
 1

FICUS: A File System for Inter Cluster Unified Storage

Arun Ramakrishnan and Mario Lauria
Dept. of Computer and Information Science

Ohio State University, OH 43210
(ramakria,lauria)@cis.ohio-state.edu

Abstract

 There are no high performance
file systems that allow sharing of data
between different clusters presently. In
this paper, we address this issue by
developing FICUS (File System for Inter
Cluster Unified Storage). FICUS
provides the convenience of file system
level access to remote data while
preserving the performance of striped
file systems such as PVFS. We achieve a
bandwidth of 80 MB/s for local access
using four I/O nodes, and 75 MB/s in
accessing the same number of I/O nodes
on a remote storage cluster. A parallel
data intensive application achieves
comparable performance when
accessing 6 GB of data in local and
remote storage. We show that careful
pipelining of data transfer and proper
integration with underlying file system
and communication layers are crucial
for preserving the performance of
remote access.

1.Introduction

The advances in inter-
disciplinary sciences and technology
trends have resulted in data- intensive
applications coming to the forefront of
the high performance computing (HPC)
community. A rapidly growing number
of applications in domains such as
genomics/proteomics [3, 7, 9, 13, 15],
astrophysics [4], physics [1],
computational neuroscience [21], or
volume rendering [2], need to archive,

retrieve, and process increasingly large
datasets. Therefore, the storage of large
amounts of data has become a primary
concern in the design of architectures for
HPC.

At the same time, clusters of PCs
have become a popular platform for high
performance computation at all
institutional levels – from a single
research group to a supercomputer
center or a government laboratory. It is
the advent of “killer micros” and “killer
networks” that has allowed clustered
commodity machines to compete with
supercomputers in aggregate
performance. However not all areas of
the cluster technology have enjoyed the
same dramatic advancements – one
aspect that has lagged behind is the
performance of the I/O subsystem.

Early models of disk storage
organization are still being used today
and have not been significantly
improved over the years. Two models
account for most of the I/O system
organization found on contemporary
clusters. In the simpler approach, the
Networked File System (NFS) is used to
export shared file systems from one or
more file servers to all the nodes, on
each cluster node a local disk is used to
store the operating system and for
temporary local storage. Since today
distributed file system services are
integral part of every operating system,
such scheme has the benefits of
immediate installation and simple

 2

management. The trade-offs are
inadequate performance for parallel disk
access due to the small client-to-servers
ratio, and a severely limited scalability
due to the single server NFS model.
NAS (Network Attached Storage) boxes
have tried to speed up NFS using
proprietary disk controller technology
and TOE (TCP Offload Engine) NICs.
In spite of all these improvements, NFS
is still not adequate for parallel access
patterns.

In large scale installations, a
large number of disks are located in a
“storage island” physically separated
from the computing cluster, and
connected to it by a fast network. In one
approach, the island consists of disks
mounted in racks, and directly connected
to a Storage Area Network (SAN). In
another approach, the island consists of a
dedicated storage cluster, with disks
distributed across all its nodes, typically
connected to the computing cluster
through a fast LAN such as Gigabit
Ethernet. Both approaches ensure that
any node in the compute cluster can
access any disk in the storage island.
However, performance is still limited to
single disk access bandwidth when using
traditional file systems. The larger
aggregate bandwidth available at the
physical level can be made available to
applications only through the use of
parallel I/O libraries or a recoding of
applications to explicitly enable
concurrent multiple disk accesses.

The solution we envision is
based on a striped file system that not
only spans all the nodes in the cluster,
but also has the ability to export
directories to remote clusters. The export
of file systems is done in a way that
preserves striping while accessing the
remote storage. Our file system
maintains the familiar Unix I/O

interface, and is compatible with the
existing Linux VFS specifications.

FICUS is an extension of the
basic PVFS design. While PVFS stripes
each file on designated I/O nodes within
the cluster (in the following called I/O
servers), FICUS adds the possibility of
designating remote nodes as I/O servers.
By distributing the load over a sufficient
number of either local disks or storage
cluster nodes, the performance
bottleneck issue is mitigated. We
believe that cluster-wide striping is the
most performance effective approach to
make these aggregate resources available
to the applications. The reasons for
striping are still valid outside the cluster,
and therefore the same techniques can be
used to achieve high performance access
to remote storage. While the notion of
distributed file systems is not new,
preserving the striping for the remote
access is.

The main contributions of this
paper are the design of a distributed file
system that preserves the performance
advantage of the striping across cluster
boundaries. The main design issues we
had to solve were how to implement our
design on top of stock file system and
communication layers, and how to
preserve performance when large
amounts of data need to traverse several
hops and processing stages.

The paper is organized as
follows: In Section 2, we provide a brief
overview of PVFS. The FICUS file
system is introduced in Section 3. The
evaluation results are presented in
Section 4. We present some related work
in this area in Section 5. New directions
for future work and our conclusions are
presented in Section 6.

2. Parallel Virtual File System(PVFS)
 Overview

 3

 PVFS is an open source cluster
file system developed for the Linux
operating system [10, 16]. It uses an out-
of-band approach, where file metadata is
handled separately from the actual file
data. PVFS also does data striping (also
known as RAID 0) to achieve good
scalability and performance in a cluster.

There are four main components
in PVFS:
v Metadata manager : This

handles all the metadata
pertaining to a file like its owner,
creation time, permissions etc.
In addition, it also has knowledge
about the manner in which the
file is striped and the stripe size
involved. It is located outside the
main data pathway and thus
doesn’t become a performance
bottleneck.

v I/O Servers : These serve as the
main handlers of file data. The
file data is typically striped
across a set of I/O servers for
maximizing bandwidth and
minimizing network bottlenecks.
These usually memory
map(mmap) frequently accessed
files and also send file data using
the sendfile interface. These also
have transaction queues for
handling simultaneous requests
effectively.

v User Level Access Library :
Clients use this in order to access
the PVFS file system directly
from user space. This minimizes
the amount of kernel overhead
and also simplifies the task of
building new applications on top
of this file system. This enables
the user to control striping of
files and also facilitates easy
integration with existing I/O file
systems like ROMIO.

v Kernel Module : This is the
most critical component for
enabling a VFS (Virtual File
System) interface to PVFS. This
enables existing applications to
be run on top of PVFS without
any modification (by using the
standard UNIX I/O interface),
while using the high bandwidth
bank of I/O servers. The familiar
UNIX file tools (ls,chmod,rm,
touch etc) can also be used on
PVFS files and directories
without modification.
The PVFS file system also has a

64-bit interface by means of which huge
files (bigger than 2 GB) can be created
and accessed. The convenience of using
PVFS also stems from the fact that the
I/O servers use the local file system for
holding the striped file data. This means
that they can automatically take
advantage of improvements in local file
systems. So we could run PVFS over the
XFS file system for better reliability and
performance. Thus PVFS is a viable
option for boosting the I/O bandwidth
within a cluster. The PVFS file system
also serves as a good reference for
evaluating inter-cluster I/O approaches.
We would discuss the relevance of
PVFS in our file sys tem in the following
sections.

3. FICUS: A File System for Inter

Cluster Unified Storage
 In this section, we will elaborate
on the design and functionality of the
FICUS file system. While developing
this file system, we gave utmost priority
to the crucial aspects of performance and
ease of accessibility. We will also try to
establish the stability and viability of this
file system, by running an actual
application (parallel data mining) on top
of it.

 4

3.1 Limitations of cluster file systems
 FTP is still commonly used to
transfer data manually across clusters
before starting the application. This is
clearly an inconvenient approach
particularly for data intensive
applications. Ideally the application
should be able to instantly access the
data as if it were located on a local file
system.

In principle one could achieve
inter-cluster I/O access by first running
PVFS internally in a cluster and then
enabling port forwarding to the metadata
and I/O servers from the gateway node.
This would allow an external cluster to
access the PVFS file system directly.
However this approach has the following
limitations :
v PVFS servers normally run as

root. Thus it would be risky to
expose these ports to an external
network directly as it may lead to
a root compromise easily. We
also have to expose a large
number of internal machines
when we have a large bank of
I/O servers.

v The data pathway may not be
uniform. The bandwidth of the
interconnect inside a cluster may
be much higher than the inter-
cluster link bandwidth. This
essentially leads to a non-
uniform data pathway with
bottlenecks at the edges. This
cannot be effectively managed
using the stock PVFS
implementation.

v Access control : PVFS was
designed to allow data transfer
between trusted hosts. But when
we have clients sitting on a
remote cluster, we may want to
selectively control access to the

file system. This can’t be done
specifically for the file system
alone on the gateway nodes.

3.2 FICUS basic design

We present FICUS as a viable
inter-cluster file system here. It is
designed for dealing with the issues
discussed in section 3.1 from ground
up. This file system uses the internal
PVFS file system in a cluster to
enable high performance inter-
cluster I/O.

Its main components are:
v Metadata proxy : This acts as a

protocol proxy, which translates
external metadata requests to
internal PVFS metadata requests.
It presents itself as a metadata
server to a client in an external
cluster and then internally uses
the PVFS metadata server for its
operations. The PVFS metadata
server is not exposed to the
external network at all. Also the
proxy runs as a non-root user and
doesn’t need root privileges. It
also prevents corruption to
existing data in the PVFS file
system because the PVFS
metadata server is responsible for
allocation and destruction of file
inodes. It is also responsible for
boot strapping the entire file
system by supplying the mapping
information to the FICUS
information server.

v I/O proxy : This handles the data
requests from external clients and
then fetches the data from the
appropriate I/O servers. It acts
like a PVFS I/O server to an
external cluster and then stripes
the data using a bank of I/O
servers located internally. Here

 5

too the PVFS I/O servers are not
exposed externally.

v Information Server : This
allows an administrator to control
access to the file system. The
administrator can selectively
allow/disallow a remote client
using ACL-like entries. Access
can also be granted at a domain
or subnet granularity. It also
serves as a repository for
maintaining the mapping
between the proxies and the
respective PVFS servers i.e.
which I/O proxy is mapped to
which particular I/O server et al.
This enables us to maintain
minimum state information on
the proxies.

The entire FICUS file system is
designed to be totally transparent to both
the remote client as well the local PVFS
setup. FICUS appears to be a normal
PVFS file-system to an external cluster.
The internal PVFS file system thinks
that it is getting requests from a normal
client located within the cluster. This
transparency ensures that minimum
amount of changes are needed for
exporting and accessing data remotely.

3.3 Bootstrapping the FICUS file

system
 The very first step involved in

installing FICUS is to setup the PVFS
file system in one of the clusters, which
would act as the data repository. Then
the FICUS information server is started
with the appropriate ACL entries
enabling access selectively to specific
remote clusters/clients. The FICUS
information server can also add
permission entries dynamically upon
receipt of a special user-defined signal.
This allows us to add more clients to a
running FICUS file system. Then a file

specifying the following mappings is
prepared :

1. Metadata mapping : This
specifies the ports and location of
the FICUS metadata proxy and
the PVFS metadata server.

2. I/O mapping : This specifies the
ports and location of the FICUS
I/O proxy and the PVFS I/O
server. It also specifies which I/O
servers are used by which I/O
proxy(and they become a part of
its stripe set).

3. Mount point mapping : This
specifies the mount point of the
FICUS file system.

FICUS has the capability to
accommodate multiple exported file
systems. The above mapping
information is a complete description of
each FICUS exported file system and
hence is attached to the metadata proxy
of that file system. The Information
server acts as a central repository of
information about all the exported
FICUS file systems. When the I/O
proxies are started (giving only the
location of the FICUS information
server), they in turn contact the FICUS
Information Server in order to obtain
their stripe set (the set of PVFS I/O
servers under their management). The
above design enables us to manually
specify only the location of the FICUS
information server to the remote client,
which can then gather the remaining
proxy information automatically. The
design also let us use a single
information server for handling multiple
FICUS file systems, as all the
information is hashed based on the
mount point.

The remote client is started
specifying the location of the remote
FICUS information server and the
desired FICUS mount point. The

 6

information server then compares the
client address against its ACL entries in
order to ensure that the remote
client/cluster can be allowed to access
the FICUS file system. If an appropriate
ACL entry is present, then the addresses
of the metadata and I/O proxies are sent
to the client. The client thinks that it is
contacting a conventional PVFS setup
and thus has no knowledge about the
actual PVFS servers in the remote
cluster. This allows us to hide critical
internal PVFS information while still
allowing access to the file system.

4. Performance Evaluation
 In this section, we test the
performance of FICUS by running some
synthetic applications generating data
streams. We also test the stability of this
file system by running a parallel
incremental data-mining algorithm
performing 2D-Discretization on
dynamic data sets, with the data located
at a remote location.

4.1. Experimental Testbed
 Our testbed consists of a cluster
of 9 dual 1 GHz Pentium-III servers
running Linux 2.4 operating system,
with 1 GB of SDRAM each. These
machines were interconnected using a
1.2 Gb/s Myrinet network and we were
running TCP/IP over Myrinet. The
cluster also had a fast Ethernet network,
which was used for carrying metadata
traffic. Each machine has two 60 GB of
disks mounted on a 3Ware controller in
a RAID 0 (striped) configuration,
yielding 120 GB of usable partition
space. We installed the XFS Linux file
system on these partitions for better data
reliability and performance. The cluster
was logically partitioned into two halves
so that one half could access the other
half only through designated gateway

nodes. This helped us simulate two
clusters within a single cluster. Then we
installed a PVFS file system on one half
with one metadata server (accessible
through the Ethernet network) and 4 I/O
servers (accessible through the Myrinet
network).

It is important to note that both
PVFS and FICUS use TCP for data
communication. We measured a peak
bandwidth of around 45 MB/s using
TCP over Myrinet.

4.2. Local Disk Bandwidth

 Figure 1. Local file system performance

The above figure shows that for

small files sizes, there is lot of caching
involved at the file system level. The
3Ware controllers have an internal write
buffer, which makes writes faster than
reads. The aggregate bandwidth for the
entire partition is around 40 MB/s due to
the usage of disk striping (RAID 0). The
XFS file system on this partition also
helps the writes by means of delayed
writes and extent based allocation
techniques.

4.3. PVFS performance
 We measured the performance of
the PVFS file system file system with 4

0

20

40

60

80

100

120

140

160

180

200

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

READ
WRITE

 7

I/O servers and varying number of
clients. In all the following figures, the
I/O bandwidth measured is the aggregate
bandwidth across all the nodes.

We observe in Fig. 2., the file
system cache plays a crucial role in
attaining high write bandwidth for small
files. In the case of larger files, the 2 and
4 client cases are able to utilize the
bandwidth available from striping the
data across 4 I/O servers fully and thus
exhibit better performance when
compared to the single client scenario.
The bandwidth of the 4-client case drops
sharply after data sizes of 64 MB. Each
I/O server is not able to handle the load
of writing four concurrent data streams
to disk and thus the limitation of the
write pathway and disk bandwidth are
clearly exposed.

 Figure 2. PVFS Read performance

The read scenario shows much better
scalability up to four clients because the
PVFS I/O server memory-maps the file
(using mmap) after the first read request
arrives and then serves the remaining
read requests from memory itself.

Figure 3. PVFS Write performance

Thus, the read pathway of PVFS
is efficient. A larger number of clients is
able to fully utilize the available read
bandwidth and thus the 4-client case
performs much better than the other two
scenarios, as shown in Fig.3.

4.4 FICUS performance.

 Figure 4. FICUS Write performance

The most important design aspect
of the FICUS I/O proxy is its use of
threads for servicing the I/O requests.
We used pthreads and were able to get
asynchronous I/O behavior on reads and
writes. This has been very crucial in the
performance of FICUS as illustrated in
Fig. 4. and Fig.5.

0

20

40

60

80

100

120

140

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
(M

B
/s

)

 1 CLIENT

 2 CLIENTS

4 CLIENTS

0

20

40

60

80

100

120

140

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

 1 CLIENT

 2 CLIENTS

4 CLIENTS

0

20

40

60

80

100

120

140

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
 (

M
B

/s
)

 1 CLIENT

 2 CLIENTS

4 CLIENTS

 8

 Figure 5. FICUS Read performance

 Here we ran 2 I/O proxies, each
of which striped the data across 2 I/O
servers (yielding a total of 4 I/O servers
for the entire setup). In Fig. 4, we see
that the FICUS write performance is
slightly better than the PVFS write
performance, in the case of 4 clients.
The important point to note here is that
the PVFS I/O servers are single threaded
applications. This proves that FICUS is
able to handle high client load without
great degradation in performance. This
fact is further clarified in figure 5. The
read performance for all cases reaches
the peak value for comparatively small
reads. The clients need not perform large
I/O requests in order to attain the full
bandwidth of the file system. This
behavior is in contrast to the original
PVFS behavior, where the read
performance reached the peak value only
from 32 MB reads onwards. The above
two figures illustrate that FICUS is able
to handle heavy I/O loads as well. We
can also observe that a larger number of
clients will not get better performance
because four clients already saturate the
I/O bandwidth available.

4.5 Multithreading and Pipelining
 We mentioned in the previous
section that the FICUS I/O proxy is a

multi- threaded application. This allows
FICUS not only to achieve asynchrony
in the main I/O pathway, but also allows
us to pipeline the I/O requests
effectively. The data pathway in the
FICUS file system consists of two main
stages :

1. The stage with the remote client
and the FICUS I/O proxy. This
stage includes the external link
between the two clusters.

2. The stage with the I/O proxy and
the PVFS I/O server. This stage
includes the internal network in
the cluster(Myrinet in our case).

The two stages are not equally
balanced because typically stage 2 has
much more bandwidth available than
stage 1. The use of threads allows us to
pipeline data across these two stages
effectively, because while one thread is
servicing an I/O request from a client,
another thread could be getting data
from the I/O server and the other thread
could be writing data to a third client.
This means that at a single point of time,
both stages could be kept busy with the
use of threads, yielding a big
performance boost, as shown in [22] and
[23].
 We ran the I/O proxies on a dual
processor machine. The figures(Fig. 6
and Fig. 7) show that threading yields a
performance boost when compared to
the non-threaded case. These figures also
reveal that the number of threads should
be equal to the number of physical
processors available, for obtaining peak
performance. We observe that 4 threads
do not yield any great benefit over 2
threads in this experiment. We also
observe that the clients can attain peak
bandwidth faster by the use of threads
(as shown in Fig.6), because we are able
to keep both stages of the data pathway
busy with pipelined requests.

0

20

40

60

80

100

120

140

1 4 16 64 25
6

10
24

Data Size (MB)

B
an

dw
id

th
 (M

B
/s

)

 1 CLIENT

 2 CLIENTS

4 CLIENTS

 9

Figure 6. Impact of threading on Write performance

Figure 7. Impact of threading on Read performance

4.6 Data Mining using FICUS
 The ultimate test of the
effectiveness of any file system is the
performance benefit for applications
using it. We ran a parallel data mining
application with the data sitting remotely
and the application acting as a remote
client. The details of this application can
be found in [19].
We ran the mining algorithm over a
dataset containing 10 million records
and the net amount of data was close to
6 GB. We measured the time taken for
the completion of the I/O phase of the
algorithm.

Figure 8. Time taken for mining 10 million records

We observe in Fig. 8. that the
time taken for mining remote data is
comparable to the time taken under
PVFS. We also see that the time
increases as we increase the number of
processes involved in data mining
because of the large load on the I/O
servers.

4.7 Impact of Read Caching

We also wanted to measure the
impact of caching on application
performance. We implemented a simple
caching algorithm on the FICUS I/O
proxies and ran the data mining
application on this modified setup.

Figure 9. Data mining using FICUS

0

20

40

60

80

100

120

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
 (M

B
/s

)

NON-
THREADED

2 THREADS

4 THREADS

0

20

40

60

80

100

120

1 4 16 64 25
6

102
4

Data Size (MB)

B
an

dw
id

th
 (M

B
/s

)

NON-
THREADED

2 THREADS

4 THREADS

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

Number of clients

T
im

e
(s

ec
)

PVFS

FICUS

Data Mining using ICVFS framework

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

Number of clients

T
im

e
(s

ec
)

NON-CACHED

READ
CACHING

 10

 We observe in Fig. 9 that read
caching has a noticeable effect on the
time taken to complete the data mining
process when the data is delivered to the
remote client by the I/O proxy itself.
This not only reduces the time taken to
obtain the data, but also reduces the
amount of load on the PVFS I/O server.
This results in better performance
particularly in the case of 8 clients, while
the non-cached implementation is
affected adversely.

4.8 Inter-cluster cooperation
 The main aim of this file system
was to develop inter-cluster cooperation.
We have performed all our experiments
on our partitioned cluster because of
connectivity and security issues with
other clusters. We have a 100 Mbits/s
link between our cluster and the main
gateway node of the Ohio Super
Computing Center. We configured our
cluster as the data repository, ran a client
on the remote OSC node and accessed
the FICUS file system.

Figure 10. Remote client access using FICUS

We were using 2 I/O proxies and thus
could attain a theoretical peak bandwidth

of around 12 MB/s. We could achieve
around 10 MB/s out of the theoretical
peak of 12 MB/s as shown in Fig. 10.
The main aim of this experiment is to
prove the feasibility of performing large
remote I/O under FICUS (around 1 GB
here).

5.Related Work
 Frangipani [11] is based on the
simple model of a set of cooperating
machines using a shared storage space. It
also virtualizes access to raw disk and
allows for standard UNIX semantics,
which is quite similar to FICUS.
However, it is essentially serverless in
nature with the service being distributed
over all the machines, while FICUS has
server code for metadata and I/O
handling. FICUS is mainly geared
towards high performance obtained by
data striping with simple POSIX
semantics for locking. Frangipani is a
more sophisticated distributed file
system with emphasis on reliability and
fault tolerance and boasts of advanced
features like a separate lock service for
concurrency control.
 The Andrew File System (AFS)
[18] also provides fo r a global
namespace (root directory like FICUS)
and uses caching to boost performance.
FICUS maintains the data at a single
location and uses the proxy file system
to stripe the data to remote clients. In
contrast, AFS moves the data to a server
near the client access point. Moreover,
AFS is geared towards operations in a
wide area network, while FICUS utilizes
the local bandwidth available in a cluster
(in the form of the local PVFS file
system). AFS also provides for advanced
security and authentication techniques
like Kerberos, while FICUS uses simple
ACL entries on the Information Server
to control access.

7

7.5

8

8.5

9

9.5

10

1 4 16 64 256 102
4

Data Size (MB)

B
an

dw
id

th
 (M

B
/s

)

1 REMOTE
CLIENT

 11

 Lustre [5] is a next generation
cluster file system, which has similar
design level features like FICUS. It
stores the data for directories(essentia lly
metadata) on the metadata server itself
and also includes a striping descriptor as
a part of metadata. However, Lustre is
designed as an object based file system,
while FICUS is block based. It also
virtualizes the memory and volume
management functionality to an object
based disk, which in turn requires
special intelligent disk controller
support. FICUS utilizes the local file
system on the I/O server node in order to
manage its storage. Lustre is also a SAN
(Storage Area Network) based shared
file system, while FICUS can use
common System Area Networks like
Myrinet or Gigabit Ethernet.
 Sistina’a GFS [14] is also a SAN
based cluster file system, which offers
the ability to have concurrent readers to
shared storage, like FICUS. However,
GFS offers advanced features geared
towards reliability and fault tolerance,
like distributed metadata format,
redundant data pathways and journaling.
GFS also requires a SAN fabric between
the I/O servers and the storage devices.
FICUS is a simple implementation,
which is geared towards high-speed
access to remote data using commodity
components. It relies on the local file
system on the I/O server in order to
manage its data and thus is cheaper to
implement. Its code is also open-source
enabling people to add enhancements or
changes freely, unlike GFS, which is a
vendor specific implementation.
 Slice [8] is a fast I/O layer built
on top of the Trapeze file system. It
redirects I/O requests to an array of I/O
servers incorporating a simple striping
methodology like FICUS. It also offers
full compatibility at the kernel level.

FICUS mainly uses TCP over a System
Area Network like Myrinet for attaining
good performance, while Slice uses
NetRPC to send data blocks (thus
bypassing the kernel TCP/IP stack). This
feature of using a User Level protocol
for data communication could be
incorporated into FICUS in the future.
Slice was also a minimal implementation
and thus used the kernel NFS layer for
its file system interactions, while FICUS
is a full fledged file system
implementation that offers integration
from the VFS layer itself.
 GirdFTP [6] is an enhancement
to FTP optimized for high-bandwidth
wide- area networks. It supports parallel
file transfers using multiple servers and
provides for automatic negotiation of
parallelization. The FICUS file system
also provides for default striping patterns
in order to optimizes data striping across
a set of I/O servers. FICUS is a full-
fledged file system with tight kernel
integration. In contrast, GridFTP is just
an FTP enhancement with no file system
semantics or operations supported.

6.Conclusions and Future Work.
 In this paper, we have proposed a
new I/O file system that could be used
for achieving inter-cluster cooperation.
We also discussed various design details
of this file system like threading and
caching, which were critical in attaining
better I/O performance. We also
discussed the feasibility of performing
large amount of I/O from a remote client
without any stability problems. This file
system has complete compatibility with
the Linux kernel module supplied along
with PVFS. This means that the user
could run UNIX commands like ls, cp
etc on remote files or directories under
this file system, which makes

 12

administration of this file system
effortless.
 We plan to run more experiments
between our cluster and the OSC 72-
node Itanium cluster. We will be
studying further enhancements to the
caching algorithm, which we have
shown has the potential to yield better
read performance. We are also
examining the possibility of using ULNP
(User Level Networking Protocols) like
VIA in the main data pathway instead of
TCP, for better performance.
 We understand that data striping
has limitations in the area of reliability.
Our group is working towards
incorporating RAID-like redundancy to
the PVFS file system, which in turn
would benefit FICUS. We are also
looking at the feasibility of integrating
two clusters to act as the data repository.

We are using pthreads in our
current implementation but we feel that
this file system could greatly benefit
from the introduction of kernel level
threading libraries and asynchronous I/O
calls into the Linux kernel.

Acknowledgement : This work was
partially supported by the Ohio
Supercomputer Center grant # PAS0036-
1. We are grateful to Dr. Pete Wyckoff
and Troy Baer of OSC for their help in
setting up the experiments with the OSC
clusters. We would like to thank Dr.
Rob Ross of Argonne National Labs, for
clarifying many intricate details of the
PVFS protocol and for making available
the PVFS source to the research
community.

Repository of FICUS Distribution: We
plan to create a public repository of the
FICUS code and distribute them. If you
are interested in participating in this
effort, please contact Dr. Mario Lauria

(lauria@cis.ohio-state.edu).

References

[1] GriPhyN project, in
http://griphyn.org

[2] NPACI Scalable Visualization Tools
Webpage, in
http://vistools.npaci.edu/.

[3] Protein Data Bank Webpage, in
http://www.rcsb.org/pdb/.

[4] Sloan Digital Sky Survey Webpage,
in http://www.sdss.org/.

[5] “Lustre – The inter-galactic cluster
file system“ – A technical overview of
Lustre.
http://www.lustre.org/docs/lustretechnic
al-fall2002.pdf

[6] Globus: GridFTP Protocol and
Software.
http://www.globus.org/datagrid/gridftp.h
tml

[7] Altschul, S., et al., Basic local
alignment search tool. Journal of
Molecular Biology, 1990. 215: p. 403-
410.

[8] Darrell Anderson, Jeff Chase et al,
”Cheating the I/O Bottleneck: Network
Storage with Trapeze/Myrinet”,
Proceedings of the 1998 USENIX
Technical Conference, June 1998.

[9] Benson, D.A., et al., GenBank.
Nucleic Acids Research, 2000. 28: p. 15-
18.

[10] P.H. Carns, W.B. Ligon III, R.B.
Ross and R. Thakur. PVFS: A Parallel
File System for Linux Clusters. In

 13

PROC of the 4th Annual Linux Showcase
and Conference, 2000.

[11] A.Thekkath Chandramohan, Mann
Timothy and K.Lee Edward,
“Frangipani: A scalable distributed file
system”, Systems Research Center,
Digital Equipment Corporation,
California.

[12] Avery Ching, Alok Choudhary,
Wei-keng Liao, Robert Ross, and
William Gropp, "Noncontiguous I/O
through PVFS," Proceedings of 2002
IEEE International Conference on
Cluster Computing, September 2002.

[13] Durbin, R., et al., Biological
Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids, A
tutorial introduction to hidden Markov
models and other probabilistic
modeling approaches in computational
sequence analysis. 1998.

[14] Preslan Kenneth, Barry Andrew et
al, ”, A 64-bit shared disk file system for
Linux”, Sixteenth IEEE Mass Storage
Symposium, March 1999.

[15] Krogh, A., et al., Hidden Markov
models in computational biology:
Applications to protein modeling. JMB,
1994. 235: p. 1501-1531.

[16] Ligon, III, W.B., and Ross, R. B.,
"Server-Side Scheduling in Cluster
Parallel I/O Systems", Calculateurs
Parallèles Journal Special Issue on
Parallel I/O for Cluster Computing,
accepted for publication October 2001.

[17] R.B. Ross Providing Parallel I/O on
Linux Clusters. In Second Annual Linux
Storage Management Workshop, 2000.

[18] Satyanarayanan M, “Scalable,
Secure, and Highly Available
Distributed File Access”, IEEE
Computer, May 1990.

[19] S. Parthasarathy and A.
Ramakrishnan, ”Parallel Incremental 2D
Discretization”, International Parallel
and Distributed Processing Symposium,
2002.

[20] Stephen Lord. Porting XFS to
Linux, Ottawa Linux Symposium, July
2000.

[21] Stiles, J.R., et al. Monte Carlo
simulation of neuromuscular transmitter
release using MCell, a general
simulator of cellular physiological
processes. In Computational
Neuroscience. 1998. New York, NY.

[22] E. Nallipogu, F. Ozguner, M.
Lauria, "Improving the Throughput of
Remote Storage Acccess through
pipelining", 3rd International Workshop
on Grid Computing (GRID 2002) at
Supercomputing `02, Baltimore,
November, 2002.

[23] K. Bell, A. Chien, M. Lauria, "A
High-Performance Cluster Storage
Server" , HPDC-11, Edinburgh, July
2002

