systems. ACM Transactions on Computer Systems,
February 1996.

[2] Eran Gabber and Henry F. Korth. Data logging: A
method for efficient data updates in constantly active
raids. Proc. Fourteenth ICDE, February 1998.

[3] J. Hartman and J. Ousterhout. The zebra striped net-
work file system. ACM Transactions on Computer
Systems, August 1995.

[4] John H. Hartman, Ian Murdock, and Tammo
Spalink. The swarm scalable storage system. Pro-
ceedings of the 19th International Conference on
Distributed Computing Systems, May 1999.

[5] Kai Hwang, Hai Jin, and Roy Ho. RAID-x: A new
distributed disk array for I/O-centric cluster comput-
ing. In Proceedings of the Ninth IEEE International
Symposium on High Performance Distributed Com-
puting, pages 279–287, Pittsburgh, PA, 2000. IEEE
Computer Society Press.

[6] Walter B. Ligon and Robert B. Ross. An overview
of the parallel virtual file system. Proceedings of the
1999 Extreme Linux Workshop, June 1999.

[7] Darrell D. E. Long, Bruce Montague, and Luis-
Felipe Cabrera. Swift/RAID: A distributed RAID
system. Computing Systems, 7(3), Summer 1994.

[8] M. Rosenblum and J. Ousterhout. The design and
implementation of a log-structured file system. ACM

7

Transactions on Computer Systems, 10(1), February
1992.

[9] D. Stodolsky, M. Holland, W. Courtright, and
G.Gibson. Parity logging disk arrays. ACM Trans-
action on Computer System, Vol.12 No.3, Aug.1994,
1994.

[10] Rajeev Thakur, Ewing Lusk, and William Gropp.
I/O in parallel applications: The weakest link. The
International Journal of High Performance Comput-
ing Applications, 12(4):389–395, Winter 1998. In a
Special Issue on I/O in Parallel Applications.

[11] John Wilkes, Richard Golding, Carl Staelin, and
Tim Sullivan. The HP AutoRAID hierarchical stor-
age system. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, pages
96–108, Copper Mountain, CO, 1995. ACM Press.

8

