
Impact of High Performance Sockets on Data Intensive Applications

PAVAN BALAJI, JIESHENG WU, TAHSIN KURC, UMIT CATALYUREK, DHABALESWAR K. PANDA, AND JOEL SALTZ

Technical Report
OSU-CISRC-1/03-TR05

Impact of High Performance Sockets on Data Intensive Applications
�

Pavan Balaji
�
, Jiesheng Wu

�
, Tahsin Kurc

�
,

Umit Catalyurek
�
, Dhabaleswar K. Panda

�
, Joel Saltz

�
�

Dept. of Computer and Information Science
The Ohio State University, Columbus, OH, 43210�
balaji,wuj,panda � @cis.ohio-state.edu

�
Dept. of Biomedical Informatics

The Ohio State University, Columbus, OH, 43210�
kurc.1,catalyurek.1,saltz.3 � @osu.edu

Abstract

PC clusters have become cost-effective alternatives to
high-end computing systems for both compute-intensive and
data-intensive applications. With the advent of user-level
protocols like the Virtual Interface Architecture (VIA), the
latency and bandwidth experienced by applications, has
approached to that of the physical network on clusters.
However, taking advantage of these protocols in the ex-
isting applications is still a challenging problem, as they
provide only the low-level interfaces that support the min-
imum functionality required for inter-processor communi-
cation. In this paper, we design, develop and evaluate the
performance of a socket layer on top of VIA, referred to
here as SocketVIA, to support applications implemented
using sockets on TCP/IP. We experimentally evaluate the
efficiency of this substrate using both micro-benchmarks
and a component framework designed to provide runtime
support for data intensive applications. Our results show
that the sockets layer achieves a latency of 9.1 � s for 4 byte
messages, compared to the 45 � s of TCP, and a peak band-
width of 763Mbps compared to the 510Mbps given by TCP.
The experimental results also show that the different perfor-
mance characteristics of SocketVIA allow a more efficient
partitioning of data at the source nodes, thus further im-
proving the performance. This improvement is of an order
of magnitude in some cases.

Keywords: VIA, High-Performance Networking, Sockets,
Data Intensive Computing, PC Clusters

�
This research was supported by the National Science Founda-

tion under Grants #ACI-9619020 (UC Subcontract #10152408), #EIA-
0121177, #ACI-0203846, #ACI-0130437, #ACI-9982087, #EIA-9986052
and #CCR-0204429, Lawrence Livermore National Laboratory under
Grant #B500288 and #B517095 (UC Subcontract #10184497), and De-
partment of Energy’s Grant #DE-FC02-01ER25506.

1 Introduction

In the past, most research in high end computing fo-
cused on development of methods for solving challenging
compute intensive applications in science, engineering and
medicine. These applications are generally run in batch
mode and can generate very large datasets. Advanced sen-
sor technologies also enable acquisition of high resolution
multi-dimensional datasets. As a result, there is an increas-
ing interest in developing applications, referred to here as
data intensive or data analysis applications, that interac-
tively explore, synthesize and analyze such large datasets.

PC clusters are becoming viable alternatives to main-
stream supercomputers for a broad range of applications, in-
cluding data intensive applications. Being built from com-
modity hardware, they are cost effective. A challenging is-
sue in supporting data intensive applications on these plat-
forms is that large volumes of data should be efficiently
moved between processor memories. Data movement and
processing operations should also be efficiently coordinated
by a runtime support to achieve high performance.

With the advent of modern high speed interconnects such
as GigaNet [17], Myrinet [8], Gigabit Ethernet [23], Infini-
Band Architecture [4] and the Quadrics Network [37], the
bottleneck in the communication has shifted to the mes-
saging software. This bottleneck has been attacked by re-
searchers, leading to the development of low-latency and
high-bandwidth user-level protocols [18, 21, 35]. Along
with these research efforts, several industries have taken
up the initiative to standardize high-performance user-
level protocols such as the Virtual Interface Architecture
(VIA) [10, 18].

On the application development and runtime support side,
component-based frameworks [7, 12, 34, 38] have been
able to provide a flexible and efficient environment for data
intensive applications on distributed platforms. In these
frameworks, an application is developed from a set of in-
teracting software components. Placement of components

1

onto computational resources represents an important de-
gree of flexibility in optimizing application performance.
Data-parallelism can be achieved by executing multiple
copies of a component across a cluster of storage and pro-
cessing nodes [7]. Pipelining is another possible mecha-
nism for performance improvement. In many data intensive
applications, the dataset can be partitioned into user-defined
data chunks. Processing of the chunks can be pipelined.
While computation and communication can be overlapped
in this manner, the performance gain also depends on the
granularity of computation and the size of the data messages
(data chunks). While small chunks sizes would likely result
in better load balance, higher overlap and pipelining, the
overall performance may suffer from network latency.

While different alternatives have been developed to en-
hance the communication performance using user-level pro-
tocols, applications that have been developed on kernel-
based protocols such as TCP/UDP using the sockets inter-
face have largely been ignored. Rewriting such applications
using user-level protocols is a very costly and impractical
approach. In this paper, we develop a user-level sockets
interface over VIA (SocketVIA) and examine its impact on
the performance and behavior of a component-based frame-
work, namely DataCutter [7].

The remaining part of the paper is organized as follows. In
Section 2, we talk about the background of the TCP/IP pro-
tocol suite, the sockets interface and give a brief overview
of the Virtual Interface Architecture. In Section 3, we dis-
cuss the design and implementation of the sockets layer
over VIA, termed as SocketVIA. In Section 4, we give an
overview of the component-based framework. We discuss
some experimental results in Section 5, present some re-
lated work in Section 6 and conclude the paper in Section
7.

2 Background

In this section, we give a brief overview of the Trans-
mission Control Protocol (TCP) protocol suite, the Sockets
layer and the Virtual Interface Architecture (VIA).

2.1 TCP/IP Protocol Suite

Like most networking protocol suites, the TCP/IP proto-
col suite is a combination of different protocols at various
layers (Figure 1), with each layer responsible for a different
facet of the communications (Figure 2). TCP/IP is normally
considered to be a 4-layered system.

The link layer, sometimes called the data-link layer or net-
work interface layer, normally includes the device driver in

Application

Transport

Network

Link

Telnet, FTP, e−mail, etc

TCP, UDP

IP, ICMP, IGMP

Device Driver and Interface Card

Figure 1. The four layers of the TCP/IP proto-
col suite

Client
FTP

TCP

IP

Driver
Ethernet

TCP

IP

Ethernet
Driver

Ethernet

FTP
Server

FTP protocol

TCP protocol

IP protocol

Ethernet protocol

Figure 2. Two hosts on a LAN running FTP

the Operating System and the corresponding Network In-
terface Card in the computer. Together, they handle all the
hardware details of physically interfacing with the cable (or
whatever type of media being used).

The network layer (sometimes called the internet layer)
handles the movement of packets around the network. Rout-
ing of packets, for example, takes place here. IP (Internet
Protocol), ICMP (Internet Control Message Protocol) and
IGMP (Internet Group Message Protocol) provide the net-
work layer in the TCP/IP Protocol Suite.

The transport layer provides a flow of data between two
hosts, for the application layer above. In the TCP/IP proto-
col suite there are two vastly different transport protocols:
TCP (Transmission Control Protocol) and UDP (User Data-
gram Protocol). TCP provides a reliable flow of data be-
tween two hosts. It is concerned with things such as divid-
ing the data passed to it from the application into appropri-
ate sized chunks for the network layer below, acknowledg-
ing received packets, setting timeouts to make certain the
other end acknowledges packets that are sent, and so on.
Because this reliable flow of data is provided by the trans-
port layer, the application layer can ignore all these details.
UDP, on the other hand, provides a much simpler service
to the application layer. It just sends packets of data called
datagrams from one host to the other, but there is no guar-
antee that the datagrams reach the other end. Any desired
reliability must be added by the application layer.

The application layer handles the details of the particular
application. The common examples of TCP/IP applications
are Telnet, FTP, SMTP and SNMP.

2.1.1 TCP/IP Layering

Figure 3 shows the various protocols at each layer of the
TCP/IP protocol suite.

IP is the main protocol at the network layer. It is used by
both TCP and UDP. Every piece of TCP and UDP data that
gets transferred around an internet goes through the IP layer
at both end systems and at every intermediate router.

ICMP is an adjunct to IP. It is used by the IP layer to ex-
change error messages and other vital information with the
IP layer in another host or router. Although ICMP is primar-
ily used by IP, it possible for applications to directly access
it. Ping and Traceroute for example use ICMP messages
directly. IGMP is mainly used for group communication
operations such as multicasting: send a UDP datagram to
multiple hosts.

ARP (Address Resolution Protocol) and RARP (Reverse
Address Resolution Protocol) are specialized protocols used
only with certain types of network interfaces (such as Eth-
ernet and token ring) to convert between the addresses used

by the IP layer (IP addresses) and the addresses used by the
network interface (MAC addresses).

2.2 Sockets Interface

The socket abstraction was introduced with the 4.2BSD re-
lease in 1983 to provide a uniform interface to network and
interprocess communication protocols. The socket layer
maps protocol-independent requests from a process to the
protocol-specific implementation selected when the socket
was created (figure 4). For example, a “STREAM” socket
corresponds to TCP, while a “Datagram” or “DGRAM”
socket corresponds to UDP, and so on.

To allow standard Unix I/O system calls such as read()
and write() to operate with network connections, the
filesystem and networking facilities in BSD releases are
integrated at the system call level. Network connections
represented by sockets are accessed through a descriptor
(a small integer) in the same way an open file is accessed
through a descriptor. This allows the standard filesys-
tem calls such as read() and write(), as well as
network-specific system calls such as sendmsg() and
recvmsg(), to work with a descriptor associated with a
socket.

A socket represents one end of a communication link and
holds or points to all the information associated with the
link. This information includes the protocol to use, state
information of the protocol (which includes source and des-
tination addresses), queues of arriving connections, data
buffers and option flags (figure 5).

2.3 Issues with the existing TCP Implementation

The present day physical networks are capable of giving a
very high point-to-point bandwidth. With the advent of net-
works such as GigaNet [19, 20], Gigabit Ethernet [24] and
Myrinet [9], researchers have been able to achieve through-
puts in the order of Gigabits per second. Communication
and Networking giants, like Cisco and Nortel have come
up with faster and higher bandwidth providing optical net-
working systems. With the onset of technologies such as
OC-48 and OC-192, backbone networks have been able to
achieve a data transfer rate of up to a terra byte a second.
With such high speed networks being developed, the com-
munication bottleneck has shifted from the physical net-
work to the messaging protocol overhead on the sending
and the receiving side.

On the fastest networks, the application-to-application
throughput is often limited by the capability of the end sys-
tems to generate, transmit, receive and process the data at
network speeds. A number of end system factors limit

Process
User User

Process
User

Process
User

Process

TCP UDP

ICMP IP IGMP

ARP Interface
Hardware RARP

Application

Transport

Network

Link

Media

Figure 3. Various protocols at the different layers in the TCP/IP protocol suite

Process

Function Call

Application

System Calls
Socket

System Call
Kernel

Implementations
Socket System Call

Function Call

Functions
Socket Layer

calls via pr_usrreq or pr_ctloutput
TCP

UDP SPP

TP4

Figure 4. The sockets layer converts generic requests to specific protocol operations

System Calls

Process

Sockets Layer

Function Call

(TCP, UDP, IP, ICMP, IGMP)
Protocol Layer Software Interrupt @ slpnet

(caused by interface layer)

to start output
Function Call Interface

Queues
Protocol Queue
(IP input queue)

Hardware Interrupt @splimp
(caused by network device)Interface Layer

Socket Queues

Figure 5. Communication between the layers for network input and output

the communication bandwidth on high-speed networks.
With the exponential increase in the CPU power, given by
Moore’s law, the communication bandwidth limiting factor
is not the CPU power but the ability to move data through
the host I/O sub-system and memory. While it is possible
to build systems with higher I/O and memory throughput,
more bandwidth is invariably expensive for a given level of
technology.

Traditionally, TCP has not been able to take advantage of
the high performance provided by the physical networks
due to the multiple copies and kernel context switches
present in its critical message-passing path. A number of
approaches [30, 33, 13, 40, 29, 14, 3, 27, 32, 25, 41, 26, 28,
15, 36] have been devised to improve the performance given
by TCP. However, these approaches have had only limited
success.

End systems incur CPU overhead for processing each net-
work packet or frame. These per packet costs include the
overhead to execute the TCP/IP protocol code, allocate
and release memory buffers, and field device interrupts for
packet arrival and transmit completion. TCP/IP implemen-
tations incur additional costs for each byte of data sent or
received (Figure 6). These include overheads to move data
within the end system, to compute checksums and to detect
data corruption in the network.

Socket Layer Copy

TCP/IP Protocol
Overhead

Computation
Checksum

Network Driver
Overhead

(Re)Transmission
Overhead

DMA of data

Socket Layer Copy

TCP/IP Protocol
Overhead

Checksum
Computation

Network Driver
Overhead

Sender Receiver

Figure 6. Overheads in the traditional TCP/IP
implementation

A number of approaches have been proposed to minimize
the per-packet and the per-byte overhead in the TCP/IP pro-
tocol implementation.

Jumbo Frames: Many Gigabit Ethernet vendors have fol-
lowed proposals such as “Jumbo” frames, where the frame
size is increased up to 9000 bytes in contrast to the 1500
bytes frames used by traditional Ethernet. This approach
reduces the number of interrupts on the sending and the re-
ceiving sides for large messages. However this approach is
not very beneficial for smaller messages. Also, this raises
compatibility issues with the existing Ethernet base.

Interrupt Coalescing: Another approach to reduce the
per-packet overhead is by using interrupt coalescing, where
a number of interrupts are consolidated into a single inter-
rupt, thus reducing the interrupt handling cost significantly.
Though this approach is good for bandwidth sensitive ap-
plications where large streams of data keep coming in, it
degrades the performance for latency sensitive applications
due to the added delay for interrupt coalescing.

Checksum Offload: This approach deals with offloading
the checksum calculation and verification to hardware. This
approach is used in a number of implementations and is
able to significantly reduce the cost for checksum calcula-
tion and verification. However, this does not deal with the
other overheads in the TCP/IP protocol.

2.4 Overview of Virtual Interface Architecture

In the past couple of years, a large number of user-
level protocols have been developed to reduce the gap be-
tween the performance capabilities of the physical network
and that experienced by the application. VIA specifica-
tions [16], as an industry standard, had been developed and
standardized mainly by Compaq, Intel and Microsoft with
a similar idea. Since VIA has a very low level API which
provides only the minimal communication primitives to the
programmer, developing applications on VIA is considered
a challenge in itself.

The Virtual Interface Architecture is comprised of four ba-
sic components: Virtual Interfaces, Completion Queues, VI
Providers and VI Consumers. The organization of these
components is illustrated in Figure 7.

The VI provider is composed of a physical network
adapter and a software kernel agent. The VI consumer is
generally composed of an application program and an op-
erating system communication facility. A Virtual Interface
consists of a pair of Work Queues: a send queue and a re-
ceive queue. VI Consumers post requests, in the form of de-
scriptors, on the work queues to send or receive data. A de-
scriptor is a memory structure that contains all the informa-
tion that the VI provider needs to process the request, such

 VI Network Adapter

Application

OS Communication Interface

VI User Agent

VI Provider

Kernel Mode

User Mode

VI Consumer

VI VI VI CQ

Send/Recv/RDMA Read/
RDMAWrite

Open/Connect/
Register Memory

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

C
O

M
PL

E
T

IO
N

SE
N

D

 VI Kernel Agent

Figure 7. The Virtual Interface (VI) Architec-
tural Model

as pointers to data buffers. VI providers asynchronously
process the posted descriptors and mark them with a status
value when completed. VI consumers remove completed
descriptors from the work queues and use them for subse-
quent requests. Each work queue has an associated doorbell
that is used to notify the VI network adapter that a new de-
scriptor has been posted to a work queue. The doorbell is
directly implemented by the adapter and requires no Oper-
ating System intervention to operate. A Completion Queue
allows a VI Consumer to coalesce notification of descrip-
tor completions from the work queues of multiple VIs in a
single location.

VIA has been designed to provide high-bandwidth and
low-latency support over a System Area Network (SAN).
Since it’s introduction, implementations of VIA have been
made available on a variety of platforms. M-VIA (Mod-
ular VIA) [1] emulates the VIA specification by software
for legacy Fast Ethernet and Gigabit Ethernet adapters. B-
VIA (Berkeley VIA) [10] implementation supports the VIA
specification on Myrinet, by modifying its firmware. Fi-
nally, GigaNet Incorporation (now called Emulex Corpo-
ration) has developed a proprietary VI-aware NIC called
cLAN [18]. Our substrate has been implemented and eval-
uated on the GigaNet cLAN cards.

3 Sockets over VIA

In this section we give a brief overview of the existing
socket implementations over VIA. We present the design
issues of our Sockets over VIA layer, termed as SocketVIA,
and give some insight on the performance enhancement
techniques used in SocketVIA.

3.1 Previous Implementations of Socket over VIA

Inspite of the development of low-latency and high-
bandwidth user-level protocols, a large number of appli-
cations have been developed previously on protocols such
as TCP and UDP. Some of these applications took years to
develop. Trying to rewrite these applications on user-level
protocols is highly time-consuming and impractical. On the
other hand, the sockets interface is widely used by a variety
of applications written on protocols such as TCP and UDP.
Implementing a socket layer over VIA can ease application
development, enable existing applications to seamlessly run
on VIA networks, and deliver high performance. At this
point, the following open question arises:

Is there some way by which we can continue to use these
applications and at the same time take advantage of the low-
latency and high-bandwidth provided by the user-level pro-
tocols such as VIA?

The traditional communication architecture (Figure 8) in-
volves just the application and the corresponding libraries
in the user space, while the TCP/UDP, IP, etc., layers are
present in the kernel space. This approach results in not
only multiple copies in the TCP/IP protocol stack, but also
context switches to the kernel for every communication
step, thus adding a significant overhead.

Sockets

TCP/UDP

IP

NIC Driver

LibraryUser Space

Hardware

Application

Kernel Space

NIC

Figure 8. The Traditional Communication Ar-
chitecture with the Sockets layer in the ker-
nel space together with the TCP/UCP, IP and
other layers

The LANE (LAN Emulator) driver supplied by GigaNet
for its cLAN adapters [18] uses a simple approach. They
provide an IP-to-VI layer which basically maps the IP layer

to be compatible with their VI-aware cLAN NICs (Fig-
ure 9). However, TCP is still there, so are the multiple
copies. Further, the whole setup is in the kernel, so the ker-
nel context switch also is still there. Thus, it can be easily
seen that, though this approach gives us the required com-
patibility, it does not give us any performance improvement.

Sockets

TCP/UDP

IP

IP−to−VI Layer

NIC Driver

Application

Hardware

Kernel Space

VI−NIC

LibraryUser Space

Figure 9. The LAN Emulator (LANE) Commu-
nication Architecture developed by GigaNet,
with an IP-to-VI layer to map IP packets to be
understood by their VI-aware NIC

To take advantage of the high-performance of VIA, two es-
sential changes are required. Firstly, the TCP layer has to be
removed, thus avoiding the multiple copies. This requires
porting the sockets library directly on to VIA. Secondly, the
substrate has to be moved from the kernel space to the user-
space, in order to avoid the additional context switch to the
kernel for every communication step, in essence removing
the kernel from the critical message passing path.

There are implementations of socket layer over various
User-Level Protocols [31, 39, 5] including VIA. However,
these are not publicly available due to stability issues. Fur-
ther, these do not consider certain issues such as deadlocks
in sockets, supporting data streaming for TCP sockets and
performance enhancement techniques such as Lazy Dereg-
istration (explained in the later sections). Also, some im-
plementations of Sockets over VIA use the kernel support
for distinguishing between communication sockets and lo-
cal file reads and writes. This adds a kernel context switch
in the critical path, thus hampering the performance. Keep-
ing in mind these requirements, we have implemented our
own Sockets library over VIA, termed as socketVIA (Fig-
ure 10).

Library

VIA Kernel Agent

Application

Network

VIPL

SocketVIA

Figure 10. The proposed solution with Sock-
ets implemented on top of the Virtual Inter-
face Architecture (VIA) in user-space, thus
getting rid of the multiple copies and kernel
context switches of TCP/IP

3.2 Substrate Design

TCP has been developed to obtain a reliable, secure and
fault tolerant base protocol to develop networking applica-
tions. On the other hand, the motivation for developing VIA
is to obtain a high performance protocol to support commu-
nication intensive applications. We have identified several
significant mismatches in these two protocols and imple-
mented solutions so as to maintain the functionality and
semantics similar to that of TCP, while not degrading the
performance obtained from using VIA significantly.

3.2.1 Connection Management

For connection management, applications built on TCP use
the listen() and accept() calls. The listen() call
semantics dictate that, the Operating System be informed
when a connection request arrives, the request be kept in a
queue, and the client be informed of the status. The function
returns as soon as the Operating System is informed to do
so. The accept() call checks if a request has arrived and
if it has not, waits (blocks) for one.

On the other hand, VIPL (VI Provider Library) supports
two primitive calls – VipConnectWait() and Vip-
ConnectAccept(). VipConnectWait() call blocks
till the connection request arrives and the control is returned
to the user only after the request arrives. Since the number
of connections cannot be known before hand, asynchronous

connection requests cannot be dealt with this blocking func-
tion.

As we can see, there is no clear correspondence between
the API supported by TCP and VIA. A number of ap-
proaches are possible to bridge this mismatch between the
two APIs.

Peer-to-Peer Connections: One approach would be to
use peer-to-peer connection primitives specific to the Gi-
gaNet cLAN implementation of VIA such as VipPeer-
ConnectRequest(). The advantage with these calls is
that, on the arrival of connection requests, they are queued
by the GigaNet cLAN NIC, similar to that done by the Op-
erating System in the listen() call. However, though
these calls are non-blocking, they have been developed for
the peer-to-peer communication model, where the accept-
ing node knows exactly from whom the connection request
is going to come. This does not fit in exactly with the client-
server model of TCP, since in the client-server model, the
server might not know the client from which the connec-
tion request is “expected”. This difference is apparent in
the wild-card accept() call, where the server can accept
a connection from any client.

Connection Thread: To deal with this mismatch, we have
used a multi-threaded approach (Figure 11). In the solution
proposed, as soon as a listen() call is encountered, a
separate thread is spawned. This thread will be referred to
as the Connection Thread in all future references. When
this thread is created, it calls the VipConnectWait()
function and waits for the connection request. On the other
hand, the main thread can carry on with its computation.

Client Server

connect()

listen()

signal

accept()

accept()

Figure 11. SocketVIA Connection Manage-
ment: A Multi-Threaded Approach

The issues to be noted in this approach are the CPU cy-
cles used by the connection thread and the connection time.
One approach is to make the connection thread poll for con-

nections, which would result in a high CPU usage (about
50%) for the connection thread together with the synchro-
nization cost between the two threads (upto 20 � secs). Al-
ternatively, making the connection thread sleep would de-
crease the CPU cycles used, but would increase the con-
nection time to the order of the Operating System schedul-
ing granularity (order of milliseconds). We have looked at
other options like polling for sometime and sleeping, but
they have not been found to give any significant benefit, so
we have restrained ourself to the second option on the as-
sumption that the connection time delay is not a bottleneck
for data intensive applications.

3.2.2 Asynchronous Message Arrivals

VIA has a descriptor pre-posting constraint. When a mes-
sage arrives at a node, this node has to make sure that
an appropriate descriptor has been posted to inform the
NIC about where the incoming message is supposed to be
placed. If this descriptor is not posted, the message is
dropped. Further, if it is a reliable connection, this might
even break the connection.

In TCP, since the incoming message is buffered at the ker-
nel, there need not be a perfect synchronization between
the sender and the receiver for sending data messages. This
mandates that the socket layer has to buffer messages ar-
riving asynchronously. To handle this, we have considered
several mechanisms to post new descriptors:

� Interrupts

� Separate Communication Thread

� Rendezvous Approach

� Eager with Flow Control

Interrupts: In the first option, a number of descriptors
are posted on the receiver side to handle asynchronous mes-
sage arrivals. As soon as a message arrives, am interrupt is
generated by the NIC, which calls a function to handle this
message and post another descriptor. This method can be
used on programmable NICs such as Myrinet to generate a
hardware interrupt as soon as the message arrives. However,
this approach cannot be used here, as GigaNet cLAN cards
are not programmable and do not support the notification
facility.

Separate Communication Thread: The second option
was using a separate connection thread to keep polling for
completed descriptors. This was evaluated and found to be
very costly. With both the communication thread and the
main application thread polling, the synchronization cost of

the threads itself comes to about 20 � secs. In case of block-
ing threads, the Operating System scheduling granularity
makes the response time too coarse for any performance
benefit.

Rendezvous Approach: The third approach we looked
at was the traditional rendezvous approach [22] where the
sender and the receiver are explicitly synchronized (Fig-
ure 12). Once the sender sends the request, it blocks till
it receives an acknowledgment from the receiver. The re-
ceiver on the other hand checks for the request when it calls
the read() call, posts two descriptors – one for the incom-
ing data message, one for the next request, and sends back
the acknowledgment to the sender. The sender on receiving
the acknowledgment, sends the data message. Effectively,
the sender is blocked until the receiver has synchronized
and once this is done, it is allowed to send the actual data
message. This gets an additional synchronization cost in the
latency.

SQ RQ RQSQ

Sender Receiver

Request

Ack

Data

Figure 12. The Rendezvous Approach: Ex-
plicit synchronization between the sender
and the receiver before any data transfer
takes place

Though this approach looks straight forward, it has a num-
ber of issues associated with it. TCP supports data stream-
ing. If the sender sends 10 bytes of data, TCP allows the
receiver to read it as two sets of 5 bytes each, potentially
into two different buffers. But, this option will disable this
approach.

Another issue with this approach is the possibility of dead-
locks. When the sender wants to send a data message, it first
sends a request and waits for an acknowledgment, which is
sent only when the receiver calls a receive. Consider the
case when both the nodes want to send data to each other.
Node #1 calls write1 and read2 in that order, and Node #2
calls write2 and read1. Note that TCP allows this as the in-
coming data message is stored in temporary buffers. Now,

using rendezvous in a case like this, Node #1 blocks on
write1 waiting for an acknowledgment from Node #2, so
read2 is not called. Similarly, Node #2 blocks on write2
waiting for an acknowledgment from Node #1, so read1 is
not called. Thus, a deadlock (Figure 13).

 SQ RQ SQ RQ

Request

Sender Receiver

Request

Waiting
for Ack

Waiting
for Ack

Figure 13. Deadlock in the Rendezvous Ap-
proach: Multiple Outstanding writes

Eager with Flow Control: In this project, we have im-
plemented a mechanism similar to the eager approach of
MPI [22], but with a flow control mechanism (Figure 14).
In this mechanism, the receiver initially posts a descrip-
tor. When the sender wants to send a data message, it goes
ahead and sends the message, but for the second data mes-
sage, it waits for an acknowledgment from the receiver, say-
ing that another descriptor has been posted. Once this ac-
knowledgment has been received, the sender can send the
next message. The receiver side has to make sure that there
is a descriptor posted for one asynchronous message. When
a data message comes in, it uses up the pre-posted descrip-
tor and is stored in a temporary buffer. Once the receiver
calls the receive function, the data is copied into the user
buffer, another descriptor is posted and an acknowledgment
sent back to the sender. This involves an extra copy on the
receiver side.

Note that even this solution is not completely free from
the possibility of deadlocks. We have extended this idea
by using more than one pre-posted descriptors. However,
increasing the number of descriptors only reduces the pos-
sibility of a deadlock, but does not avoid it completely. Note
that, so is the case with the normal sockets implementa-
tion of over TCP/IP, where the sockets layer handles asyn-
chronous writes only till it has space in the socket buffer.
Once it is filled up, it results in a deadlock.

We have extended the idea of “Eager with Flow Control”,
by pre-posting

�
descriptors instead of one, and allowing

the sender to send up to
�

asynchronous messages before

SQ RQ RQSQ

Sender Receiver

Ack

Data

Figure 14. Eager with Flow Control approach.
The sender sends the first data message
asynchronously, but waits for the acknowl-
edgment to send the next data message

waiting for an acknowledgment (Figure 15). This approach
pipelines the data copy on the receiver side, thus reducing
its effect on bandwidth. One main problem with applying
this algorithm directly is that the acknowledgment message
also uses up a descriptor and there is no way that the re-
ceiver would know when the descriptor is reposted unless
the sender sends back another acknowledgment thus form-
ing a cycle. To avoid this problem, we have investigated the
following potential solutions:

SQ RQ SQ RQ
Sender Receiver

Data

Data

Data

Data

Data

Data
Ack

Ack

Ack

Ack

Ack

Ack

Figure 15. Eager with Flow Control approach
extended to handle multiple outstanding write
requests

Block the send call: In this approach, the send call is
blocked till an acknowledgment is received from the re-
ceiver. In essence, the time taken for a send() call would
increase to that of a round trip latency. Also, it requires
synchronization from the receiver. Further, this approach

would throw away all the benefit obtained in avoiding dead-
locks.

Post 2
�

descriptors: In this approach, 2
�

descriptors
are posted where

�
is the number of credits given, which

is analogous to window size in TCP. It can be proved that
at any point of time, the number of unattended data and
acknowledgment messages will not exceed 2

�
. The only

problem with this solution is the number of buffers regis-
tered. Since the arrival of a data message or the acknowl-
edgment message cannot be predicted, a buffer has to be
allocated corresponding to each of the descriptors.

Two VIs per connection: In this approach, the problem of
additional buffers is avoided by using two different Virtual
Interfaces, one for the data messages and the other for the
acknowledgments. However, this would result in a decrease
in performance [6].

Piggy Backing of Acknowledgments: In this approach,
the acknowledgment is piggy backed on the returning data
message. Though this approach is used in the substrate, we
cannot rely only on this since this would not be possible for
applications having one-way communication.

In our implementation, we use a hybrid of piggy-backing
and �

�
descriptors per connection.

3.2.3 Problems with fork()

The fork() system call has an inherent property called copy-
on-write. When a process forks to form another process,
both of them share the same physical address till one of
them attempts to write to it. As soon as one of them attempts
to write to it, a copy of the physical address page is created.
Now, the new physical address space is not registered, so
this would return an error (Figure 16).

This problem requires us to make sure that a buffer is regis-
tered every time we try to send some data from it. However,
the problem is not just restricted to this case. It is possible
that the sender can modify the data during the actual send-
ing.

It is too restrictive if the user applications are not allowed
to create child processes while they are using VIA. We have
come up with a solution which avoids this problem in two
approaches – either by copying the data into a temporary
registered buffer, or by blocking the send() call during
the data transfer.

Copying Data: In this approach, the data is copied into
a temporary buffer before transmitting it. Since this buffer
belongs to the sockets interface and is not written to by the
process, the copy-on-write problem does not arise in this
approach.

Blocking the send() call: In this approach, the send()

R
RR p

RR p

RR p

PASVAS PASVAS PASVAS

R’
v R ’

v

R

(a) Before fork() (b) After fork() (c) Copy−on−write

VAS: Virtual Address Space
PAS: Physical Address Space

 p
’

Rv Rv
Rv

Figure 16. The Copy-on-write problem asso-
ciated with the fork() system call. The parent
and the child process share the same physi-
cal address space till one of the attempts to
write to it, when a copy of the physical page
is made

call is blocked till the entire data is transmitted by the
sockets layer. In this approach, since the thread calling
the send() call is blocked, it cannot write to the buffer
through which the data is being sent. On the other hand, if
the forked thread tries to write to the buffer from which the
data is being sent, a new copy of the physical page is cre-
ated and the unregistered copy is given to the forked thread.
Therefore this does not effect the data transfer in progress.
However, we have to make sure that each time we try to
send data, the buffer we are sending from is registered.

3.2.4 UNIX sockets compatibility

In SocketVIA, socket functions that have just one interpre-
tation, such as listen() and accept() are mapped
onto the corresponding VIA functions. These can be done
in a number of ways.

� Function Overriding

� Minor Changes in the Application

� Overloading Function calls

Function Overriding: In this approach, the TCP func-
tion calls are directly mapped to the corresponding VIA
function calls by overriding them. This approach works

for calls such as listen(), accept(), etc., which have
only one interpretation. But, for calls such as read() and
write(), which can be used for communication as well
as file access, this approach does not work.

Minor Changes to the Application: In this approach, a
parameter is added to the functions which allows the sub-
strate to distinguish between a call to the VIPL (Virtual In-
terface Provider Library) and one to the libc library. This
approach gives the flexibility of using both sockets over
VIA as well as sockets over TCP. However, since we didn’t
want to make any changes in the application, we did not go
ahead with this approach.

Function Space Overloading: In this approach, no
changes are made to the application. Functions such as
read() and write() can be used for communication as
well as for file access. To distinguish these uses, SocketVIA
keeps track of file descriptors created using communication
specific calls. If a request uses one of the file descriptors
that have been created using a communication specific call,
the control is passed to the socket layer. For the rest, the
control is passed to the standard I/O library.

3.3 Performance Enhancement Techniques

Due to the mismatches present between the API of
TCP/UDP and VIA, as we have mentioned, several design
issues had to be faced and changes made to the implemen-
tation, in order to bridge these mismatches. Due to these,
the performance given by the sockets layer loses some of its
performance. In order to improve the performance given by
socketVIA, we have come up with several techniques.

3.3.1 Registration/Copy Hybrid

VIA requires that data be sent from pinned buffers so that
the pages are not swapped out during the course of the data
transfer. Similar is the case on the receiver side. We have
examined two potential solutions to address this problem.

Temporary Registered Buffer: In this solution, a tempo-
rary buffer is registered initially. When send() is called,
the data is copied into this temporary buffer and the data
transfer is carried out from this buffer. Once the acknowl-
edgment is received, the buffer is free for reuse and can be
used for the next transfer. In this case, the user buffer is not
pinned at all, so the copy-on-write problem does not arise.

User Buffer Copy: In this solution, the user buffer itself
is pinned and the data transfer done directly from the user
buffer. Once the acknowledgment for this transfer is re-
ceived, the buffer is free to be deregistered. In this case, the
send() call is blocked till the data transfer completes, so
that the buffer is not modified before the transfer completes.

Both these solutions have their own advantages and disad-
vantages. Memory registration is very costly for small mes-
sages, whereas memory copy becomes costlier for larger
messages. On the receiver side, a copy is inevitable in order
to support data streaming, but on the sender side a hybrid
of these approaches is possible. We use a memory copy for
small messages (less than 2Kbytes) and registration of the
user buffer for large messages (greater than 2Kbytes).

3.3.2 Lazy Deregistration

Since the user buffer is being registered (for large message
sizes) before sending the data, there is a possibility that the
next time the user sends a message, it might be in the same
buffer (or a subset of the buffer). This is quite common in
applications. Based on this observation, certain enhance-
ments for the implementation are possible. For large mes-
sage sizes, when the send() is called, we register the user
buffer and send the data, but do not deregister the buffer im-
mediately. When the next send() is called, we check if
this buffer is the same (or a subset) as the previously reg-
istered buffer. If it is, we continue with sending the data
without registering the buffer. This enhancement does not
affect the worst case performance, but improves the best
case performance.

3.3.3 Delayed Acknowledgments

The substrate also uses techniques such as delaying the
acknowledgments in order to improve the bandwidth
achieved. Instead of sending an acknowledgment for every
data message received, it sends an acknowledgment mes-
sage when half the window size is used up (Figure 17). This
ensures that there is lesser network traffic and lesser work
done by the sender NIC, thus improving the throughput.

4 Runtime Support for Data Intensive Appli-
cations

As processing power and capacity of disks continue to
increase, the potential for applications to create and store
multi-gigabyte and multi-terabyte datasets is becoming
more feasible. Interactive exploration of such large datasets
is a critical step in many application domains, including
medical applications and engineering applications.

An example from medical domain is digitized microscopy.
The software support required to store, retrieve, and process
digitized slides to provide interactive response times for the
standard behavior of a physical microscope is a challenging
issue [2, 11]. At a basic level, the software system should

 SQ RQ SQ RQ

Sender Receiver

DATA

DATA

DATA

ACK

Figure 17. Delaying Acknowledgments to be
sent only after half the credit size has been
used up.

emulate the use of a physical microscope, including contin-
uously moving the stage and changing magnification. The
processing of client queries requires projecting high reso-
lution data onto a grid of suitable resolution and appropri-
ately compositing pixels mapping onto a single grid point.
The main difficulty in providing the require functionality is
handling of large volumes of image data. With a digitizing
microscope a single 200X spot of a slide at a single depth of
focus can be acquired at a resolution of 1000 by 1000 pix-
els. With a three-byte RGB color value per pixel, an image
at that resolution produces a data size of 3 MB. Digitizing
the complete slide can result in an uncompressed file size of
10.5 GB, corresponding to a single focal plane. Slides are
usually acquired at multiple focal planes, further increas-
ing the size of the dataset. Storage and processing needs
are exacerbated by the fact that hospitals can generate many
thousands of slides per year.

Another example is the iso-surface based rendering of
datasets from reservoir models that involve simulation of
the transport and reaction of various chemicals over many
time steps on a three-dimensional grid that represents the
reservoir. In large scale oil reservoir studies, a scientist
carries out an ensemble of simulations of a given reser-
voir model using different geostatistic model parameters,
well placements, and material porosity values. For exam-
ple, a black-oil (three phase) flow problem on a grid with
9,000 cells involves simulation of seventeen separate vari-
ables, including oil saturation, water pressure, gas pressure,
and water velocity. The values of these variables are out-
put for each node in the grid. For a simulaton of a total of
10,000 time steps, te total output stored is about 6.9 GB.
With several hundred realizations, the total amount of data
easily exceeds several terabytes. In such simulation studies,

iso-surface rendering is a well-suited method to visualize
the density distributions of various elements (e.g., oil, wa-
ter, gas) in a region. A client query retrieves 3-dimensional
grids over a set of time steps. For each time step, a set
of surfaces are extracted from scalar values of the variables
selected by the query and rendered into a 2-dimensional im-
age.

Processing of data in applications that query and ma-
nipulate scientific datasets can often be represented as an
acyclic, coarse grain data flow, from one or more data
sources (e.g., one or more datasets distributed across storage
systems) to the processing nodes to the client. For a given
query, first the data of interest should be retrieved from the
corresponding datasets. The data is then processed via a
sequence of operations on the processing nodes.

4.1 Performance Considerations

For data-intensive applications, performance can be im-
proved in several ways. First, datasets can be declustered
across the system to achieve parallelism in I/O when re-
trieving the data of interest for a query. With good declus-
tering, a query will hit as many disks as possible. Second,
the computational power of the system can be efficiently
used if the application can be designed to exploit data par-
allelism for processing the data. Another factor that can im-
prove the performance, especially in interactive exploration
of datasets, is pipelined execution. By dividing the data into
chunks and pipelining the processing of these chunks, the
overall execution of the application can be decreased. In
many applications, pipelining also provides a mechanism to
gradually create the output data product. In other words, the
user does not have to wait for the processing of the entire
query to be completed; partial results of the query can be
gradually generated. Although this may not actually reduce
the overall response time, such a feature is very effective
in an interactive setting, especially if the region of interest
moves continuously.

Component-based frameworks can provide an effective
environment to address performance issues in data inten-
sive applications. Components can be placed onto differ-
ent computational resources, and task- and data-parallelism
can be achieved by pipelined execution of multiple copies
of these components.

The granularity of the work and the size of data chunks
affect the performance of pipelined execution. The chunk
size should be carefully selected by taking into account the
network bandwidth and latency. As the chunk size is in-
creased, the number of messages required to transfer the
data of interest decreases. In that case, bandwidth becomes
more important than latency. However, with a bigger chunk

size, processing time per chunk also increases. As a result,
the system becomes less responsive, i.e., the frequency of
gradual updates decreases. On the other hand, if the chunk
size is small, the number of messages increases. As a re-
sult, latency may become a dominant factor in the overall
efficiency of the application. Similarly, smaller chunks can
result in better load balance among the copies of application
components, but communication overheads may offset the
performance gain.

4.2 DataCutter

For the evaluation of the SocketVIA implementation, we
used a component-based infrastructure, called DataCut-
ter [7], which is designed to support data intensive ap-
plications in distributed environments. In this section we
briefly describe the DataCutter framework. DataCutter im-
plements a filter-stream programming model for develop-
ing data-intensive applications. In this model, the applica-
tion processing structure is implemented as a set of com-
ponents, referred to as filters, that exchange data through
a stream abstraction. The interface for a filter, consists of
three functions: (1) an initialization function (init), in which
any required resources such as memory for data structures
are allocated and initialized, (2) a processing function (pro-
cess), in which user-defined operations are applied on data
elements, and (3) a finalization function (finalize), in which
the resources allocated in init are released.

Filters are connected via logical streams. A stream de-
notes a uni-directional data flow from one filter (i.e., the
producer) to another (i.e., the consumer). A filter is required
to read data from its input streams and write data to its out-
put streams only. We define a data buffer as an array of data
elements transferred from one filter to another. The current
implementation of the logical stream delivers data in fixed
size buffers, and uses TCP for point-to-point stream com-
munication.

The overall processing structure of an application is real-
ized by a filter group, which is a set of filters connected
through logical streams. When a filter group is instantiated
to process an application query, the runtime system estab-
lishes socket connections between filters placed on different
hosts before starting the execution of the application query.
Filters placed on the same host execute as separate threads.
An application query is handled as a unit of work (UOW) by
the filter group. An example is a visualization of a dataset
from a viewing angle. The processing of a UOW can be
done in a pipelined fashion; different filters can work on dif-
ferent data elements simultaneously. Processing of a UOW
starts when the filtering service calls the filter init function,
which is where any required resources such as memory can
be pre-allocated. Next the process function is called to read

from any input streams, work on data buffers received, and
write to any output streams. A special marker is sent by the
runtime system after the last buffer to mark the end for the
current UOW (see Figure 18(a)). The finalize function is
called after all processing is finished for the current UOW,
to allow release of allocated resources such as scratch space.
The interface functions may be called again to process an-
other UOW.

The programming model provides several abstractions to
facilitate performance optimizations. A transparent filter
copy is a copy of a filter in a filter group (see Figure 18(b)).
The filter copy is transparent in the sense that it shares the
same logical input and output streams of the original filter.
A transparent copy of a filter can be made if the semantics
of the filter group are not affected. That is, the output of a
unit of work should be the same, regardless of the number
of transparent copies. The transparent copies enable data-
parallelism for execution of a single query, while multiple
filter groups allow concurrency among multiple queries.

The filter runtime system maintains the illusion of a single
logical point-to-point stream for communication between a
logical producer filter and a logical consumer filter. It is
responsible for scheduling elements (or buffers) in a data
stream among the transparent copies of a filter. For exam-
ple, in Figure 18(b), if copy ��� issues a buffer write opera-
tion to the logical stream that connects filter � to filter � ,
the buffer can be sent to the copies on �����
	�� or �����	�� . For
distribution between transparent copies, the runtime system
supports a Round-Robin (RR) mechanism and a Demand
Driven (DD) mechanism based on buffer consumption rate.
DD aims to send buffers to the filter that will process them
fastest. When a consumer filter starts processing of a buffer
received from a producer filter, it sends an acknowledgment
message to the producer filter to indicate that the buffer is
being processed. A producer filter chooses the consumer
filter with the minimum number of unacknowledged buffers
to send a data buffer to, thus achieving a better balancing of
the load.

5 Experimental Results

In this paper, we present two groups of results. First, we
look at the peak performance delivered by SocketVIA in the
form of latency and bandwidth micro-benchmarks. Second,
we examine the performance delivered by the substrate on
an application. This evaluation was carried out using a syn-
thetic application implemented using DataCutter in order
to evaluate both latency and bandwidth aspects in a con-
trolled way. The experiments were carried out on a PC clus-
ter which consists of 16 Dell Power Edge 6400 nodes con-
nected by GigaNet cLAN and Fast Ethernet. We use cLAN
1000 Host Adapters and cLAN5300 Cluster switches. Each

P C
uow 0uow 1uow 2

buf buf buf buf

S
host3

F0

F3

host4

F4

F5

host1

P0

host2

P1 host5

C0

(a) (b)

Figure 18. DataCutter stream abstraction and support for copies. (a) Data buffers and end-of-work
markers on a stream. (b) P,F,C filter group instantiated using transparent copies.

node has two 1GHz Pentium III Xeon processors, built
around the ServerWorks ServerSet III HE chipset, which
has a 32-bit 33-MHz PCI bus. These nodes are equipped
with 512MB of SDRAM and 256K L2-level cache. The
Linux kernel version is 2.2.17. For all the experiments, a
credit size of 32 was used in SocketVIA, with each tempo-
rary buffer of size 8Kbytes.

5.1 Micro-Benchmarks

Figure 19 shows the latency achieved by our substrate
compared to that achieved by the traditional implementation
of sockets on top of TCP and a direct VIA implementation
(base VIA). Our sockets layer gives a latency of as low as
9.1 � s, which is very close to that given by VIA. Also, it is
nearly a factor of five improvement over the latency given
by the traditional sockets layer over TCP/IP.

Micro-Benchmarks: Latency

0

20

40

60

80

100

120

140

160

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Msg Size (bytes)

L
at

en
cy

 (
u

s)

VIA
SocketVIA
TCP

Figure 19. Micro-Benchmarks: Latency

Figure 20 shows the bandwidth achieved by our substrate
compared to that of the traditional sockets implementation
and base VIA implementation. SocketVIA achieves a peak
bandwidth of 763Mbps compared to 795Mbps given by
VIA and 510Mbps given by the traditional TCP implemen-
tation.

Micro-Benchmarks: Bandwidth

0

100

200

300

400

500

600

700

800

900

4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

Msg Size (bytes)

B
an

d
w

id
th

 (
M

b
p

s)

VIA
SocketVIA
TCP

Figure 20. Micro-Benchmarks: Bandwidth

It is to be noted that the latency achieved by the sub-
strate for small messages is very close to that achieved by
base VIA. However, as the message size increases, although
our implementation remains significantly better compared
to TCP, its performance relative to base VIA degrades. The
main reason for this is the extra copy required on the re-
ceiver side. However, for a certain class of applications this
copy operation can be avoided. This version of socketVIA
allows the user application to use up the temporary buffer
in which it receives the data, assuming that the application
does not modify the buffer. Also, this requires certain minor
changes in the application in the API. We call this enhanced

version of SocketVIA as Zero-Copy SocketVIA.

Figure 21 and Figure 22 show the latency and bandwidth
achieved by Zero-Copy SocketVIA respectively. Our re-
sults show that there is not much change in the band-
width compared to normal SocketVIA. This shows that the
pipelining achieved by SocketVIA is able to overlap the
time to copy the data with the actual communication time
effectively. For the remaining experiments, the normal ver-
sion of SocketVIA is used.

Latency

0

20

40

60

80

100

120

140

160

4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Msg Size (bytes)

L
at

en
cy

 (
u

s) VIA
SocketVIA
Zero Copy SocketVIA
TCP

Figure 21. Micro-Benchmarks: Latency
achieved by Zero-Copy socketVIA

Bandwidth

0

100

200

300

400

500

600

700

800

900

4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K

Msg Size (bytes)

B
an

d
w

id
th

 (
M

b
p

s)

VIA
SocketVIA
Zero Copy SocketVIA
TCP

Figure 22. Micro-Benchmarks: Bandwidth
achieved by Zero-Copy socketVIA

5.2 Application Performance and Behavior

In this section we look at the impacts caused by High Per-
formance Sockets on the performance and optimality issues
of applications.

5.2.1 Guarantee based Performance Evaluation

In these experiments, we used a synthetic application emu-
lating a visualization server implemented using DataCutter.
This application uses a 4-stage pipeline with a visualiza-
tion filter at the last stage. Also, we executed three copies
of each filter in the pipeline to improve the end bandwidth
(Figure 23). The user visualizes an image at the visualiza-
tion node, on which the visualization filter is placed. The
required data is fetched from a data repository and passed
onto other filters, each of which is placed on a different node
in the system, in the pipeline.

Each image viewed by the user requires 16MB of data to
be retrieved and processed. This data is stored in the form
of chunks with pre-defined size, referred to here as the dis-
tribution block size. For a typical distribution block size, a
complete image is made up of several blocks. When the user
asks for an update to an image, the corresponding chunks
have to be fetched. Each chunk is retrieved as a whole, po-
tentially resulting in some additional unnecessary data to be
transferred over the network.

Filter1 Filter2
Data

Repository

Data
Repository

Multiple

Data

Visualization
Server

Instances

Filter1 Filter2

Filter1 Filter2

Repository

Figure 23. Guarantee Based Performance
Evaluation: Experimental Setup

Two kinds of queries were emulated. The first query is a
complete update or a request for a new image. This requires
all the blocks to be fetched. The second query is a partial
update, in which case the user moves the visualization win-
dow by a small amount. This query requires only the excess
blocks to be fetched. Note that, if the block size is too large,
the partial update will likely take long time, since the entire
block is fetched even if a small portion of one block is re-
quired. However, if the block size is too small, the complete
update will likely take long time, since many small blocks
will need to be retrieved.

Effect on Average Latency with guarantees on Updates
per Second: In the first set of experiments, the user wants
to achieve a certain frame rate (i.e., the number of new im-
ages generated or full updates done per second). With this
constraint, we look at the average latency observed when a
partial update query is submitted. Figures 24 and 25 show
the performance achieved by the application. For a given
frame rate for new images, TCP requires a certain message

size to attain the required bandwidth. With data chunking
done to suit this requirement, the latency for a partial up-
date using TCP would be the latency for this message chunk
(depicted as legend ‘TCP’). With the same chunk size,
SocketVIA inherently achieves a higher performance (leg-
end ‘SocketVIA’). However, SocketVIA requires a much
smaller message size to attain the bandwidth for full up-
dates. Thus, by repartitioning the data taking SocketVIA’s
latency and bandwidth into consideration, the latency can
be further reduced (legend ‘SocketVIA (with DR)’). Fig-
ure 24 shows the performance with no computation. This
experiment emphasizes the actual benefit obtained by using
SocketVIA, without being affected by the presence of com-
putation costs at each node. We observe, here, that TCP
cannot meet an update constraint greater than 3.25 full up-
dates per second. However, SocketVIA (with DR) can still
achieve this frame rate without much degradation in the per-
formance. The results obtained in this experiment show an
improvement of more than 3.5 times without any reparti-
tioning and more than 10 times with repartitioning of data.
Figure 25 depicts the performance with a computation cost
that is linear with message size in the experiments. We had
timed the computation required in the visualization part of
the Virtual Microscope [11] application on DataCutter and
found it to be 18ns per byte of the message. Applications
such as these involving browsing of digitized microscopy
slides have such low computation costs per pixel. These are
the applications that will benefit most from low latency and
high bandwidth substrates. So we have focussed on such
applications in this paper.

Average Latency with Updates per Second Guarantees (No
Computation)

0

500

1000

1500

2000

2500

3000

3500

4000

4 3.75 3.5 3.25 3 2.75 2.5 2.25 2

Updates per Second

L
at

en
cy

 (
u

s)

TCP
SocketVIA
SocketVIA (with DR)

Figure 24. Effect of High Performance Sock-
ets on Average Latency with guarantees on
Updates per Second and No Computation
Cost

In this experiment, even SocketVIA (with DR) is not able
to achieve an update rate greater than 3.25, unlike the pre-

Average Latency with Updates per Second Guarantees (Linear
Computation)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

3.25 3 2.75 2.5 2.25 2

Updates per Second

A
ve

ra
g

e
L

at
en

cy
 (

u
s)

TCP
SocketVIA
SocketVIA (with DR)

Figure 25. Effect of High Performance Sock-
ets on Average Latency with guarantees on
Updates per Second and Linear Computation
Cost

vious experiment. The reason for this is that the bandwidth
given by SocketVIA is bounded by the computation costs
at each node. For this experiment, we observe an improve-
ment of more than 4 and 12 times without and with reparti-
tioning of data, respectively.

Effect on Updates per Second with Latency Guaran-
tees: In the second set of experiments, we try to maxi-
mize the number of full updates per second when a par-
ticular latency is targeted for a partial update query. Fig-
ures 26 and 27 depict the performance achieved by the ap-
plication. For a given latency constraint, TCP cannot have a
block size greater than a certain value. With data chunking
done to suit this requirement, the bandwidth it can achieve
is quite limited as seen in the figure under legend ‘TCP’.
With the same block size, SocketVIA achieves a much bet-
ter performance, shown by legend ‘SocketVIA’. However,
a re-chunking of data that takes the latency and bandwidth
of SocketVIA into consideration results in a much higher
performance, as shown by the performancey numbers for
‘SocketVIA (with DR)’. Figure 26 gives the performance
with no computation, while computation cost, which varies
linearly with the size of the chunk, is introduced in the ex-
periments for Figure 27. With no computation cost, as the
latency constraint becomes as low as 100 � s, TCP drops out.
However, SocketVIA continues to give a performance close
to the peak value. The results of this experiment show an
improvement of more than 6 times without any repartition-
ing of data, and more than 8 times with repartitioning of
data. With a computation cost, we see that for a large la-
tency guarantee, TCP and SocketVIA perform very closely.
The reason for this is the computation cost in the message
path. With a computation cost of 18ns per byte, process-

ing of data becomes a bottleneck with VIA. However, with
TCP, the communication is still the bottleneck. Because of
the same reason, unlike TCP, the frame rate achieved by
SocketVIA does not change very much as the requested la-
tency is decreased. The results for this experiment show a
performance improvement of up to 4 times.

Updates per Second with Latency Guarantees (No
Computation)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

1000 900 800 700 600 500 400 300 200 100

Latency (us)

U
p

d
at

es
 p

er
 S

ec
o

n
d

TCP
SocketVIA
SocketVIA (with DR)

Figure 26. Effect of High Performance Sock-
ets on Updates per Second with Latency
Guarantees and No Computation Cost

Updates per Second with Latency Guarantees (Linear
Computation)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1000 900 800 700 600 500 400 300 200 100

Latency (us)

U
p

d
at

es
 p

er
 S

ec
o

n
d

TCP
SocketVIA
SocketVIA (with DR)

Figure 27. Effect of High Performance Sock-
ets on Updates per Second with Latency
Guarantees and Linear Computation Cost

Effect of Multiple queries on Average Response Time:
In the third set of experiments, we consider a model where
there are two kinds of queries. The first query type is a zoom
or a magnification query, while the second one is a complete
update query. The first query covers a small region of the
image, requiring only 4 data chunks to be retrieved. How-
ever, the second query covers the entire image, hence all the

data chunks should be retrieved and processed. Figures 28
and 29 display the average response time to queries. The
x-axis shows the fraction of queries that correspond to the
second type. The volume of data chunks accessed for each
query depends on the partitioning of the dataset into data
chunks. Since the fraction of queries of each kind may not
be known a priori, we analyze the performance given by
TCP and SocketVIA with different partition sizes. If the
dataset is not partitioned into chunks, a query has to access
the entire data, so the timings do not vary with varying frac-
tions of the queries. The benefit we see for SocketVIA com-
pared to TCP is just the inherent benefit of SocketVIA and
has nothing to do with the partition sizes. However, with a
partitioning of the dataset into smaller chunks, the rate of in-
crease in the response time is very high for TCP compared
to SocketVIA. Therefore, for any given average response
time, SocketVIA can tolerate a higher variation in the frac-
tion of different query types than TCP. For example, for an
average response time of 150ms and 64 partitions per block,
TCP can support a variation from 0% to 60%, but fails after
that. However, for the same constraint, SocketVIA can sup-
port a variation from 0% to 90% before failing. This shows
that in cases where the block size cannot be pre-defined, or
just an estimate of the block size is available, SocketVIA
can do much better.

Effect of Multiple Queries on Average Response Time (No
Computation)

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of the Complete Update Query

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s)

No Partitions (SocketVIA)
8 Partitions (SocketVIA)
64 Partitions (SocketVIA)
No Partitions (TCP)
8 Partitions (TCP)
64 Partitions (TCP)

Figure 28. Effect of High Performance Sock-
ets on Updates per Second with Latency
Guarantees and No Computation Cost

5.2.2 Effect of SocketVIA on Heterogeneous Clusters

In this experiment, we analyze the effect of SocketVIA on
a cluster with a collection of heterogeneous compute nodes.
We emulate slower nodes in the network by making some of
the nodes do the processing on the data more than once. For
protocols like TCP, which is host-based, a decrease in the

Effect of Multiple Queries on Average Response Time (Linear
Computation)

0

100

200

300

400

500

600

700

800

900

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of the Complete Update Query

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
s)

No Partitions (SocketVIA)
8 Partitions (SocketVIA)
64 Partitions (SocketVIA)
No Partitions (TCP)
8 Partitions (TCP)
64 Partitions (TCP)

Figure 29. Effect of High Performance Sock-
ets on Updates per Second with Latency
Guarantees and Linear Computation Cost

processing speed would result in a degradation in the com-
munication time, together with a degradation in the com-
putation time. However, in this experiment, we assume
that the communication time remains constant and only the
computation time varies.

Repository
 and

 Load Balancer

Computation
 Node

Data

Slower
Computation Node

Figure 30. Effect of Heterogeneous Clusters:
Experimental Setup

For this experiment, we examine the impact on perfor-
mance of the round-robin (RR) buffer scheduling in Data-
Cutter when TCP and SocketVIA are employed. In order to
achieve perfect pipelining, the time taken to transfer the data
to a node should be equal to the processing time of the data
on each of the nodes. For this experiment, we have consid-
ered load balancing between the filters of the Visualization
Application (the first nodes in the pipeline, Figure 30). The
processing time of the data in each filter is linear with mes-
sage size (18ns per byte of message). With TCP, a perfect
pipeline was observed to be achieved by 16KB message.
But, with SocketVIA, this was achieved by 2KB messages.
Thus, load balancing can be done at a much finer granular-

Delay due to Heterogeneity in the Cluster

0

200

400

600

800

1000

1200

1400

2 4 8

Factor of Heterogeneity

D
el

ay
 P

er
 N

o
d

e
(u

s)

SocketVIA
TCP

Figure 31. Effect of Heterogeneity in Process-
ing Speed on Load Balancing

ity.

Figure 31 shows the amount of time wasted per fast node,
with increasing factor of heterogeneity in the network. The
factor of heterogeneity is the ratio of the processing speeds
of the fastest and the slowest processors. The results for this
experiment show that with SocketVIA, the amount of time
wasted falls by a factor of 8 compared to TCP.

6 Related Work

In this section, we discuss some of the related work done
in the area of High Performance Sockets.

Hemal V. Shah et al.[39] and Jin-Soo Kim et al.[31] de-
scribed the implementation of High Performance Sockets
and Remote Procedure Call (RPC) over Virtual Interface
Architecture (VIA). However, these works did not explic-
itly consider certain aspects in the design of the sockets
interface such as deadlocks associated with the standard
rendezvous approach and certain performance enhancement
techniques such as Lazy Deregistration (also known as Pin-
Down Cache) in their design (mentioned in the Sockets over
VIA section). Also, these implementations use kernel sup-
port to distinguish between the communication sockets and
local file reads and writes. This adds an additional kernel
context switch in the critical message passing path, thus
hampering the performance. Finally, these implementations
are not publicly available due to stability issues.

In this paper, we give a user-level High Performance Sock-
ets implementation, whixh tries to add-on to their findings
by developing additional techniques for a more efficient
Stream Sockets implementation over the Virtual Interface
Architecture (VIA).

Together with the user-level sockets approach, several in-
dustries have started working on hardware support to en-
hance the performance of TCP sockets based applications.
The TCP Offload Engine (TOE) is one such effort by Intel
Corporation. TOE is a complete offload of the entire TCP
stack including the sockets layer onto hardware. Its a chip
compatible with the Gigabit Ethernet cards and is capable
of giving a bandwidth as high as 940Mbps and a message
processing latency as low as 2-4 � secs for 4 byte messages,
all this with as low as a 37% CPU utilization.

7 Conclusions

In this paper we present the design and implementation of
a socket layer on top of VIA (SocketVIA) to support appli-
cations implemented using sockets on TCP/IP. Our exper-
imental evaluation of the performance of the implementa-
tion show that SocketVIA achieves a latency of 9.1 � s for
4 byte messages, compared to 45 � s by TCP, and a peak
bandwidth of 763Mbps compared to 510Mbps given by
TCP. We also experimentally evaluate SocketVIA using a
component-based framework, namely DataCutter and show
that the different performance characterictics of SocketVIA
allow applications to do more efficient partitioning of data
at the source nodes, thus further improving their perfor-
mance. Our experiments show that this can result in per-
formance improvements of up to an order of magnitude for
some cases.

References

[1] M-VIA: A High Performance Modular VIA for Linux.

[2] A. Afework, M. D. Beynon, F. Bustamante, A. De-
marzo, R. Ferreira, R. Miller, M. Silberman, J. Saltz,
A. Sussman, and H. Tsang. Digital dynamic
telepathology - the Virtual Microscope. In Pro-
ceedings of the 1998 AMIA Annual Fall Symposium.
American Medical Informatics Association, Novem-
ber 1998.

[3] Mark Allman and Aaron Falk. On the Effective Eval-
uation of TCP.

[4] Infiniband Trade Association. http://www.
infinibandta.org.

[5] P. Balaji, P. Shivam, P. Wyckoff, and D.K. Panda. High
Performance User Level Sockets over Gigabit Ether-
net. In Cluster Computing, September 2002.

[6] M. Banikazemi, J. Liu, S. Kutlug, A. Ramakrishnan,
P. Sadayappan, H. Shah, and D. K. Panda. VIBe: A

Micro-benchmark for evaluating the Virtual Interface
Architecture (VIA) implementations. In Proceedings
of IPDPS, April 2001.

[7] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang,
A. Sussman, and J. Saltz. Distributed processing of
very large datasets with DataCutter. Parallel Comput-
ing, October 2001.

[8] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.
http://www.myricom.com.

[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W. K. Su.
Myrinet: A Gigabit-per-Second Local Area Network.

[10] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA:
An Implementation and Analysis of Virtual Inter-
face Architecture. In Proceedings of Supercomputing,
1998.

[11] U. Catalyurek, M. D. Beynon, C. Chang, T. Kurc,
A. Sussman, and J. Saltz. The virtual microscope.
IEEE Transactions on Information Technology in
Biomedicine. To appear.

[12] Common Component Architecture Forum.
http://www.cca-forum.org.

[13] Jeff Chase, Andrew Gallatin, and Ken Yocum. End-
System Optimizations for High-Speed TCP.

[14] Guo Chuanxiong and Zheng Shaoren. Analysis and
Evaluation of the TCP/IP Protocol Stack of Linux.

[15] David D. Clark and David L. Tennenhouse. Architec-
tural Considerations for a New Generation of Proto-
cols.

[16] Compaq, Intel Corporation, and Microsoft Corpora-
tion. Virtual Interface Architecture (VIA) Specifica-
tions.

[17] GigaNet Corporations. http://www.giganet.com.

[18] GigaNet Corporations. cLAN for Linux: Software
Users’ Guide.

[19] GigaNet Corporations. http://www.giganet.com.

[20] GigaNet Corporations. cLAN for Linux: Software
Users’ Guide.

[21] Myricom Corporations. The GM Message Passing
System.

[22] MPI Forum. MPI: A Message Passing Interface. In
Proceedings of Supercomputing, 1993.

[23] H. Frazier and H. Johnson. Gigabit Ethernet: From
100 to 1000Mbps.

[24] H. Frazier and H. Johnson. Gigabit Ethernet: From
100 to 1000Mbps.

[25] Andrew Gallatin, Jeff Chase, and Ken Yocum.
Trapeze/IP: TCP/IP at Near-Gigabit Speeds.

[26] Robert Horst. IP Storage and the CPU Consumption
Myth.

[27] Jau-Hsiung Huang and Chi-Wen Chen. On Per-
formance Measurements of TCP/IP and its Device
Driver.

[28] Jonathan Kay and Joseph Pasquale. Measurement,
Analysis and Improvement of UDP/IP Throughput for
the DECstation 5000.

[29] Jonathan Kay and Joseph Pasquale. The Importance of
Non-Data Touching Processing Overheads in TCP/IP.

[30] Hyok Kim, Hongki Sung, and Hoonbock Lee. Perfor-
mance Analysis of the TCP/IP Protocol under UNIX
Operating Systems for High Performance Computing
and Communications. In the Proceedings of Interna-
tional Conference on High Performance Computing
(HPC), 1997.

[31] J. S. Kim, K. Kim, and S. I. Jung. SOVIA: A User-
level Sockets Layer over Virtual Interface Architec-
ture. In Proceedings of Cluster Computing, 2001.

[32] Evangelos P. Markatos. Speeding up TCP/IP: Faster
Processors are not Enough.

[33] David Mosberger, Larry L. Peterson, Patrick G.
Bridges, and Sean O’Malley. Analysis of Techniques
to Improve Protocol Processing Latency. Technical re-
port, University of Arizona, 1996.

[34] R. Oldfield and D. Kotz. Armada: A parallel file
system for computational. In Proceedings of CC-
Grid2001, May 2001.

[35] S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations: Illinois Fast Messages
(FM). In Proceedings of Supercomputing, 1995.

[36] Vern Paxson. End-to-end internet packet dynamics.
IEEE/ACM Transactions on Networking, pages 277–
292, 1997.

[37] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and
E. Frachtenberg. The Quadrics Network (QsNet):
High-Performance Clustering Technology. In Hot In-
terconnects, 2001.

[38] B. Plale and K. Schwan. dQUOB: Managing large
data flows using dynamic embedded queries. In
HPDC, August 2000.

[39] H. V. Shah, C. Pu, and R. S. Madukkarumukumana.
High Performance Sockets and RPC over Virtual In-
terface (VI) Architecture. In Proceedings of CANPC
workshop, 1999.

[40] Huseyin Simitci, Chris Malakapalli, and Vamsi Gun-
turu. Evaluation of SCSI over TCP/IP and SCSI over
Fibre Channel Connections.

[41] Evan Speight, Hazim Shafi, and John K. Bennett. WS-
DLite: A Lightweight Alternative to Windows Sock-
ets Direct Path.

