A Slacker Coherence Protocol for Pull-based Monitoring of On-line Data Sour ces*

Radhakrishnan Sundaresant, Tahsin Kurct, Mario Lauriaf, Srinivasan Parthasarathy?, and Joel Saltz!

! Dept. of Computer and Information
Science
The Ohio State University
Columbus, OH, 43210

t Dept. of Biomedical Informatics
The Ohio State University
Columbus, OH, 43210

{sundarer, | auria, srini }@is.ohio-state. edu
{kurc-1,saltz-1}@redctr. osu. edu

Abstract

There is an increasing number of online applications that
operate on data from disparate, and often wide-spread, data
sources. In this paper we study the design of a system for the
automated monitoring of on-line data sources. In our sys-
tem a number of ad-hoc data warehouses, which maintain
client-specified views, are interposed between clients and
data sources. We present a model of coherence, referred to
here as slacker coherence, to address the freshness problem
in the context of current pull-based protocols, and examine
the role of the request scheduling algorithm at the source
and its impact on our coherence model performance.

1 Introduction

One of the consequences of the explosive growth of the
Internet and in particular the world wide web (WWW), is
the explosion of distributed online applications that oper-
ate on disparate, and often wide-spread, data sources. Data
and transaction based commercial applications such as on-
line auctions, financial markets data, satellite data, airline
reservations, medical point-of-care data are figuring promi-
nently among Internet-based information providers. Other
examples of information delivered through the Internet (of-
ten via WWW) include scientific data in fields such as biol-
ogy, medical/health sciences, genomics/proteomics, astro-
physics, geophysics, where an increasingly large share of
publicly funded projects are aimed at the production and
update of extensive data collections to be made available to
the research community. Finally, experimental distributed

*This work was supported in part by an Ameritech Faculty Fellowship
grant, the National Science Foundation under Grants #AC1-9619020 (UC
Subcontract #10152408), #E1A-0121177, #AC1-0203846, #ACI-0130437,
#ACI1-9982087, Lawrence Livermore National Laboratory under Grant
#B517095 (UC Subcontract #10184497).

applications such as grid meta data catalogs, are also tak-
ing advantage of the decentralized nature of the WWW and
Internet protocols.

The immediate availability of such extensive amount of
on-line information has the potential of enabling discovery
through data analysis. For example, important knowledge
on several types of cancer can be derived by correlating
data from gene expression data, from tissue banks, and from
drug sensitivity data of cancerous cell lines. Catastrophy
prevention and remediation could be enhanced by the com-
bined analysis of multiple sources of sensitive data such as
weather satellite data, power grid utilization patterns, phone
switches loads. Monitoring and cross-correlation of data
on infectious disease cases, environmental contamination or
accident reports could be used for homeland security pur-
poses.

On another front, there is an increasing trend towards
technologies to support the information, data sharing, and
data analysis services needs of often ad-hoc groups of in-
stitutions and researchers. Such collaborative environments
often involve studies that have the need to pool and analyze
data from disparate sources. Composite information sys-
tems that will support such studies have great potential of
making a significant impact on research outcomes and their
application.

Federated database technology has been developed to
provide unified access to distributed and diverse sets of data.
These systems provide virtualizations of data through het-
erogeneity transparency and distribution transparency. With
the emergence of Web services and Grid services technolo-
gies, we are seeing a shift towards a services oriented view
of the Internet and the Grid. These technologies provide
standard mechanisms for individuals or groups to make ser-
vices and data available to a larger community and for en-
abling interoperability among various services. However,
they do not dictate any requirements as to what the charac-

teristics of the services should be. As a result, a client has to
be able to interact with services with different capabilities.
In a distributed environment, a client should be able to for-
mulate queries that can span large data sets at multiple data
sources (exposed as Web services or Grid services). More-
over, the client should be able to monitor the data sources
for updates to the data of interest.

In a client-server setting, substantial practical obstacles
limit our capability to take full advantage of large vol-
umes of data. First, data sources can employ some form of
RPC mechanisms that work well for “function shipping”—
moving the process to the data—but they do not work well
for data movement initiated by the data source. Using mes-
sage passing requires the client to implement ad-hoc com-
munication and coherence protocols in order to manage data
copies. Second, existing models do not provide efficient
mechanisms to inform the client of data changes and this
puts the onus on the client to poll a data source (resulting
in an ad-hoc non-deterministic communication pattern). Fi-
nally, the sheer amount of data and data sources makes a
manual approach to data retrieval impractical, while at the
same time existing protocols are oriented to human interac-
tion (where a pull-only model is quite satisfactory).

In this paper we study the design of a system for the
automated monitoring of on-line data sources. In our sys-
tem a number of ad-hoc data warehouses are interposed be-
tween clients and data sources. The data warehouses have
the tasks of i) maintaining client-specified views, defined
over the data made available by a set of data sources, and ii)
keeping the views updated as the source data changes over
time. We are interested in designing a system that can work
with standard Web protocols, so to make it immediately us-
able with existing web-based data sources. In a sense, our
ad-hoc data warehouse concept fills a functionality gap left
by current protocols. The purpose of our study is to identify
the most effective techniques of filling the gap.

Maintaining the freshness of views when using the pull
model prevalent in current standards requires some form of
polling. There are obvious trade-offs between freshness and
resource utilization in deciding the polling frequency. The
polling strategy must take into account the number of data
sources involved in maintaining a view, the frequency of
changes at each source, the load on the network and sources,
the request scheduling policy at the sources. The problem
of maintaining freshness has analogies with the well studied
problem of memory coherency in distributed shared mem-
ory architectures, where a similar issue of propagating up-
dates exists®.

The main contributions of this work are a model of co-
herence (called slacker coherence) addressing the fresh-
ness problem in the context of current pull-based protocols,

1Due to this analogy, we will use the term “coherence” to denote both
the freshness problem and the specific set of techniques we use to solve it.

the insight into the role of the scheduling algorithm at the
source and its impact on our coherence model performance,
and finally an assessment of various techniques for estimat-
ing update rates (used to drive the coherence model).

2 Redated Work

In [6], a general framework is described that supports ef-
ficient data structure sharing with client-controlled coher-
ence for interactive and distributed client-server applica-
tions. The runtime interface enables clients to cache rele-
vant shared data locally, resulting in faster (up to an order
of magnitude) response times to interactive queries. The
framework allows the user to control the degree of co-
herency of the cached copy. It also supports relaxed co-
herence models including temporal, diff-based, and delta
coherence.

Andrade et. al. [1] present middleware approaches for
optimizing execution of multiple queries through data reuse
with user-defined data structures and operations on data.
The middleware implements active semantic caching, query
scheduling, and multi-threaded execution on clusters of
SMP machines. The active semantic caching allows user-
defined data structures for intermediate and final results for
a query to be cached and reused by other queries. However,
that work does not address the issues pertinent to main-
taining the coherence between cached data items and data
sources.

Shah et.al [8] propose techniques for delivery of time
varying data from data sources to a set of cooperating repos-
itories. They focus on strategies for cooperation among
repositories for pushing the data updates to reduce commu-
nication and computation overheads. They show that in-
creasing the amount of cooperation does not always result
in better performance. Akamai (http://www.akamai.com)
is a content distribution system that consists of geographi-
cally distributed edge servers that are pushed updates from
the actual web server. The DNS mechanism redirects the
request for a page to the nearest and least loaded Akamai
edge server. The edge server not only servers static web
content but also serves dynamic content like stock quotes or
weather status.

Roéhm et.al. [7] address the tradeoff between data fresh-
ness and optimization of query evaluation for OLAP ap-
plications. They target a cluster of databases, and propose
a coordination middleware that is designed for scheduling
queries and coordinating routing of data updates to max-
imize the throughput of OLAP queries. They propose of
protocol called Freshness Aware Scheduling and show that
this protocol performs much better than synchronous repli-
cation approaches.

Ninan et.al [5] present an approach for maintaining
cache consistency in multiple proxy environments. They

propose a cooperative consistency model and cooperative
leases mechanism to support it. Their work targets content
distribution networks where servers push data to proxies,
which sit between servers and clients. Deolasee et.al [3] ex-
amine methods that combine pull- and push-based models.
They present approaches that adaptively choose between
pull- and push-based models or simultaneously apply both
models. In the latter case, the proxy mainly is responsible
to pull updated data from the server, while the server may
push additional updates.

Chawathe and Garcia-Molina [2] address methods for
detecting updates in data. They present algorithms for com-
paring data represented in tree structures. Zhuge et.al [9]
present algorithms for incremental maintenance of views
at a data warehouse when the view spans multiple data
sources. The goal is to update the views incrementally while
ensuring that the data presented to client queries is consis-
tent and the impact of view maintenance costs on query ex-
ecution is minimized. Their approach involves the use of
monitors at the data sources. A monitor identifies updates
of interest and notifies the corresponding data warehouse.

Our work has similarities to these projects in that we look
at mechanisms for maintaining up-to-date views and data
caches. However, we investigate methods for pull-based
environments where data warehouses have to poll the data
sources for updates. We also examine the effects of data
scheduling at the data sources.

3 Architecture Overview

This paper targets a three-tier architecture that consists
of clients, ad-hoc data warehouses, and data sources. In this
section we briefly describe each of these components.

Clients form the first tier of the architecture. A client or
a group of clients can register datasets from multiple data
sources, with a particular ad-hoc data warehouse, and cre-
ate one or more views assembled from one or more of these
datasets. A view effectively corresponds to an assembly of
queries, each of which defines a subset of attributes from
the registered datasets and a set of operations on these at-
tributes. For example, a user may specify a spatial and
temporal range in a set of medical images corresponding
to data from multiple imaging modalities and a set of sta-
tistical methods that can be executed on these datasets to
detect and extract features. Once this view is defined, the
client can further perform such operations as visualization
of the features.

A data source is the location where input datasets are
stored. Data sources respond to queries from and serve data
to ad-hoc data warehouses. A data source can be a remote
file system, a web service, or a database server. For any
type of data source, generating a response to a request will
take some time and will consume some amount of local re-

sources. When multiple requests are received, these request
should be ordered based on a scheduling mechanism and
served in this priority order. Response times seen by the
clients of a data source (the ad-hoc data warehouses are the
clients) are affected by the nature of the scheduling policy
used. Hence, the behavior and performance of the ad-hoc
data warehouses monitoring the data source will likely be
dependent on the scheduling policy at the data source. We
shall describe two different scheduling policies in the next
section.

An ad-hoc data warehouse is the middle tier component
and behaves as an intermediate server between clients and
data sources. Any interaction of clients with data sources
is carried out through ad-hoc data warehouses. Having an
ad-hoc data warehouse has several performance advantages.
First of all, it relieves clients from maintaining views. In
collaborative environments, a group of clients likely create
the same or overlapping sets of views. Without a data ware-
house, individual clients should maintain data from multi-
ple data sources and construct views spanning data across
these sources. Second, if clients directly interact with a data
source, the load of the data source will increase as the num-
ber of clients increases. By consolidating views at the data
warehouse, data duplication is minimized and the load seen
by data sources is reduced. Third, if clients and data sources
are separated by a wide-area network, network demands and
the latency incurred between a client and a data source may
be very high. An ad-hoc data warehouse, on the other hand,
can be instantiated near a group of collaborating clients. As
aresult, the volume of data transferred across wide-area net-
works is decreased, resulting in less network overheads.

A data warehouse should allow clients to create views
that can span datasets across multiple data sources. In or-
der for the data warehouse to serve the clients that use these
views, it should retrieve the data subsets that are required by
the views from the data sources and store them locally. In
addition, it should be responsible for maintaining the qual-
ity of the data to suit client requirements. The data ware-
house should keep copies of data that are coherent with the
data at the data sources, as the data at each site can be asyn-
chronously updated by external sources.

There are two basic ways by which a data warehouse
can synchronize with a data source. In the push model,
when a data item is updated at the data source, it is pushed
by the source to the data warehouse. The push model re-
quires that data sources support registration of triggers for
multiple views and of data warehouses maintaining those
views, and implement mechanism for pushing the data. In
the pull model, it is the responsibility of the data warehouse
to poll the data sources for updates and retrieve the data
when there is an update. It is a natural characteristic of
a pull-based model that some of the updates at the source
will be missed. In order to provide high quality views to

clients, a data warehouse should be designed to minimize,
for a given view, 1) the number of missed updates and 2)
the age of data comprising the view, i.e., the difference be-
tween the time of update at the source and the time the data
warehouse updates its local copy. For example, Grid envi-
ronments are inherently composed of shared resources, and
the availability of the resources vary over time. Grid ser-
vices that monitor Grid resources should provide informa-
tion as up-to-date as possible. In order for applications to
make best use of the resource availability data maintained
by the service, the age of the cached data should be low.
On the other hand, data warehouses that monitor stock mar-
kets, the main aim of the warehouse should be to make sure
that all price changes at the source are captured. The main
objective in this case is to minimize the number of updates
that are not propagated to the data warehouse.

4 Coherence Protocol and Scheduling Poli-
cies

In order to achieve low response times for client requests
and scalable performance, an ad-hoc data warehouse should
locally cache the required subsets of data from data sources.
The data warehouse should also implement a consistency
model so as to serve up-to-date data products. Given the
high latencies and variable network performance of typical
distributed environments on the Internet, the use of memory
consistency models similar to those provided by hardware-
and software-based shared memory systems is not always
the most efficient alternative. The most relaxed of these,
release consistency [4], guarantees a coherent view of all
shared data at synchronization points, resulting in signifi-
cant amounts of communication.

In our context, ad-hoc data warehouses can often ac-
cept a significantly more relaxed—and hence less costly—
coherence and consistency model. Basically in such do-
mains, a stale view may be acceptable up to a point. The
level of tolerance here may be defined in terms of time units
by which the local cached data is out of date, or the percent-
age out-of-datedness of the local data copy with respect to
the data source’s copy of the data. In other words, such
applications may tolerate stale data based on a temporal
or change-based criterion, thereby allowing a reduction in
communication overhead to improve overall efficiency. Per-
formance can be further improved by allowing each ad-hoc
data warehouse to specify the coherence model required for
correct operation.

While several existing systems offer such a view, almost
all of them rely on some form of server-based (data-source
based) push model. It is our contention that in many situa-
tions one will not have control over whether the push-based
model is actually feasible or available. Without a push-
based model, it is the responsibility of the data warehouse

to poll the data sources for updates to the data of interest. In
order to efficiently carry out this task, a polling rate should
be determined for each of the views maintained by the data
warehouse. If a view spans multiple data sources, each of
the data sources can be polled at different rates to reduce
network traffic. Several factors such as client-assigned pri-
orities, the number of clients served by a given view, and
the cost of processing requests to a view can be taken into
account in determining the frequency of polling operations.
In addition to these client-oriented factors, the update rate
at the data source must be considered to meet the tolerance
metric.

A simple approach would be to query the data source(s)
at regular intervals. If the polling rate is higher than the
data update rate at a data source, this strategy guarantees
that the local copy of the data of interest will always be
up-to-date. However, there are several problems with this
strategy. First, although overly frequent polls will ensure
that the tolerance metric is met, it results in high communi-
cation overhead and bandwidth utilization. Under-polling,
on the other hand, results in the data warehouse view be-
ing always out of date. Second, the frequency of updates at
the data source should be known a priori to the operation of
the data warehouse. In general, this assumption will hardly
hold unless the applications that update the data at the data
source exhibit a well-defined behavior or the data source op-
erates under a controlled environment. Second, the update
rate will probably vary over time. As a result, the polling
rate should be higher than the expected maximum update
frequency. If the polling rate is matched to the maximum
update frequency, resources in the environment are wasted
because of unnecessary polls. To address these problems,
we propose a slacker coherence protocol described next.

4,1 Slacker Coherence Protocol: To Poll Or Not
To Pall

The main premise behind the slacker coherence model is
to adaptively determine the ideal polling rate based on the
frequency of updates at the data source side for a given view
while meeting the ad-hoc data warehouse’s tolerance metric
for stale views. The basic idea is to decrease the rate of
polling for a view and of a data source, if the data of interest
is not being updated. In order to meet this objective we first
need to reliably estimate the update rate at the data source.
To do so we maintain a window W of information about
previous poll requests and update rate information from the
data source.

We consider three different levels at which a data source
can maintain information about updates that it returns to
the data warehouse upon a polling request.

Level 1. The data source returns the updated data only.

In this case, the data source does not need to maintain any
additional information. However, the data warehouse has to
use the local polling logs to estimate the age of the locally
cached data as well as the update rate at the data source.
Level 2. The data source returns the updated data and the
time stamp of the last update on that data. Unlike the first
level, the data warehouse can now calculate the age of the
local data more accurately. However, the data source should
be designed to maintain the time stamp of the last update to
the data items. The last-update timestamp information is
available from data sources like web servers that use HTTP
to server data requests.

Level 3. The data source returns the updated data and a
history of time stamps of all intervening updates since the
last poll by the data warehouse to the data source on that
particular data. At this level, the data warehouse obtains all
the information that can be used to do a better job in esti-
mating the update rate at the data source. This type of esti-
mation works when the data sources is capable of sending
the history of updates to the view along with the view itself,
which is possible when the data source is a database server
as it typically maintains logs of update timestamps. How-
ever, this is achieved at the expense of increased network
resource consumption, as more information is sent from the
data source to the data warehouse, resulting in higher net-
work overhead.

To estimate the update rate, the window of information,
W, contains information on the previous K updates. This
historical information allows us to derive a mean update
rate, which is used to determine the time to the next poll.
The larger the value of K is, the less susceptible the proto-
col is to noise. However, in this case the hysteresis (delay
to adapt to a new update rate) time will be longer. Once we
have an estimate of the update rate we can determine how
often to poll for a view given the tolerance constraints at the
data warehouse. If the polling rate is too fast or too slow
the feedback via the update rate estimation will enable the
system to slow down or speed up the polling adaptively. An
important point to note is that currently the update estima-
tion protocol ignores the vagaries of the scheduling policy
at the data source.

4.2 Scheduling Palicies at the Data Source

When a data source receives multiple requests from data
warehouses, it needs to schedule these requests to generate a
response for each of them. Therefore, in addition to the co-
herence model the influence of the scheduling policy at the
data sources on the coherence model bears closer inspec-
tion. In particular, we look at the following three schedul-
ing policies. These policies differ from one another in that
each requires the data source to maintain different levels of
knowledge of the updates and the environment. 1) First

In First Out (FIFO). The requests are served in the order
they are received. This is one of the most basic schedul-
ing policies commonly available in most data servers. 2)
Least Recently Requested (LRR). The idea behind this
policy is to reward the data warehouses that take advan-
tage of the slacker coherence model and do not poll overly
often. The scheduler prioritizes requests from data ware-
houses that have not recently polled the data source. To im-
plement this strategy the data source needs to keep track of
the time of the last poll by each ad-hoc data warehouse. 3)
Most Frequently Changed (MFC). The idea here is to pri-
oritize requests for data items that are most frequently up-
dated. The advantage over the LRR scheme is that the data
source does not have to maintain state information about all
its ad-hoc data warehouses and the last time they polled for
an update. Moreover, this approach tends to prioritize data
that are updated more frequently which lends itself to the
overall objective of keeping most of the views up-to date.

5 Experimental Results

We present a preliminary experimental evaluation of the
slacker coherence protocol and the scheduling policies pre-
sented in this paper. We carried out experiments on a testbed
consisting of two clusters connected through the OSU cam-
pus network. The Data sources ran on nodes that were
Pentium 111 dual processor nodes running Linux 2.4 with
1GB of memory and interconnected using Fast Ethernet.
The Data Warehouses ran on nodes that were Pentium Il
uni-processor nodes running Linux 2.4 with 1 GB of mem-
ory and interconnected using Fast Ethernet. For all exper-
iments unless mentioned otherwise,the data sources run on
one cluster and the data warehouses on the other.

The experiments were done using 2 data sources and 6
data warehouses. Each data source maintains three base
tables, and the update rate follows a Gaussian distribution
with a mean of 1, 3, and 5 seconds respectively. The base
tables are modelled as flat files. Each Data warehouse main-
tains a view built on one base table from each of the two data
sources. Each data warehouse sends a poll request to the
corresponding data source at the time it estimates the next
update will occurr. Each poll consists of a request-response
pair and hence the warehouse waits for a reply from the data
source before sending the next poll request to any other data
source. We choose the request-response model because it is
the polling mechanism supported by typical data sources
like HTTP-based web servers and database systems. The
query processing time at the data source is fixed at 200ms.
The total observation time for all experiments was 600 sec-
onds. In these experiments, we measure the freshness of the
view at the data warehouse and the total number of polls to
a data source. Freshness is defined as the fraction of time
during which the view is updated with respect to the the

data at the source. Since experiments were conducted us-
ing a small number of warehouses and data sources, source
side resources such as the request queue length were re-
duced proportionally to simulate a situation when the server
is heavily loaded.

The first set of experiments shown in Figure 1 examines
the effect of the granularity of information on updates that
can be maintained by a data source. We look at five cases:
1) The data source maintains the timestamps for all updates
to each table (All updates). 2) The data source keeps the
timestamp of the last update to each table. In these two
cases, the data warehouse estimates the rate of updates us-
ing the information maintained by the data source (L ast up-
date). 3) No update information is stored at the data source.
The data warehouse estimates the update rate based on the
results of the poll queries. If the result of a poll query is “no
update”, the data warehouse decreases the current polling
rate by 10%. On the other hand, if the poll query returns
an updated result, the current polling rate is increased by
10% (Polling). 4) The data source maintains information
for all updates. But, unlike case 1, the data warehouse polls
the data source at twice the estimated update rate (All up-
dates double the rate). 5) The data warehouse uses the
time stamp of the last update, but as in case 4 it polls the
data source at double the estimated update rate (Last up-
datedoubletherate). We also implemented a simple push
model (PUSH). In this model, the data source notifies the
data warehouse when there is an update to the table com-
prising the view. The data warehouse then sends a poll
query to the data source to receive the updated information.
In the figures, View Type axis denotes the view maintained
by a warehouse. A view (X,Y") is created from two tables,
the first of which is updated at a rate of X seconds, while
the other is updated at a rate of Y seconds. The experiments
were done using FIFO scheduling at the data sources.

As is seen in Figure 1(a), case 1 does better than case 2
in terms of the freshness of views across all views, because
we have more information on the update rate. For views
(3,3) and (5,5), case 4 does better than case 3 and hence the
slacker polling model is better than polling. However, for
view (1,1) adaptive polling does better than case 4 in terms
of freshness of data. This is because the view is changing
at a fast rate (1 sec) and hence the chances of error in esti-
mation is higher. Figure 1(b) compares the number of polls
done for each view type.

In the second set of experiments, we look at the effect
of scheduling policy on the freshness of views at data ware-
houses and the number of polls. Figure 2 show the average
freshness of views with different scheduling policies at the
data source. For view (1,1), MFC does the best because
MFC prioritizes requests for the base table that are chang-
ing frequently. It should also be observed that view (1,1)
does not do well for the LRR case since LRR prioritizes

Average Freshness of View in Data Warehouse

09 |

0.8

7]

g o7
S
] 06 B All Updates
8 B Last Update
% 05 OPolling
[DANl Updates double the rate
s
s 04 W Last Update double the rate
g mPUSH
g
zo3

02

0.1

4 L
11 33 55

700
600
500
400
300
200
100

0

11 33 55
View Type

View Type

(a)

Average Number of Polls by Data Warehouse

DAl Updates

W Last Update

OPolling

DAl Updates double the rate
W Last Update double the rate
T PUSH

Number of Polls

(b)

Figure 1. The effect of the granularity of in-
formation maintained by a data source. (a)
percent freshness of views at the data ware-
houses, (b) the number of polls to the data
source.

requests from warehouses that are less frequently polling.
This trend is clearly seen for views (3,3) and (5,5).

In the third set of experiments, we vary the tolerance on
the number of outdated records composing a view. That is,
a view at a data warehouse is considered fresh if the num-
ber of out-of-date records is below a user-defined fraction.
The warehouse can choose to maintain data that is not fully
synchronized with the data source, therefore allowing a pre-
determined percentage of records to be out of date. For
example a warehouse that chooses to maintain data with
a 10% outdateness tolerance will poll only when its esti-
mate of outdated record becomes larger than 10%. Results
are shown in Figure 3. These experiments were done with
FIFO scheduling at the data source. The figure shows the
freshness of views for different levels of tolerance. The
higher the tolerance level is, the higher the freshness of the
view, as expected In our experimental conditions, none of
the schemes is able to meet the required tolerance. The
slacker coherence polling ensures that the number of polls

Effect of Scheduling Policy on Freshness of Data

@ EFIFO
ELRR
OMFC

15 53 31 11

View Type

33 55

Average Freshness of View

Effect of Scheduling Policy on Freshness of Data
(polling at double the estimated update rate)

BFIFO
HLRR
OMFC

15 53 31 11 33
View Type

(@)

(b)

Figure 2. The effect of the scheduling of queries at a data source. Percent freshness of views at
the data warehouses (a) when polled at the estimated update rate, (b) when polled at double the

estimated update rate.

to the data source decreases accordingly.

Figure 4 shows the effect of slackware coherence win-
dow size on performance. This experiment was done with
FIFO scheduling at the data source. The warehouse main-
tains a window that maintains the history information about
a finite number of past update times and uses this history
information to calculate a mean of the update rate at the
data source. We observe that increasing the window size re-
duces the number of polls, but also decreases the freshness
of data. However, increasing the window size after an opti-
mal point does not improve the overall freshness and does
not reduce the number of polls. With small window size,
fluctuations at the update rates at the data sources affect the
estimated update rate. As the window size is increased, the
estimate is computed over more data points, hence update
rate fluctuations are smoothed out.

The effect of increasing number of warehouses is shown
in Figure 5. This experiment was done with FIFO schedul-
ing policy at the data source. The experiment consists of
a single data source with the same base tables as described
above. The number of warehouses that request a view from
the data source is increased and the objective function that
is being studied here is the overall average freshness of data
across all the data warehouses. Increasing the number of
warehouses does have a negative impact on the overall sys-
tem performance, as expected. However the freshness does
not decrease sharply. This shows that the slacker coherence
protocol helps the overall system scale when the number of
data warehouses is increased.

6 Conclusions

In this paper we examined a slacker coherence model to
address the freshness problem in the context of pull-based
models. Our preliminary results show that the proposed ap-
proach reduces the number of polls to data sources, while
maintaining relatively up-to-date views. We also observe

that the level of cooperation from the data source in terms
of the amount of information about updates and scheduling
policies affects the performance of the slacker coherence
protocol.

References

[1] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel
Saltz. Scheduling multiple data visualization query workloads
on a shared memory machine. In IPDPS2002.

Sudarshan S. Chawathe and Hector Garcia-Molina. Meaning-
ful change detection in structured data. In SGMOD, pages
26-37, 1997.

Pavan Deolasee, Amol Katkar, Ankur Panchbudhe, Krithi Ra-
mamritham, and Prashant J. Shenoy. Adaptive push-pull: dis-
seminating dynamic web data. In WMAV, 2001.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In ISCA
1990, May 1990.

[5] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and
R. Tewari. Scalable consistency maintenance for content
distribution networks. Technical report, University of Mas-
sachusetts, Amherst, 2001.

Srinivasan Parthasarathy and S. Dwarkadas. Shared state for
distributed interactive data mining applications. The Interna-
tional Journal on Distributed and Parallel Databases, March
2002.

Uwe Rdhm, Klemens Bohm, Hans-Jorg Schek, and Heiko
Schuldt. Fas - a freshness-sensitive coordination middleware
for a cluster of olap components.

Shetal Shah, Krithi Ramamritham, and Prashant Shenoy.
Maintaining coherency of dynamic data in cooperating repos-
itories. In VLDB 2002, August 2002.

Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. Consistency al-
gorithms for multi-source warehouse view maintenance. Jour-
nal of Distributed and Parallel Databases, 6(1):7-40, 1998.

(2]

(3]

(4]

(6]

(7]

(8]

(9]

Average Freshness of View

05

Effect of Tolerance on Freshness of Data

15

0% Tolerance
W 1% Tolerance
0010% Tolerance
0020% Tolerance
W 50% Tolerance

53 31 11 33 55
View Type

500

450

400

350

300

250

Number of Polls

200

150

100

50

Effect of Tolerance on Number of Polls

0% Tolerance
1% Tolerance
0010% Tolerance
0020% Tolerance
W 50% Tolerance

15 53 31 11 33 55
View Type

Figure 3. The effect of the tolerance. (a) percent freshness of views at the data warehouses, (b) the

(@)

number of polls to the data source.

(b)

Average Freshness of Data
o
o
a

Effect of Varying Window Size on Freshness

180

Effect of Varying Window Size on Number of Polls

Average Number of Polls

160 1

140

N

120 +

100 +

\\-\’\R

10 20 30 40 50

100 150 200 250 300 350 400
Window Size

5 10 20 30 40 50 100 150
Window Size

200 250 300 350 400

Figure 4. The effect of the window size on (a) average freshness of views and (b) the number of polls.

(@)

(b)

i
H
¢

Effect of Varying number of Warehouses on Freshness.

DAl Updates.

mPoling

Al Updates double the rate

DAl Updates double the rate with random
backoff

mPUSH

mBiind Poliing at double the update rate

LI

Number of Warehouses

Average Number of Polls

1000

Effect of Varying Number of Warehouses on Number of Polls

900

800

700

600

500

400

300

200

M AN Updates

mPoling

ANl Updates double the rate

AN Updates double the rate with random
backoff

mPUSH

mBiing Poling at double the Update Rate

I

Number of Warehouses

Figure 5. The effect of varying the number of data warehouses. (a) The freshness of views. (b) the

(@)

number of polls.

(b)

