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Abstract 

 There are no high performance 
file systems that allow sharing of data 
between different clusters presently. In 
this paper, we address this issue by 
developing FICUS (File System for Inter 
Cluster Unified Storage). FICUS 
provides the convenience of file system 
level access to remote data while 
preserving the performance of striped 
file systems such as PVFS. We achieve a 
bandwidth of 80 MB/s for local access 
using four I/O nodes, and 75 MB/s in 
accessing the same number of I/O nodes 
on a remote storage cluster. A parallel 
data intensive application achieves 
comparable performance when 
accessing 6 GB of data in local and 
remote storage. We show that careful 
pipelining of data transfer and proper 
integration with underlying file system 
and communication layers are crucial 
for preserving the performance of 
remote access. 

 
1.Introduction 

The advances in inter-
disciplinary sciences and technology 
trends have resulted in data- intensive 
applications coming to the forefront of 
the high performance computing (HPC) 
community. A rapidly growing number 
of applications in domains such as 
genomics/proteomics [3, 7, 9, 13, 15], 
astrophysics [4], physics [1], 
computational neuroscience [21], or 
volume rendering [2], need to archive, 

retrieve, and process increasingly large 
datasets.  Therefore, the storage of large 
amounts of data has become a primary 
concern in the design of architectures for 
HPC.   

At the same time, clusters of PCs 
have become a popular platform for high 
performance computation at all 
institutional levels – from a single 
research group to a supercomputer 
center or a government laboratory. It is 
the advent of “killer micros” and “killer 
networks” that has allowed clustered 
commodity machines to compete with 
supercomputers in aggregate 
performance. However not all areas of 
the cluster technology have enjoyed the 
same dramatic advancements – one 
aspect that has lagged behind is the 
performance of the I/O subsystem. 

Early models of disk storage 
organization are still being used today 
and have not been significantly 
improved over the years. Two models 
account for most of the I/O system 
organization found on contemporary 
clusters. In the simpler approach, the 
Networked File System (NFS) is used to 
export shared file systems from one or 
more file servers to all the nodes, on 
each cluster node a local disk is used to 
store the operating system and for 
temporary local storage. Since today 
distributed file system services are 
integral part of every operating system, 
such scheme has the benefits of 
immediate installation and simple 
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management. The trade-offs are 
inadequate performance for parallel disk 
access due to the small client-to-servers 
ratio, and a severely limited scalability 
due to the single server NFS model. 
NAS (Network Attached Storage) boxes 
have tried to speed up NFS using 
proprietary disk controller technology 
and TOE (TCP Offload Engine) NICs. 
In spite of all these improvements, NFS 
is still not adequate for parallel access 
patterns.  

In large scale installations, a 
large number of disks are located in a 
“storage island” physically separated 
from the computing cluster, and 
connected to it by a fast network. In one 
approach, the island consists of disks 
mounted in racks, and directly connected 
to a Storage Area Network (SAN). In 
another approach, the island consists of a 
dedicated storage cluster, with disks 
distributed across all its nodes, typically 
connected to the computing cluster 
through a fast LAN such as Gigabit 
Ethernet. Both approaches ensure that 
any node in the compute cluster can 
access any disk in the storage island. 
However, performance is still limited to 
single disk access bandwidth when using 
traditional file systems. The larger 
aggregate bandwidth available at the 
physical level can be made available to 
applications only through the use of 
parallel I/O libraries or a recoding of 
applications to explicitly enable 
concurrent multiple disk accesses. 

The solution we envision is 
based on a striped file system that not 
only spans all the nodes in the cluster, 
but also has the ability to  export 
directories to remote clusters. The export 
of file systems is done in a way that 
preserves striping while accessing the 
remote storage. Our file system 
maintains the familiar Unix I/O 

interface, and is compatible with the 
existing Linux VFS specifications.  

FICUS is an extension of the 
basic PVFS design. While PVFS stripes 
each file on designated I/O nodes  within 
the cluster (in the following called I/O 
servers), FICUS adds the possibility of  
designating remote nodes as I/O servers. 
By distributing the load over a sufficient 
number of either local disks or storage 
cluster nodes, the performance 
bottleneck issue is mitigated.  We 
believe that cluster-wide striping is the 
most performance effective approach to 
make these aggregate resources available 
to the applications. The reasons for 
striping are still valid outside the cluster, 
and therefore the same techniques can be 
used to achieve high performance access 
to remote storage.  While the notion of 
distributed file systems is not new, 
preserving the striping for the remote 
access is.   

The main contributions of this 
paper are the design of a distributed file 
system that preserves the performance 
advantage of the striping across cluster 
boundaries. The main design issues we 
had to solve were how to implement our 
design on top of stock file system and 
communication layers, and how to 
preserve performance when large 
amounts of data need to traverse several 
hops and processing stages.     

The paper is organized as 
follows: In Section 2, we provide a brief 
overview of PVFS. The FICUS file 
system is introduced in Section 3. The 
evaluation results are presented in 
Section 4. We present some related work 
in this area in Section 5. New directions 
for future work and our conclusions are 
presented in Section 6. 
 
2. Parallel Virtual File System(PVFS)    
       Overview 
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 PVFS is an open source cluster 
file system developed for the Linux 
operating system [10, 16]. It uses an out-
of-band approach, where file metadata is 
handled separately from the actual file 
data. PVFS also does data striping (also 
known as RAID 0) to achieve good 
scalability and performance in a cluster.  

There are four main components 
in PVFS: 
v Metadata manager : This 

handles all the metadata 
pertaining to a file like its owner, 
creation time, permissions  etc. 
In addition, it also has knowledge 
about the manner in which the 
file is striped and the stripe size 
involved. It is located outside the 
main data pathway and thus 
doesn’t become a performance 
bottleneck.  

v I/O Servers  : These serve as the 
main handlers of file data. The  
file data is typically striped 
across a set of I/O servers for 
maximizing bandwidth and 
minimizing network bottlenecks. 
These usually memory 
map(mmap) frequently accessed 
files and also send file data using 
the sendfile interface. These also 
have transaction queues for 
handling simultaneous requests 
effectively.   

v User Level Access Library : 
Clients use this in order to access 
the PVFS file system directly 
from user space. This minimizes 
the amount of kernel overhead 
and also simplifies the task of 
building new applications on top 
of this file system. This enables 
the user to control striping of 
files and also facilitates easy 
integration with existing I/O file 
systems like ROMIO. 

v Kernel Module : This is the 
most critical component for 
enabling a VFS (Virtual File 
System) interface to PVFS. This 
enables existing applications to 
be run on top of PVFS without 
any modification (by using the 
standard UNIX I/O interface), 
while using the high bandwidth 
bank of I/O servers. The familiar 
UNIX file tools (ls,chmod,rm, 
touch etc) can also be used on 
PVFS files and directories 
without modification. 
The PVFS file system also has a  

64-bit interface by means of which huge 
files ( bigger than 2 GB ) can be created 
and accessed. The convenience of using 
PVFS also stems from the fact that the 
I/O servers use the local file system for 
holding the striped file data. This means 
that they can automatically take 
advantage of improvements in local file 
systems. So we could run PVFS over the 
XFS file system for better reliability and 
performance. Thus PVFS is a viable 
option for boosting the I/O bandwidth 
within a cluster. The PVFS file system   
also serves as a good reference for 
evaluating inter-cluster I/O approaches. 
We would discuss the relevance of 
PVFS in our file sys tem in the following 
sections. 

 
3. FICUS: A File System for Inter    

Cluster Unified Storage  
   In this section, we will elaborate 
on the design and functionality of the 
FICUS file system. While developing 
this file system, we gave utmost priority 
to the crucial aspects of performance and 
ease of accessibility. We will also try to 
establish the stability and viability of this 
file system, by running an actual 
application (parallel data mining) on top 
of it.  
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3.1 Limitations of cluster file systems  
 FTP is still commonly used to 
transfer data manually across clusters 
before starting the application. This is 
clearly an inconvenient approach 
particularly for data intensive 
applications. Ideally the application 
should be able to instantly access the 
data as if it were located on a local file 
system. 

In principle one could achieve 
inter-cluster I/O access by first running 
PVFS internally in a cluster and then 
enabling port forwarding to the metadata 
and I/O servers from the gateway node. 
This would allow an external cluster to 
access the PVFS file system directly. 
However this approach has the following 
limitations :  
v PVFS servers normally run as 

root. Thus it would be risky to 
expose these ports to an external 
network directly as it may lead to 
a root compromise easily. We 
also have to expose a large 
number of internal machines 
when we have a large bank of 
I/O servers.  

v The data pathway may not be 
uniform. The bandwidth of the 
interconnect inside a cluster may 
be much higher than the inter-
cluster link bandwidth. This 
essentially leads to a non-
uniform data pathway with 
bottlenecks at the edges. This 
cannot be effectively managed 
using the stock PVFS 
implementation.  

v Access control : PVFS was 
designed to allow data transfer 
between trusted hosts. But when 
we have clients sitting on a 
remote cluster, we may want to 
selectively control access to the 

file system. This can’t be done 
specifically for the file system 
alone on the gateway nodes. 

 
3.2  FICUS basic design 

We present FICUS as a viable 
inter-cluster file system here. It is 
designed for dealing with the issues 
discussed in section 3.1 from ground 
up. This file system uses the internal 
PVFS file system in a cluster to 
enable high performance inter-
cluster I/O.  

Its main components are: 
v Metadata proxy : This acts as a 

protocol proxy, which translates 
external metadata requests to 
internal PVFS metadata requests. 
It presents itself as a metadata 
server to a client in an external 
cluster and then internally uses 
the PVFS metadata server for its 
operations. The PVFS metadata 
server is not exposed to the 
external network at all. Also the 
proxy runs as a non-root user and 
doesn’t need root privileges. It 
also prevents corruption to 
existing data in the PVFS file 
system because the PVFS 
metadata server is responsible for 
allocation and destruction of file 
inodes. It is also responsible for 
boot strapping the entire file 
system by supplying the mapping 
information to the FICUS 
information server. 

v I/O proxy : This handles the data 
requests from external clients and 
then fetches the data from the 
appropriate I/O servers. It acts 
like a PVFS I/O server to an 
external cluster and then stripes 
the data using a bank of I/O 
servers located internally. Here 
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too the PVFS I/O servers are not 
exposed externally. 

v Information Server : This 
allows an administrator to control 
access to the file system. The 
administrator can selectively 
allow/disallow a remote client 
using ACL-like entries. Access 
can also be granted at a domain 
or subnet granularity. It also 
serves as a repository for 
maintaining the mapping 
between the proxies and the 
respective PVFS servers i.e. 
which I/O proxy is mapped to 
which particular I/O server et al. 
This enables us to maintain 
minimum state information on 
the proxies. 

The entire FICUS file system is 
designed to be totally transparent to both 
the remote client as well the local PVFS 
setup. FICUS appears to be a normal 
PVFS file-system to an external cluster. 
The internal PVFS file system thinks 
that it is getting requests from a normal 
client located within the cluster. This 
transparency ensures that minimum 
amount of changes are needed for 
exporting and accessing data remotely.  

 
3.3 Bootstrapping the FICUS file 

system  
 The very first step involved in 

installing FICUS is to setup the PVFS 
file system in one of the clusters, which 
would act as the data repository. Then 
the FICUS information server is started 
with the appropriate ACL entries 
enabling access selectively to specific 
remote clusters/clients. The FICUS 
information server can also add 
permission entries dynamically upon 
receipt of a special user-defined signal. 
This allows us to add more clients to a 
running FICUS file system. Then a file 

specifying the following mappings is 
prepared : 

1. Metadata mapping : This 
specifies the ports and location of 
the FICUS metadata proxy and 
the PVFS metadata server. 

2. I/O mapping : This specifies the 
ports and location of the FICUS 
I/O proxy and the PVFS I/O 
server. It also specifies which I/O 
servers are used by which I/O 
proxy(and they become a part of 
its stripe set). 

3. Mount point mapping : This 
specifies the mount point of the 
FICUS  file system. 

FICUS has the capability to 
accommodate multiple exported file 
systems. The above mapping 
information is a complete description of 
each FICUS exported file system and 
hence is attached to the metadata proxy 
of that file system. The Information 
server acts as a central repository of 
information about all the exported 
FICUS file systems. When the I/O 
proxies are started (giving only the 
location of the FICUS information 
server), they in turn contact the FICUS 
Information Server in order to obtain 
their stripe set (the set of PVFS I/O 
servers under their management ). The 
above design enables us to manually 
specify only the location of the FICUS 
information server to the remote client, 
which can then gather the remaining 
proxy information automatically. The 
design also let us use a single 
information server for handling multiple 
FICUS file systems, as all the 
information is hashed based on the 
mount point. 

The remote client is started 
specifying the location of the remote 
FICUS information server and the 
desired FICUS mount point. The 
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information server then compares the 
client address against its ACL entries in 
order to ensure that the remote 
client/cluster can be allowed to access  
the FICUS file system. If an appropriate 
ACL entry is present, then the addresses 
of the metadata and I/O proxies are sent 
to the client. The client thinks that it is 
contacting a conventional PVFS setup 
and thus has no knowledge about the 
actual PVFS servers in the remote 
cluster. This allows us to hide critical 
internal PVFS information while still 
allowing access to the file system. 
 
4. Performance Evaluation  
 In this section, we test the 
performance of FICUS by running some 
synthetic applications generating data 
streams. We also test the stability of this 
file system by running a parallel 
incremental data-mining algorithm 
performing 2D-Discretization on 
dynamic data sets, with the data located 
at a remote location. 
 
4.1. Experimental Testbed 
 Our testbed consists of a cluster 
of 9 dual 1 GHz  Pentium-III servers 
running Linux 2.4 operating system, 
with 1 GB of SDRAM each. These 
machines were interconnected using a 
1.2 Gb/s Myrinet network and we were 
running TCP/IP over Myrinet. The 
cluster also had a fast Ethernet network, 
which was used for carrying metadata 
traffic. Each machine has two  60 GB of 
disks mounted on a 3Ware  controller in 
a RAID 0 (striped) configuration, 
yielding 120 GB of usable partition 
space. We installed the XFS Linux file 
system on these partitions for better data 
reliability and performance. The cluster 
was logically partitioned into two halves 
so that one half could access the other 
half only through designated gateway 

nodes. This helped us simulate two 
clusters within a single cluster. Then we 
installed a PVFS file system on one half 
with one metadata server (accessible 
through the Ethernet network) and 4 I/O 
servers (accessible through the Myrinet 
network). 

It is important to note that both 
PVFS and FICUS use TCP for data 
communication. We measured a peak 
bandwidth of around 45 MB/s using 
TCP over Myrinet. 
 
4.2. Local Disk Bandwidth 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 1. Local file system performance 

 
The above figure shows that for 

small files sizes, there is lot of caching 
involved at the file system level. The 
3Ware controllers have an internal write 
buffer, which makes writes faster than 
reads. The aggregate bandwidth for the 
entire partition is around 40 MB/s due to 
the usage of disk striping (RAID 0). The 
XFS file system on this partition also 
helps the writes by means of delayed 
writes and extent based allocation 
techniques. 
 
4.3. PVFS performance 
 We measured the performance of 
the PVFS file system file system with 4 

0

20

40

60

80

100

120

140

160

180

200

1 4 16 64 256 102
4

Data Size ( MB )

B
an

dw
id

th
 ( 

M
B

/s
 )

READ 
WRITE 

 



 7 

I/O servers and varying number of 
clients. In all the following figures, the  
I/O bandwidth measured is the aggregate 
bandwidth across all the nodes. 

We observe in Fig. 2., the file 
system cache plays a crucial role in 
attaining high write bandwidth for small 
files. In the case of larger files, the 2 and 
4 client cases are able to utilize the 
bandwidth available from striping the 
data across 4 I/O servers fully and thus 
exhibit better performance when 
compared to the single client scenario. 
The bandwidth of the 4-client case drops 
sharply after data sizes of 64 MB. Each 
I/O server is not able to handle the load 
of writing four concurrent data streams 
to disk and thus the limitation of the 
write pathway and disk bandwidth are 
clearly exposed.  

 
 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
       Figure 2. PVFS Read performance 
 
 
The read scenario shows much better 
scalability up to four clients because the 
PVFS I/O server memory-maps the file 
(using mmap)  after the first read request 
arrives and then serves the remaining 
read requests from memory itself. 
 
 

 
 
 
  
 
               
 
 
 
 
 
 
 
 

 
Figure 3. PVFS Write performance 

 

Thus, the read pathway of PVFS 
is  efficient. A larger number of clients is 
able to fully utilize the available read 
bandwidth and thus the 4-client case 
performs much better than the other two 
scenarios, as shown in Fig.3. 
 
4.4 FICUS performance. 
 
 
 
 
 
 
 
 
 
 
         
 
                
                   
               Figure 4. FICUS Write performance 
 

The most important design aspect 
of the FICUS I/O proxy is its use of 
threads for servicing the I/O requests. 
We used pthreads and were able to get 
asynchronous I/O behavior on reads and 
writes. This has been very crucial in the 
performance of FICUS as illustrated in 
Fig. 4. and Fig.5. 
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              Figure 5. FICUS Read performance 
 
 Here we ran 2 I/O proxies, each 
of which striped the data across 2 I/O 
servers (yielding a total of 4 I/O servers 
for the entire setup). In Fig. 4, we see 
that the FICUS write performance is 
slightly better than the PVFS write 
performance, in the case of 4 clients. 
The important point to note here is that 
the PVFS I/O servers are single threaded 
applications. This proves that FICUS is 
able to handle high client load without 
great degradation in performance. This 
fact is further clarified in figure 5. The 
read performance for all cases reaches 
the peak value for comparatively small 
reads. The clients need not perform large 
I/O requests in order to attain the full 
bandwidth of the file system. This 
behavior is in contrast to the original 
PVFS behavior, where the read 
performance reached the peak value only 
from 32 MB reads onwards. The above 
two figures illustrate that  FICUS is able 
to handle heavy I/O loads as well. We 
can also observe that a larger number of 
clients  will not get better performance 
because four clients already saturate the 
I/O bandwidth available. 
  
4.5 Multithreading and Pipelining 
 We mentioned in the previous 
section that the FICUS I/O proxy is a 

multi- threaded application. This allows 
FICUS not only to achieve asynchrony 
in the main I/O pathway, but also allows 
us to pipeline the I/O requests 
effectively. The data pathway in the 
FICUS file system consists of two main 
stages : 

1. The stage with the remote client 
and the FICUS I/O proxy. This 
stage includes the external link 
between the two clusters. 

2. The stage with the I/O proxy and 
the PVFS I/O server. This stage 
includes the internal network in 
the cluster( Myrinet in our case). 

The two stages are not equally 
balanced because typically stage 2 has 
much more bandwidth available than 
stage 1. The use of threads allows us to 
pipeline data across these two stages 
effectively, because while one thread is 
servicing an I/O request from a client, 
another thread could be getting data 
from the I/O server and the other thread 
could be writing data to a third client. 
This means that at a single point of time, 
both stages could be kept busy with the 
use of threads, yielding a big 
performance boost, as shown in [22] and 
[23].  
 We ran the I/O proxies on a dual 
processor machine. The figures( Fig. 6 
and Fig. 7)  show that threading yields a 
performance boost when compared to 
the non-threaded case. These figures also  
reveal that the number of threads should 
be equal to the number of physical 
processors available, for obtaining peak 
performance. We observe that 4 threads 
do not yield any great benefit over 2 
threads in this experiment. We also 
observe that the clients can attain peak 
bandwidth faster by the use of threads 
(as shown in Fig.6), because we are able 
to keep both stages of the data pathway 
busy with pipelined  requests. 
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Figure 6. Impact of threading on Write  performance 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Impact of threading on Read  performance 

 
4.6 Data Mining using FICUS  
 The ultimate test of the 
effectiveness of any file system is the 
performance benefit for applications 
using it. We ran a parallel data mining 
application with the data sitting remotely 
and the application acting as a remote 
client. The details of this application can 
be found in [19].  
We ran the mining algorithm over a 
dataset containing 10 million records 
and the net amount of data was close to 
6 GB. We measured the time taken for 
the completion of the I/O phase of the 
algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 8. Time taken for mining 10 million records 
 

We observe in Fig. 8. that the 
time taken for mining remote data is 
comparable to the time taken under 
PVFS. We also see that the time 
increases as we increase the number of 
processes involved in data mining 
because of the large load on the I/O 
servers.  
 
4.7 Impact of Read Caching 

We also wanted to measure the 
impact of caching on application 
performance. We implemented a simple 
caching algorithm on the FICUS I/O 
proxies and ran the data mining 
application on this modified setup. 
 
          
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 9. Data mining using FICUS 
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 We observe in Fig. 9 that read 
caching has a noticeable effect on the 
time taken to complete the data mining 
process when the data is delivered to the 
remote client by the I/O proxy itself. 
This not only reduces the time taken to 
obtain the data, but also reduces the 
amount of load on the PVFS I/O server. 
This results in better performance 
particularly in the case of 8 clients, while 
the non-cached implementation is 
affected adversely. 
 
4.8 Inter-cluster cooperation 
 The main aim of this file system 
was to develop inter-cluster cooperation. 
We have performed all our experiments 
on our partitioned cluster because of 
connectivity and security issues with 
other clusters. We have a 100 Mbits/s 
link between our cluster and the main 
gateway node of the Ohio Super 
Computing Center. We configured our 
cluster as the data repository, ran a client 
on the remote OSC node and accessed 
the FICUS file system. 
 
 
 
 
 
 
 
 
 
  
  
 
    
 

 
 
 

Figure 10. Remote client access using FICUS 
 
 
 
 

We were using 2 I/O proxies and thus 
could attain a theoretical peak bandwidth 

of around 12 MB/s. We could achieve 
around 10 MB/s out of the theoretical 
peak of 12 MB/s as shown in Fig. 10. 
The main aim of this experiment is to 
prove the feasibility of performing large 
remote I/O under FICUS (around 1 GB 
here).  
 
5.Related Work 
 Frangipani [11] is based on the 
simple model of a set of cooperating 
machines using a shared storage space. It 
also virtualizes access to raw disk and 
allows for standard UNIX semantics, 
which is quite similar to FICUS. 
However, it is essentially serverless in 
nature with the service being distributed 
over all the machines, while FICUS has 
server code for metadata and I/O 
handling. FICUS is mainly geared 
towards high performance obtained by 
data striping with simple POSIX 
semantics for locking. Frangipani is a 
more sophisticated distributed file 
system with emphasis on reliability and 
fault tolerance and boasts of advanced 
features like a separate lock service for 
concurrency control. 
 The Andrew File System (AFS) 
[18] also provides fo r a global 
namespace (root directory like FICUS) 
and uses caching to boost performance. 
FICUS maintains the data at a single 
location and uses the proxy file system 
to stripe the data to remote clients. In 
contrast, AFS moves the data to a server 
near the client access point. Moreover, 
AFS is geared towards operations in a 
wide area network, while FICUS utilizes 
the local bandwidth available in a cluster 
(in the form of the local PVFS file 
system). AFS also provides for advanced 
security and authentication techniques 
like Kerberos, while FICUS uses simple 
ACL entries on the Information Server 
to control access. 
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 Lustre [5] is a next generation 
cluster file system, which has similar 
design level features like FICUS. It 
stores the data for directories(essentia lly 
metadata) on the metadata server itself  
and also includes a striping descriptor as 
a part of metadata. However, Lustre is 
designed as an object based file system, 
while FICUS is block based. It also 
virtualizes the memory and volume 
management functionality to an object 
based disk, which in turn requires 
special intelligent disk controller 
support. FICUS utilizes the local file 
system on the I/O server node in order to 
manage its storage. Lustre is also a SAN 
(Storage Area Network) based shared 
file system, while FICUS can use 
common System Area Networks like 
Myrinet or Gigabit Ethernet. 
 Sistina’a GFS [14] is also a SAN 
based cluster file system, which offers 
the ability to have concurrent readers to 
shared storage, like FICUS. However, 
GFS offers advanced features geared 
towards reliability and fault tolerance, 
like distributed metadata format, 
redundant data pathways and journaling. 
GFS also requires a SAN fabric between 
the I/O servers and the storage devices. 
FICUS is a simple implementation, 
which is geared towards high-speed 
access to remote data using commodity 
components. It relies on the local file 
system on the I/O server in order to 
manage its data and thus is cheaper to 
implement. Its code is also open-source 
enabling people to add enhancements or 
changes freely, unlike GFS, which is a 
vendor specific implementation. 
 Slice [8] is a fast I/O layer built 
on top of the Trapeze file system. It 
redirects I/O requests to an array of I/O 
servers incorporating a simple striping 
methodology like FICUS. It also offers 
full compatibility at the kernel level. 

FICUS mainly uses TCP over a System 
Area Network like Myrinet for attaining 
good performance, while Slice uses 
NetRPC to send data blocks (thus 
bypassing the kernel TCP/IP stack). This 
feature of using a User Level protocol 
for data communication could be 
incorporated into FICUS in the future. 
Slice was also a minimal implementation 
and thus used the kernel NFS layer for 
its file system interactions, while FICUS 
is a full fledged file system 
implementation that offers integration 
from the VFS layer itself. 
 GirdFTP [6] is an enhancement 
to FTP optimized for high-bandwidth 
wide- area networks. It supports parallel 
file transfers using multiple servers and 
provides for automatic negotiation of 
parallelization. The FICUS file system 
also provides for default striping patterns 
in order to optimizes data striping across 
a set of I/O servers. FICUS is a full-
fledged file system with tight kernel 
integration. In contrast, GridFTP is just 
an FTP enhancement with no file system 
semantics or operations supported.  
 
6.Conclusions and Future Work. 
 In this paper, we have proposed a 
new I/O file system that could be used 
for achieving inter-cluster cooperation. 
We also discussed various design details 
of this file system like threading and 
caching, which were critical in attaining 
better I/O performance. We also 
discussed the feasibility of performing 
large amount of I/O from a remote client 
without any stability problems. This file 
system has complete compatibility with 
the Linux kernel module supplied along 
with PVFS. This means that the user 
could run UNIX commands like ls, cp 
etc on remote files or directories under 
this file system, which makes 
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administration of this file system 
effortless.  
 We plan to run more experiments 
between our cluster and the OSC 72-
node Itanium cluster. We will be 
studying further enhancements to the 
caching algorithm, which we have 
shown has the potential to yield better 
read performance. We are also 
examining the possibility of using ULNP 
(User Level Networking Protocols) like 
VIA in the main data pathway instead of 
TCP, for better performance.  
 We understand that data striping 
has limitations in the area of reliability. 
Our group is working towards 
incorporating RAID-like redundancy to 
the PVFS file system, which in turn 
would benefit FICUS. We are also 
looking at the feasibility of integrating 
two clusters to act as the data repository. 

We are using pthreads in our 
current implementation but we feel that 
this file system could greatly benefit 
from the introduction of kernel level 
threading libraries and asynchronous I/O 
calls into the Linux kernel.  
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