
Efficient Collective Operations using Remote Memory Operations on VIA-Based
Clusters

RINKU GUPTA, PAVAN BALAJI, JAREK NIEPLOCHA, AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-1/03-TR03

Efficient Collective Operations using Remote Memory Operations on VIA-Based
Clusters

�

Rinku Gupta* Pavan Balaji* Dhabaleswar Panda* Jarek Nieplocha
�

*The Ohio State University�
guptar, balaji, panda � @cis.ohio-state.edu

�
Pacific Northwest National Lab

jarek.nieplocha@pnl.com

Abstract

High performance scientific applications require efficient
and fast collective communication operations. Most col-
lective communication operations have been built on top of
point-to-point send/receive primitives. Modern user-level
protocols such as VIA and the emerging InfiniBand archi-
tecture support remote DMA operations. These operations
not only allow data to be moved between the nodes with
low overhead but also allow the user to create and provide
a logical shared memory address space across the nodes.
This feature demonstrates potential for designing high per-
formance and scalable collective operations. In this paper,
we discuss the various design issues that may be the ba-
sis of a RDMA supported collective communication library.
As a proof of concept, we have designed and implemented
the RDMA-based broadcast and the RDMA-based allreduce
operations. For RDMA-based broadcast, we get a benefit of
14%, when compared to send/receive-based broadcast for
4KB data size on a 16 node cluster. We also introduce a
new reduce algorithm called as the Degree-k tree-based re-
duce algorithm. Combining the RDMA mechanism with the
new reduce algorithm shows a benefit of 38% for 4 byte
messages and 9% for 4KB messages on a 16 node cluster
for the allreduce operation. We also introduce analytical
models for broadcast and allreduce to predict the perfor-
mance of this design for large-scale clusters. These ana-
lytical models yield a performance benefit of about 35-40%
for 4 bytes and around 14% for 4KB messages for 512 and
1024 node clusters for the allreduce operation.

1 Introduction

High Speed interconnection networks and exponentially
increasing microprocessor performance have made Net-
works of Workstations (NOWs) an increasingly appealing

�
This Research is supported in part by Department of Energy’s Grant

#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052 and #CCR-0204429.

alternative to mainstream supercomputing for a variety of
computational needs of computation intensive applications.
Commonly known as Cluster Computing systems, these
collections of commodity based components offer a high
performance to price ratio to the end user, attributing to it’s
immense success. High Performance Parallel Programs on
clusters often involve a lot of point-to-point and collective
communication between them in addition to the computa-
tion being carried out.

Past works in the collective communication area have pri-
marily focused on development of optimized and scalable
algorithms on top of point-to-point send/receive operations
[14]. The send/receive model requires explicit host inter-
vention at both the sender and the receiver side. Modern
user-level protocols such as the Virtual Interface Architec-
ture (VIA) [8] and the InfiniBand Architecture (IBA) [1]
offer a variety of models for data transfer. Together with
the send/receive model, they also support the Remote Direct
Memory Access (RDMA) model. The concept of Remote
DMA is used for direct transfer of data between user spaces
without any intervention from the receiving host. In other
words, the RDMA operation is transparent to the receiver.
Remote memory capability through RDMA operations al-
lows the programmer to define a set of buffers across the
nodes of a cluster which can be used as a logical shared
address space to exchange data efficiently. This raises the
following open question.

Can remote memory operations be used to design and im-
plement efficient collective communication operations?

In our earlier work, we provided RDMA support for im-
plementing fast barrier synchronization [6]. In this paper,
we take up the challenge of exploring ways to design data-
intensive collective operations such as broadcast and allre-
duce using the RDMA mechanism. We analyze various
design issues and alternatives for supporting such collec-
tive operations with RDMA supported shared memory. For
the broadcast and allreduce operations, we demonstrate how

2

these issues have been resolved in practice in the design of
high-performance collective communication libraries.

We introduce a new reduce algorithm called the Degree-k
tree-based reduce algorithm. The implementation of allre-
duce using this new algorithm along with the RDMA mech-
anism gives significant performance benefits compared to
the traditional send/receive-based allreduce operation. This
benefit was found to be 38% and 9% for small (4 bytes) and
large (4KB) messages respectively on a 16 node GigaNet
cLAN cluster. To allow MPI applications take advantage
of the new implementation, we linked the RDMA-based
broadcast and allreduce algorithms with MVICH (a popular
MPI implementation for VIA) [5].

We also present analytical models to find the optimal
RDMA-based allreduce algorithm for a given configura-
tion and data size, and to estimate the performance of the
RDMA-based broadcast operation for a given data size. We
use this to predict the performance benefits of using the
RDMA-based collective operations for large clusters. The
analytical model predicts a 20% improvement in the broad-
cast latency for 512-node systems. The predicted perfor-
mance for RDMA-based allreduce shows a benefit of about
35-40% for small messages of 4 bytes and around 14% for
messages of 4KB size for 512 and 1024 node clusters. These
results demonstrate that efficient collective operations can
be built on next generation clusters with networks (such as
InfiniBand and Quadrics) supporting RDMA-based mecha-
nisms.

The remaining part of the paper is organized as follows.
Section 2 provides an overview of VIA [8] and MPI. Sec-
tion 3 discusses the motivation for this work. In Section 4,
we discuss the basic design issues. The broadcast and allre-
duce, along with their design issues are discussed in Section
5. Section 6 provides the analytical models for broadcast
and allreduce. We present the performance results (experi-
mental and analytical) in Section 7 and conclude the paper
in Section 8.

2 Overview of VIA and MPI

2.1 Virtual Interface Architecture

The Virtual Interface Architecture (VIA) has been stan-
dardized as a low latency and high bandwidth user-level
protocol for System Area Networks (SANs).

The VIA architecture mainly aims at reducing the system
processing overhead by decreasing the number of copies as-
sociated with a message transfer and removing the kernel
from the critical path of the message. This is achieved by
providing every consumer process a protected and directly
accessible interface to the network named as a Virtual Inter-
face(VI). Figure 1 illustrates the Virtual Interface Architec-

ture model.

Each VI is a communication endpoint. Two VIs on differ-
ent nodes can be connected to each other to form a logical
bi-directional communication channel. An application can
have multiple VIs. Each VI has a work queue consisting
of send and a receive queue. Applications post requests to
these queues in the form of VIA descriptors.

A VI descriptor is a data structure which contains all the
information needed by the VIA provider to process the re-
quest. Each VI descriptor contains a Control Segment (CS),
zero or more Data Segments (DS) and possibly an Address
Segment (AS). The Data segment of the descriptor contains
the information related to a registered user buffer. The reg-
istered memory can be referenced by the virtual address of
the buffer and the handle that is obtained while registering
that buffer. The VIA specifies two types of data transfer fa-
cilities: the traditional Send and Receive messaging model
and the Remote Direct Memory Access (RDMA) model.
In the send and receive model, each send descriptor on the
local node has to be matched with a receive descriptor on
the remote node. Failure to post a receive descriptor on the
remote node may result in a message being dropped or a
reliable connection broken.

In the RDMA model, the initiator specifies both the vir-
tual address of the local user buffer and that of the remote
user buffer. In this model, a descriptor does not have to be
posted on the receiver side corresponding to every message.
The exception to this case is when the RDMA Write is used
in conjunction with immediate data, a receive descriptor is
consumed at the receiver end.

VIA provides the RDMA Write and RDMA Read features.
In the RDMA Write operation, the node writes directly to
the remote node’s memory. Similarly in the RDMA Read
operation, the node reads directly from the remote node’s
memory. VIA does not support scatter of data, hence the
destination buffer in the case of RDMA Write and RDMA
Read has to be a contiguously registered buffer. The RDMA
Read is an optional VIA feature. Hence, the work done
in this paper exploits only the RDMA Write feature of the
VIA.

Since the introduction of VIA, many software and hard-
ware implementations of VIA have become available.
Berkeley VIA [3], Firm VIA [2], M-VIA [10], Server Net
VIA [13], GigaNet VIA [9] are among these implementa-
tions. In this paper, we use GigaNet VIA, a hardware im-
plementation of VIA for experimental evaluation.

2.2. MPICH/MVICH

Message Passing Interface [12] is the most popular and
widely used standard library specification for developing
message passing high performance applications. It provides

3

 VI Network Adapter

Application

OS Communication Interface

VI User Agent

VI Provider

Kernel Mode

User Mode

VI Consumer

VI VI VI CQ

Send/Recv/RDMA Read/
RDMAWrite

Open/Connect/
Register Memory

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

SE
N

D

R
E

C
E

IV
E

C
O

M
PL

E
T

IO
N

SE
N

D

 VI Kernel Agent

Figure 1. The Virtual Interface Architectural Model

portability and ease of use for the parallel programs written
using the distributed memory programming model.

The MPI standard specifies a rich set of functions for
point-to-point communication and collective communica-
tion, all scoped to a user specified group of processes.

MPI provides abstractions for processes at two levels.
First, processes are named according to the rank of the
group in which the communication is being performed. Sec-
ond, virtual topologies allow Graph or Cartesian naming
of processes that help relate the application semantics to
the message passing semantics in a convenient and efficient
way.

A key concept in MPI is that of a communicator, which
provides a safe message-passing context for the multiple
layers of software within an application that may need to
perform message passing. For example, messages from a
support library will not interfere with the other messages
in the application, provided the support library uses a sep-
arate communicator. Communicators, which house group
and communication context (scope) information, provide an
important measure of safety that is necessary and useful for
building up library-oriented parallel code.

Within a communicator, point-to-point and collective op-
erations are also independent. An application can post sev-
eral non blocking receive operations and then call a barrier
collective operation. Messages used to complete the barrier
operation will be processed independently from the posted
receive operations. Most implementations of MPI simply
use an additional hidden collective communicator to distin-
guish between peer communication and collective commu-
nication.

MVICH-1.0, a modification of MPICH [4] is an imple-

mentation of the MPI-1.0 standard for VIA platforms. It
follows a layered structure with the ADI layer being at the
lowest level. MVICH has no explicit primitives to support
the RDMA write operation. We add explicit support for
RDMA write in the ADI layer. To provide RDMA write
support, we override the MPI Send() primitive itself as and
when needed. We cannot add any new constant parame-
ters to MPI Send() and hence this modification is done by
setting a global variable before calling MPI Send(). This
global variable, visible below the ADI layer, allows the
ADI to choose between message send and RDMA write.
The global variable is by default set to FALSE, which indi-
cates a message send to the ADI layer. We set this primitive
to TRUE when we wish to perform a RDMA write.

3 Background Work

VIA and the emerging InfiniBand architecture support re-
mote DMA operations, which allow the data to be moved
between the user space of the communicating nodes with
low overhead. This concept can be used to create and
provide a logical shared memory address space across the
nodes. Many efficient collective communication algorithms
have been developed that are based on the send-receive
paradigm. But the idea of providing a logical shared mem-
ory address space using the concept of RDMA on a dis-
tributed collection of nodes which has no shared memory
has not been explored in the past. In a shared memory
system, collective algorithms are simple and easy to im-
plement. Consider the barrier collective operation which
is essentially a synchronization operation.

In a shared memory system, a barrier operation can be
done very easily. A section of memory (with multiple lo-
cations) can be reserved for the barrier and initialized to

4

‘0’. Every process writes a ‘1’ to a specified location in
this memory region when it reaches the barrier. Next, the
process reads from other memory locations to see if other
nodes have reached the barrier. This concept is illustrated
in Figure 2 with four processes (P0, P1, P2 and P3) and four
memory locations. The figure shows the memory location
corresponding to each process. In this figure, P0, P2, and P3
have already set the byte in their respective locations when
they encounter the barrier and are waiting for P1 to set the
value in its location. As soon as P1 sets the value in its
location, all processes return from the barrier.

1

0

1

1

P1

P2

P3

P0

Figure 2. Illustration of a simple barrier
scheme using multiple shared memory loca-
tions

If the shared memory is cache coherent, the barrier imple-
mentation turns out to be considerably simpler and faster.
The processes obtain the data by a simple local read opera-
tion without additional complexities.

In a cluster with distributed memory organization, when an
operation like barrier takes place, the nodes typically send
and receive explicit messages. Barrier algorithms (pair-wise
exchange with recursive doubling or gather-followed-by-
broadcast [11]) with multiple phases (steps) are used to im-
plement the barrier. Each of the communication step typi-
cally uses a send and receive primitive to communicate. Re-
ceiving a message from a node is typically an expensive op-
eration. For example, an MPI over VIA implementation has
to take care of unexpected receive messages. When mes-
sages come in, the relevant descriptor has to be searched
for. If there is no descriptor posted, data is sent to an inter-
mediate buffer. When the actual descriptor gets posted, the
data has to be copied from the temporary buffer to the user
buffer. In addition, the layering structure of the libraries
like MVICH adds considerable overhead on the message
latency, making each of the communication step slower and
the entire barrier operation slower.

The method of RDMA communication offers a new mech-

anism for transferring data, by directly writing into the
memory of a remote node. Consider a set of buffers be-
ing allocated at each remote node and their addresses be-
ing exchanged at the start of the program. The collection
of these buffers (together with their addresses) provide a
logical shared memory region (without coherency) for all
nodes. Now, the nodes can exploit the advantages associ-
ated with shared memory-based algorithms to implement
the barrier.

We use this concept to implement the RDMA supported
barrier in one of our earlier works [6]. In this paper, we
extend the concept to implement RDMA-based broadcast
and allreduce.

4 Design Issues for RDMA Collective
Communication Operations

The RDMA mechanism and memory registration con-
straints in VIA open up several major issues for designing
a RDMA based collective communication library. In this
section, we discuss the design issues and present some solu-
tions. In the subsequent chapters we will discuss the design
choices for the particular collective communication opera-
tion and its implementation.

4.1 Registration of buffers and Address
Exchange

It is a requirement in VIA that data be sent and received
from registered buffers. A flexible buffer management
scheme is required for this purpose in the context of collec-
tive operations. In our scheme, we can register the buffers
statically before the operation or dynamically during the op-
eration.

Static Buffer Registration: We statically register a con-
tiguous region in memory for each communicating group
for various types of collective operations. This region is
generally registered when the communicating group is be-
ing created. This contiguous region is split into fixed size
buffers (also called as blocks). Since the memory allocated
is contiguous, only the starting address of the memory (the
address of the first buffer) needs to be communicated to the
other nodes. This address is communicated only once dur-
ing the initialization phase. The length of the buffer space
is the same for all the nodes in the communicating group
for a given operation. There will be certain constraints on
the order of using these buffers, which are discussed in the
later sections. Since the total number of buffers are constant
we will need to provide a mechanism for safe reuse of these
buffers. Since the buffers are pre-registered, the data has to
be copied from these registered buffers to the user buffers
when they become available. Hence, there is a copying cost
involved.

5

Dynamic Buffer Registration: In the dynamic registra-
tion scheme, we allow the use of non-contiguous buffers.
This will make it mandatory to communicate the addresses
of all the buffers to all the nodes for every collective op-
eration instance. Dynamic registration is not done at the
start of the program, but as a part of the operation itself af-
ter the requisite user buffers have been declared. However,
in this approach the buffer addresses need to be communi-
cated whenever the buffers are created dynamically. Hence,
if we register the buffer in the collective operation, we have
the additional overhead of address communication with the
destination set in the collective operation before sending the
actual data to the destination set. However, in this scheme
as the user buffers can be registered during the operation,
there is no additional copying cost involved. The dynamic
buffer registration is also known as the rendez-vous scheme.

4.2 Data Validity at the Receiver end

RDMA write is receiver transparent. It does not require
that the receiver post a descriptor or perform any action in
anticipation of the incoming data and the receiver process
receives no indication that any new data has been written.
When the destination needs the data it goes to the memory
location and fetches the data from there by performing a
local read operation. Thus, we need a mechanism for indi-
cating to the receiver that the data in the memory is valid
data.

There are various ways in which this can be done. One
method is to let the receiver NIC interrupt the receiver once
it receives an RDMA message. But this is a very expensive
operation and thus detrimental to high performance. An-
other approach is to use the immediate field in the RDMA
descriptor and set the field when the last RDMA write oper-
ation has taken place. However, this requires consumption
of a descriptor at the receive end. This also requires that the
receiver be aware of the data coming and post a receive de-
scriptor in advance. This approach disturbs the illusion of
shared memory and is not feasible.

Another approach is to write a special value, known to the
receiver at a pre-defined location in the receiver’s memory
for each buffer in the pool. The value will be written after
the sender has finished writing to the destination memory.
This special value will indicate the data validity at the desti-
nation end. RDMA write supports the reading of data from
non-contiguous locations but does not support scattering of
data in a single RDMA write operation. Thus in a single op-
eration, writing the data to the destination buffer and writing
the special value to a separate buffer location at the desti-
nation end is not possible. To perform the data transfer, we
will need to perform two RDMA writes, the first for sending
the data to destination buffer and the second for updating
the special byte which indicates the validity of data at the

destination end. But performing two RDMA writes is very
expensive. Also, the order in which the destination NIC will
write the data in the destination memory is not fixed. The
destination NIC, on receiving both RDMA writes may de-
cide to write the special byte first, thus defeating the entire
purpose of using special byte for indicating data validity at
the receiver end.

Another approach would be to attach the special byte to
the end of the data. Thus the sender sends the data and
an extra byte with a special value to the destination. The
destination knows when and how much data is arriving and
thus it checks the byte at the end of data and determines the
validity of data.

4.3 Safely reusing the buffers

In the static buffer allocation scheme, buffers are allocated
during the initialization time. No new buffers are allocated
in the course of the program. These finite number of buffers
need to be reused. Before the buffer can be reused, the
sender needs some confirmation from the receiver that the
data from the buffer has been read and the buffer is safe to
be reused. The buffers are contiguous in nature and are used
contiguously. Thus for the same communicating group and
the type of collective operation, the receiver knows when
exactly the buffer is going to be reused by a sender. The re-
ceiver can then explicitly RDMA write a notification to the
sender and the sender can proceed with the writing of data
after it has received the notification.

In the dynamic buffer allocation scheme, the problem of
reusing buffers does not arise as the buffers are allocated
separately for each collective communication operation.

5 Algorithms and Design Choices

In this section, we discuss the design choices with relation
to the RDMA-based broadcast and RDMA-based allreduce
operations.

5.1 The Broadcast Algorithm

Broadcast is a frequently used collective communication
operation involving data distribution. Given a collection of
nodes, the broadcast operation distributes the data present
at one node (called as the root) to all the other nodes in the
communicator.

Higher level libraries use various algorithms to implement
the broadcast operation. Libraries like MVICH use the
binomial algorithm which is very efficient for small-large
clusters. Some libraries use the linear method for imple-
menting broadcast in very small clusters. Currently, bino-
mial broadcast is implemented using the send/receive prim-

6

itives. We implement the same algorithm in RDMA and we
compare the performance of the two.

In the binomial broadcast algorithm, sending of the data is
divided into steps. Consider a cluster of 4 nodes P0, P1, P2,
P3 where node P0 is the root with id 0. Nodes P1, P2, P3
have ids 1, 2, 3 respectively. In Figure 3, in the first step,
root P0 sends the the data to the node at size/2 away i.e to
node P2. In the second step, root P0 sends the data to node
P1. At the same time, node P2 becomes the root of a new
subtree and forward the data to node P3. The process of
forming new subtrees continues till the data reaches all the
nodes. Figure 4 shows the steps in the binomial broadcast
for a 8 node cluster.

For power of 2 nodes, ������� steps are needed for per-
forming the binomial broadcast, where � is the number of
nodes. For non-power of 2 nodes, the steps taken are ���������
where � � is the immediate higher power of 2 than � , where
� is the total number of nodes.

The data structures and the working of the algorithm is
discussed in the following subsections. The RDMA-based
broadcast works in two modes. These modes are chosen to
obtain the best performance for all data sizes. For smaller
messages typically less than 5KB, the data copy time is less
, so we use a static buffer management scheme. As the data
size goes on increasing, the data copying time increases
and hence after a certain data size, the memory copying
time typically kills the benefit obtained by the saved extra
round trip time in the static registration scheme as compared
to the dynamic registration. The sending the data is done
by RDMA writing into specific buffers at the receiver’s
end. Our modifications and comparisons are based with
the MVICH implementation of MPI. The MVICH reverts
to a dynamic registration scheme for data size beyond 5KB.
Hence, for messages greater than 5KB, when the data copy
time is high we also use the dynamic registration scheme.

P2 P3P1P0

First Step Second Step

Figure 3. Broadcast using Binomial Algorithm
in a 4 node cluster

P0

Third StepSecond StepFirst Step

P1 P3P2 P5P4 P6 P7

Figure 4. Broadcast using Binomial Algorithm
in a 8 node cluster

5.1.1 Registration of buffers : Message Size 	 5KB

For messages less than 5KB, we follow the static buffer reg-
istration scheme. As mentioned in the previous section,
a contiguous region in memory is allocated as broadcast
buffer and is registered during initialization time. We divide
the contiguous memory into blocks of fixed size denoted by
block size. The blocks are numbered from 0 onward. Every
node has the addresses of the other broadcast buffers be-
longing to other nodes of the communicating group. Data
has to be copied to the user specified buffers once it reaches
these pre-registered broadcast buffers.

In addition to the main broadcast buffers, we also reserve
a buffer called notification buffer which is used to indicate
the safe reuse of the broadcast buffers. Every node registers
its notify buffer. The size of the notify buffer in bytes is
equal to the number of nodes in the communicating group
involved in the broadcast operation. The address of the no-
tify buffers is also exchanged during the initialization time.
The broadcast and the notify buffers are initialized to -1 dur-
ing the initialization time.

5.1.2 Registration of buffers : Message Size
 5KB

For messages greater than 5KB, we adopt the rendezvous
dynamic buffer registration approach. The destination
buffers are registered and the addresses are exchanged dur-
ing the operation itself using a request-reply mechanism.
Thus, there are no pre-registered buffers or extra copying
taking place. For large messages, typically greater than
5KB, copying in static scheme becomes more expensive
compared to the round trip overhead in rendezvous scheme.
Hence we use the rendezvous scheme for larger message
sizes.

The dynamic registration scheme is similar to the one
adopted by MVICH implementation of MPI for messages
over 5KB. Hence, we discuss the remainder of the section
with respect to the static broadcast scheme for messages
smaller than 5KB.

7

5.1.3 Data Validity at the Receiver end

To understand the working of the RDMA-based broadcast,
consider Figure 5 with 4 processes P0, P1, P2, P3, where
process P0 is the root and the broadcast instance shown is
between the processes P0 and P2.

For every communicating group, we have a static counter
called broadcast counter which is incremented by 1 for ev-
ery broadcast operation, by every process within that com-
municating group. Consider the first broadcast of data
size block size/2 bytes. The broadcast counter for the first
broadcast is set to 1. The sender appends the broadcast
counter byte at the end of the data to be written. The root
P0 can RDMA write the data of size block size/2 + 1, which
includes the appended broadcast counter, to block #0 of
process P2. For a communicating group, every node is in-
volved in the collective operation. Hence, every node can
keep track of the number of blocks used for that particular
collective operation.

The data is written in a bottom-fill manner. To write 8 bytes
in a 10-byte block in a bottom-fill manner, we start writing
these 8 bytes from the 2nd byte onward in the block. Hence
the data is always filled in the bottom portion of the block.

Figure 5 shows the broadcast data being written in the des-
tination blocks in the bottom-fill manner, so that the sent
broadcast counter is always written in the last byte of the
block.

Since the receiver shares the communicating group with
the sender, the broadcast counter at the sender and receiver
will have the same value. Thus, the receiver can poll for the
broadcast counter on the last byte of the received block and
check for the validity of the data.

If the data to be sent is greater than the block size, the data
is split up into blocks of size block size - 1, the broadcast
counter is appended to each block and the data is then writ-
ten to the remote node. Figure 5 also shows the second
broadcast of 2 * block size bytes. Root P0 writes the first
and second blocks of size block size - 1, with broadcast
counter of 2 appended, to block #1 and block #2 (of Pro-
cess P2) respectively. The additional 2 bytes are written in
block #3, again with the broadcast counter of 2 attached for
data validity.

Writing large messages by breaking them into blocks at
the lowest level enables pipelining of messages and overlap-
ping of the copy to the user buffers at the destination. How-
ever, there is a trade-off involved between the block size
and number of RDMA writes. It takes 1 RDMA write to
send each block. If the block size is too large, the number
of RDMA writes will be low but the copying cost to the
buffers will be high. If the block size is small, the copy-
ing cost will be low, but the number of RDMA writes and

contention at the switches and NICs will be high. The pro-
cessing of a large number of RDMA writes might offset the
benefit obtained by overlapping the copies. Thus, it is desir-
able to find an optimal block size where the cost of process-
ing multiple RDMA writes does not kill the benefit achieved
by overlapping memory copies. In our results section, we
evaluate our RDMA-based broadcast algorithm with differ-
ent block sizes to obtain an optimal one.

Once the data is read by the receiver, the receiver, if
needed, can forward the data to the other nodes directly
from the received buffer. In our scheme, a node will for-
ward the message only after it receives all the blocks of that
message. After sending the data to the other nodes, the re-
ceiver will need to reset the last polling byte of the received
blocks to -1, so that they can be safely reused at a later stage.

5.1.4 Buffer reusing

We need an explicit mechanism in the static buffer regis-
tration scheme for the broadcast operation to indicate safe
reuse of buffers. We implement this by using the pre-
registered notification buffers.

When the receiver realizes that data to be written is in the
first block of the broadcast buffer, it writes a special value in
the senders notification buffer as shown in Figure 6. Before
writing, the last byte of each block has to be set to -1. This
is because we might encounter a situation where a broad-
cast counter with a given value (for ex. 20) was written in
an earlier broadcast. As the static broadcast count is in-
cremented and wrapped around when its limit is reached,
during a later broadcast, we may end up writing the same
broadcast value, in which case the receiver might end up
reading the old broadcast data.

Writing data in a bottom-fill manner requires us to reset
only the last byte of each block. If data was written start-
ing from the top of the block, the polling byte i.e broadcast
counter would have been written at an arbitrary location de-
pending on the size of data being sent and hence all the
bytes of all blocks would have to be reinitialized which may
be an expensive operation.

5.2 RDMA-based Allreduce

The allreduce collective operation is a global reduction op-
eration, which takes place across all the members in the
communicator. It combines values from different processes
based on the reduction operation and the result is communi-
cated back to all the nodes involved in the communication.

Allreduce is generally implemented as a combination of
the reduce operation followed by the broadcast operation.
Reduce operation is a variation of the allreduce operation,
in which the result is present at only one node labeled as

8

Block 3

Block 0

Block 2

Block 1

��
��

��
��

���

���

��

��
	�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�		�	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��

��

�
�
�
�
�

�
�
�
�
�
���������������������� ��������������������������
����������������������

1 1

2

2

2 2

2

2

P0 P1 P2

First
Bcast

Second
Bcast

P3

Figure 5. Two Consecutive RDMA-based Broadcast instances at Root P0

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

������������������������������������
������������������������������������

������������������������������������
������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������������������������
������������������������������������

������������������������������������

������������������������������������

������������������������������������

������������������
������������������ � � � � � � � �

!�!�!�!�!!�!�!�!�!

1 1

2

2

2 2

2

2

First
Bcast

Second
Bcast

1−1 −1 −1

P1 P2 P3P0

Figure 6. Notification by Process 2 to Process 1 before reusing first block

9

the root at the end of the operation. The reduce algorithm
can be implemented in different ways. Current libraries like
MVICH implement reduce using a recursive binomial algo-
rithm. We introduce a new algorithm for reduce called the
Degree-k algorithm. The new algorithm when implemented
for the allreduce operation with the RDMA mechanism was
found to give good performance

Definition: An Degree-k tree-based Reduce defines a tree
where any node can receive messages from at most � nodes
in any step of the reduce operation. The variable � is a
(power of 2) - 1 value. For a cluster of size � , where � is a
power of 2, we can use all those Degree-k tree-based reduce
schemes, where � is (power of 2) - 1 and � 	 � . The bino-
mial reduce algorithm is similar to the Degree-1 tree-based
reduce algorithm. Since, most computing clusters generally
have a power of 2 size, we constrain the Degree-k tree-based
reduce scheme to a cluster having power of 2 nodes.

Hence, in the remaining part of the paper, the cluster size is
implicitly assumed to be a power of 2, when it is mentioned
in relation to the Degree-k RDMA-based allreduce scheme.

We implement a Degree-k RDMA-based allreduce as a
combination of the Degree-k tree-based reduce and the bi-
nomial broadcast with the RDMA mechanism. To under-
stand the Degree-k RDMA-based allreduce concept, let us
consider a 4 node cluster. An allreduce operation on such
a cluster can be implemented using Degree-1 or Degree-3
RDMA-based allreduce scheme. Figure 7 shows the tree
for 4 processes P0, P1, P2, and P3 having ids 0, 1, 2 and
3 respectively. The square brackets indicate the step num-
ber for that node. In a Degree-1 RDMA-based allreduce
scheme, every node will receive data from at-most 1 node
in each step. Hence, in the first step Process P1 and Process
P3 send data to Process P0 and Process P2 respectively. P0
and P2 will perform the required computation with the data
acquired from P1 and P3 respectively and store the result. In
the second step, Process P2 will forward its computed result
to Process P0. Process P0 will then perform the computa-
tion with its own result of the previous step and the newly
received result from P2 to get the final result. This final re-
sult will then be broadcast to all the other nodes involved in
the allreduce operation.

Consider a Degree-3 RDMA-based allreduce scheme on
the same cluster. In the Degree-3 RDMA-based allreduce
scheme, a node can receive data from at-most 3 nodes in a
step. Hence, as seen in Figure 8, processes P1, P2 and P3,
having ids 1, 2 and 3 respectively send the data to process
P0, which has id 0. P0 will first perform the reduction oper-
ation on its own data and on the data sent by the node having
id 1. The second operation is performed by P0, on this new
result and the data sent by Process P2, having id 2. The last
operation is done on the most recently computed result by
P0 and the data sent by Process P3, with id 3. Thus, P0 will

choose the order of evaluating the data based on the ascend-
ing order of the ranks of the sending nodes. The result at P0
is then broadcast to all the nodes in the group.

P0

P3

[1]

P2

[2][1]

P1

Figure 7. Degree-1 RDMA-based allreduce in
a 4 node cluster

[1] [1][1]

P1

P1 P2 P3

Figure 8. Degree-3 RDMA-based allreduce in
a 4 node cluster

A Degree-3 RDMA-based allreduce for a 32 node cluster
will have the tree as described in Figure 9. There is a trade-
off involved between the number of steps in the Degree-k
RDMA-based allreduce collective operation and the over-
head incurred by the node in performing the reduction op-
eration. For example, in a Degree-1 RDMA-based allreduce
scheme for a 4 node cluster, there are 2 steps involved and
in each step, a receiver node receives only 1 message and
hence performs only 1 operation. In a Degree-3 RDMA-
based allreduce scheme for a 4 node cluster, there is 1 step
but the receiver nodes does 3 operations. So, depending
upon the number of nodes, number of steps and the number
of operations involved, we can choose different Degree-k
RDMA-based allreduce algorithms.

The design solutions for all the Degree-k RDMA-based
allreduce algorithm are the same. We explain the design
solutions for a Degree-1 RDMA-based allreduce algorithm
in the following few subsections. The RDMA-based allre-
duce algorithm works in 2 modes, depending on the size of
the data to be transferred. These modes are similar to the

10

[1][1][1]

[1] [1] [1] [1] [1] [1] [1] [1] [1]

[1] [1] [1]

[1] [1] [1] [1] [1] [1] [1] [1] [1]

[2] [2] [2]

[2]
[2] [2]

[3]

Figure 9. Degree-3 RDMA-based allreduce in a 32 node cluster

RDMA-based broadcast modes. We choose the static reg-
istration scheme for data size lesser than 5KB because data
copy for smaller bytes is not very expensive. For data size
larger than 5KB, data copy becomes expensive and so we
use the dynamic registration scheme.

5.2.1 Registration of buffers: Message Size 	 5KB

We allocate a contiguous registered section of memory
called allreduce buffers, split into block size of (5K + 1)
bytes, because 5KB is the maximum size of data that can
be transferred in the static scheme. Also, the total memory
region reserved need not be greater than � ����� � �����	� � � ,
where � is the number of processes in the communicator.
This is because, in the Degree-(N-1) RDMA-based allre-
duce algorithm, a maximum of ��

� processes can write
to a receiver node. For sending the data in the static scheme,
the sender RDMA writes the data to the receiver’s allreduce
buffers. Figure 10 shows the 4 processes P0, P1, P2 and P3
with ids 0, 1, 2, 3 respectively, each having 4 contiguous
blocks of memory reserved and registered for the allreduce
operation.

5.2.2 Registration of buffers: Message Size
 5KB

For messages greater than 5KB, we follow the rendezvous
scheme as described in the RDMA-based broadcast section.
Since MVICH-1.0 also implements the same scheme for
message size
 5KB, the remainder of the allreduce dis-
cussion will be only for messages less than 5KB.

5.2.3 Data Validity at the Receiver end

Consider the node P1 sending data to node P0 and node P3
sending data to node P2. The node P1, with id 1, RDMA
writes the data to block #1 of the receiver’s allreduce buffer.
A node always writes the data to the block having the same
number as its id. Any node with any id can write to any
other node’s allreduce buffer at a location indicated by its
id. This indicates to the receiver the identification of the
sender of the data and also enables an ordered evaluation of
the data.

Node P1 sends the entire data in 1 single RDMA write to
the node P0. Similar to the broadcast operation, the allre-
duce operation has a static allreduce counter which is ap-
pended to the block of data when it is sent. The data is
written in a bottom-fill manner. The receiver performs the
required operation and the result is stored in the same loca-
tion as that of the latest received data from the node having

11

the greatest id. Figure 10 shows node P1 with id 1 and node
P3, with id 3, writing the data to node P0’s block #1 and to
node P2’s block #3 respectively. Assuming this is the first
allreduce, allreduce counter byte is set to 1.

Figure 11 shows node P0 and node P2 performing the
summation operation and writing the intermediate results
in blocks #1 and block #3, respectively. Data is not broken
down into smaller blocks and sent. This is to avoid the addi-
tional overhead of assembling and packing the data together
before performing the required computation. The overhead
of copying and packing data was found to be larger than the
overhead of sending the entire data in a single RDMA write
operation.

In the second step of the Degree-1 RDMA-based allre-
duce, node P2 with id 2 will RDMA write its latest com-
puted result to the allreduce block #2 of node P0 with the
allreduce counter of 1 attached at the end of the data as
shown in Figure 12.

Figure 13 shows node P0 performing the operation on the
newly received data from node P2 and its own computed
result obtained in the previous step. The result of this op-
eration is stored in block #2 at P0. The result is copied by
the root, i.e., node P0 to its receive buffer after it is done
with its final computation. The result is broadcast from this
receive buffer to all the nodes.

5.2.4 Buffer reusing

The blocks can be safely reused by the nodes without any
additional messages being sent. In an allreduce, the reduce
operation is followed by a broadcast. The second allreduce
operation starts only after all the nodes have received the
broadcast results of the first operation. Hence, the nodes
can RDMA write the data to the same locations, as the data
previously written has been used for successful computa-
tion.

6 Analytical Models

In this section we develop and present analytical models
for binomial RDMA-based broadcast and degree-k RDMA-
based allreduce operations. These models help to estimate
performance of collective operations for large scale sys-
tems.

6.1 Binomial RDMA-based broadcast Analytical
model

A message transfer in binomial RDMA-based broadcast
operation consists of many events and overheads due to the
communication stack. At the sender side, there is a copying
overhead due to the need to copy data in registered buffers,

the MPI library overhead, the cost involved in posting the
send descriptor, DMAing the data from the host, the time
for performing the processing by the NIC and the time taken
by the acknowledgment message. The data is then transmit-
ted to the destination. If the destination is connected to the
source via a switch, the messages are sequentialized at that
switch. Data can be broken into smaller blocks and sent
which will enable pipelining and will overlap the memory
copying with the sending side events. When the receiver
NIC receives the data, it processes it and obtains the desti-
nation memory address (in case of RDMA write), to which
the data is then DMAed. Copying into the user buffer takes
place after the destination has forwarded the data to other
nodes if necessary.

Based on the above events, we construct the analytical
model with the following parameters :

1. Message size (given in bytes)

2. The MPI overhead time (given as Tm)

3. The descriptor posting time (given as Td)

4. The DMA startup time (given as Ts)

5. NIC processing time after the data is received by the
NIC (given as Tn)

6. The data transmit time (given as Tt)

7. The acknowledgment time (given as Ta)

8. Memory copy time (given as Tc)

We assume that Tn is less than Ts, which is true for most
current generations systems. Also, Tt and Tc depend upon
the total bytes (bytes) that are being communicated in that
message. Also, Td is generally a very small value.

Nodes in a large scale systems may be interconnected to
each other through more than one switch. Every message
that passes through the switch is delayed slightly by the
switch latency. The switch latency however is only a factor
of the data size and is independent of the mechanism used
to transfer the data. Thus, in our analytical models for col-
lective operations taking place via RDMA or Send/Receive,
we choose to ignore the switch latency because of its un-
varying contribution to the message latency.

Figure 14 shows the RDMA-based broadcast of 1 block of
data between two nodes. If the number of nodes increases,
the STEP1 parameter will be multiplied by the number of
steps in the broadcast operation. Hence for an N (where N
is power of 2) node system, we will have the total time as
: 2*Tc + log(N)*STEP1.

Figure 15 shows the RDMA-based broadcast of a message
sent as 2 blocks of data between a pair of nodes. When a
message is broken into smaller blocks, the last block sent
may have size lesser than the block size. GigaNet cLAN

12

P0 P1 P2 P3

Data Recvd

Data at P0

2

2
Recvd from
P3

Data

P2
Data at
Source

2
1

2

2

1
2

2

2

 Blocks of
 Size (5K+1)

Source

from P1

Figure 10. Step 1 of Degree-1 RDMA-based allreduce

P0 P1 P2 P3

Source
Data at P0

P2
Data at
Source

Computed

4

Data at P2
4

2

1
4

1
4

2

2

2

Computed
Data at P0

Figure 11. Reduce Computation at P1 and P2

13

P0 P1 P2 P3

P2
Data at
Source

Computed
Data

4

4

4

2
2

2
2

1
4

1
4

1
4

Computed data
at P0

Source
Data at P0

Data
Recvd
From P2

Figure 12. Step 2 of Degree-1 RDMA-based allreduce

P0 P1 P2 P3

2

P2
Data at
Source

Computed
Data

4

4

8Computed
Data of
intermediate
result and P2

at
P2

2
2

4

1
8

1

1

2

4

Computed data
at P0

Data at P0
Source

Figure 13. Final reduce Computation at P0

14

sends an acknowledgment for each send for reliable recep-
tion mode. The second block of data can only be sent af-
ter the acknowledgment has been received. Thus, for an N
(where N is a power of 2) node system, we will have the
total time as : 2*Tc + log(N)*STEP2.

In general, the total broadcast time for N nodes, where the
message is broken into num blocks, can be represented by
the equation : Tc1 + (Tm + Td + 2*(Ts+Tn) + (num - 1)*Tt1
+ (num*Ta) + Tt2)*log(N)+ Tc2. Tc1 is the copying time
for the first block (of size block size) and Tc2 is the copying
time for the last block, which may have a size lesser than
block size. Tt1 is the transmit time for all blocks but the last
block. Tt2 is the transmit time for the last block. Approx-
imately, considering all blocks to be of the same size, the
equation can be given by : 2*Tc + (Tm + Td + 2*(Ts + Tn)
+ num*(Tt + Ta))*log(N).

6.2 Analytical model for RDMA-based allreduce

For a given set of power of 2 nodes, we have different
degree-k algorithms available. In this section, we present
an analytical model for Degree-k RDMA-based allreduce,
which enables us to choose the optimal value of � for a
given number of nodes and data size on the basis of the
parameters discussed in the previous section.

In addition to the parameters given in the previous sub-
section, we also have to take into account the time spent in
performing the reduction operation on the given data size.
This total time can be indicated by To. The assumptions
made in the previous section hold true for allreduce too.
Typically for large messages To is much lesser as com-
pared to Tt. However this is not true for small messages
having small counts. A message transfer in allreduce op-
eration consists of similar events as described in the previ-
ous section. The only difference being that once the data is
DMAed by the destination NIC, the reduction operation is
performed. The result can then be broadcast to all the nodes
in the communicating group.

The analytical model has various cases based on the val-
ues of the above parameters. In the following subsections
we present the analytical equations with the time diagrams
for all these cases. The cases outlined below give the an-
alytical equations for the Degree-k RDMA-based Reduce.
The analytical model presented in the previous subsection
for the broadcast operation can be combined with the ana-
lytical model in this section for the Degree-k RDMA-based
reduce to give the overall analytical model for the degree-k
RDMA-based allreduce operation.

For all the examples, we consider a Degree-3 RDMA-
based allreduce scheme in a 4 node cluster. Consider nodes
P0, P1, P2 and P3 with ids 0, 1, 2, 3 respectively. The
Degree-k reduce part of the allreduce operation takes place

as shown in Figure 8. It involves one step with P1, P2, P3
sending to P0 and all the operations take place at P0.

In all the following sections when we refer to the Degree-
k allreduce analytical model, we implicitly assume that it is
the sequentialized combination of the degree-k reduce ana-
lytical model and the broadcast analytical model.

6.2.1 Handling Large Messages

Messages where Tt
 (Tn + Ts), are categorized as large
messages. In such messages, the transmit time dominates
all the other parameters.

For the degree-k RDMA-based allreduce case, the receiver
performs reduction operation based on the order of ids,
starting with the data sent by the node with the lowest id.
Consider P1, P2 and P3 with ids 1, 2 and 3 respectively are
sending the data to node P0. The receiver P0 polls for the
data from the node with id 1, i.e. P1 to arrive first and op-
erates on this data. When many nodes are performing an
RDMA write to a single destination simultaneously, the or-
der in which the messages will arrive at the destination NIC
and hence in the destination buffer is indeterminate. Thus, if
a NIC is waiting for allreduce data to arrive from the lowest
id node, there is a fair probability that the data might not ar-
rive first. Hence, the analytical model for RDMA allreduce
gives the best and the worst time estimates.

The best time estimate assumes that the required data is
the first to arrive, the DMA startup and the NIC processing
can be overlapped with each other. The worst time estimate
assumes that the required data is the last to arrive. It also
assumes that the NIC processing and the DMA startup can’t
be overlapped due to sharing to the system bus.

To understand this concept, consider the Degree-3
RDMA-based allreduce scheme in a 4 node cluster, where
P1, P2 and P3 write to P0. Figure 16 shows the time line
chart for the events that happen at the sender side. Since P1,
P2 and P3 send data at the same time, the copying of data,
MPI overhead, posting of descriptor, DMA startup and NIC
processing for the various processes gets overlapped at the
sender side. During this period, the Process P0 is polling
for data from Process P1, which has the id 1, to arrive. The
sender side cost can be termed by the parameter T sender
given by : T sender = Tm + Td + Tn + Ts. The total sender
cost : Total sender cost = Tc + T sender.

In every step of the degree-k RDMA-based allreduce algo-
rithm, every possible destination can receive from at most
k nodes. A node can receive from less than k nodes in the
last step of the allreduce operation. The number of nodes
sending the data to the destination in each step plays an im-
portant role in the analytical model.

Figure 17 shows the best case scenario at the receiver end.

15

Tn

to P1

Tc Tm Td Ts Tt Ta Tn Ts Tc
Data of P0

STEP1

Figure 14. RDMA-based broadcast with 1 block

Tt

Tc

Tm TdTc Ta Ts

Tc Tm Td

Ts Tn

Ts Tn

TcTn

Ta Tn TsTt

STEP2

II Block

I Block

Data of P0
to P1

Figure 15. RDMA-based broadcast with 2 blocks

P2

Tc Tm Td Ts Tn

Tc

Tc

Tm Td Ts

TsTdTm
P1

P0

Tn

Tn

P3

Polling on Reduce Counter byte on P1’s Reduce Buffer

Figure 16. Sending side events

16

The message from P1 arrives first to the switch. When this
message reaches node P0, it does the NIC level processing,
DMAing and starts the reduction operation. The transmis-
sion of the second message happens in parallel with the NIC
processing, DMAing and operation of the first message. By
the time the destination NIC receives the next message, it
has already finished processing the first one. By the time
the host process receives the second message, it has finished
the operation on the first one. For large messages, the To
parameter is very small as compared to the Tt parameter.
Also, data has to be copied from the user-specified source
user buffer to the allreduce registered buffer. Hence, there
is a copying cost involved. The time taken at the receiver
end in each step for this best case is : Tt*(No. of Sending
Nodes in that step) + Tn + Ts + To

The overall best case equation for very large messages is
given as : 2*Tc + (Total Number of Steps)*[2*(Ts + Tn)
+ Tm + Td + Tt*(No. of Sending Nodes in that step) +
To], which includes the events at both the sender and the
receiver ends. The Total Number of Steps variable specifies
the total number of steps that will be required to complete
the allreduce operation in that cluster.

The worst case is depicted in Figure 18 where the message
from P1 reaches last. P0 can start performing the operations
only after receiving data from P1. Hence, the time at the
receiver end for each step is given as : Ts + Tn + (Tt +
To)*(No. of Sending Nodes in that step)

The total time which includes the sender and the receiver
time is given by : 2*Tc + (Total number of Steps)*[2*(Ts
+ Tn) + Tm + Td + (Tt+To)*(No. of Sending Nodes in that
step)]

6.2.2 Handling Small Messages

Messages where Tt 	 (Tn + Ts) are categorized as small
messages. The events at the sender side remain the same as
shown in Figure 16. The events at the receiver are shown in
Figures 19 to 21. At the receiver side, the messages from
various nodes destined for one node are still sequentialized,
however since the amount of data to be transmitted is less,
hence the transmit time is very less. When the transmit
time is less, the operation time To for such messages is also
very less. In many cases, the NIC processing and the DMA
startup cost will be the major contributors of the overhead.

The evaluation of the best cases for small messages are di-
vided into two sections. We consider that case first where
Tt 	�� Ts and this best case is shown in Figure 19. Here we
assume that the NIC processing can be done in parallel with
the DMA startup and that the required data is always ob-
tained first. Hence, the message from P1 is the first to reach
P0. When P0’s NIC is processing the message, DMAing it

and performing the operation, the message from P2 can be
transmitted and processed. The time taken at the receiver
end by each step for the best case scenario for this case is
given by : Tn + Tt + Ts*(No. of Sending Nodes in that step)
+ To

The total time including the sender and the receiver is
given by : 2*Tc + (Total number of Steps)*[Tm + Td +
2*Tn + Tt + Ts*(No. of Sending Nodes in that step + 1) +
To]

The second case is when Tt
 Ts, as shown in Figure 20.
The message from node P1 reaches node P0 first. The trans-
mit time and the NIC processing of the second message is
overlapped with the first one. However, as Tt
 Ts, hence
the Ts time for the second message is delayed till the Ts of
the first message has been completed. The duration of this
delay is given as the Tt - Ts time.

Hence, the best estimate at the receiver end for each step
is given by : (Tt*No. of Sending nodes in that step) + Tn +
Ts + To

The total time for allreduce for the best case scenario for
Tt
 Ts is : 2*Tc + (Total number of Steps)*[Tm + Td +
2*(Tn + Ts) + (Tt*No.of Sending nodes in that step) + To]

If the NIC processing and the DMA startup can’t be over-
lapped, then we have a worse case scenario as shown in
Figure 21. Here, we also assume that the required data is
the last to arrive. Hence the data sent by Process P3 reaches
first and is processed by the NIC and DMAed. Meanwhile,
the message from node P2 arrives but it can’t be processed
because the NIC is busy processing and DMAing the first
message received from node P3. So the NIC processing and
DMAing are sequentialized for each message with no over-
lap happening. When the data from node P1 arrives, the first
operation is done.

Thus the worst case scenario at the receiver end for each
step is : Tt + (Tn + Ts + To)*(No. of Sending Nodes in that
step).

The total time for the worst case scenario for small mes-
sages is : 2*Tc + (Total number of steps)*[Tm + Td + Tt
+ (Tn + Ts)*(No. of Sending Nodes in that step + 1) +
To*(No. of Sending Nodes in that step)]

The pseudo code for getting the values analytically for
the various Degree-k RDMA-based allreduce algorithms is
shown in Figure 22.

The variable � stands for Degree-k RDMA-based allre-
duce value,i.e., the maximum number of nodes from whom
a node can receive data in one step. The function calculates
the best and the worst time estimates based on the various
parameters provided. The first while loop iterates for the
total number of complete steps, where complete steps are
defined as steps where a destination in that step receives

17

Tn Ts

 ToTsTn

Tn ToTs

Tt

Tt

Tt

 To

Data of P3

Data of P2

Data of P1

Figure 17. Best case receiver scenario for large messages

Tn To

Tt Ts

TsTn

Tn

Tt

Tt Ts

To

To

Data of P1

Data of P2

Data of P3

Figure 18. Worst case receiver scenario for large messages

18

 TnTt Ts To

Tt Tn Ts To

Ts To TnTt

Data of P1

Data of P2

Data of P3

Figure 19. Best case receiver scenario for small messages where Tt 	�� Ts

 Tt Ts To

 Tt

 Tt

 Ts To

 To Tn

 Tn

 Ts

 Tn

 Tt − Ts

 Tt − Ts

Data of P3

Data of P2

Data of P1

Figure 20. Best case receiver scenario for small messages where Tt
 Ts

19

Data of P3

Data of P1

Data of P2

Ts

 Tn

 Tn

Tt

Tt

Tt

Ts
To

To

Ts To

 Tn

Figure 21. Worst case receiver scenario for small messages

from exactly � nodes in an Degree-k RDMA-based allre-
duce algorithm. The second part of the code is called a
destination node receives data from less that � nodes. We
add the bcast time, which is the time taken for a binomial
broadcast to complete for the given set of nodes involved
in the allreduce operation, in the final worst and best time
estimates of the allreduce analytical model.

This function works for power of 2 clusters, i.e. when
the variable Nodes is a power of 2 and we are testing for
a Degree-k tree-based RDMA allreduce where the value of

� is a power of two - 1 and � 	 � � � ��� . It gives us the
best and the worst estimates between which the actual val-
ues might lie.

7 Performance Evaluation

In this section, we discuss the results that have been ob-
tained for RDMA-based broadcast and RDMA-based allre-
duce. We evaluated our implementations on a cluster of
16 nodes, each with a 33MHz PCI bus, 1.0GHz Pentium
III machines, 512MB of Main memory and Linux version
2.2.17. The machines are connected using a GigaNet 5300
switch. In addition to the experimental results, we also
present results for larger systems using the analytical model.
For the analytical model, we use the following values for
the system dependent parameters of RDMA-based broad-
cast and allreduce. We set Tt per byte=0.010 us, Ts=2us,
Tc copy rate=0.0027us, Tn=1.52us, Td=0.6us, Tm=1.3us.
Tt and To are calculated depending on the total number of
bytes and count of the operation.

7.1 RDMA-based Broadcast Performance

The RDMA-based binomial broadcast is compared with
the send/receive-based binomial broadcast, provided by the
MVICH-1.0 implementation of MPI. The broadcast latency,
averaged over 5000 iterations, is calculated between the root
node and the last leaf node receiving the message. The last

leaf is typically chosen to be the one having the maximum
depth from the root in the binomial tree structure.

7.1.1 RDMA-based broadcast v/s Send/Receive-based
broadcast on small clusters

Using the RDMA scheme, a large message is broken into
multiple blocks depending upon the block size. MVICH-
1.0, in the send/receive-based binomial broadcast, sends
data in blocks of 1KB. To ensure fair comparison, we
tested the RDMA-based binomial broadcast with different
block sizes starting with 1025 (1 extra byte for the counter)
bytes.

Figure 23 shows a comparison of RDMA-based broadcast
with block sizes of ������� , ������	 ,
����

 and ����	�� bytes and
the send/receive-based broadcast for small messages of 4-
1024 bytes for a 16 node cluster. Small messages from 4-
1024 bytes using RDMA-based broadcast show the same
timings because all the messages use 1 block to write to
the remote node as the least block size is 1025 bytes. The
difference can be seen in Figure 24. We see that to trans-
mit 4096 bytes with block size of 1025 bytes, we need 4
blocks. For higher block sizes, the number of sends de-
creases and so do the timings. We obtain the best result
for a block size of 3073 bytes. In fact, a block size of 3073
bytes gives the most optimal result for all message sizes
from 1025 to 5000 bytes. RDMA-based broadcast for all
the given block sizes gives better performance as compared
to the message send/receive-based binomial broadcast.

With RDMA-based broadcast with block size of 3073
bytes, we get a benefit of around 19.7% for small messages
of 4 bytes. For large messages we see a benefit of around
14.4% for 4608 bytes.

We also use the broadcast analytical model, presented in
the previous section, to estimate the timings for RDMA-
based binomial broadcast with varying block sizes. Fig-

20

End− while

 else

Endif
Endif

Endif
 Worst_time += Sender_side + Receiver_side + (T_nic + T_operation) * (Remainder − 2)
 Best_time += Sender_side + Receiver_side ;

Endif
Endif

 Best_time += Sender_side + Receiver_side

 Worst_time += Sender_side + Receiver_side + (T_nic + T_operation) * (k − 1)

Remainder = Dividend % (k+1)
Quotient = Dividend/(k+1);
Dividend = Quotient ;

If (Remainder != 1) then

 Sender_side = T_mpi + T_descriptor + T_startup + T_nic
 If (T_transmit >= (T_startup + T_nic)) then

 Receiver_side = (T_transmit * (Remainder − 1)) + T_startup + T_nic + T_operation
 Best_time += Sender_side + Receiver_side
 Worst_time += Sender_side + Receiver_side + T_operation * (Remainder − 2)

else
 If (T_transmit < T_startup) then

 Receiver_side = T_transmit + T_nic + (T_startup * (Remainder −1)) +
 + ((T_transmit − T_startup) * (Remainder −2)) + T_operation

T_transmit = bytes * T_transmit _per_byte;
Best_time = Worst_time = 0;

Quotient = Nodes / (k + 1);

 (k−1) + T_operation
 Receiver_side = T_transmit + T_nic + (T_startup * k) + (T_transmit − T_startup) *

Worst Time += (bytes * T_copy_rate) * 2 + bcast_time
Best_Time += (bytes * T_copy_rate) * 2 + bcast_time

 Sender_side = T_mpi + T_descriptor + T_startup + T_nic

 Best_time += Sender_side + Receiver_side ;

 Receiver_side = (T_transmit * Nodes) + T_startup + T_nic + T_operation

while (Quotient != 0) {

 If (T_transmit < T_startup) then

 else

 Worst_time += Sender_side + Receiver_side + T_operation * (k − 1)

 Receiver_side = T_transmit + T_nic + (T_startup * k) + T_operation

else

 Receiver_side = T_transmit + T_nic + (T_startup * (Remainder −1)) + T_operation

 If (T_transmit >= (T_startup + T_nic)) then

Figure 22. Pseudo code for Optimal All Reduce Algorithm

21

0

20

40

60

80

100

120

4 8 16 32 64 128 256 512 1024

La
te

nc
y

(u
se

cs
)

Bytes

RDMA 4097 bytes/block
RDMA 3073 bytes/block
RDMA 2049 bytes/block
RDMA 1025 bytes/block

Send/Recv

Figure 23. RDMA-based vs
Send/Receive-based broadcast compar-
ison (4-1024 bytes)-16 node cluster

100

150

200

250

300

350

2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

RDMA 4097 bytes/block
RDMA 3073 bytes/block
RDMA 2049 bytes/block
RDMA 1025 bytes/block

Send/Recv

Figure 24. RDMA-based vs
Send/Receive-based broadcast com-
parison (1025-4608 bytes)-16 node
cluster

ure 25 shows the comparison of the analytically obtained
RDMA-based broadcast with the experimentally obtained
RDMA-based broadcast using block size of 3073 bytes for
a 16 node cluster. For all data sizes (4-4096 bytes), the an-
alytically obtained results closely match the experimental
ones with an error rate of below 10%.

We also estimated the performance of RDMA-based
broadcast on 2,4 and 8 node cluster of the above configu-
ration. The analytical results were found to closely match
the experimental ones.

7.1.2 RDMA-based broadcast V/s Send/Receive-based
broadcast on large clusters

We use this analytical mode to estimate the performance
of RDMA-based binomial broadcast on 512 and 1024 node
systems. We compare the estimated RDMA-based broad-
cast timings with send/receive-based broadcast for the same
cluster size. Extrapolating the timings obtained for broad-
cast between a pair of nodes, we obtain the latency for
the send/receive-based broadcast for large clusters of size
� to be approximately log(N)*t1, where t1 is the time for
send/receive-based broadcast between 2 nodes.

Figure 26 shows the graphs for RDMA-based broadcast
and send/receive-based broadcast for 512 node system for
data size 4-4608 bytes. The RDMA-based broadcast tim-
ings have been taken with an optimal block size of 3073
bytes. We achieve a benefit of about 21% for 4KB mes-
sages. For small messages of 4 bytes, we get a performance
benefit of about 16%.

Figure 27 shows the analytical graphs for the RDMA-

based broadcast and send/receive-based broadcast compar-
ison for 1024 node system with optimal block size of 3073
bytes for data size 4-4096 bytes. Here again, for message
size of 4KB, we obtain a performance benefit of about 21%
and for small messages a benefit of 16%.

7.2 RDMA-based Allreduce Performance

The timings were obtained by running 5000 iterations of
allreduce and taking the average of the iterations over all
nodes. The operation used was MPI SUM with the data
type MPI INT of size 4 bytes and the count of the elements
was varied from 1 (4 bytes) to 1024 (4096 bytes).

7.2.1 RDMA-based allreduce V/s Send/Receive allre-
duce for small clusters

We presented the analytical model for degree-k RDMA-
based allreduce in Section 6. Depending upon the network
topology, the analytical model gives the best and the worst
time estimates for the allreduce operation. In this section we
present the analytical results for RDMA-based allreduce for
a 16 node cluster for data size (4-4096) bytes. We show the
graphs for degree-15, degree-7, degree-3 and degree-1. We
also compare various analytical and experimental results.

Figure 28 and 29 show the worst and best analytical and
the actual practical timings for Degree-15 RDMA-based
allreduce for 16 nodes. We see that for all data size the
actual timings lie between the best and the worst case esti-
mated timing. The greatest error rate is around 7.8% for 512
bytes. All other error rates, if any, lie below 2%. Figures 30
and 31 show the timings for the same configuration but now
with a Degree-7 RDMA-based allreduce. We see a slight

22

0

50

100

150

200

250

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Analytical-3073 bytes/block
Practical-3073 bytes/block

Figure 25. RDMA-based binomial broadcast
Analytical and Experimental comparison (4-
4608 bytes)-16 node system

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

RDMA Bcast
Send/Recv Bcast

Figure 26. RDMA-based and Send/Receive-
based binomial broadcast estimations for (4-
4608 bytes)-512 node cluster

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

 RDMA Bcast
Send/Recv Bcast

Figure 27. RDMA-based and Send/Receive-
based broadcast estimations for (4-4096
bytes)-1024 node cluster

23

deviation of the actual values from the best and the worst
cases, for small data size. However, the error rate of devi-
ation from estimation is still below 3%. Figures 32 and 33
show the best and the worst case analytical and the exper-
imental timings for the Degree-3 RDMA-based allreduce.
We see that the actual experimental timings lie between the
best and the worst analytical range. The maximum error
rate for Degree-3 RDMA-based allreduce is about 4.3% for
4 bytes. Figures 34 and 35 show the timings for Degree-
1 RDMA-based allreduce. The maximum error rate was
around for Degree-1 RDMA-based allreduce was 6.21% for
4 bytes.

A comparison of the best and worst different degree-k
allreduce algorithms for 16 nodes with small data sizes (4
bytes) using the analytical model gives Degree-3 RDMA-
based allreduce scheme as the optimal algorithm which
we verified practically. For large messages, the analytical
model clearly shows Degree-1 RDMA-based allreduce to
be the most optimal one.

We also evaluated the analytical model on 4 and 8 nodes
of the same cluster. We summarize the results in Figure 40.
For a cluster of 4 nodes, the Degree-3 RDMA-based allre-
duce algorithm performs well for small messages till 1024
bytes. The Degree-3 RDMA-based allreduce gives good
performance for small messages in the 16 node and also in
the 8 node cluster. But in the 8 node cluster, we obtain a
slightly improved performance if we use Degree-7 RDMA-
based allreduce for very small messages. For large mes-
sages above 1024 bytes, the Degree-1 RDMA-based allre-
duce always gives the best performance. This is because in
the degree-3 RDMA-based allreduce case, 3 nodes write to
1 node and 3 operations are done at the receiving node. As
the data size increases, the number of operations increase
and computation becomes very expensive. The degree-1
RDMA-based allreduce fares better as the computation is
distributed to a greater number of the nodes. We verified
both sets of results. Given here are the results for a 16 node
and a 8 node cluster.

For a 16 nodes cluster, we implemented Degree-1,
Degree-3, Degree-7 and Degree-15 RDMA-based allreduce
schemes. Figures 36 and 37 give the comparison of the ex-
perimental evaluation of the all the degree-k RDMA-based
allreduce algorithms possible for the 16 node cluster for
various data sizes. As predicted by the analytical model,
the Degree-3 RDMA-based allreduce gives the best perfor-
mance for small message up to 1KB. Beyond 1KB, Degree-
1 gives the best performance. Figures 38 and 39 give the
comparison of the experimental evaluation of all degree-k
RDMA-based allreduce algorithms for an 8 node cluster.
These results were again found to be similar to the analyti-
cal results that were summarized.

Figure 41 compares the results of send/receive-based bino-

4−256 Bytes 256−1024 Bytes >1024 Bytes

Degree−3 Degree−3

Degree−3 Degree−3

Degree−3 Degree−3

Degree−3

Degree−3Degree−3

Degree−1

Degree−1

Degree−1

Degree−1

Degree−1

Degree−7

16 nodes

512 nodes

1024 nodes

8 nodes

4 nodes

Figure 40. Choosing the Right algorithm for
varying configurations

mial allreduce, most optimal degree-k RDMA-based allre-
duce and degree-1 RDMA-based allreduce. The most op-
timal degree-k RDMA-based allreduce uses degree-3 al-
gorithm for small messages and degree-1 algorithm for
messages greater than 1KB. The degree-1 allreduce is ex-
actly the same as the binomial allreduce algorithm. We
see that the RDMA-based binomial algorithm (i.e degree-
1) always performs better than the send/receive-based bi-
nomial algorithm. The degree-3 RDMA-based algorithm
outperforms both the send/receive-based and RDMA-based
binomial allreduce algorithms for small messages (4-1024
bytes). On a 16 node cluster, we obtain a 38% benefit for
4 byte messages, when we use the degree-3 RDMA-based
allreduce. For large messages of size 4KB, we get a 9%
improvement on using the optimal degree-1 RDMA-based
allreduce scheme. The benefits obtained are due to an opti-
mal algorithm implemented with an efficient RDMA mech-
anism.

7.2.2 RDMA-based allreduce V/s Send/Receive-based
allreduce for large clusters

We evaluated the analytical model for clusters of 512 and
1024 nodes. The degree-k RDMA-based allreduce analyt-
ical model gives the best and the worst case allreduce la-
tency.

An analysis of the best and worst case timings shows that
degree-3 RDMA-based allreduce performs optimally for
small messages (4-1024 bytes) and degree-1 RDMA-based
allreduce performs the best for large messages (1025-4096
bytes) (Figure 40). Thus we can generalize by saying that
a degree-3 RDMA-based allreduce algorithm should give
good performance for small data size (from 4 to 1024 bytes)
and a degree-1 RDMA-based allreduce scheme can be used

24

0

20

40

60

80

100

120

140

160

180

4 8 16 32 64 128 256

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree15
Worst - Degree15
Actual - Degree15

Figure 28. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-15 (4-256) bytes

0

200

400

600

800

1000

1200

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree15
Worst - Degree15
Actual - Degree15

Figure 29. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-15 (512-4096) bytes

0

20

40

60

80

100

4 8 16 32 64 128 256

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-7
Worst - Degree-7
Actual - Degree-7

Figure 30. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-7 (4-256) bytes

0

100

200

300

400

500

600

700

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-7
Worst - Degree-7
Actual - Degree-7

Figure 31. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-7 (512-4096) bytes

25

0

20

40

60

80

100

4 8 16 32 64 128 256

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-3
Worst - Degree-3
Actual - Degree-3

Figure 32. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-3 (4-256) bytes

0

100

200

300

400

500

600

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-3
Worst - Degree-3
Actual - Degree-3

Figure 33. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-3 (512-4096) bytes

0

20

40

60

80

100

4 8 16 32 64 128 256

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-1
Worst - Degree-1
Actual - Degree-1

Figure 34. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-1 (4-256) bytes

0

100

200

300

400

500

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Best - Degree-1
Worst - Degree-1
Actual - Degree-1

Figure 35. RDMA-based allreduce Analytical
and Experimental Comparison for 16 node
system: Degree-1 (512-4096) bytes

26

0

50

100

150

200

4 8 16 32 64 128 256 512

La
te

nc
y

(u
se

cs
)

Bytes

Degree-1
Degree-3
Degree-7

Degree-15

Figure 36. Degree-k RDMA-based allreduce
Performance comparison for (4-1024 bytes)-
16 node cluster

0

200

400

600

800

1000

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Degree-1
Degree-3
Degree-7

Degree-15

Figure 37. Degree-k RDMA-based allre-
duce Performance comparison for (1024-4096
bytes)-16 node cluster

0

20

40

60

80

100

4 8 16 32 64 128 256 512

La
te

nc
y

(u
se

cs
)

Bytes

Degree-1
Degree-3
Degree-7

Figure 38. Degree-k RDMA-based allreduce
Performance comparison for (4-1024 bytes)-
8 node cluster

0

100

200

300

400

500

600

512 1024 2048 4096

La
te

nc
y

(u
se

cs
)

Bytes

Degree-1
Degree-3
Degree-7

Figure 39. Degree-k RDMA-based allre-
duce Performance comparison for (1024-4096
bytes)-8 node cluster

27

0

100

200

300

400

500

600

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Binomial-Send/Recv
Binomial(Degree-1) RDMA

Optimal Degree-k RDMA

Figure 41. Send/Receive-based binomial,
RDMA-based binomial and the most optimal
degree-k RDMA-based allreduce comparison
- 16 node Cluster

for large data sizes while implementing the reduce part of
the allreduce collective operation.

We also use the RDMA-based allreduce analytical model
to predict the performance achievable in large clusters. We
obtain the send/receive-based binomial reduce latency by
extrapolating the reduce latency between 2 nodes. If the
time for reduce between 2 nodes is t1, then the time taken
for the same reduce between � nodes, which involves
����������� steps is approximately log(N) * t1. The timings for
the send/receive-based allreduce can be obtained by adding
the reduce and the broadcast timings.

Figure 42 shows the comparison between the estimated
send/receive-based binomial, the best and the worst case of
the most optimal degree-k RDMA-based allreduce and the
degree-1 (binomial) RDMA-based allreduce. We use the
most optimal degree-3 algorithm for message sizes lesser
than 1KB and degree-1 algorithm for messages greater than
1KB in the degree-k RDMA-based allreduce. The analytical
models predicts a 14% performance benefit of the best case
of the most optimal degree-k RDMA-based allreduce for
message size of 4KB and around 40% for small messages of
4 bytes as compared with the send/receive-based binomial
allreduce. When send/receive-based binomial allreduce is
compared with the worst case of the most optimal degree-k
RDMA-based allreduce, we still obtain a benefit of about
35% for 4 byte messages and 14% for 4KB messages. The
degree-3 RDMA-based allreduce outperforms the RDMA-
based binomial as well the send/receive-based binomial al-
gorithm for small messages. Similar timings are obtained
for 1024 nodes (Figure 43). The analytical model predicts a
benefit of 41% for 4 bytes and 14% for 4KB.

8 Conclusions and Future work

Traditionally, collective operations have been imple-
mented on the send/receive message passing primitives. In
this paper, we introduce a novel method to implement fast
broadcast and allreduce communication operations on VIA
based clusters using RDMA operations. We analyzed the
different design issues that are a part of such an implemen-
tation focusing mainly on buffer registration, safe reuse of
buffers and indication of data validity at the receiver end.
We implemented RDMA-based broadcast using the bino-
mial algorithm which gives a 14% benefit for a 16 node
cluster for 4608 bytes and 19% for 4 byte messages as com-
pared to the send/receive-binomial broadcast algorithm.

For the allreduce operation, we introduced a new con-
cept of degree-k tree-based allreduce algorithms which
when combined with the RDMA mechanism gives im-
proved performance as compared to the send/receive-based
algorithms. A comparison of the most optimal degree-k
RDMA-based allreduce with the send/receive-based bino-
mial allreduce gives us a benefit of about 38% benefit for
a small data size of 4 bytes and about 9% for data size of
4KB for a 16 node cluster. We also presented analytical
models for broadcast and allreduce that give an estimate of
the broadcast time for large clusters and the most optimal
degree-k RDMA-based allreduce algorithm that can be used
for a given cluster and data size. We have used the analytical
model to predict the performance benefits achievable by our
RDMA implementation of allreduce on large clusters. The
predicted performance shows a benefit of about 35-40% for
small messages of 4 bytes and around 14% for messages of
4KB for 512 and 1024 node clusters.

In future, we plan to perform in-depth analysis of the
global buffer management for other collective operations.
We plan to explore and develop efficient algorithms dealing
with user-defined communicators used in context with these
collective operations. We also plan to extend this frame-
work to the emerging InfiniBand architecture.

References

[1] Infiniband Trade Association. http://www.infinibandta.org.

[2] M. Banikazemi, V. Moorthy, L. Hereger, D. K. Panda, and
B. Abali. Efficient Virtual Interface Architecture Support
for IBM SP switch-connected NT clusters. In the Proceed-
ings of the International Parallel and Distributed Processing
Symposium, pages 33-42, May 2000.

[3] P. Buonadonna, A. Geweke, and D. E. Culler. BVIA: An Im-
plementation and Analysis of Virtual Interface Architecture.
In the Proceedings of Supercomputing ’98, 1998.

[4] W. Gropp and E. Lusk. MPICH Working Note: The Second
Generation ADI for the MPICH Implementation of MPI.

28

0

200

400

600

800

1000

1200

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Optimal degree-k RDMA Worst
Optimal degree-k RDMA Best
Binomial(Degree-1)-RDMA
Binomial-Send/Recv

Figure 42. Send/Receive-based binomial,
RDMA-based binomial and the most optimal
degree-k RDMA-based allreduce Estimations
- 512 node Cluster

0

200

400

600

800

1000

1200

1400

4 16 64 256 1024 4096

La
te

nc
y

(u
se

cs
)

Bytes

Optimal Degree-k RDMA Worst
Optimal Degree-k RDMA Best
Binomial(Degree-1)-RDMA
Binomial-Send/Recv

Figure 43. Send/Receive-based binomial,
RDMA-based binomial and the most optimal
degree-k RDMA-based allreduce Estimations
- 1024 node Cluster

[5] Future Technology Group. MVICH: MPI
for Virtual Interface Architecture. In
http://www.nersc.gov/research/FTG/mvich.

[6] R. Gupta, V. Tipparaju, J. Nieplocha, and D. K. Panda. Ef-
ficient Barrier using Remote Memory Operations on VIA-
Based Clusters. In IEEE Cluster Computing, 2002.

[7] Rinku Gupta. Thesis : Efficient Collective Communication
using Remote Memory Operations on VIA-Based Clusters,
The Ohio State Univeristy, August 2002.

[8] http://www.viarch.org/. Virtual Interface Architecture Spec-
ifications.

[9] GigaNet Incorporations. cLAN for Linux: Software Users’
Guide. 2001.

[10] M-VIA: A High Performance Modular VIA for Linux.
http://www.nersc.gov/ research/FTG/via.

[11] P. K. McKinley, Y.-J. Tsai, and D.F.Robinson. A Survey of
Collective Communication in Wormhole-Routed Massively
Parallel Computers. In Technical Report MSU-CPS-94-35,
Michigan State University, 1994.

[12] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard, Mar 1994.

[13] E. Speight, H. Abdel-Shafi, and J. K. Bennett. Realizing
the Performance Potential of the Virtual Interface Architec-
ture. In Proceedings of the International Conference on Su-
percomputing, June 1999.

[14] Robert van de Geijn, David Payne, Lance Shuler, and Jerrell
Watts. A Streetguide to Collective Communication and its
Application. Jan 1996.

29

